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Integrated molecular and multiparametric
MRImapping of high-grade glioma identifies
regional biologic signatures

A list of authors and their affiliations appears at the end of the paper

Sampling restrictions have hindered the comprehensive study of invasive non-
enhancing (NE) high-grade glioma (HGG) cell populations driving tumor pro-
gression. Here, we present an integrated multi-omic analysis of spatially mat-
ched molecular and multi-parametric magnetic resonance imaging (MRI)
profiling across 313 multi-regional tumor biopsies, including 111 from the NE,
across 68 HGG patients. Whole exome and RNA sequencing uncover unique
genomic alterations to unresectable invasive NE tumor, including subclonal
events, which inform genomic models predictive of geographic evolution.
Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting
neuronal or glycolytic/plurimetabolic cellular states, two principal tran-
scriptomic pathway-based glioma subtypes, which respectively demonstrate
abundant private mutations or enrichment in immune cell signatures. These
NE phenotypes are non-invasively identified through normalized K2 imaging
signatures, which discern cell size heterogeneity on dynamic susceptibility
contrast (DSC)-MRI. NE tumor populations predicted to display increased
cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely
associated with EGFR amplification and CDKN2A homozygous deletion. The
biophysical mapping of infiltrative HGG potentially enables the clinical
recognition of tumor subpopulations with aggressive molecular signatures
driving tumor progression, thereby informing precision medicine targeting.

High-grade gliomas (HGG) are aggressive primary brain malignancies
that confer a universally fatal outcome due to the inability to ther-
apeutically control diffuse cell invasion throughout the brain
parencyhma1–5. Invasive tumor, as defined by the residual populations
left behind after standard gross total surgical resection of T1-weighted
magnetic resonance imaging (MRI) contrast-enhancing (CE) tumor,
contributes universally to disease progression and recurrence. The
molecular landscape and therapeutic susceptibilities of these tumor
segments remain largely unaddressed. Past studies have inferred the
genomic evolution of the invasive tumor fraction by comparing non-
localized bulk samples6,7, without a uniform, clinically relevant defini-
tion of invasive tumor populations. Here, we use a stereotactic MRI-
guided sampling approach to profile invasive tumor, as defined by the

non-enhancing (NE) fraction that resides beyond gadolinium uptake
on T1WMRI. This represents a reproducible approach that leverages a
standardized clinical metric for the identification of invasive tumor
subpopulations.

The molecular trajectories of brain tumor cells during invasion
and disease progression remain to be charted. It also remains unclear
to which extent the geographic evolution of brain tumors impacts
tumor cell programs, regional therapeutic sensitivities, and the inter-
action with the tumor microenvironment. There is shared consensus
that any effort aimed at dissecting the intratumor heterogeneity that
fuels brain tumor evolution requires the characterization of high-
resolution multi-regional samples at different molecular levels8.
Recent characterization of HGG subclassification combines multiple
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dimensions of data to define a pathway-based deconvolution of the
most active biological functions and confers clinical implications.
These classifications include cellular states distributed along a meta-
bolic axis (glycolytic/plurimetabolic (GPM) and mitochondrial (MTC))
and a neurodevelopmental axis (proliferative/progenitor (PPR), and
neuronal (NEU)) with high prognostic significance characterized by
subtype-specific vulnerabilities9. More recently, the four subtypes
were orthogonally validated across distinct multi-omics platforms,
confirming the ability to predict clinical outcome and therapeutic
vulnerabilities when applied to tumor types beyondbrain tumors, thus
underscoring the general relevance of the biological hallmarks asso-
ciated with each of the pathway-based subtypes10.

Due to the surgical inaccessibility of invasive NE tumor, the
incorporation of MRI-imaging features can be used to enhance the
molecular profiling of this tumor segment. Advancedmulti-parametric
MRI techniques, including dynamic susceptibility contrast (DSC)-MRI
and diffusion tensor imaging (DTI), provide innovative imaging tools
that can phenotypically characterize the invasive NE tumor to improve
clinical diagnosis, presurgical planning, and prognostication com-
pared to conventional MRI alone. DSC-MRI measures of relative cere-
bral blood volume (rCBV) have been utilized to predict tumor
grade11–13, prognosis14,15, and to differentiate recurrent tumor from
post-treatment effects16–18 basedon regional differences inmicrovessel
volume. DTI measures of bulk water diffusion (mean diffusivity, MD)
anddirectionally dependentwater diffusion (fractional anisotropy, FA)
are commonly used in neuro-oncology to identify cellular packing19

and to observe tumor infiltration of whitematter tracts, respectively20.
Other advanced measurements from DSC-MRI (e.g., K2, nK2, EPI + C)
remain understudied. Despite the ubiquity of MRI in the clinical set-
ting, limited studies have attempted to spatially define the underlying
molecular associations between multi-parametric MRI phenotypic
features and invasive NE subpopulations in HGG.

Here, we seek to integrate advanced multi-parametric MRI fea-
tures with spatially matched multi-regional genomic and pathway-
based deconvolution across 313 MRI-localized biopsies from 68 HGG
patients to provide a comprehensive study of invasive NE tumor
biology. In the invasive NE region, we observe an increased proportion
of private mutations as well as intratumoral mosaicism of key driver
alterations, including EGFR amplification and NF1 inactivation. Multi-
regionalmolecular profiles of a subset of IDHwild-type tumors predict
distinct trajectories of the molecular evolution. The NE regions are
enriched in a mutually exclusive fashion with the NEU and GPM
pathway-based subtypes that can now be non-invasively distinguished
using the DSC-MRI metric nK29. Together, these findings provide
insight into the molecular landscape of NE HGG populations and
delineate an expanded role for imagingmetrics to identify biologically
aggressive tumor regions that better inform future targeted therapy.

Results
Multiregional cohort of IDH wild-type and IDH-mutant high-
grade gliomas
We used intraoperative neuronavigation assistance to sample patient
tumors in spatially distinct locations in CE and NE regions (median =
4 samples per tumor, range = 1–13 samples per tumor; median = 3 CE
samples per tumor, range = 1–8 CE samples per tumor; median = 2 NE
samples per tumor, range = 1–9NE samples per tumor) (Fig. 1a). Tumor
samples (including 193 CE and 111 NE annotated samples) were filtered
for quality assessment andprofiledbywhole exome (WES,n = 302) and
RNA sequencing (RNAseq, n = 158). Matched patient whole blood was
available for WES for 57 patients (Fig. 1b; Supplementary Data 1). The
patient cohort included 269 IDH wild-type and 44 IDH-mutant sam-
ples. In IDH wild-type tumors, NE samples demonstrated lower tumor
purity (median 0.52), as inferred from WES copy number profiles,
compared to a median of 0.61 in the CE region (p = 5.99e−04). Lower
tumor purity indicates the increased presence of non-malignant cells

in the NE (Fig. 1c). In contrast, IDH-mutant tumors did not differ in
tumor purity when comparing CE and NE regions, and no difference in
tumor purity was detected when stratifying by IDH mutation status
(Fig. 1c). For each biopsy location, we extracted spatially matched
imaging phenotypes (Fig. 1d) from multiparametric advanced MRI
performed at the time of pre-operative scanning for surgical planning.

IDH-mutant gliomas harbor intratumoral heterogeneity with
aggressive molecular features
Within gliomas, IDH mutation confers a longer survival than IDH
wild-type. However, there is a subset of IDH-mutant glioma that
exhibits more aggressive biology and shorter overall survival21–23.
The evolution of genomic alterations associated with rapid clinical
progression in IDH-mutant glioma remains poorly defined. We
profiled 40 multiregional samples within 11 IDH-mutant tumors to
determine shared early versus regional acquired alterations
(Fig. 2a). On average, 60.17% of mutations were truncal (shared
across all the biopsies from a particular tumor), 21.75% shared
(shared across some but not all biopsies from any tumor), and
18.80% private (present in a single biopsy). IDH-mutant tumors
demonstrated an increased burden of private mutations in the NE
(41.43%) compared to the CE (13.14%) (Fig. 2a).

Alterations in the receptor tyrosine kinase EGFR occur fre-
quently in IDH wild-type glioma but are rarely reported in IDH-
mutant tumors24,25. Upon examination of four IDH-mutant tumors
with NE and CE samples available (Fig. 2b), we identified two IDH-
mutant tumors exhibiting heterogeneous EGFR alteration, including
the presence of a low allele frequency (2%) EGFR A289V gain-of-
function mutation unique to the NE region in one patient tumor
(Fig. 2b). EGFR A289D/T/V is associated with shorter patient survival
in IDH wild- type glioblastoma (GBM) but remains poorly char-
acterized in IDH-mutant tumors26. We also observed regional het-
erogeneity in genes associated with poor clinical prognosis in IDH-
mutant glioma, including CDKN2A/B, CDK4, MYC, MYCN, and
PDGFRA23 (Fig. 2b, Supplementary Fig. 1; Supplementary Data 1).

Next, we evaluated multi-parametric MRI features (Fig. 2c, d,
Supplementary Fig. 2) across IDH status. IDH status explained sig-
nificant proportions of the variance for several features in the overall
and NE-specific cohorts (Supplementary Fig. 3a). IDH-mutant tumors
displayed significantly higher T2W signal compared to IDH wild-type
tumors in the NE (Fig. 2c & Supplementary Fig. 3b–e), corroborating
findings from other cohorts27–29. EPI + C signal was also significantly
higher in IDH-mutant tumors, but the amount of T2W contribution
driving this phenomenon is unclear as the biophysical underpinnings
of EPI + C, particularly in tissue disrupted by tumor, are poorly
understood (Fig. 2d).

The phylogeny of molecular alterations in IDH wild-type glioma
is distinct across regions of MRI-based contrast enhancement
We analyzed the genetic evolution of 255 intratumor multiregional
samples from 48 IDH wild-type (IDHwt) glioma patients using PhyC30

on the total, CE, and NE cohorts (Fig. 3a). On average, 34.81% of total
alterations were truncal, 26.27% shared and 38.92% private (Fig. 3a).
The proportion of private mutations ranged from >50% to <10%.
Compared to IDH-mutant glioma, IDHwt tumors harbored a sig-
nificantly higher proportion of private alterations in the NE (66.7%)
compared to CE (49.3%), with only 16.1% of alterations occurring as
truncal events (Fig. 3a). This suggests that glioma cells on the per-
iphery of the tumor exhibit early evolutionary divergence relative to
their central tumor counterparts, consistent with other studies31. The
frequency of driver alterations in our dataset recapitulates trends seen
in other large genomic studies of GBM and corroborates previous
reports of intratumoral heterogeneity of driver alterations including in
EGFR, CDKN2A, PTEN, TP53, PDGFRA, BRAF, NF1, PIK3CA, and KIT,
among others (Fig. 3b; Supplementary Data 1)32,33.
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EGFR and NF1 mosaicism in IDH wild-type glioma
Intratumoral mosaicism of driver alterations in GBM is well
established33–35, with specific alterations occurring in a mutually
exclusive fashion36. Here we explored the alteration profiles of EGFR
andNF1 in our IDHwild-type cohort (Fig. 4a).Wedetermined EGFR and
NF1 alterations to be mutually exclusive between individual patient
tumors in 98.7% (152/154) ofmutated samples from30 treatment-naive
primary tumors and 5 recurrences. While most tumors exhibited
mutual exclusivity of EGFR and NF1 alterations across all samples, we
resolved one patient tumor, P065 (Fig. 4a, orange box) which dis-
played intratumoral mutual exclusivity across distinct multiregional
samples, with anNF1 truncating mutation specifically occurring in two
EGFR wild type samples, and conversely, EGFR amplification in the
other two NF1 wild type samples. The evolutionary model of P065
tumor was predicted by comparing the genomic alteration profiles
among five multiregional samples, showing that the molecular evolu-
tion diverged into two main branches with the acquisition of EGFR
amplification on one branch, and the occurrence of NF1 mutation on
the other branch (Fig. 4b). The mutual exclusivity of EGFR and NF1
alterations was also validated in three independent HGG datasets: 378
samples from TCGA-GBM (95.6%), 292 samples from the GLASS con-
sortium (92.1%)6 and 94 samples from Wang et al. (85.9%)37

(Supplementary Fig. 4). In the GLASS consortium longitudinal HGG
cohort, mutual exclusivity was significantly more common than co-
occurrence in primary tumors (p = 6.8e−06; Supplementary Fig. 4). In
the recurrent samples, whilemutual exclusivitywas stillmore common
than co-occurrence, the total number of co-occurrences increased
(p = 0.027; Supplementary Fig. 4). This trend also persisted in the
primary and recurrent samples of the Wang et al. cohort. We also
observed co-occurrence of EGFR and NF1 alterations in two samples
from two patients (Fig. 4a, blue box). Notably, the cases of co-
occurrencearise in a recurrent sample (M78J inbluebox, Fig. 4a) and in
theNE of a primary sample (G95I in blue box, Fig. 4a).NF1 and EGFR co-
altered samples thus may be phenotypically significant in tumor
recurrence but rarely detected from the analysis of single biopsies or
those originating from the resected portion of the CE tumor.

Spatial and molecular heterogeneity of EGFR in GBM
While mosaic amplification of HGG drivers is postulated to underlie
treatment resistance33, HGG is further complicated by the hetero-
geneity of alterations foundwithin individual drivers. EGFR is altered in
the majority of GBM cases, and functional receptor activation occurs
through multiple possible mechanisms, including amplification,
mutation, rearrangement, and/or altered splicing38. In our cohort,

Fig. 1 | Multiregional biopsy and MRI-based tumor sampling from a cohort of
glioma patients. a MRI contrast enhancement-based sampling of glioma speci-
mens. b Circos plot indicating the molecular assay and MRI annotation of multi-
regional samples. c Tumor purity has been inferred from WES (available for
302 samples) and compared between contrast-enhancing (CE) and contrast non-
enhancing (NE) samples within IDH wild-type group (left; MRI annotated IDH wild-
type samples = 253), within IDH-mutant group (middle; MRI annotated IDH-mutant

samples = 40), and between IDH wild-type and IDH-mutant samples (right). The
middle line corresponds to themedian; the lower andupper lines show the first and
third quartiles. Difference of the puritymean among groupswas assessed using the
two-sided Mann–Whitney–Wilcox test. Source data are provided as a Source data
file. d Schematic of imaging features extracted for this study and their phenotypic
correlates. Features are separated into conventional and advanced MRI features.
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Fig. 2 | Somatic genetic mutations, copy number alterations, and correlates of
imaging features in IDH-mutant glioma. a For each IDH-mutant tumor (listed on
horizontal axis), genetic variants have been annotated as private (exclusively
occurring in one sample), shared (occurring in two or more samples, but not in all
samples) and truncal (occurring in all samples) and reported as a percentage of the
total number of somatic variations. The proportion of mutation types was sig-
nificantly different between CE and NE (two-sided Fisher’s exact test p = 3.43e−67).
A schematic example of multiregional tumor evolution is represented as a tree in
which truncal, shared, and private branches are distinguished. b Overview of
somatic alterations in IDH-mutant samples grouped by patient. Mutation load and

tumor purity are reported in the top barplot and heatmap track, respectively.
Clinical annotation and gene expression classification are indicated in the bottom
tracks. Gene alteration frequency in the patient cohort is indicated as percentage
on the left, known with driver mutations highlighted in red. cMEMmodel derived
estimated marginal mean of T2W in IDH-mutant vs. IDH wild-type samples in the
NE. Errorbars show95%confidence interval. Two-sided t-testwith Tukey correction
(n = 86). d MEM model derived estimated marginal mean of EPI +C in IDH-mutant
vs. IDH wild-type samples in the NE. Error bars show 95% confidence interval.
Two-sided t-test with Tukey correction (n = 89). c, d Data are presented as mean
values +/−SD. a, c, d Source data are provided as a Source data file.
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EGFR harbored somatic genetic alterations in 26 out of 50 multi-
regional IDHwt cases, with 92% ofmutant cases (23 out of 26) showing
molecular intratumor heterogeneity in the EGFR locus across the
multiregional samples (two-sided Fisher’s exact test p = 2.43e−11).

To examine the spatial and molecular heterogeneity at the EGFR
locus, we selected one treatment-naive tumor (P129) with the highest
number ofmulti-regional biopsies fromCE and NE regions for focused
analysis. In P129, 3D reconstruction of the CE and NE tumor segments,
using T1 +C and T2W/FLAIR, respectively, showed the distribution of

MRI-localized biopsy samples and exposed the molecular hetero-
geneity of EGFR at different sites (Fig. 5a). Truncal and private genetic
alterations, including the complex local genomic instability of EGFR,
identified in 2 CE and 9 NE samples were used to infer the molecular
trajectory of tumor evolution (Fig. 5b). The evolutionary model indi-
cated that EGFR alterations were relatively late events, occurring after
other truncal driver alterations, including CDKN2A and PTEN losses.
The genomic instability at the EGFR locus likely occurred indepen-
dently of the selective forces of chemotherapy or radiation, with

Fig. 3 | Molecular alteration landscape of IDHwild-type glioma. a The spectrum
of somatic genetic alterations occurring in multiregional samples (n = 255) from
IDH wild-type glioma patients (n = 48) indicated the frequency of truncal, shared,
and private events within each single patient (left bars), within all patients (right
bar, Total), and within contrast-enhancing and contrast non-enhancing samples
(right bars, CE, and NE, respectively). The proportion of mutation types was sig-
nificantly different between CE and NE (two-sided Fisher’s exact test p = 4.85e−43).

Source data are provided as a Source data file. b Somatic genetic mutations and
copy number alterations occurring in IDH wild-type glioma (260 samples from 53
patients). Samples are grouped by patients. Mutation load and tumor purity are
reported in the top barplot and heatmap track, respectively. Clinical annotation
and gene expression classification are indicated in the bottom tracks. Gene
alteration frequency in patient cohort is indicated as percentage on the left.
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EGFRvIII arising independently twice in P129, once prior to EGFR
amplification. Additionally, two different EGFR missense mutations
(R108K and A289V) and a small in-frame deletion (301del) occurred as
shared or private mutations in the NE region.

EGFR and CDKN2A alterations drive variance in advanced
imaging features in the NE region
To broadly characterize how genetic driver aberrations influence
imaging phenotypes, we constructed a screeningmixed effects model
(MEM) with the mutation status and copy number of top genetic dri-
vers of GBM (EGFR, NF1, TP53, PTEN, and CDKN2A) modeled as fixed
effects with no interacting terms and patient effects specified as ran-
domeffects. Copy number variations contributedmost strongly to the
variance in several imaging features (Supplementary Fig. 5a). Thus,
moving forward, we only considered the copy number status of
genetic drivers when examining imaging effects. EGFR copy number
variation stood out as a strong effector of several imaging variables
particularly in the NE region, where it explained 54.96% and 15.39% of
the variance in rCBV and T2W signal, respectively (Supplementary
Fig. 5a). On examination of T2W and rCBV in an only EGFR CNV MEM,
significant differences between these parameters were not appre-
ciated which indicates that other covariates, such as those accounted
for in the screening MEM, were masking EGFR’s effect (Table 1). From

this result we can surmise that EGFR is having an effect on the micro-
vessel volume (rCBV) and water content (T2W) that could be eluci-
dated in a larger cohort. In the EGFR-specific MEM, EGFR amplified
tumors demonstrated a significantly lower MD value relative to wild
type in the NE region, but this difference was not observed in the CE
(Supplementary Fig. 5b, c). LowerMDhas been associatedwith greater
cellular packing and higher tumor proliferative indices19.

Given the high prevalence of EGFR alterations in GBM39 and the
impact of EGFR on percent variance analysis, we hypothesized that
imaging effects may be further influenced by combinatorial geno-
types. Due to sample size limitations, it was not possible to construct
MEM models with more than two interacting genes. Thus, in this
analysis, EGFR was individually paired with each gene separately,
resulting in a total of three analyses. This approach allowed us to
analyze the effects from combinatorial genotypes of EGFR with each
partner gene (CDKN2A, TP53, and NF1) on imaging features (Table 1).
To test this,mixed effectmodelsweregenerated examining EGFR copy
number in combination with NF1, TP53, and CDKN2A copy number.
Each gene and their interactions were modeled as fixed effects with
patients as random effects. While NF1 and TP53 combinatorial geno-
types did not reveal significant relationships, the interaction of EGFR
CNV and CDKN2A CNV explained significant proportions of some
imaging features’ variance (Fig. 5c). ANOVA and subsequent pairwise

Fig. 4 | Mutual genetic alteration profiles of EGFR and NF1 in IDH wild-type
glioma. a EGFR and NF1 somatic genetic alterations occurring in multiregional
samples from IDH wild-type glioma. Samples are grouped by patient and clinical
annotations are indicated in the bottom tracks. EGFR (red box) andNF1 (green box)
alterations are mutually exclusive in 98.7% samples (152 out of 154, two-sided
Fisher’s Exact test p = 1.72e−07). The mutual exclusivity between EGFR and NF1
alterations was also observed within the same patient (orange box). Co-occurring

genetic alterations have been identified only in 2 samples from 2 patients (blue
box). b Evolutionary model of glioblastoma from patient P065 that included 5
contrast-enhancing samples harboring mutual exclusive EGFR and NF1 alterations.
NF1 truncating mutation specifically occurred in two samples with wild-type EGFR
locus; conversely, EGFR was amplified in the other two NF1 wild-type samples.
Tumor purity is indicated for each sample (percentages displayed). VAF, variant
allele frequency. Number of truncal, shared, and private alterations are indicated.
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t-tests revealed that EGFR amplification and CDKN2A homozygous
deletion were associated with a significantly lower MD signal in the NE
region specifically when compared to double wild-type tumors (Sup-
plementary Fig. 5c, e and Fig. 5d). Tumors with intermediate genotype
of CDKN2A and EGFR (e.g., CDKN2A heterozygous deletion / EGFR gain
or CDKN2A homozygous deletion / EGFR wild type) displayed values
between the two copy number extremes, indicating that successive
EGFR gains and CDKN2A deletions result in a progressively lower MD
signature observable in the NE region exclusively (Supplementary

Fig. 5d, e, Fig. 5d). Co-occurrence of EGFR amplification with deletion
of CDKN2A has been reported to synergistically increase cellular
proliferation40–42. Reduction in MD has been shown to be a biomarker
of higher tumor cellularity and aggressiveness on histology (Fig. 1d),
particularlywithin theNE region19. These results highlight thepotential
of MD in the NE region to serve as a predictor of regional genomic
status, and in particular, the combination of EGFR amplification and
CDKN2A homozygous deletion and the associated aggressive
phenotype.

Fig. 5 | Spatial heterogeneity of EGFR alteration and EGFR-associated imaging
phenotypes. a Three-dimensional visualization of EGFR alterations and their
associated MRI features. b The molecular evolution of glioblastoma from patient
P129 inferred from the occurrence of genetic alterations as truncal, shared, and
private events across themultiregional specimens (n = 11, 2 contrast-enhancing and
9 contrast non-enhancing samples). The length of branches in the evolutionary tree
(left panel) is proportional to the number of occurring alterations. Truncal driver
alterations (CDKN2A deletion and PTEN frameshift mutation), and non-truncal
multiple EGFRalterations havebeen reported along the evolutionary tree and in the
oncoprint (right panel). Mutation load, tumor purity, MRI contrast enhancement

annotation, and gene expression classification have been reported. c The percent
variance attributed to eachfixed term (y-axis) inMEMs for each imaging variable (x-
axis) separated by region. *p-value <0.05. EGFR*CDKN2A indicates the interaction
of EGFR and CDKN2A (n = 221 biopsy samples). Statistical test: ANOVA. d MEM
model derived estimatedmarginalmeanofMD for EGFR andCDKN2Agenotypes in
the NE. Intermediate genotypes (Int. Gen.) denote genotypes that are not double
wild type or EGFR amplified and CDKN2A homozygous loss. Error bars show 95%
confidence interval (n = 74 biopsy samples). Statistical test: two-sided t-test with
Tukey correction. Data are presented as mean values +/−SD. c, d Source data are
provided as a Source data file.

Article https://doi.org/10.1038/s41467-023-41559-1

Nature Communications |         (2023) 14:6066 7



Inference of molecular tumor evolution in IDHwild-type glioma
The multiregional genetic profiling of IDH wild-type HGGs revealed
divergent molecular evolution in the invasive NE tumor (Fig. 3a). To
characterize the functional impact of subclonal genomic alterations
occurring as private events in the tumor periphery, we explored the
individual genes that were exclusively altered in the NE regions, and we
identified the pathways and molecular functions associated with these
genes. NE alterations independently arose across several patients within
several predominant signaling pathways known to contribute to tumor
progression including the PI3K pathway, RTK/RAS pathway, apoptosis,
angiogenesis, and junction assembly pathways (Fig. 6a). These findings
are also consistent with previous results indicating that activation of the
PI3K and RTK/RAS pathway is retained in recurrent GBM43.

To predict the trajectories of molecular events that activate NE-
specific tumor functions we compared the genetic profiles across mul-
tiple samples from the same tumors. Specifically, we used REVOLVER to
build genomic models of glioma evolution44. Using this approach, we
utilized 34 IDH wild-type informative patients, defined as those having
more than one driver clonal alteration (Supplementary Fig. 6), to infer
the mutation clones populating each tumor and characterize them in
terms of number of driver alterations and composition of clonal and
subclonal events. A supervised hierarchical clustering was applied to
compare the tumors and distinguish common patterns of genomic
trajectories, suggesting four putative models of genetic evolution
(Fig. 6b). Canonical glioma genetic alterations occurred in most tumors
as initiating truncal events, including TERT promoter mutations, chro-
mosome 7 duplication and chromosome 10 monosomy. The glioma
evolution, instead, is predicted to be supported by the acquisition of
subclonal alterations in different cancer driver genes. In two inferred
evolutionary models, PI3K pathway drives the gliomagenesis as a con-
sequence of PTEN truncal inactivation or PI3K activating genetic muta-
tions, whereas the tumor progression is sustained by the over-activation
of RTK/RAS signaling through the occurrence of subclonal NF1 and
EGFR alterations in C1 and C2 models, respectively. Conversely,
when the RTK/RAS pathway drives gliomagenesis (by NF1 inactivation
and EGFR amplification in C3 and C4models, respectively), the inferred
tumor progression relies on the acquisition of PTEN alterations, and
subsequent up-regulation of the PI3K pathway. The evolutionary mod-
eling of IDH wild-type HGGs indicated the complementary longitudinal
activation of PI3K and RTK/RAS pathways along two main alternative
trajectories of molecular evolution.

Multiregional transcriptomic and microenvironmental
landscape of high-grade glioma
Unsupervised hierarchical clustering on the most variable genes of 158
multiregional glioma samples revealed two distinct transcriptional

groups (Fig. 7a). We observed a significant association (p= 1.5e−7, Chi-
squared test) between unsupervised clusters and tumor regions, with
95% of CE samples falling in cluster 1 (Fig. 7a, black). NE samples were
equally distributed between the two clusters, with cluster 2 (Fig. 7a, red)
enriched for NE samples (80%). To verify that our clustering analysis was
not unbalanced towards individual patients, we visualized how patients
segregated into each cluster and found that multiple patients con-
tributed to both clusters without specific bias (Supplementary Fig. 7).

Next, we classified each sample according to the TCGA
classification36 and the single cell-derived, pathway-based
classification9 (Supplementary Data 3). Whereas the TCGA subtypes
were not significantly associated with spatially-resolved tumor regions
(p = 0.323, Chi-squared test), the pathway-based subtypes were sig-
nificantly enriched in a region-specificmanner (p = 8.3e−5, Chi-squared
test). More specifically, 19 out of 26 (73%, p = 2.3e−3, Fisher Exact test)
NEU samples were found in NE regions. Conversely, we identifiedmost
PPR samples in CE regions (45 out of 53, 84%, p = 2.7e−12, Fisher Exact
test). The significance of the association between the pathway-based
subtypes and imaging features also emerged from the inspection of
the composition of the unsupervised clusters (p = 2.18e−12, Chi-
squared test). Cluster 1, enriched in CE biopsies, contained 92% of
GPM samples (38 out of 41, p = 5.9e−14, Fisher Exact test), whereas
cluster 2, enriched in NE biopsies, contained 67% of NEU samples (18
out of 27, p =0.03, Fisher Exact test) (Supplementary Fig. 8a). Con-
versely, the NE samples falling in cluster 1 were mostly of the GPM
subtype (Fig. 7b). Overall, invasive NE samples appeared to belong to
two main transcriptional phenotypes, GPM and NEU (Fig. 7b). Con-
sistent with the biological pathwaysmarking each individual subtype9,
NE samples in cluster 1 (GPM-enriched) exhibited activation of glyco-
lysis/hypoxia-related functions and signatures of myeloid immune
cells. Conversely, the NE cluster 2 (NEU-enriched) showed a neuronal
functional profile, including neurotransmitter secretion, synaptic
plasticity, regulation of membrane potential, markers of mature neu-
rons (NEFM, RBFOX3, NEFH, SYP, and DLG4), glutamatergic neurons
(SLC17A6, GRIN2B, GRIN1, SLC17A7, and GLS), dopaminergic neurons
(KCNJ6) and GABAergic neurons (GAD2) (Supplementary Data 1)9.

Samples classified as NEU exhibit the highest burden of private
mutations in the NE region
Previous reports45,46 have demonstrated a positive correlation between
physical distance and genetic distance between tumor cells. To cap-
ture the relationships between spatially resolved samples, we calcu-
lated the Euclidean and genetic distances between any combination of
sample pairs from any given patient. Genetic distance (computed as 1 -
Jaccard index on the genetic alteration patterns) measures the diver-
gence between two samples by quantifying the amount of shared
versus unique genetic features. We observed a correlation between
Euclidean and genetic distance across all samples (Supplementary
Fig. 8b). Exclusion of mixed CE/NE pairs and stratification into CE only
and NE only pairs revealed that only paired CE samples maintained
statistical significance upon stratification (p = 1.2 × 10−7 vs. p = 0.078)
(Supplementary Fig. 8c).

Given the significance of the pathway-based classification9 in
defining the transcriptomic clusters, we next examined how genetic
and Euclidean distances are associated in different subtypes. In
assessing any two samples of the same molecular class, we found that
NEU and PPR pairs (NEU to NEU or PPR to PPR) have no correlation
between their Euclidean andgenetic distances (Fig. 7c). In contrast, the
GPM andmitochondrial (MTC) pairs exhibited a statistically significant
positive correlation between genetic and Euclidean distance (Fig. 7c).

To understand how genetic and Euclidean distance are related to
the twoNEphenotypes identified in Fig. 7b,we selected allmultiregional
pairs that included at least one CE and oneNE sample.We found that CE
samples paired with a NEU NE sample had a greater genetic distance
than CE samples paired with NE samples of the other three pathway-

Table 1 | Fixed effect formulas used for each MEMmodel and
their corresponding figures or data file

Fixed effects Figures

IDH_mutation Fig. 2c, d, Supplementary
Fig. 3a–e

EGFR_cnv+EGFR_mut+CDKN2A_cnv+NF1_cnv
+NF1_mut+TP53_cnv+TP53_mut+PTEN_cnv
+PTEN_mut

Supplementary Fig. 5a

EGFR_cnv Supplementary Fig. 5b, c

NF1_cnv*EGFR_cnv Supplementary data 2

CDKN2A_cnv*EGFR_cnv Fig. 5c, d,
Supplementary Fig. 5d, e

TP53_cnv*EGFR_cnv Supplementary data 2

Pathway-based classification Supplementary data 2

* denotes both termsas single effects andan interacting term (ex. IDH_mut*EGFR_cnv= IDH_mut+
EGFR_cnv + IDH_mut:EGFR_cnv. “Mut” indicates mutation status (mutated versus wild type) and
“cnv” indicates copy number variation.
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based subtypes, and this trend did not apply to Euclidean distance
(Fig. 7d and Supplementary Fig. 8d). This greater genetic distance sug-
gested an increased burden of private mutations in NE NEU samples. In
fact, when considering both CE andNE, overall, the samples classified as
NEU had the greatest percentage of non-truncal mutations, with 16.34%
of all alterations being private (Supplementary Fig. 8e). This disparity
between subtypes is driven by samples from the NE region; while there
was not a significantly greater proportion of non-truncal mutations in
NEU samples from the CE, there was a significant number of non-truncal
mutations in NEU samples from the NE (Fisher’s Exact test p=6.13e−27)
(Fig. 7e–g and Supplementary Fig. 8f–h).

Multi-parametric MRI offers biophysical insights to the regional
tumor microenvironment and biological signatures of HGG
To better understand the regional variations in biological phenotypes
of HGG, we examined the relationship between spatially matched
transcriptomic pathway enrichment and localized MRI features. We
binned all samples into high and low groups according to the median
for each imaging variable. Differential pathway analysis on tran-
scriptomicsprofiling revealed that sampleswith highT1 +C and EPI + C
signals were enriched in proliferative pathways, including cell cycle
and DNA replication (Fig. 8a, Supplementary Data 4–5). Samples with
low T2W signal were enriched with pathways associated with neuron

Fig. 6 | Molecular tumor evolution in IDH wild-type glioma. a Alterations
exclusive to the NE region are displayed from a subset of IDH wild-type patients.
Alterations specific to the NE region were annotated with gene ontology terms and
grouped based on ontology similarity. b Evolutionary trajectories of genetic
alterations have been predicted by comparing themultiregionalmolecular profiles
in a subset of IDH wild-type glioma patients (n = 34) with more than one truncal

driver event identified. Four evolutionary models of IDH wild-type glioma have
been proposed from the supervised clustering of repeated initiating trajectories.
The number of trajectories observed within each cluster is reported (light green
boxes); the number of clonal (red) and subclonal (blue) events is indicated for each
alteration.
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Fig. 7 | Conventional MRI, transcriptomic, and genotypic characterization of
NE region phenotypes. a Unsupervised hierarchical clustering of the 158 multi-
regional glioma samples; rows are the 2826most variable genes. b Pie charts show
the frequencies of pathway-based classifications of MRI CE samples (top) and MRI
NE samples of unsupervised cluster 1 and 2, respectively (bottom). c Correlations
between the genotypic and euclidean distance of paired samples with the same
pathway-based classification. d Genetic distance of CE samples to NE samples of
each pathway-based classification (n = 94 biopsy samples). Boxplots represent data
minimum, 25th percentile, 50th percentile, 75th percentile, and maximum. The
p-values are indicated above each comparison in the figure. e Private, shared, and
truncal alterations in individual samples in theNE region classified as eachpathway-
based subtype (from left to right: glycolytic/plurimetabolic, mitochondrial, neu-
ronal, andproliferative/progenitor), with the averageof private, shared, and truncal

mutations for each pathway-based classification displayed to the right. f The pro-
portion of truncal mutations vs. non-truncal (private and shared) mutations in
samples of NEU subtype was significantly different than the proportion of truncal
mutations vs. non-truncalmutations in theother subtypes (one-tailedFisher’s exact
test p = 6.13e−27). g Box and whisker plots show the absolute number of total (left)
and private (right) mutations in each pathway-based classification and the dis-
tribution of mutational burden across samples (n = 51 biopsy samples). Boxplots
represent data 25th percentile, 50th percentile, and 75th percentile. The upper
whisker extends from the upper hinge to the largest value no further than 1.5X IQR
(inter-quartile range,or distancebetween thefirst and thirdquartiles) and the lower
whisker extends from the lower hinge to the smallest value at most 1.5X IQR.
c, d, e, g Source data are provided as a Source data file.
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synapses and neurotransmitter release (Fig. 8a, Supplementary
Data 5)47.

We next examined the relationship between pathway-based clas-
sification signatures and imaging metrics. MEMs of imaging features
and the categorical variable of pathway-based signature class revealed
no significant interactions (Supplementary Data 2). To detect

continuous relationships, we then examined all pairs of correlations
between imaging features and pathway-based subtype signature
values with recorded outputs being Pearson’s correlation, correlation
p-value, linear MEM R2, linear MEM effect size (linear model slope),
and linear MEM effect size standard error (Supplementary Fig. 9a).
Using this combination of outputs, we identified robust relationships

Fig. 8 | Associations between imaging variables and pathway-based signatures
with subsequent phenotypic modeling. a Transcriptomic pathway enrichment
analysis for samples binned as high vs low for each image feature. Gene Set
Enrichment Analysis (GSEA, Kolmogorov–Smirnov-like test as implemented in
clusterProfiler1) of supervised differential analysis (Mann–Whitney–Wilcox test)
among samples labeled as high vs low for each image feature. Size of the dot
represents the adjusted p-value of significant enriched GO BP terms (Benjamini-
Hochberg adjustment); color of the dots represents the Normalized Enrichment
Score (NES) of the terms. b, c Scatter plots showing significant correlations

between T1 + C and NEU (b) or PPR (c) signatures across all samples. d, e Scatter
plots showing significant correlations between nK2 and NEU (d) or GPM (e) in NE
samples only (indicated by blue center on data points). b–e Statistical test: two
sample correlation t-test. f, g Average R2*(t) curves for regions corresponding to a
NEU (f) and GPM (g) sample. R2*(t) is used to derive nK2. h, i 3D renderings
demonstrating conditions illustrative of homogenous uniformcell sizes (h) with 0%
coefficient of variation and heterogenous mixed cell sizes (i) with 6.5% coefficient
of variation. b–i Source data are provided as a Source data file.
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between imaging values and pathway-based subtype signatures (see
statistical interpretation guide Supplementary Fig. 9b). Each analysis
was run on the cohort as a whole and in CE and NE sub-cohorts. On
examination of CE and NE distributions of each imaging parameter
irrespective of transcriptomic phenotype, several metrics were statis-
tically significantly different with T1 +C, the metric used to designate
CE vs NE, reaching the highest level of significance (p = 2.21 × 10−8)
(Supplementary Fig. 10a).

Comprehensive examination of conventional MRI metrics
revealed several significant relationships both in the overall cohort
(Supplementary Fig. 10b) and in CE specific samples (Supplementary
Fig. 11 and Supplementary Data 5). T1 + C and EPI + C were negatively
correlated with the NEU signature, but positively correlated with the
PPR signature (Fig. 8b, c and Supplementary Fig.12a–e). We confirmed
these findings by binning samples into high and low classes based on
EPI + C or T1 + C values and noted statistically significant representa-
tion of the categorical PPR class for samples with high T1 +C or EPI + C
and the categorical NEU class for samples with low T1 + C or EPI + C
signal (Supplementary Fig. 12b–e). These findings are consistent with
the broader pathway analysis and confirm that T1 +C high signal
regions are highly proliferative with significant BBB disruption. Con-
versely, transcriptionally neuronal areas display less BBB dysfunction.
Although the biophysical implications of EPI + C signal are not fully
understood, our results indicate that it is predictive of underlying
biology including genetics (IDH status) and pathway-based classifica-
tions (PPR and NEU). T2W signal demonstrated a positive correlation
with the MTC signature and a negative correlation with the NEU sig-
nature (Supplementary Fig. 12f, g), suggesting differential water con-
tent across transcriptional regions.

rCBV is clinically associated with high-grade pathology and is one
of the most thoroughly studied advanced MRI metrics to date14,15,19.
Across our entire cohort we found some promising rCBV associations,
but uponMEMcorrection thesewere found tobedue topatient effects
(Supplementary Fig. 13a, b and Supplementary Fig. 9b). Within the CE
region, rCBV positively correlated with NEU and PPR signatures and
negatively correlated with MTC even with patient effect correction
(Supplementary Fig. 13c, d). Lower rCBV values have been associated
withmore favorableprognosis14,15, and theMTC subtype has separately
been linked to more favorable survival outcomes9.

DSC-MRI provides insight into HGG microenvironmental states
We extended the DSC-MRI analysis to include additional metrics with
complementary biophysical underpinnings. These include percent
signal recovery (PSR), cerebral blood flow (nRCBF/RCBF)48, contrast
leakage/permeability and subsequent contrast distribution (K2 and
nK2) within the extravascular extracellular space, and bolus transit
time within the microvasculature (MTT, mean transit time), the mac-
rovasculature (Tmax, time-to-max), or both (RTTP, relative time to
peak)49. Only nK2 and PSR showed significant differences between the
CE and NE samples, but when correlating to pathway-based classifi-
cations, we found trends generalizable to all samples and specific to
the NE or CE (Supplementary Figs. 14, 15, and Supplementary Data 6).
The GPM signature uniquely correlated with Tmax and produced a
high effect size on MEM modeling (Supplementary Fig. 16a, b). While
Tmax has been primarily used in the assessment of cerebrovascular
disease (e.g., stroke), elevated Tmax in the context of the tumor
microenvironment reflects slow blood flow through either a collateral
network of vessels in parallel or through tortuous microvessels49,50.
The MTC signature was positively associated with PSR values with a
high effect size (Supplementary Fig. 16c, d). Increased PSR inMTC type
regions could reflect several possible microenvironmental changes,
but in the context of our rCBV finding, a lower microvessel volume is
the most probable cause51. It is possible that the higher water content
with MTC (T2W) was due to intra- or extracellular edema and not due
to a higher blood volume in these regions. RCBF and nRCBF showed

one significant association each, but these did notmeet full criteria for
significance (Supplementary Figs. 16e–h and 9).

Examination of contrast distribution and its association with
biological signatures revealed several notable associations. Both K2
and K2 normalized against normal white matter (nK2) represent leak-
age factors which give an indication of blood–brain barrier perme-
ability; however, these measurements are affected by extracellular
contrast distribution and thus also convey information about the cel-
lular fraction and cell size heterogeneity52,53. Within CE regions, K2
values were positively correlated with PPR signatures but were a false
positive on MEM correction (Supplementary Fig. 17a, b). Within NE
regions, K2 correlations with the NEU signature demonstrated an
effect size of > 0.4, the highest effect we detected amongst all sig-
nificant MRI-signature models (Supplementary Fig. 17c, d). The GPM
signature within NE exhibited an opposite relationship with K2 (com-
pared to NEU signatures), which did not reach statistical significance
(Supplementary Data 6). In the NE, nK2 demonstrated a strong nega-
tive correlation with the NEU signature and a strong positive correla-
tion with the GPM signature (Fig. 8d, e, Supplementary Fig. 17e).
Additionally, the relationship between nK2 and NEU showed a positive
correlation in the CE region with a smaller effect size (Supplementary
Fig. 17f, g). From these results, we surmise that in the NE region the
GPM and NEU phenotypes identified in Fig. 7b exist within diverging
biophysical environments. The combination of NEU signature asso-
ciations (T1 + C, T2W, and nK2) demonstrates that tumor cells with
NEU signature reside in a microenvironment enriched in myelin with
low water content, homogenous in cell size, and relatively preserved
blood–brain barrier integrity.

Our data shows that GPM samples show greater magnitude of
T2*W relaxivity changes (delta-R2*) relative to the normal brain, and
NEU demonstrates markedly diminished relaxivity changes relative to
normal brain (Fig. 8f, g). Thus, to identify the specific microenviron-
mental underpinnings of this effect, we performed simulations using
our previously published digital reference object (DRO) model54–58.
The DRO model suggests that cell size heterogeneity and overall cell
size are the drivers of changes in K2 and nK2measurements (Fig. 8g–i,
Supplementary Fig. 17h). To confirm this, we interrogated the specific
composition of the tumor microenvironment (TME) using CIBER-
SORTx to estimate cell fractions. Transcriptomic analysis of GPM and
NEU samples in the NE revealed that GPM samples had a higher pro-
portion of immune cells compared to NEU samples which were more
enriched in neurons (Supplementary Fig. 18). Together these results
suggest that the microenvironment of GPM subtype in the NE region
are made up of overall larger and/or more heterogeneous cell sizes,
which could be explained by the enrichment of immune cell signature
identified by transcriptomic analysis. In comparison, the nK2 signature
of the NEU subtype in the NE region supports a smaller and/or more
homogenously sized cell population (Supplementary Fig. 18).

Discussion
Despite the importance of the NE region in clinical recurrence59–61 the
molecular and phenotypic features of HGG cells in NE tumor regions
remain inadequately understood. In this study, we have integrated
multi-parametric MRI with spatially matched molecular sequencing
data fromHGG to characterize biologically distinct regions comprising
invasive unresectable NE tumor to better inform clinical management
in diagnosis, prognosis, and treatment. Our results demonstrate an
expanded role of advanced MRI to inform regional biology for clinical
decision-making.

Regardless of IDH status, we found that NE tumor regions har-
bored the highest proportion of private mutations, which reflects an
increased development of regional genomic complexity in infiltrative
tumor and implies that mutational burden in HGG is subject to sample
location. We thus propose that both regional genomic instability and
tumor infiltration occur early in gliomagenesis62,63. The multiregional
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genomic profiling of our IDH wild-type HGG cohort reveals that EGFR
and NF1 somatic alterations occur as mutually exclusive events in
98.7% of tumors. However, we also resolved rare low allele frequency
co-alterations of EGFR and NF1 within the NE region. On external vali-
dation of other cohorts, we find this co-occurrence enriched in
recurrent tumors, thus pointing to the early emergence of NF1 inacti-
vation in the NE regions64,65 and suggesting that these alterations are
important in shaping recurrent tumor. Both NF1 loss65 and EGFR
alterations66 have been shown to impact the recruitment of myeloid
cells into the tumor microenvironment, thus NF1 and EGFR co-altered
populations may play a cooperative role in shaping the cell composi-
tion of infiltrative tumor and enabling recurrence. Further single cell
studies are required to clarify if NF1 and EGFR co-alteration at recur-
rence occurs within a single cell. Indeed, our proposed models of
molecular evolution inferred from NE and CE regions of IDH wild-type
tumors highlight EGFR amplification and NF1 inactivation as parallel
temporal events in either gliomagenesis or progression counter-
balanced by a dichotomous temporal role for the PI3K pathway. These
models clarify expected evolutionary patterns across the otherwise
temporal complexity of well-studied canonical driver alterations, fur-
ther supporting the potential interplay of EGFR and NF1 alterations
driving molecular progression at the invasive front of tumor. More-
over, we detailed the spatially unique acquisition of multiple distinct
EGFR alterations giving rise to intratumoral EGFR mosaicism, a chal-
lenge in the implementation of EGFR directed therapies67. Here, we
determined that the integration of localized imaging data enables
phenotypic claritywith a translational potential in the face of extensive
genomic heterogeneity. Our data attributes decreased regional mean
diffusivity (MD) in NE tumor regions to co-occurrence of EGFR ampli-
fication and CDKN2A homozygous deletion, which reflects a high
tumor cell density in these regions2. Correlating MD to NE
tumor regions harboring EGFR amplification/CDKN2A deletion offers a
means to assess regional cell proliferation, and identifying foci of cell
proliferation enables a potential translational capability to implement
targeted localized therapies.

While theNE regionharbors a greater burdenof privatemutations
compared to the CE region, we found no correlation between Eucli-
dean and genetic distance (i.e., accumulated mutations). This may
likely be explained by divergent regional patterns of tumor expansion
that are not accounted for under Euclidean distance measurements,
which solely reflect the linear distance between two points. We pos-
tulate that the bulk CE is an outward expansion driven by cell pro-
liferation that is more likely to fit into a linear distancemodel than the
NE, where tumor cells have more potential to take a non-linear path
during brain parenchymal invasion. This renders Euclidean distance to
be a likely underestimate of the actual distance traveled for invasiveNE
tumor cells.

Correlation between Euclidean and genetic distance varies when
separated by pathway-based classification. For example, GPM sub-
populations display a correlation between Euclidean and genetic dis-
tance, whereas NEU subpopulations, which harbor more private
mutations than the GPM, do not have a correlation.While we find both
GPM and NEU predominant populations in the NE, these distance
correlations may reflect divergent patterns of cell invasion across
subtype. Prior reports have associated tumors harboring a greater
burden of private mutations with a distant recurrence pattern relative
to tumors with proximal recurrence68. We thus hypothesize invasive
NEU-predominant populations may travel more distant paths that are
less well represented by Euclidean distancemeasurements than a GPM
subtype pattern of cell invasion. This phenotypic dichotomy between
GPMandNEUpopulations supports the growingbody of evidence that
invasive GBM cells either take on a neuronal phenotype for active
invasion or a more metabolic phenotype involving interaction with
astrocytes, other glial cells, and infiltrating immune cells69,70. Our study
extends this observation to include correlations with advanced

imaging features that can be used clinically to discern these two phe-
notypes, specifically through nK2 on DSC-MRI. However, we recognize
that imaging informs a phenotype, which could receive additional
contribution from further biological associations not yet identified.

Still, our study paves the way for advanced imaging to take a
more expansive role in both basic science and clinical evaluation.
Advanced MRI parameters may allow us to identify the micro-
environmental phenotypes associated with molecularly defined
subpopulations in the NE, including metrics that have been less
robustly explored (i.e., EPI + C, nK2). Thus, integrated multi-omic
analysis using molecular and advanced imaging profiling holds clin-
ical promise for identifying tumor characterized by distinct invasive
biology or with potential therapeutic vulnerabilities in the critical NE
region, for use in pre-surgical planning and personalized treatment
regimens.

Methods
Multiregional glioma sample cohort
Our research complies with all relevant ethical regulations. We
received Institutional Review Board (IRB) approval from both Barrow
Neurological Institute (BNI) and Mayo Clinic. The IRB protocols
allowed for data sharing across both institutes. Multiregional tumor
frozen samples (n = 339) and matched peripheral blood samples
(n = 63)were collected from74 gliomapatients. DNA andRNA samples
have been profiled by Whole Exome Sequencing (WES) and RNA
sequencing (RNAseq). Clinical, MRI contrast enhancing, and sequen-
cing information are provided in Supplementary Data 1. All sample
sizes for statistical analyses are summarized in Supplementary Data 7.

Acquisition and processing of clinical MRI
Patient recruitment and surgical biopsies.We recruitedpatientswith
clinically suspected high-grade glioma undergoing pre-operative ste-
reotactic MRI for surgical resection as previously described71. Histo-
logic diagnosis andWHO gradewere confirmed by two board-certified
neuropathologists ( J.M.E., K.D.). All samples from an individual tumor
were uniformly annotated based on histologic diagnosis and WHO
grade. Patients were recruited from BNI and Mayo Clinic through IRB
approved protocols at each institution. The IRB at Mayo Clinic served
as the overarching protocol which coordinated tissue and image data
transfer from BNI to Mayo Clinic. Informed consent from each subject
was obtained prior to enrollment. All data collection and protocol
procedures were carried out following the approved guidelines and
regulations outlined in the Mayo Clinic and BNI IRB protocols. Neu-
rosurgeons used pre-operative conventional MRI, including T1-
Weighted contrast-enhanced (T1 +C) and T2-Weighted sequences
(T2W), to guide multiple stereotactic biopsies as previously
described71–73. In short, each neurosurgeon collected an average of 4–5
tissue specimens from each tumor using stereotactic surgical locali-
zation, following the smallest possible diameter craniotomies to
minimize brain shift. Neurosurgeons selected targets gen-
erally separated by at least 1 cm from both enhancing core (ENH) and
non-enhancing T2/FLAIR abnormality in pseudorandom fashion, and
recorded biopsy locations via screen capture to allow subsequent
coregistration with multiparametric MRI datasets. Typical volumes of
biopsy samples were approximately targeted to be 0.125 cc.

Conventional MRI and general acquisition conditions. We per-
formed all imaging at 3 T field strength (Sigma HDx; GE-Healthcare
Waukesha Milwaukee; Ingenia, Philips Healthcare, Best, Netherlands;
Magnetome Skyra; Siemens Healthcare, Erlangen Germany) gen-
erally within 1-3 days prior to stereotactic surgery. Conventional MRI
included standard pre- and post-contrast T1-Weighted (T1W , T1 + C,
respectively) and pre-contrast T2-Weighted (T2W) sequences as
previously described15. T1W and T1+C images were acquired using
spoiled gradient recalled-echo inversion-recovery prepped (SPGR-IR
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prepped) (TI/TR/TE = 300/6.8/2.8ms; matrix = 320 × 224; FOV = 26
cm; thickness = 2mm). T2W images were acquired using fast-spin-
echo (FSE) (TR/TE = 5133/78ms; matrix = 320 × 192; FOV = 26 cm;
thickness = 2mm). T1 + C images were acquired after completion of
dynamic susceptibility contrast (DSC-MRI) as detailed below. Gado-
liniumbased contrast agent (GBCA)was gadobenate dimeglumine for
patients recruited at Barrow Neurological Institute (BNI) and
either gadobenate dimeglumine or gadobutrol for patients recruited
at Mayo Clinic in Arizona (MCA).

Diffusion tensor imaging (DTI). DTI imaging was performed using
Spin-Echo Echo-planar imaging (EPI) (TR/TE 10,000/85.2ms, matrix
256× 256; FOV 30 cm, 3mm slice, 30 directions, ASSET, B = 0,1000),
and whole-brain maps of mean diffusivity (MD) and fractional aniso-
trophy (FA) were generated based on previously published
methods71,73,74.The original DTI image DICOM files were converted to a
FSL recognized NIfTI file format, using MRIConvert (v2.1.0), before
processing in FSL from semi-automated script. DTI parametric maps
were calculated using FSL 5.0 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), to
generate whole-brain maps of mean diffusivity (MD) and fractional
anisotrophy (FA) based on previously published methods74.

Dynamic susceptibility contrast MRI (DSC-MRI) acquisition for
relative cerebral blood volume (rCBV) calculation. For all patients
(BNI and MCA), we administered a preload dose (PLD) of GBCA
(0.1mmol/kg) to minimize T1W leakage effects prior to DSC-MRI
acquisition formeasurement of relative cerebral blood volume (rCBV).
After PLD, we employed a Gradient-echo (GE) EPI (TR/TE/flip angle =
1500ms/20ms/60°, matrix 128 × 128, thickness 5mm) DSC MRI
acquisition for 3min. At approximately 30 s after the start of the DSC-
MRI sequence, we administered a second GBCA bolus injection
(0.05mmol/kg at BNI; 0.1mmol/kg at MCA), which was used to cal-
culate rCBVmaps for all patients. Basedonprior studies,measurement
of rCBV is considered optimal following administration of a PLD, par-
ticularly when employing sequences with moderate flip angles75,76.

Dynamic susceptibility contrastMRI (DSC-MRI) acquisition for non-
rCBVmetrics. For patients recruited at MCA, we also employed a DSC-
MRI acquisition during the contrast bolus administration of the PLD.
Prior to PLD injection, we employed aGradient-echo (GE) EPI (TR/TE/flip
angle = 1500ms/20–30ms/30°, matrix 128 × 128, thickness 5mm) DSC
MRI acquisition for 3min. At approximately 30 s after the start of the
DSC sequence, we administered the 0.1mmol/kg i.v. bolus injection of
GBCA, which was used to calculate non-rCBV-related DSC-MRI metrics
(e.g., nK2, PSR, MTT). Given that many of these metrics relate to mea-
surement of contrast leakage effects, optimal measurement of these
metrics should be performed prior to preload dose administration51.

Acquisition of EPI +C images. The initial source volume of images
from the DSC-MRI sequence, acquired ~6min following PLD adminis-
tration (i.e., the sequence used to calculate rCBV), was used to repre-
sent the EPI + C map, as previously described71–73. This image volume
contained negative contrast enhancement (i.e., susceptibility effects
from the PLD administration). At ~6min after the time of GBCA injec-
tion, which allows for distribution of the agent through the extra-
vascular extracellular space (EES), the T2*W signal loss on EPI + C
provides information about tissue cell density and cell size hetero-
geneity but may also receive contributions from T1W leakage
effects52,72.

Post-processing analysis of DSC-MRI for rCBV and non-rCBV
metrics. We generated whole brain parametric maps for rCBV and
non-rCBVmetrics, using the respective DSC-MRI acquisitions and the
post-processing pipelines within the IB Neuro/IB RadTech (v21.12,
Imaging Biometrics, LLC) interface. We used leakage correction

modeling for calculation of rCBV and relevant non-rCBV metrics
(e.g., MTT, RCB). For normalized metrics including rCBV, we used
measurements from regions of interest (ROIs) from contralateral
normal appearing white matter as previously described16,72,77.

Normalization of qualitative imaging sequences. We performed N4
normalization of all non-quantitative maps, including T1 + C, T2W,
and EPI + C images. The python library (v3.6.2) from SimpleITK
(v1.0.1) was employed for all steps of normalization. Image
denoising was first performed using sitk.CurvatureFlow, followed
by N4 bias correction using sitk.N4BiasFieldCorrection. Intensity
normalization was subsequently performed using a brain mask
generated with sitk.MaskImageFilter for each image. Normal-
ization was performed based on median signal intensities from a
whole brain mask generated from each imaging sequence for
each individual patient.

Image coregistration. We coregistered all datasets to the relatively
high-quality DTI B0 anatomical image volume using tools from ITK
(www.itk.org) and IB Delta Suite (v21.12, Imaging Biometrics, LLC) as
previously described71–73. This offered the additional advantage of
minimizing potential distortion errors (from data resampling) that
could preferentially impact the mathematically sensitive DTI metrics.
Ultimately, the coregistered data exhibited in plane voxel resolution of
~1.17mm (256× 256 matrix) and slice thickness of 3mm.

Region of interest (ROI) generation, CE and NE annotation, and
image feature extraction. We referenced the stereotactic locations
recorded intraoperatively for each biopsy specimen to generate spa-
tially matched regions of interest (ROIs) measuring 8 × 8 × 1 voxels
(9.6 × 9.6 × 3mm). This resulted in regions of interest (ROI) with
volumes ~0.28 cc. A board-certified neuroradiologist (L.S.H.) visually
inspected all ROIs to ensure accuracy and annotated each biopsy
specimen location as either contrast-enhancing (CE) or non-enhancing
(NE) rim71–73. From each ROI, we employed our in-house image analysis
pipeline to extract mean values from each ROI, for each imaging
technique map, for correlative analysis. See Supplementary Fig. 2 for
image processing workflow.

Image quality assessment. Each biopsy location was also assessed for
potential image artifacts that could obscure signal intensity values,
including artifacts at the interface of bone or air (e.g., floor of the
anterior skull base, middle cranial fossa superior to the mastoid air
cells), as well as metallic artifacts from prior surgical instrumentation
(e.g., craniectomy plate/screws), which were excluded from analysis.
We also identified biopsy locations which were recorded centrally
within locations that were expected to yield no viable tissue (e.g.,
resection cavity and/or central necrosis), for exclusion. We excluded
those biopsies meeting these criteria from correlative analysis with
imaging techniques. We also excluded biopsy samples in close proxi-
mity to large surface vessels (e.g., middle cerebral artery branches),
from correlative analysis with DSC-MRI-based image features (e.g.,
rCBV maps), which are susceptible to artifacts from these large ves-
sels. Biopsy samples at themargin of T1+C enhancement and necrosis,
which did not meet exclusion criteria, were also annotated (Supple-
mentary Data 1).

WES and somatic mutations
WES was performed on 328 multiregional tumor samples and their
paired blood DNA samples (n = 63) from 72 glioma patients. The
glioma cohort included 196 and 123 MRI contrast enhancing and non-
enhancing samples, respectively.

DNA/RNAwere extracted from frozen surgical specimens.WESwas
performed at Mayo Clinic (Rochester, MN), Novogene or Translational
Genomics Institute (TGen; Phoenix, AZ) using the SureSelect (Agilent)
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(Mayo Clinic, Novogene) or Strexome V2 capture kits (TGen). WES of
patient germline was also performed. Raw sequencing data processing
and quality control were performed as previously described43. Briefly,
sequencing reads were aligned to GRCh37/hg19 human reference gen-
ome using Burrows-Wheeler Aligner78, and further processed by
GATK379 to remove low mapping quality reads and to re-align around
the indels. To confirm that multiregional tumor and blood samples
derived from the same patient, we performed the fingerprint analysis
using NGSCheckMate80, a model-based method evaluating the correla-
tion between the variant allele fractions at known SNP sites.

Somatic SNVs and indels were identified by integrating the results
from 6 algorithms for variants calling: Freebayes (arXiv:1207.3907)
MuTect281, TNhaplotyper82, TNscope82, TNsnv82, and VarScan283.

For tumor samples without matched blood DNA, the somatic
status of called mutations was assessed using a virtual normal panel
from a set of 433 public samples from healthy, unrelated individuals
sequenced to high depth in the context of the 1000 Genomes
Project84. Putative false positive calls have been removed by applying
an in-house filtering pipeline previously described43. For each patient,
the multiregional mutation profile was built by combining the genetic
variants identified in themultiple spatial biopsies from the single case,
which have been annotated as private (exclusively occurring in one
sample), shared (occurring in two or more samples, but not in all
samples) and truncal (occurring in all samples). To validate the sharing
profile of mutations, the nucleotide at each mutant position was re-
called from the raw sequences within all the multiple samples from a
single patient. Using this iterative approach, false negative calls have
been retrieved by identifying mutant reads at genetic positions that
had been mis-called as wild type.

Somatic variants were annotated using AnnoVar85, which aggre-
gates information from genomic and protein resources with cancer
and non-cancer variant databases. Variants reported in the non-cancer
databases with a minor allele frequency ≥0.05 were classified as
germline polymorphisms and excluded.

The functional effect of missense SNVs and in-frame indels was
determined by an ensemble of multiple algorithms86. Variants pre-
dicted as damaging by two or more algorithms were classified as
pathogenic mutations.

DNA copy number
Somatic copy number and tumor purity were estimated from WES by
PureCN87. GISTIC288 analysis was then applied to integrate results from
individual patients and identify genomic regions recurrently amplified
or deleted in glioma samples.

Gene fusion and EGFR variant identification
RNAseq reads were analyzed to identify fusion transcripts using
STARfusion (bioRxiv, 120295). Predicted gene fusions were annotated
by AGFusion (bioRxiv, 080903), and in-frame chimeras supported by
more than 10 reads were selected.

EGFR gene variants (including exons 2-7 deletion EGFRvIII) have
been detected from RNAseq reads by CTAT-Splicing (https://github.
com/NCIP/CTAT-SPLICING/).

Phylogenetic analysis and glioma evolution modeling
The intratumor evolution of glioma was predicted by inferring the
genetic trajectories across the multi-region specimens within each
single patient. The allele frequencies of genetic alterations (including
mutations and copy number variations) were compared using the
clustering approach implemented in PhyC30 to reconstruct a patient-
based tree of geographical glioma evolution, reflecting the genetic
distances among the multiregional samples.

The evolutionary trajectories across multiple patients have been
tested by applying a statistical model implemented in REVOLVER44.
Multi-region sequencing data from the IDH wild-type cohort were

jointly analyzed using the transfer machine-learning approach (TL) to
predict hidden evolutionary patterns. The analysis was restricted to a
subset of cases in which two or more truncal driver alterations were
identified (34 patients). The structural correlation across patients was
measured extracting the phylogenetic trajectories of driver alterations
from the patients’ trees. A supervised clustering approach has been
applied to stratify the patients that share tumor-initiating trajectories
of genetic driver alterations, leading to the prediction of four main
models of glioma evolution.

Transcriptomic analysis
Raw reads were aligned to a Human genome (UCSC genome assembly
GRCh37) using STAR (v. 2.7.0b)89, and the expressionwas quantified at
gene level using featureCounts (v. 1.6.3)90, a count-based estimation
algorithm. Downstream analysis was performed in the R statistical
environment as described below. Raw data from different batches
were normalized separately according to sample-specific GC content
differences as described in EDAseq R package (v. 2.22.0)91. The batch
adjustment was performed using a negative binomial regression as
implemented in Combat-seq function of sva R package92.

Differential expression analysis was performed using EdgeR R
package (v. 3.30.3)93. Genes with an adjusted P-value (Benjamini &
Hochberg correction) less than or equal to 0.01 and absolute log2
foldchange greater than or equal to 1 were considered significantly
differentially expressed (DEGs). Gene set enrichment analysis (GSEA)94

and DEG hypergeometric over-representation test for Biological Pro-
cesses were computed using the clusterProfiler R package (v. 3.3.6)95.
The full list of genes ranked according to the Mann–Whitney–Wilcox
statistic was considered as input for GSEA.

To classify tumor samples according toWang et al.65 and pathway-
based classification9, a single sample Gene Set Test based on the
Mann–Whitney–Wilcox statistic (mww-GST)96 was used. Each tumor
sample was classified in a distinct subtype based on the highest sig-
nificant score (logit(NES) greater than0.40 and p-value less than0.05).

The tumor microenvironment deconvolution was computed
using a curated collection of immune-related and cell type specific
signatures retrieved from scTHI R package97 and Molecular Signatures
Database (MSigDB)94,98 (n = 389), respectively. For each signature the
deconvolution score was calculated using an approach based on the
single sample Gene Set Test as previously described96. Only the sig-
natures with a score greater than 0.58 and p-adjusted less than 0.01 in
at least the 20% of samples have been considered for downstream
analysis.

Tumor microenvironment cell fractions were inferred from bulk
RNAseq expression matrix using CIBERSORTx webserver99.

The single-cell RNAseq signature matrix used as reference to
estimate non-tumor cell proportions was created from Darmanis
et al.100, using the ‘Create Signature Matrix’ module as described in
CIBERSORTx webserver manual. In order to compare tumor and TME
abundance, tumor subtype enrichment scores were scaled in a range
from 0 to 1. Then, both tumor and non-tumor cell proportions were
scaled according to the tumor purity inferred from WES.

Genomic associations with imaging variables
To account for patient effects across samples, MEM was conducted
using the lme4 package in R. For all models, patient identity was mod-
eled as a categorical random effect, and for each examined genetic
context, the standard MRI features (T2W, rCBV, MD, FA, EPI +C) were
assessed in all samples, CE samples, and NE samples for a total of 15
models per examined genotype. The fixed effects for each model were
specified as categorical variables in the specified formulas with their
corresponding figures (Table 1). From these models, the significance of
each term, the percent variance explained by each term,MEMcorrected
means/ variance for each genotype, and pairwise comparison of MEM
corrected means for each genotype were generated.
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Analysis of genetic and euclidean distances
Within this cohort, several samples were procured per patient, and
these samples were related in a pairwise fashion within each patient
using genetic and euclidean distances. Genetic distances were com-
puted as 1 - Jaccard index on the genetic alteration patterns (including
mutations and CNV). Euclidean distances were calculated from spa-
tially resolved MRI coordinates using the following Eq. 1.

d p,qð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp1 � q1Þ2 + p2 � q2

� �2 + p3 � q3

� �2
q

ð1Þ

Overall correlation between genetic and euclidean distance was
assessed using the entire cohort. Following this samples pairs that
were both in the CE region or both in the NE region were reassessed to
derive the contrast region-specific correlation. For the subset of sam-
ples that had transcriptomic data and therefore an assigned pathway-
based classification, samples of the same class (ex. NEU-NEU) were
then compared to understand how biological phenotype influences
the genetic-euclidean correlation.

Finally, to mirror the two NE region phenotypes found on
transcriptomic analysis, we selected all sample pairs with
assigned pathway-based classification and that had one sample in
CE and one in NE. We then examined the average genetic and
euclidean distance between the CE samples to each pathway-
based classification.

Associations between imaging features and pathway-based
classification signatures
As outlined in Garofano et al., samples were assigned a pathway-based
classification based on four transcriptomic signature scores for each
class9. For this analysis, the continuous pathway-based signature scores
were used instead of the categorical classification. To broadly assess the
relationships between pathway-based classifications (GPM = glycolytic/
plurimetabolic, MTC=MTC, NEU=NEU, PPR = proliferative/pro-
genitor), traditional MRI features (T2W, RCBV, MD, FA, T1 +C, EPI +C),
and advanced MRI features (k2, MTT, nK2, nRCBV, sRCBV), correlation
maps were created using GGally in R. MEMs were again used to correct
for patient effects with patient specified as a random effect, pathway-
based signature specified as a fixed effect, and imaging variable speci-
fied as the outcome variable. Both pathway-based signatures and ima-
ging variables were scaled via z-score prior to modeling.

Visualization
Heatmaps were generated using ComplexHeatmap in R. Bar, scatter,
and boxplots were created using ggplot and GGally. Conceptual
Schematics were made with Biorender.

MRI time course and digital reference object modeling for nK2
To evaluate the bases of nK2 associations with GPM and NEU corre-
lations, R2* time curves were plotted for regions spatially matched to
NEU or GPM biopsy samples, and normal control curves were plotted
using normal appearing white matter adjacent to the frontal horns,
within the parietal corona radiata, and the global whole brain non-
enhancing voxels for eachpatient. ThemeasurementofK2wasderived
from Boxerman et al. as shown below53.

ΔR2 � tð Þ≈K1ΔR2 � tð Þ � K2

Z t

0
ΔR2 � t0ð Þdt0 ð2Þ

ΔR2 � tð Þ= � 1
TE

� �

ln
S tð Þ
So

� �

ð3Þ

R2*(t) reflects the whole brain average (R2*) in all non-enhancing
voxels, and K2 reflects contrast leakage. This is estimated from the
post-bolus segment (tail of the curve) of R2* and is proportional to the
degree of deviation of the tumor voxel from the whole brain non-

enhancing voxels. Normalized K2 (nK2) is derived from the K2 of each
voxel (including tumor region of interest) after dividing by the K2 of
normal appearing white matter regions contralateral to the identified
tumor region.

Digital reference object (DRO) modeling was performed to
simulate R2* signal changes with changing cell size and cell size var-
iation as described in Semmineh et al.56. The DRO model computes
MRI signals for realistic 3D tissue structures modeled using ellipsoids
(cells) packed around randomly oriented cylinders (vessels) and
accounts for static magnetic field strength, intercompartment sus-
ceptibility differences, the water proton diffusion coefficient, and
pulse sequence parameters. To ensure that the simulated signals
accurately represented the magnitude and distribution of contrast
agent inducedT1 and T2* changeswithin typical clinical data,we chose
model parameters so that the distribution of percentage signal
recovery and the mean SD of signal intensities across the DRO mat-
ched those in the patient training dataset. The simulation results pre-
sented here represent data from two DROs, the first based on tissue
structures with homogenous cellular features designed using ellipsoid
with identical aspect ratio and diameters (coefficient of variation = 0),
and the second with heterogeneous aspect ratio and diameters
(coefficient of variation = 6.5%).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets analyzed in the current study, including whole exome
sequencing and RNA sequencing, are publicly accessible, with the
Synapse (https://www.synapse.org/#!Synapse:syn52256644). The
publicly available bulk RNA-seq data for TCGA-GBM were obtained
from the UCSC Xena browser [https://gdc-hub.s3.us-east-1.
amazonaws.com/download/TCGA-GBM.htseq_counts.tsv.gz]. The
remaining data are available within the Article, Supplementary Infor-
mation or Source data file. The input data for the imaging analysis can
be found at https://github.com/HuLiLab/Multi-Regional-GBM-
Imaging-and-Genetics Source data are provided with this paper.

Code availability
Code for the imaging analysis can be found at https://github.com/
HuLiLab/Multi-Regional-GBM-Imaging-and-Genetics.
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