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Genome-wide promoter responses to
CRISPR perturbations of regulators reveal
regulatory networks in Escherichia coli

Yichao Han 1, Wanji Li1, Alden Filko1, Jingyao Li 1 & Fuzhong Zhang 1,2,3

Elucidating genome-scale regulatory networks requires a comprehensive col-
lection of gene expression profiles, yet measuring gene expression responses
for every transcription factor (TF)-gene pair in living prokaryotic cells remains
challenging. Here, we develop pooled promoter responses to TF perturbation
sequencing (PPTP-seq) via CRISPR interference to address this challenge.
Using PPTP-seq, we systematically measure the activity of 1372 Escherichia coli
promoters under single knockdown of 183 TF genes, illustrating more than
200,000possible TF-gene responses in one experiment.WeperformPPTP-seq
for E. coli growing in three different media. The PPTP-seq data reveal robust
steady-state promoter activities under most single TF knockdown conditions.
PPTP-seq also enables identifications of, to the best of our knowledge, pre-
viously unknown TF autoregulatory responses and complex transcriptional
control on one-carbon metabolism. We further find context-dependent pro-
moter regulation bymultiple TFswhose relative binding strengths determined
promoter activities. Additionally, PPTP-seq reveals different promoter
responses in different growth media, suggesting condition-specific gene reg-
ulation. Overall, PPTP-seq provides a powerful method to examine genome-
wide transcriptional regulatory networks and can be potentially expanded to
reveal gene expression responses to other genetic elements.

Information about the bacterial cellular response is often encoded in
promoters and affected by transcription factors (TFs), which control
both the timing and level of gene expression. Characterizing the
transcriptional regulatory network (TRN) between TFs and promoters
is essential for functional genomics, systems biology, and genetic
engineering applications. The genome-scale TRN contains massive
amounts of information: Escherichia coli, for example, possesses at
least 183 confirmed TF-encoding genes and 2619 operons according
to RegulonDB 10.01, corresponding to ~500,000 (183 × 2619) possible
TF-operon responses. RNA-seq andmicroarrays are themost common
methods for exploring genome-scale transcriptomic responses to a
perturbed TF activity, but identifying responsive genes for all TFs

would require hundreds of RNA-seq or microarray experiments,
consuming excessive resources and time2–9. Recent advances in single-
cell RNA-seq and CRISPR-based perturbations allowed systematic
analysis of transcriptional response to various genetic perturbations
in eukaryotes10–12. However, these methods have not been able to
illustrate prokaryotic TRNs at whole genome scales due to the low
coverage of bacterial single-cell RNA-seq (less than 10%)13. Genome-
wide promoter mutational scanning presents another high-
throughput method for identifying cis-regulatory elements (CREs)
on promoters14–18. While powerful, this method alone, without prior
knowledge of TF binding sites, cannot provide information about
which TF a promoter can respond to. Moreover, when multiple TFs
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bind to the same location, mutational scanning data alone cannot
quantify the effect of each TF.

To overcome these limitations, we develop a massively parallel
method to measure genome-wide promoter activities in response to
CRISPR interference (CRISPRi)-based TF knockdown (TFKD). This
method called Pooled Promoter responses to TF Perturbations via
sequencing (hereafter PPTP-seq), allows us to examine the regulatory
effects in living cells of hundreds of TFs and thousands of promotersof
a bacterial genome, all with a single assay lasting just two weeks. Fur-
ther, PPTP-seq produces homogeneous data for evaluating all reg-
ulatory responses under identical growth conditions, avoiding
extensive normalization steps in data processing. We apply PPTP-seq
to study the E. coliTRN in threedifferent growmedia (minimal glucose,
minimal glycerol, and LB media) and obtain the most comprehensive
TF-promoter activity profiles so far. Our study uncovers multiple reg-
ulatory responses, including TF autoregulatory responses, complex
transcriptional control of metabolic pathways, promoter responses to
co-regulation from multiple TFs, and condition-specific gene
regulation.

Results
PPTP-seq development and validation
PPTP-seq uses plasmid to integrate each CRISPRi-based TF perturba-
tion and each promoter activity reporter into one construct. Each
plasmid contains a CRISPRi cassette that constitutively expresses a
single guideRNA (sgRNA) to repress a specific TF in the genome19 and a
promoter-reporter cassette to measure the activity of a specific pro-
moter under the TF-repressed condition (Fig. 1a, b). A self-cleaving
ribozyme, RiboJ, was inserted between the promoter and the gfp
reporter gene to produce invariant mRNA sequences, thus eliminating
the interference of different promoter sequences with gfp mRNA
stability20.

To profile genome-wide transcriptional responses for all TFs in E.
coli, we constructed a combinatorial plasmid library consisting of both
a sgRNA library and a promoter library (Fig. 1c). The sgRNA library
contains 183 TF-targeting sgRNAs that repress every single known TF
gene in the E. coli genome (Supplementary Data 1), and contains five

non-targeting sgRNAs as negative controls. The promoter library
contains 1372 native promoters that cover more than 50% of all
operons in E. coli21 (Supplementary Data 2). The combinatorial plasmid
library was transformed into E. coli strain FR-E01, which carries a dCas9
gene in its chromosome. Transformedcellswerefirst grown inminimal
glucose medium to a steady state and sorted into 16 bins based on
their fluorescence intensity (Supplementary Fig. 1a). More than 20
million cells (including all 16 bins) were sorted in each replicate
(Supplementary Fig. 1b and Supplementary Data 3), and their plasmids
were sequenced using the NovaSeq S4 XP Platform, generating an
average of 420 million reads from each replicate (Supplementary
Fig. 1c and Supplementary Data 3). To estimate promoter activities
under eachperturbedTF condition, sequencing read counts across the
bins were first converted to cell count distribution for each individual
variant, followed by fitting into log-normal distribution by maximum-
likelihood estimation22–24 (Supplementary Fig. 2 and “Methods”).

Measured promoter activities were highly consistent between
independent biological replicates performed in different weeks, with
replicate correlation ranging between 0.90 and 0.95 (Supplementary
Fig. 3a). Across three independent replicates, the promoter activities
of 201,433 library members (i.e., 201,433 different TF-promoter pairs,
81% of the entire library) passed our quality filters (Supplementary
Fig. 3b, “Methods”). For most promoters, the median activity of a
promoter across all TFKD conditions was consistent with its activity in
negative controls (Fig. 1d and Supplementary Fig. 4). We found that
more than 98% of TF-promoter pairs fell within the two-fold-change
boundaries of the median activity, indicating robust promoter activ-
ities in most TFKD conditions18,25.

CRISPRi can impair cell growth if essential genes are targeted.
Seven TF-targeting sgRNAs (alaS, bluR, dicA, dnaA, iscR, mraZ, and
nrdR) had substantially reduced reads (fewer than 10,000 reads per
sgRNA compared to an average of 4.8 million reads per sgRNA).
Among them, alaS, dicA, and dnaA are essential genes whose deletion
led to cell death26,27. CRISPRi polarity28,29 can also lead to the repression
of essential genes that are located downstreamof a targeting TFwithin
the same operon. This explains the substantially reduced reads for
iscR, mraZ, and nrdR.
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Fig. 1 | Genome-widepromoter activityprofiles ofTFKDmeasuredbyPPTP-seq.
a Schematic of a regulatory network. Perturbing regulators and the recorded
responses of genes are used to infer regulatory interactions. b Reporter plasmids
used to quantify promoter activity under CRISPRi-based regulator perturbation. A
native promoter was cloned upstream of the gfp gene, and a sgRNA was inserted
downstream of a constitutive promoter. c Massively parallel promoter activity
measurements for a combinatory library. A combinatory library of more than
2.5 × 105 sgRNA-promoter pairs was sorted into 16 bins according to their GFP

expression levels. The sgRNA and promoter regions in each bin were sequenced to
estimate perturbed promoter activity for each sgRNA-promoter pair. d Sorted
promoter activities of all promoters. The gray and red dots respectively represent
promoter activities in strains with TF-targeting sgRNAs and negative control
sgRNAs. The black line represents sorted median promoter activities across all
TFKD conditions. The blue lines indicate 2-fold changes from themedian activities.
a.u. arbitrary units. Source data are provided as a Source Data file.
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We further evaluated theCRISPRi repression efficiency using both
TF’s promoter activity measured from PPTP-seq (Supplementary
Fig. 5a) and transcript level measured from RT-qPCR (Supplementary
Fig. 5b). The two methods respectively found 95% and 86% of tested
TFs showed significant repression (Student’s t-test P-value < 0.05)
compared to their corresponding controls containing non-targeting
sgRNAs (Supplementary Note 1). We further found a clear negative
correlation between the degree of CRISPRi repression and TF expres-
sion level measured from TF’s promoter activity (Supplementary
Fig. 5c, d). This explains the lack of repression for the small fraction of
TFs (e.g., qseB and ttdR).

To further validate the promoter activitiesmeasured by PPTP-seq,
we randomly selected five promoters, which involve a diverse range of
gene functions. We then individually measured their activities in
response to CRISPRi repression of nine representative TFs (and one
non-targeting sgRNA as a negative control), using a plate-reader-based
whole-cell fluorescence assay (Supplementary Fig. 6a). Of these
50 sgRNA-promoter pairs, 45 were quantified by PPTP-seq and were
highly consistent with individual whole-cell fluorescence measure-
ments (Supplementary Fig. 6b, Pearson’s r =0.95), confirming the
high quality of our pooledmeasurements. The other five combinations
were missing in all three replicates due to their low read counts. This
small dataset also contained the regulatory effects of five known

direct interactions and one indirect interaction in RegulonDB1

(Supplementary Fig. 6c).
We also compared our promoter activity measurements to pre-

viously published datasets from other independent experiments.
Promoter activities measured from PPTP-seq (using the negative
control strains) correlated with transcript levels measured from
RNA-seq30 and promoter activities individually measured using flow
cytometry31 (Supplementary Fig. 7a–c, Pearson’s r = 0.68 and 0.74,
respectively). Additionally, fold change in promoter activity upon
TFKDmeasured fromPPTP-seq is also qualitatively consistentwith that
measured from EcoMAC microarray32 for a few known regulatory
interactions in RegulonDB1 (Pearson’s r =0.51, Supplementary Fig. 7d).

Genome-wide TF-dependent promoter responses
We quantified promoter activity changes by TFKD relative to negative
controls (Supplementary Fig. 4) and modeled the replicated data as
log-normal distributed to determine statistical significance. From the
201,433 measured promoter activities, single TFKDs led to upregula-
tion in 3720 TF-promoter pairs and downregulation in 338 pairs
(>1.7-fold in promoter activity, q < 0.01; Fig. 2a) in minimal glucose
medium. Most TFs regulate fewer than ten promoters, while a few TFs
affect more than 100 promoters (Fig. 2b). We also found promoters
that are regulatedbymultiple activators (leading todownregulationby
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Fig. 2 | Genome-wide promoter responses to TFKD in E. coli. a Promoter activity
changes by TFKD. Dashed lines indicate cutoffs for statistically significant (q <0.01)
and substantial (>1.7-fold change) effects. Each dot represents a TF-promoter pair.
Upregulation and downregulation by TFKDare shown in red and blue, respectively.
A few known interacting TF-promoter pairs are labeled. bHistogramof the number
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dashed line indicates the average fraction of constant promoters over all COG
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**P <0.01. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-41572-4

Nature Communications |         (2023) 14:5757 3



TFKD in Fig. 2c) are much less abundant than those regulated by
multiple repressors (leading to upregulation in Fig. 2c). The most
common regulatory effect on a regulated promoter observed in
PPTP-seq was single regulation by a single activator or a single
repressor (30%, Fig. 2c and Supplementary Fig. 4), which was con-
sistent with previous datasets measured using other methods1,14.

Collectively, we identified 936 (71% of 1323 measured promoters)
variable promoters with significant activity change under at least one
TFKD condition (Supplementary Note 2), and the other 29% of the
promoters were considered as constant promoters. Clusters of
Orthologous Genes (COG) analysis33 of all downstream genes of these
promoters indicated that genes expressed by variable promoters are
enriched in theCOGclassof “Carbohydrate transport andmetabolism”

(P = 4.4 × 10−3) (Fig. 2d), specifically KEGG pathways in galactose
metabolism (eco00052), pentose and glucuronate interconversions
(eco00040), starch and sucrose metabolism (eco00500), and amino
sugar and nucleotide sugar metabolism (eco00520). Variable pro-
moters also control genes in flagellar and pilus (Supplementary
Data 4). The results suggested that these functions or activities are
more readily subject to regulation under different condition changes.
Genes expressed by constant promoters are enriched in “inorganic ion
transport and metabolism” (P = 2.6 × 10−3), specifically sulfur metabo-
lism (eco00920), ion transport (GO:0006811), and iron ion home-
ostasis (GO:0055072) (Supplementary Data 4), suggesting that these
genes play housekeeping roles (Fig. 2d).

TF promoter response to perturbation
We systematically investigated whether a TF’s promoter can be affec-
ted by itself or other TFs. A perturbation-response network between
TFswas constructed, where activation and repression represent down-
and upregulation by CRISPRi knockdown of an upstream TF, respec-
tively (Fig. 3a). In minimal glucose medium, a total of 26 activations
and 339 repressions were observed between 126 TFs (Supplementary
Data 5). Within this dataset, no mutual regulation or repressilators of
three or more TFs were observed, likely due to low expression or
missing allosteric regulation for some TFs when cells are growing in
minimal glucose medium (Supplementary Note 3).

We then examined TF autoregulatory responses, which have been
challenging to studyusing othermethods due to the coupling between
perturbation and readout. We identified 12 autoregulated TFs with
strong perturbation effects (>1.7-fold in promoter activity, q <0.01) in
minimal glucose medium, including two autoregulatory interactions,
PgrR and ComR, not present in RegulonDB (Fig. 3b). Meanwhile, sev-
eral previously identified autoregulated TFs (e.g., PhoB, Fur, LldR, etc.)
showed only weak perturbation effects (i.e., less than 30% promoter
activity change) under our growth conditions in minimal glucose
medium. To further validate thesefindings,we selected sevenTFgenes
and measured their promoter activities across a wide range of TF
concentrations using a tunable E. coli TF library34, in which each
endogenous TF is replaced by an inducible TF-mCherry fusion (Sup-
plementary Fig. 8). Both pgrR and comR promoters showed higher
activity at lower TF levels, confirming their negative autoregulation.
PgrR autoregulation is consistent with the identified PgrR binding site
on its promoter region35. Except for ZraR, four out of five previously
identified autoregulated TFs displayed negligible promoter activity
changes over a wide TF level range. Thus, the results from the tunable
TF library were mostly consistent with PPTP-seq. Our results also
suggest that some previously identified TFs lack autoregulatory
response when cells are growing in minimal glucose medium andmay
occur under other growth conditions36–39, so the interpretation of TF
regulation should consider the condition dependency.

Transcriptional regulation of one-carbon metabolism
PPTP-seq data also allows us to systematically examine gene regulation
on complex metabolic pathways. As an example, we selected the

one-carbon metabolism (OCM), in which transcriptional regulation
was not well characterized in bacteria. OCM is tightly associated with
the synthesis of nucleotides, amino acids, and two essential cofactor-
s―tetrahydrofolate (THF) and S‐adenosylmethionine (SAM), and it
plays important roles in cell survival and growth. However, due to the
presence of multiple metabolic cycles and interconnected pathway
structures, dissecting the regulatory function of OCM remains
challenging.

We identified 28 TF genes that can affect at least one promoter
in OCM (Supplementary Fig. 9). A few genes in methionine and SAM
biosynthesis, such as metA, metE, and metK, were observed to be
upregulated by metJ knockdown, recapitulating the known feedback
control of SAM biosynthesis via MetJ5,40 (Fig. 4a). Additionally,
we found that metA, metE, and metK were also regulated by other
TFs, but in distinct patterns (Fig. 4b). For example, metE was found
to be activated only by metJ knockdown, whilemetK was upregulated
by knockdown of ten different TFs. This finding is intuitively
surprising because MetE andMetK catalyze two consecutive reactions
in the methionine cycle, and enzymes from the same pathway are
often co-regulated41. The different regulations on metE and metK
thus indicate that enzymes catalyzing consecutive steps can have
distinct cellular functions: MetE synthesizes methionine for protein
synthesis, and MetK produces SAM as a cofactor for metabolic reac-
tions (Fig. 4a).

The PPTP-seq dataset also revealed the regulatory functions of
MetR, previously known only as a regulator of methionine biosynth-
esis. We found that metR knockdown affected multiple genes in the
folate cycle and folate biosynthesis (e.g.,metF, thyA, and folE; Fig. 4a),
not present in RegulonDB1. Previous DAP-seq binding analysis using
purifiedTFs and genomicDNA fragments identifiedMetR binding sites
atmetF and folE promoters42, but the in vivo regulatory responses have
never been tested. We further verified these regulatory responses
using a MetR knockdown strain from the tunable TF library34 (Fig. 4c).
These findings allow us to discover metabolic feedback control
mechanisms in E. coli OCM under homocysteine-starved conditions
because MetR binding to DNA requires homocysteine activation43.
When homocysteine is limited, cells cannot produce sufficient
methionine for translation initiation and elongation. To quickly rescue
the cells from their methionine-limited state, MetR-repression ofmetF
must be alleviated, increasing the amount of 5-methyl-THF and pre-
paring for rapid methionine synthesis when the homocysteine level is
sufficiently restored. Meanwhile, upregulated metF and thyA by MetR
also increase 5,10-methylene THF consumption, which simultaneously
reduces 10-formyl-THF due to reversible reactions between these THF
species (Fig. 4a). Low 10-formyl-THF andmethionine can further result
in the insufficient formation of initiator tRNA to slowdown translation.
Additionally, we found that MetR activates folE, whose enzyme pro-
duct catalyzes the first step in folate biosynthesis (Fig. 4a). Thus,
homocysteine limitation can also repress folE, thereby decreasing
folate biosynthesis. Taken together, these phenomena suggest that
MetR helps to block protein translation initiation and folate synthesis
in response to low homocysteine and accumulates 5-methyl THF to
prepare for rapid methionine biosynthesis once homocysteine is
available.

Strongly bound rather than weakly bound TFs tend to affect
promoter activity
Our genome-wide promoter activitymeasurements fromperturbedTF
levels can provide information that complements TF-promoter bind-
ing datasets from ChIP-seq, ChIP-exo, DAP-seq, gSELEX, and curated
TF binding sites (TFBSs) in RegulonDB1,42,44,45, yielding knowledge
about direct and functional TF-promoter interactions. In total, out of
the 4058 regulatory responses identified by PPTP-seq in minimal glu-
cose medium, 225 have binding evidence from DAP-seq, and an addi-
tional 256 have binding evidence from other binding datasets,
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altogether representing 12% (481/4058) of the PPTP-seq identified
responses (Fig. 5a, b, Supplementary Data 6). For 127 TFs with binding
site information, on average, 23% of regulated promoters per TF were
presumably direct targets (Fig. 5c). For the rest 56 TFs, their TFBSs
were either not in our promoter library or not identified yet. Among
the 481 regulatory responses with binding evidence, only 78 of them
were found in the TF-operon network in RegulonDB, and the rest 403
TF-promoter responses may contribute to regulatory interactions not
present in RegulonDB in minimal glucose medium (Supplementary
Table 1).

In general, PPTP-seq results and the binding datasets have a small
overlap in TF-promoter interaction pairs (Fig. 5a), which is consistent
with the low overlaps between similar comparisons on specific TFs
(GadX, GadW, Fur, and SoxS) in E. coli36,46,47 and between eukaryotic
transcriptional response and TF binding datasets3,48. This can be

caused by low TF expression levels, low TF activity (affected by other
molecules), and/or complex regulatory patterns. We individually
examined two promoters that have multiple different TF binding sites
(Supplementary Note 4 and Supplementary Fig. 10).We found the lack
of response can be explained by the context-dependent transcrip-
tional regulation49―regulatory function of one TF affected by other
TFs bound on the same promoter. Further, we found that deactivating
the regulating TF can lead the promoter to respond to previously non-
regulatory TFs (Supplementary Note 4 and Supplementary Fig. 10h, i).
These observations indicate that TF-promoter binding is not sufficient
for response, and E. coli uses layered control to achieve complex logic
for gene expression. In RegulonDB, 48% of regulated promoters have
more than one functional TF binding site (Supplementary Fig. 11),
suggesting that suchcontext-dependent transcriptional regulation can
be ubiquitous in E. coli.
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We sought to explore what general features determine whether a
potentially bound TF can regulate promoter activity under our
experimental condition (i.e., growing inminimal glucosemedium). For
each TF binding site, we focused on the binding location, TF con-
centration, and binding strength. We found that binding sites from
both regulating and non-regulating TFs were centered around the
transcription start site (TSS) of a promoter50 (Fig. 5d) and that reg-
ulating TFs had a significantly higher concentration in cells over non-
regulating TFs (Fig. 5e, f). Additionally, previous biophysical models
indicate that TF-DNA binding energy can predict fold changes in pro-
moter response16,51–53.Wefirst hypothesized thatwhen aTFhasbinding
sites at multiple promoters, it tends to regulate its targets with the
strongest binding strength. To test this hypothesis, we normalized the
binding strength of each TF-promoter pair to the maximum binding
strength for that TF (called “relative binding strength per TF”). On
average, the relative binding strength per TF was slightly weaker for
regulatory TF-promoter pairs than for non-regulatory TF-promoter
pairs (Fig. 5g, h). This unexpected result suggests that TFs do not
necessarily regulate their most tightly associated promoters. We then
considered the affinity of all TFs binding to the same promoter and
normalized the binding strength of each TF-promoter pair to the
maximal strength of the most tightly associated TF for each promoter
(called “relative binding strength per promoter”) (Fig. 5i). Results
indicate that for each promoter, TFs with stronger binding are more
likely to cause promoter activity change. Taking these findings toge-
ther, the relative binding strengths of TFs on a promoter are a major
determinant of promoter response.

Condition-specific regulatory networks
To exploregenome-scale regulatory networks at conditions other than
minimal glucose medium, we further performed PPTP-seq experi-
ments for cells grown in LB andminimal glycerolmedia. A total of 5279
and 3810 TF-promoter responses were identified in LB and minimal
glycerol media, respectively (Supplementary Fig. 12). The larger
number of responses seen in LBwas partially causedby highTF activity
of a few TFs that have specific effectors in rich media (Supplementary
Table 2). Comparing these datasets with that collected from minimal
glucose medium, 867 TF-promoter pairs appeared in all three condi-
tions, with 1901, 2274, and 3495 pairs appearing only in one condition,
suggesting TF-promoter responses are highly condition-specific
(Fig. 6a). The upregulated TF-promoter pairs by TFKD (TF repres-
sion) have more overlaps among these three conditions than

downregulated pairs (TF activation, Fig. 6a), suggesting that TF acti-
vation is more sensitive to growth conditions (e.g., affected by allos-
teric regulation) than TF repression. We examined a few individual TFs
with known targets (Supplementary Data 7) that have distinct reg-
ulatory responses in different conditions (Fig. 6b). For example,
repression of lacZ promoter by CRP was not detected in minimal
glucose medium due to low cAMP concentration54, but was observed
in LBmedium. Similarly, activation of themaltose transportermalK by
MalT was observed in LB medium but not in the minimal glucose
medium, because expression ofmalT requires CRP activation55. On the
other hand, activation of metE by MetR was observed in minimal glu-
cose and glycerol media but not in LBmedium. This is likely caused by
repression ofmetEbyMetJ at high SAMconcentration56. Our data show
thatmany regulatory responses are condition-dependent (Fig. 6b) and
highlight that growth condition needs to be specified when describing
the regulatory network.

Discussion
In summary, PPTP-seq is a powerful high-throughput method for
measuring genome-wide promoter responses to TF perturbations in
living cells. This method allows us to interrogate the regulatory func-
tions of 181 E. coli TFs in a single assay. RNA-seq is currently the most
common technique to study genome-wide TF regulation of living cells.
To date, RNA-seq profiles of only 33 E. coli TFs were directly
assessed5,8,9, while PPTP-seq increased this number substantially. Fur-
ther, ChIP-seq was specifically developed for identifying genome-wide
TF binding sites in living cells. So far, only 12 E. coli TFs have been
reported from 28 ChIP-seq databases, while PPTP-seq reports 15-fold
more TFs in a single study. Meanwhile, PPTP-seq involves perturbation
of TF expression level, similar to methods that perturb TF-promoter
binding affinity via mutating CREs14–16 and methods that perturb TF
activity57. PPTP-seq identified many regulatory responses that are
condition-specific (Fig. 6) and not seen from previous binding assays
(e.g., DAP-seq, ChIP-seq, ChiP-exo, gSELEX, Fig. 5, and Supplementary
Data 6). Each method has its own advantages and limitations. Com-
plementary use of these methods would help to obtain an unbiased
understanding of TF regulation.

Results from this work have also revealed multiple regulatory
responses. We identified PgrR and ComR as autoregulated TFs and
found that TF autoregulation is condition-dependent. We also dis-
covered complex transcriptional control of OCM, especially the
additional roles of MetR in regulating the folate cycle and folate
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biosynthesis. Although thousands of TF binding sites were identified in
E. coli, only a small fraction of such interactions cause promoter
activity change when perturbing TF expression level. Furthermore, for
promoters with multiple TF binding sites, TFs with higher binding
affinities are more likely to affect promoter activity than those with
lower affinities.

Many regulatory responses identified by PPTP-seq may involve
indirect regulatory mechanisms without a binding site identified from
the previous datasets. Indirect mechanisms can arise from diverse
cellular processes, including regulatory cascade, metabolic state
changes, protein-protein interactions, and cell-cycle perturbation57–60.
Although distinguishing direct versus indirect responses is important
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in understanding network dynamics61,62 and engineering biosensors63,
our datasets provide genome-wide regulatory phenotypes under dif-
ferent growth conditions and will be useful for a wide range of bio-
technology applications, such as engineering dynamic regulation
for bio-production64–66 and identifying new targets for drug
development67,68.

Limitations of PPTP-seq include false positives caused by CRISPRi
polarity in bacteria28,29, where CRISPRi represses genes located in the
same operons of a targeting TF. False positives may also result from
CRISPRi off-target69. Treating CRISPRi polarity and off-target as two
independent factors, we expected the falsepositive rate of PPTP-seq to
be lower than 17.8% (Supplementary Note 5). Besides, CRISPRi did not
workwell forweakly expressedTFgenes, leading to false negatives due
to insufficient TF repression. Furthermore, PPTP-seq measures
expression fold-change from low-copy plasmids that may be smaller
than fold-change from single-copy chromosomal promoters. Addi-
tionally, some promoters in the library may lack a DNA looping
mechanism (e.g., lacZ) due to the truncation of additional operator
sites located outside the promoter region70.

PPTP-seq canbe applied to other bacterial species because it does
not require functional annotations about TF activities and binding
motifs. Although this study focused on TFs, PPTP-seq can be modified
to explore genome-wide promoter response to other genetic pertur-
bations, such as perturbations of enzymes and transporters, to
dissect metabolism-related regulatory networks (Supplementary
Fig. 13a). Simultaneous perturbations of multiple TFs using sgRNA

arrays71 could also be integrated to quantify combinatorial regulatory
effects (Supplementary Fig. 13b). Besides genome-scale mapping,
PPTP-seq can also explore the regulatory mechanism of complex
promoters at a base-pair resolution by perturbing both the binding
sites and the expression levels of TFs on these promoters (Supple-
mentary Fig. 13c). We anticipate that PPTP-seq will be a powerful tool
for deciphering bacterial regulatory genomes.

Methods
Strains, growth media, and DNA libraries
PPTP-seq experiments were performed in E. coli strain FR-E01
(Addgene # 118727), a derivative of E. coli MG1655 with an aTc-
inducible dCas9 expression cassette integrated at the attB site of its
genome72. NEB 10-β competent E. coli (New England Biolabs) was
used for cloning. Promoter activities were measured in M9 minimal
glucose (0.4%) medium (supplemented 1mM thiamine and 25 ng/μL
kanamycin), M9 minimal glycerol (0.5%) medium (supplemented
1mM thiamine and 25 ng/μL kanamycin), or LB medium (supple-
mented 25 ng/μL kanamycin). All primer sequences are listed in
Supplementary Data 8.

An E. coli promoter collection originally constructed by the Alon
lab21 was obtained fromHorizon Discovery Ltd. (# PEC3877). All strains
in this collection, except for those containing control vectors (pUA139
and pUA66), were grown overnight in LBmedium in 96-well deep-well
plates. A library was generated by mixing 300μL of overnight cell
cultures from each well using an Eppendorf epMotion® 96 Pipettor.
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Pooled plasmids of this collection were extracted from the mixture
using a Maxiprep kit (QIAGEN). We noted that “promoter regions” in
Alon’s collection were defined as entire intergenic regions flanked by
about 50–150bp into the adjacent coding regions21; however, many of
these “intergenic regions” are located in the middle of an operon and
do not contain promoter sequences. These non-promoter regions
were excluded from the data analysis.

From the existing TF-gene network (RegulonDB v 10.0), 181 TFs
(including heteromultimeric TFs) were identified in E. coli that have at
least one known target supported by binding of purified proteins or
site mutation. Among them, 169 TFs function as monomers or homo-
oligomers (encoded by single genes), and 12 TFs function as hetero-
dimers or hetero-oligomers (encoded bymore thanone gene). The 181
TFs are encoded by 183 unique genes; thus, a sgRNA library targeting
183 different TF genes was designed. (Supplementary Data 9). Based
onpreviousCRISPRi screening results for E. coli73, a customizedPython
script was used to select one sgRNA for each TF gene. Five sgRNAs
containing random sequences without off-target candidates in the
genome were included as negative controls (Supplementary Data 9).
Thus, a total of 188 sgRNA sequenceswere designed. For each sgRNA, a
pair of phosphorylated oligonucleotides were synthesized by IDT and
annealed individually. All the oligonucleotide sequences designed for
sgRNA cloning are listed in Supplementary Data 9.

Construction of the pooled combinatorial library
To facilitate the construction of the combinatorial library, we first
created the plasmid pYH156, which contains a gfpmut2 gene under the
control of the lacZ promoter and a constitutively expressed sgRNA
targeting the coding sequence of genomic lacI gene using DNA from
previouslydescribedplasmids21,74,75. A self-cleaving ribozymesequence
(RiboJ) was inserted upstream of gfpmut2 to prevent the untranslated
region of different promoters from affecting the mRNA structure. A
mCherry gene was inserted downstream of the kanR gene in the same
operon as a control for extrinsicnoise. All these geneswere clonedon a
pSC101 vector backbone (Supplementary Note 6).

The combinatorial library was constructed in two steps. In all
cloning steps, Q5 hot-start high-fidelity DNApolymerase (New England
Biolabs #M0493L) was used for PCR amplification. The backbone of
the plasmid pYH156 was amplified using primers prYH068 and
prYH069. In the first step, the vector backbone was first ligated with
the sgRNA library by Golden Gate assembly in 96-well PCR plates. The
ligation products were pooled and transformed into NEB 10-β com-
petent cells. After growing overnight, more than 105 colonies were
scraped from LB agar dishes, followed by plasmid extraction using a
Miniprep kit (iNtRON biotechnology), resulting in a plasmid library
that we named pYH156_sgRNA_lib. The quality of the sgRNA plasmid
library was verified by high-throughput sequencing. All 188 sgRNAs
were observed in the library.

In the second step, all promoter sequences were amplified from
the pooled plasmids of the E. coli promoter collection21 using primers
prYH070andprYH071, and the vector backbone containing the sgRNA
library was amplified from pYH156_sgRNA_lib using primers prYH072
and prYH073. These two PCR products were gel-purified and then
ligated by Golden Gate assembly. The ligation products were purified
using a DNA Clean & Concentrator kit (Zymo Research), and ~3.6μg of
purified ligation products were electroporated into 200μL of fresh
NEB 10-β competent cells using four electroporation cuvettes. The
cells were plated on large LB agar plates (245 × 245mm), resulting in
about 8.2 × 107 individual clones. Transformants were scraped from
the large agar plates, and the resulting combinatorial library plasmids
(pYH160, SupplementaryData 10)were extracted using amaxiprep kit.
Purified pYH160 plasmids (1μg) were further electroporated into
E. coli strain FR-E01, yielding >108 transformants. Transformed cells
were resuspended in LB medium and then were used to prepare 2mL
glycerol stocks.

Sorting the combinatorial library
Sorting experiments were performed in triplicate using cultures pre-
pared in different weeks. For each replicate, 100μL of the combina-
torial library glycerol stockwas thawed and inoculated in 250mL of LB
medium. When an OD600 of 0.5 was reached, 1mL of cells was diluted
into 25mL of a target medium (either M9 glucose, M9 glycerol, or LB
medium). After a few hours of adaptation, 500μL of the cultures were
added to 50mL of the target medium containing 1μM aTc as inducer.
The induced cells were grown at 37 °C until OD600 reached 0.1–0.2. At
this point, the cell cultures were supplemented with 250 μg/mL
chloramphenicol to halt protein production and were kept on ice until
sorting.

Cell sorting was performed on either FACSAria II (for cells grown
in the M9 glucose) or FACSMelody (for cells grown in LB and M9
glycerol media) cell sorters (BD Biosciences). To control extrinsic
protein production noise, events were gated around the mean fluor-
escence of mCherry, which is constitutively expressed on the reporter
plasmid. Cells were sorted into 16 equally sized contiguous bins
according to their GFP fluorescence intensity on a log scale23,76 using a
four-way purity sorting mode. The number of bins was chosen by
considering both sorting time (5–10 h) and expression level difference
between adjacent bins (less than 1.7-fold change). Both previous sort-
seq experiments17,22,76,77 and simulations23 have shown that the use of 16
bins in our case allows reliable quantification of mean gene expression
level. For each replicate, the flow rate during cell sorting was kept
constant, and each bin was sorted for the same amount of time so that
the number of cells collected in each bin was proportional to the
phenotypic density in the population77. The numbers of cells sorted in
each bin for each replicate were recorded for normalization in data
analysis.

Sample preparation for NGS
In each bin, sorted cells were added to an equal volume of LBmedium
with 50ng/μL kanamycin and were grown overnight. Plasmids were
extracted from 3mL of overnight cell cultures using miniprep kits.
From each bin, 50ng of purified plasmids were amplified using the
KAPA HiFi PCR Kit (Kapa Biosystems) for 20 cycles, using primers
prYH071 and prYH087. The PCR products were purified using DNA
Clean & Concentrator kits (Zymo Research) and then ligated to Illu-
mina sequencing adapters via Golden Gate assembly. The adapter-
labeled productswere gel-purified to select DNA sizes between 400bp
and 1.5 kb. To enrich ligated products, gel-purified DNA products were
subjected to another round of PCR using primers prYH128 and
prYH129 for 8 cycles. Amplified adapter-labeled samples fromeachbin
were then mixed in ratios that ensured that the number of reads was
proportional to the number of cells sorted in each bin. The pooled
sample was sequenced using partial lanes on a NovoSeq S4 XP Plat-
form (2 × 150) at the Genome Technology Access Center of the
McDonnell Genome Institute.

NGS data processing
Paired-end reads were separately aligned to the pre-defined sgRNA
library and the complete genome of E. coli MG1655 (U00096.3) using
Bowtie2 v2.3.578. For each promoter-end read, the genomic coordi-
nates from the alignment were used to find the closest downstream
operon and the closest downstream gene in the genome using BED-
Tools v2.29.279. Some non-promoter sequences whose end cannot be
mapped to the first 200bp of the coding sequence of the first gene in
the operon were excluded for subsequent analysis. The remaining
promoters are listed in Supplementary Data 2.

For each variant i, its read counts rij in each bin j were multiplied
by Cj=Rj to estimate its cell counts cij sorted to bin j, where Cj and Rj

are the number of cells collected in bin j and the number of reads
sequenced with barcode associated with bin j respectively. This nor-
malization step allows comparisons between bins after post-sort
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growth, plasmid extraction, and NGS preparation by assuming the
ratio of each variant in a bin does not change significantly. The fraction
of cells of variant i being sorted into bin j is f ij = cij=

P16
j cij . Due to the

technical noise in sorting, a noise reduction method was applied
by calculating adjusted cell fraction f adjij = ðf ij � εÞ=P16

j ðf ij � εÞ,
where ε=0:05 is a hyperparameter representing the noise back-
ground. To avoid negative values, the probability of a cell of variant i
truly coming from bin j before sorting was estimated as
pij = maxð0,f adjij Þ=P16

j maxð0,f adjij Þ. It was assumed that the fluores-
cence distribution for each variant approximates a log-normal
distribution80–82 (Supplementary Figs. 1a and 2).

Parameter estimation was performed following previously
describedmethodswithminormodifications22,23. Tofindparametersμi

and σi for the log-normal distribution of each variant i, we used the
Nelder-Mead method (Scipy package) to maximize the log-likelihood
function:

log L μi,σi,j,pij

� �
=
X16

j = 1

pij logðFμi ,σi
Bj

� �
� Fμi ,σi

ðBj�1ÞÞ, ð1Þ

where Fμi ,σi
is the cumulative distribution function of a normal dis-

tribution with mean μi and standard deviation σi, and Bj and Bj�1 are
the upper and lower boundaries at log scale of the bin j. Since we did
not set the lower boundary for the first bin and the upper boundary for
the last bin, Fμi ,σi

B0

� �
=0 and Fμi ,σi

B16

� �
= 1. The mean GFP intensity of

variant i is then GFPi = expðμi + σi
2=2Þ.

Kullback-Leibler (KL) divergence between the inferred distribu-
tion and pij was calculated to evaluate the goodness of fitting for each
variant i:

K pij ,μi,σi

� �
=
X16

j = 1

pij log pij

� �
� log L μ̂i,σ̂i,j,pij

� �
: ð2Þ

To control the fitting quality, fitted parameters of variants
with any of the following features were set as “not available (NA)”
for subsequent analysis: (1) variants with mean GFP intensity not
within our detection limits (101.5 to 105 for the M9 glucose growth
condition and 101.5 to 105.5 for the LB and M9 glycerol growth condi-
tions); (2) variants with estimated cell counts

P
jcij less than 1 (Sup-

plementary Fig. 14a); (3) variants with the KL divergence greater than 1
(Supplementary Fig. 14b); (4) variants with all cells in a single gate.
These filters improved consistency among replicates (Supplementary
Fig. 14c).

Data in each replicate was processed using the above procedures
independently. To reduce the systematic differences between repli-
cates, we applied linear transformation to mean GFP intensity mea-
sured from replicate #1 and replicate #2using scale of replicate #3. The
mean Mi and standard deviation Si of rescaled logðGFPiÞ of variant i
between replicateswere calculated. For negative control variants, their
mean Mi0 and standard deviation Si0 of rescaled logðGFPi0Þ were
obtained by treating negative control sgRNAs (NC_35, NC_82, NC_84,
and NC_89) in replicates as independent samples. Data from sgRNA
NC_31 is inconsistent with data from the other four negative control
sgRNAs, therefore, NC_31 was excluded from data analysis. For each
promoter, outliers in negative control samples were excluded using
the interquartile range (IQR) method. Variants with Si greater than 0.7
were also excluded to ensure the data consistency.

Differential expression analysis
We adopted a method of mean comparison for log-normal
distribution83 to determine whether the perturbed activity of a pro-
moter by TFKD for variant iwas significantly different from the activity
of the promotermeasured by negative control samples i0. Z tests were

performed using the Z score calculated by

Zi =
Mi �Mi0 + 1=2

� �
S2i � S2i0

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2i
ni
+ S2i0

ni0
+ 1=2
� � S4i

ni�1 +
S4i0

ni0�1

� �r , ð3Þ

where ni and ni0 are the number of qualified samples of TFKD variant i
and its corresponding negative control i0 with the same promoter. To
control the false discovery rate (FDR), q values were calculated based
on the P-value from the Z tests84. Given that promoter activity in the
negative control is not consistent with the median promoter activity
for a small number of promoters, fold changes relative to both nega-
tive control activity and median promoter activity need to be larger
than 1.7 to call them substantial effects. Analyzed differential expres-
sions can be found in Gene Expression Omnibus (GEO) with access
number GSE213624. Functional annotation and enrichment analysis
were performed using the DAVID web server85.

Reverse transcription-qPCR
Triplicate colonies were grown overnight in LB. Cultures were then
diluted by 200-fold into 5mL M9 glucose medium and grown for 1 h.
Cells were then induced with 1μMaTc and grown for an additional 2 h.
Cultureswere thendiluted900-fold inM9glucosecontaining 1μMaTc
and grown to OD600 of 0.1, followed by RNA extraction using 2mL
culture (ZymoResearchQuick-RNAkit). All the RNA sampleswere then
treated with DNAse (Zymo Research) and reverse transcribed to cDNA
with RevertAid First Strand cDNA Synthesis Kit (Thermo). The cDNA
samples were then subjected to qPCR using the PowerTrack SYBR
Green Master Mix (Thermo) and a Quantstudio 3 instrument (Applied
Biosystems). The constitutive gene dnaK was used as an internal con-
trol, and fold change for each gene was calculated using the 2−ΔΔCT

method86.

Kinetic assays for a subset of individual variants
We individually constructed a subset of the combinatorial library
consisting of five promoters (PfadE, PglyA, PlacZ, PmarR, and PmetA) and ten
sgRNAs targetingnineTFgenes (acrR,arcA, crp, fadR, lacI,marA,marR,
metJ, and purR) and a negative control (NC_84). These plasmids (Sup-
plementary Data 10) were confirmed by Sanger Sequencing and were
individually transformed into E. coli strain FR-E01. Single colonies were
inoculated into 0.5mL of LBmediumwith 25 ng/μL kanamycin in a 96-
well deep-well plate and grownovernight. The overnight cultures were
diluted 1:255 into 150μLofM9glucosemedium in a 96-well plate. After
3 h, the cultures were diluted 1:900 into 150μL of M9 glucosemedium
with 1μM aTc, and then incubated in an Infinite 200 Pro plate reader
(Tecan) at 220 r.p.m. and 37 °C. OD600 and GFP fluorescence were
measured every 10min over 10 h. Customized MATLAB scripts were
used for data processing, including the background correction and
OD600 normalization. GFP/OD600 values for each strain remained
nearly constant when OD600 (converted to the equivalent value for
1-cm pathlength measurements) was between 0.08 and 0.32. The
steady-state GFP expression levels were calculated by averaging GFP/
OD600 values from the two closest measurements above and below
OD600 = 0.2 for all strains.

Promoter activity measurements in TF-tunable strains
Reporter plasmids containing selected promoters for validation
were obtained from the promoter library21, then transformed into
TF-tunable strains from the Brewster lab34 (Supplementary Data 11).
We noticed that the expression level of MetR-mCherry was as low as
our detection limit and could not be induced by aTc in the
MetR-tunable strain. Due to this loss of tunability, reporter plasmids in
the MetR-tunable strain were also transformed into a control
strain with the wild-type MetR expression level for comparison.
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Promoter activities were measured using the method described in the
“Kinetic assays for individual variants” section with the following
modifications. First, to investigate condition-specific perturbation
effects, some strains were grown in M9 media with different carbon
sources or metal ions. The PdhR-tunable strain harboring the reporter
plasmid for the fadE promoter was grown in M9 minimal media sup-
plemented with one of the following carbon sources: 0.4% glucose,
0.2% succinate, 4mMoleate, or 0.5%glycerol plus 4mMoleate. Strains
harboring the arnB promoter reporter plasmid were tested in M9
glucosemedia with either 0.4mMFeSO4 or 0.2mMFe2(SO4)3. Second,
to generate different TF expression levels, the aTc inducer was added
in concentrations of 0, 2, and 20nM. Third, for cell cultures that
contained FeSO4 or Fe2(SO4)3, steady-state periods were identified by
examining the GFP/OD600 and OD600 data because OD600 measure-
ments were affected by FeSO4 or Fe2(SO4)3, especially when OD600

was low.

Analysis of TF binding sites from DAP-seq
All theBEDfiles for TFbindingpeaks in E. coli identified fromDAP-seq42

were screened, merged, and mapped to E. coli promoters investigated
in this study using BEDTools v2.29.279. All binding sites associatedwith
TF-promoter pairs missing in our PPTP-seq dataset were excluded
from subsequent analysis. TSS information was obtained from Reg-
ulonDB v 10.01. TF concentration was estimated from the ribosome-
profiling results87.

The center position of each TF binding site relative to the TSS was
calculated as the relative position to TSS. For promoter regions with
multiple TSSs, only the TSS closest to the start codon of the down-
stream gene was analyzed. The binding strength between a TF and its
binding site is definedby fold enrichment over the background inDAP-
seq experiments. If a promoter hadmultiple binding sites for a TF, only
the binding site with the highest binding affinity was analyzed. The
relative binding strength per TF was calculated as the fold enrichment
for the TF over the background, divided by the maximum fold
enrichment for the TF. The relative local binding strength was calcu-
lated as the fold enrichment for a TF bound on a promoter over the
background, divided by the maximum fold enrichment for all TFs
bound on the promoter.

Statistics and reproducibility
No statistical methods were used to predetermine the sample size.
PPTP-seq experiments were performed in three biological replicates
forM9 glucose condition and two biological replicates forM9 glycerol
and LB conditions to assess the reproducibility of these measure-
ments. The means and standard deviations between replicates were
calculated and used in statistical analysis. Sequencing reads for cells
sorted into bin #1 after growth in M9 glycerol medium were excluded
from data analysis due to potentially unwanted mutations. Data
exclusion after log-normal distribution fitting is described in “Meth-
ods: NGS data processing”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The PPTP-seq generated in this study has been deposited in the GEO
database under accession code GSE213624. The plate reader and RT-
qPCR data generated in this study are provided in the Source Data file.
Theprocesseddata of RNA-seq30 andEcoMACmicroarray32 used in this
study are available at GitHub [https://github.com/CovertLab/wcEcoli/
tree/master/reconstruction/ecoli/flat]. The DAP-seq data are available
in the Supplementary Data 1 file in ref. 42 [https://doi.org/10.1038/
s41592-021-01312-2]. The other TF binding datasets used in this study

are available at RegulonDB high-throughput collection [https://
regulondb-datasets.ccg.unam.mx/ht/tfbinding/#/]. Source data are
provided with this paper.

Code availability
Scripts and Jupyter Notebooks are available at https://doi.org/10.5281/
zenodo.8309683.
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