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Nonlinear El Niño impacts on the global
economy under climate change

Yi Liu 1,2, Wenju Cai 1,2,3,4 , Xiaopei Lin 1,3, Ziguang Li1,3 & Ying Zhang5

The El Niño-Southern Oscillation (ENSO) is a consequential climate phenom-
enon affecting global extreme weather events often with largescale socio-
economic impacts. Towhat extent the impact affects themacroeconomy, how
long the impact lasts, andhow the impactmay change in awarming climate are
important questions for the field. Using a smooth nonlinear climate-economy
model fitted with historical data, here we find a damaging impact from an El
Niño which increases for a further three years after initial shock, amounting to
multi-trillionUSdollars in economic loss; we attribute a loss of US$2.1 T andUS
$3.9 T globally to the 1997-98 and 2015-16 extreme El Niño events, far greater
than that based on tangible losses. We find impacts from La Niña are asym-
metric and weaker, and estimate a gain of only US$0.06 T from the 1998-99
extreme La Niña event. Under climate change, economic loss grows expo-
nentially with increased ENSO variability. Under a high-emission scenario,
increased ENSO variability causes an additional median loss of US$33 T to the
global economy at a 3% discount rate aggregated over the remainder of the
21st century. Thus, exacerbated economic damage from changing ENSO in a
warming climate should be considered in assessments ofmitigation strategies.

The El Niño-Southern Oscillation (ENSO) is a consequential climate
phenomenon on Earth, alternating between the warm phase El Niño
and cool phase La Niña1,2. During El Niño, anomalous sea surface
temperature (SST) warming in the central and eastern equatorial
Pacific weakens the easterly trade winds and shifts the atmospheric
deep convection eastward, which in turn alters global atmospheric
circulation through its teleconnections3–6. During La Niña, the reverse
generally occurs but not symmetrically. The impact has a global reach,
affecting a myriad of fields transcending extreme weathers, hydro-
logical cycle, ecosystems and agriculture to human community7–10. In
contrast to substantial advances in our understanding of ENSO’s
physical dynamics and ENSOglobal climate teleconnection, how ENSO
affects human society and how the impactmight change under climate
change remain important areas to explore.

Major El Niño and La Niña events are known to cause substantial
economy reductions in affected countries and regions, directly

through local weather extremes11–13: for example, the 1982-83 El Niño
caused severe floods in southeast Brazil, with economic losses
exceeding US$1.1 billion (ref. 14); the 1997-98 El Niño led to extreme
weathers around the United States and direct economic losses of ~US
$4 billion (ref. 15); the 1998-99 La Niña contributed to one of the most
devastating Yangtze floods in China, with direct economic losses
amounted to US$20 billion (ref. 16); the 2015-16 El Niño resulted in
multi-year extreme drought and wildfire in Amazonia that cost about
US$26 billion in total17. There are well-established connections
between ENSO and subcomponents of economic production, such as
crop yields and fisheries18,19, and losses at micro levels are reflected on
macro levels20,21. However, the effect from El Niño and La Niña do not
compensate22,23.

Climate change affects many aspects of modern human society
including economy, public health and human conflict24–27. The mean
temperature and precipitation have been common metrics for
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assessing the climate change impact. Recent advances suggest that
ENSO variability is likely to increase under greenhouse warming28,29.
Whether changes in ENSO cycles intensify the economic risks of
greenhouse warming is an important issue. Here, by assessing ENSO’s
impact on global economic production using historical climate and
economic productiondata,wefind that, in contrast to an nondefinitive
effect from La Niña, there is a substantial negative impact from El Niño
on global economic production that lasts for multi-years, leading to a
larger growth effect than previously thought; further, the impact from
future ENSO cycles increases in a warming climate, with an exacer-
bated loss of global economic production from increased ENSO
amplitude under greenhouse warming.

Results and discussion
Nonlinear effect of ENSO on economic production
Most empirical econometric models treat ENSO as a simple linear
predictor and focus on the negative impact of El Niño20,30,31. This
approach assumes that La Niña has a positive impact symmetric to
negative impact of El Niño. However, a limited nonlinear model
incorporating a Heaviside step function to depict impact of La Niña
and El Niño deferentially22,23

finds that La Niñamay not always benefits;
for example, the 1998-99 strong La Niña causes extreme rainfall and
floods that reduce economic growth and damage livelihoods in many
affected countries16,32, which substantially reduce the beneficial effect
of a La Niña. This leads to heterogeneous economic effects across
countries (Supplementary Fig. S1), and any benefit may be offset or
overwhelmed by the losses. Further, ENSO is a nonlinear-dynamical
system with asymmetric amplitude of SST anomalies and teleconnec-
tions between El Niño and La Niña33,34; for example, El Niño amplitude
tends to be greater than that of La Niña, exerting a greater impact on
global climate and human community than La Niña, and such impact
can increase or change nonlinearly with amplitude of El Niño/La Niña.
In addition, impact of an ENSO event could affect economic produc-
tion in the ensuing years after global economic connectivity is dis-
rupted by the ENSO event22. Therefore, an econometric model must
reflect these features to realistically estimate ENSO’s effect on global
economy.

As such, we establish a fixed-effect panel regressionmodel35 using
an ENSO index as a nonlinear predictor and incorporating lagged
effects (see ‘Empirical econometric model’ in Methods). The ENSO
index is Niño3.4 SST anomaly (averaged over 5°S–5°N, 120°−170°W) in
borealwinter (December, January andFebruary, D(0)JF(1)),whenENSO
typically peaks. The model accounts for: (1) country-fixed effect, such
as different history and culture backgrounds of individual countries;
(2) country-specific long-term linear and quadratic time trends in
growth rates, derived from changing political institutions and eco-
nomic policies of individual countries; and (3) nonlinear effect of
annual mean country-specific temperature and precipitation, as in
previous studies25,36, except that ENSO signal is removed through lin-
ear regression to obtain ENSO-independent annual temperature and
precipitation. Importantly, we incorporate the nonlinear effect of
ENSO ina quadratic function inwhichboth the linear and the nonlinear
components include lagged effects. These lag terms account for
growth effects after the contemporaneous climate shock of an
ENSO event.

We train our model using climate and economic data over
1960–2019 period. Time-invariant and time-trending covariates are
allowed to interact with observed economic and climate variables. We
include the mean temperature and precipitation terms to parallelly
estimate the effect frommeanstate change and fromENSO.Consistent
with previous findings25,36, the nonlinear effect of mean temperature
operates in addition to the ENSO impact. In contrast to the mean
temperature which has a significant contemporaneous effect25,36, we
find that ENSO impact persists for 3 years (Supplementary Fig. S2),
after which time little further impact is seen and uncertainty increases.

We therefore focus on its effectwith lags of 3 years after an event. A set
of Bootstrap methods is applied to quantify uncertainty of point esti-
mates in themodel (Supplementary Fig. S3; see ‘Statistical significance
test’ in Methods).

Our model reveals a nonlinear relationship between the
Niño3.4 index and its economic impact on country-level economic
production (Fig. 1a). Both extreme El Niño and La Niña cause
damage on economic growth, but the damage is far greater during
El Niño than during La Niña; weak and moderate La Niña events
produce a smaller benefit, which in amplitude is far smaller than the
damage of weak El Niño events. Overall, there is a negative and
statistically significant impact on economic growth during El Niño,
but the impact is by and large insignificant for La Niña. Our model
also finds that the contemporaneous effect is dominated by the
linear component and its growth effect is dominated by the non-
linear component (Supplementary Table S1); the difference
between the impact in the occurrence year and in the lagged years
reflects a subsequent acceleration in the impact on economic
activity that is fed by the initial shock.

We test the heterogeneity of such nonlinear effect by different
groups of countries. Firstly, wemeasuremonthly ENSO teleconnection
to each country at different lags and accumulate teleconnections that
are statistically significant to separate teleconnected and weakly-
teleconnected countries (Supplementary Fig. S5–6; see ‘ENSO index
and country-specific teleconnection’). ENSO-teleconnected countries
exhibit a greater response to El Niño than weakly-teleconnected
countries (Fig. 1b), because the economic impacts from ENSO are
underpinned by the direct response of local weather and climate
conditions23. We choose to involve all countries in our main analysis to
account for indirect influences like trade. Secondly, agriculture-
dependent countries, of which the GDP share of agriculture is >20%,
show a greater response to El Niño than agriculture-independent
countries because agriculture production is more likely to be affected
by ENSO-induced local weather anomalies (Fig. 1c). Similarly, lower-
income countries, that is, with a purchasing-power-parity-adjusted
Gross Domestic Product (GDP) per capita in 1980 below the median25,
exhibit a greater response to El Niño than high-income countries
because their level of preparedness and the capacity to mitigate are
relatively low, they are mostly located in the tropics where the ENSO
teleconnections are strong, and their economies tend to have a high
proportion of agriculture (Fig. 1d). The common nonlinear nature
reflects the feature that the global spillovers and cascading effects
dominate the global economic impact of ENSO (see ‘Heterogeneity of
response function’ in Methods).

Economic loss an order of magnitude greater than previously
thought
In contrast to previous estimates37,38 that the extreme El Niño events of
1982–83, 1997–98 and 2015–16 each costed global economy tens of
billions in US dollars, our result suggests an impact from each event is
trillions of US dollars. These additional losses mainly come from
unobservable and delayed response to the initial climate shock. Initi-
ally, El Niño drives direct losses in the severely-affected regions
through extreme weathers as reflected in temperature and precipita-
tion anomalies. Subsequently, cross-sector and cross-border spillovers
occur, affecting globalmacroeconomy. Previous studies suggested the
cascading effects may commence via several transmission channels.
For example, extreme weathers lower crop yields and agricultural
productivity, leading to food shortages, trade contractions and com-
modity price increases39; abnormal sea surface temperature and ocean
current cause decreased fishery stocks and other marine resources40;
damages on infrastructure increase reconstruction and maintenance
costs and disrupt transportation networks41; fluctuation in rainfall and
surface run-off causehydroelectric power shortages and reducewater-
dependent industrial outputs42; changes in disease vector dynamics
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caused by extreme weathers increase healthcare cost and reduce
manual productivity43; and poor weather conditions reduce tourist
arrivals and consumptions for tourism-dependent regions44.

Observed extremeEl Niño events have considerable growth effect
on global economy. The 1982–83, 1997–98 and 2015–16 events
decreased growthby 1.0% in the occurrence year, but >5.0% cumulated

over the subsequent 3 years (Supplementary Fig. S7). We estimate the
loss value by multiplying the reduction in global GDP growth rate at
each lag with the GDP value of the preceding year. The con-
temporaneous loss amounts toUS$246, US$401 andUS$739 billion for
the extreme El Niño events of 1982–83, 1997–98 and 2015–16,
respectively, (about 0.9–1.0% of global GDP at the time) in the El Niño
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Fig. 1 | Nonlinear effect of ENSO on global economic production. a Global
nonlinear relationship between D(0)JF(1) Niño3.4 index (normalized) and 3-year
cumulative (from year 0 to year 3) change in log GDP per capita for all countries
during 1960–2019, with shading indicating the 95% confidence level based on a
Bootstrap method (see ‘Statistical significance test’ in Methods). Model includes
country-fixed effects, country-specific linear and quadratic trends, mean tem-
perature and precipitation controls. Histograms below show the distribution of
country-specific ENSO teleconnection strength. b Same as a, but with countries

divided into teleconnected group (brown curve) and weakly-teleconnected group
(yellow curve). Histograms below show the distribution of country-specific ENSO
teleconnection strength for teleconnected (brown bars) and weakly-teleconnected
(yellow bars) countries, respectively. c, d Same as b, but for c agriculture-
dependent country group (green curve) and agriculture-independent country
group (blue curve), and d high-income country group (green curve) and lower-
income country group (red curve).
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occurrence year, and the cumulative loss over the occurrence year and
the subsequent 3 years reaches US$1.3, US$2.1 and US$3.9 trillion
(about 4–5% of global GDP at the time), respectively (Fig. 2a). In the
subsequent 3 years, statistical uncertainty increases somewhat as the
year advances, but the cumulative loss increases. The greater loss from
the 2015–16 and the 1997–98 event than from the 1982–83 El Niño is
due to a larger global economy. The contemporaneous loss is domi-
nated by the linear effect and is only a small part of the total loss; the
loss from growth effect is dominated by the nonlinear impact and is
larger. By contrast, extreme LaNiña events such as in 1988-89, 1998-99
and 2010-11 contribute to a fluctuating impact around zero, with a
contemporaneous benefit being offset by a negative growth effect. For
example, the cumulative gain of 1998-99 La Niña only amounts to US
$0.06 trillion (Fig. 2b).

For a given year t, the effect of an ENSO event includes lagged
impacts from ENSO events of the prior 3 years plus a con-
temporaneous impact of the ENSOat year t. For example, loss of global
economic production in 2000 (t = year 2000) includes the con-
temporaneous and growth effect from 1997-98 strong El Niño and the
ensuing 1998-1999 strong La Niña at different lags, as well as ENSO’s

own contemporaneous effect in year 2000. The impact on growth rate
is computed for all years over the 1960–2019 period (Fig. 2c). Owning
to the asymmetric impact between El Niño and La Niña, there is a net
reduction in global GDP growth rate in most years. Over the period of
1960–2019, there is an average reduction of 0.6% per annum in global
GDP growth rate from ENSO cycles; the cumulative loss in economic
production is US$13.5 trillion in total. Extreme El Niños in 1982–83,
1997–98 and 2015–16 account for 54% of the total loss over the
60 years.

We examine likely impacts of country-level heterogeneity by
incorporating potential interaction of the common ENSO shock (as in
Niño3.4) with country-specific teleconnection (see ‘Heterogeneity of
response function’ inMethods). Although the teleconnection strength
provides some heterogeneity between individual countries (Supple-
mentary Fig. S8a), a lack of statistical significance of interaction terms
indicates that most of economic impact is reflected in a common
shock after the spillovers and cascading effects are transmitted to the
global macroeconomy (Supplementary Table S3). As such, including
the country-level heterogeneity leads to a similar estimate of global
economic loss (Supplementary Fig. S8b).

0 1 2 3
Lag years

-6

-4

-2

0

C
um

ul
at

iv
e 

gl
ob

al
 G

D
P

 c
ha

ng
e 

(U
S

$ 
tr

il)

extreme El Niño events

a

1982-83

1997-98

2015-16

0 1 2 3
Lag years

-6

-4

-2

0

C
um

ul
at

iv
e 

gl
ob

al
 G

D
P

 c
ha

ng
e 

(U
S

$ 
tr

il)

extreme La Niña events

b

1988-89

1998-99

2010-11

c

1960 1970 1980 1990 2000 2010 2020

-2

-1

0

1

2

G
lo

ba
l G

D
P

 c
ha

ng
e 

(%
)

-2

-1

0

1

2 D
(0)JF

(1) N
iño3.4 (s.d.)

extreme El Niño

extreme La Niña

Fig. 2 | Observed economic production loss from ENSO. a Cumulative effect of
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Loss in economic growth increases with ENSO amplitude
We use our econometricmodel to examine impact of change in future
ENSO on global economy under emission scenarios of the Inter-
governmental Panel on Climate Change (IPCC). We analyze outputs of
available climate models participating in the Coupled Model Inter-
comparison Project phase 6 (CMIP6) (ref. 45). Thesemodels are forced
with historical anthropogenic and natural forcing until 2014, and four
Shared Socioeconomic Pathways (SSP) (ref. 46) of future greenhouse
gas concentration trajectories from 2015 onwards (see ‘Climate and
economic data’ in Methods).

To depict ENSO evolution in climate models, monthly SST
anomalies referenced to the 1900–1999 climatology are constructed
and then averaged over the Niño3.4 region. The Niño3.4 ENSO index is
thenquadratically-detrended over the entire periodof 1900–2099.We
compare standard deviation of the detrended Niño3.4 index over the
100-year period of 2000–2099 (the 21st century) with that over the
100-years of the 1900–1999 period (the 20th century) to assess ENSO
change under greenhouse warming. All four emission scenarios
simulate an increase in future ENSO variability with a strong inter-
model consensus as reported by previous studies28,29 (Fig. 3a; Sup-
plementary Fig. S9). For example, in the high-emission scenario of
SSP5-8.5, the multi-model ensemble median (mean) increase in future
Niño3.4 variability is 14.3% (15.5%). A total of 42 out of 48 available
models (87.5%) generate an increase in ENSO variability (Supplemen-
tary Fig. S9a). The increased ENSO amplitude is also seen in the SSP3-
7.0, SSP2-4.5 and SSP1-2.6 scenarios, with multi-model ensemble
median (mean) increase in ENSO amplitude is 13.1%, 9.5%, and 7.5%
(15.3%, 11.8%, and 10.6%), respectively (Supplementary Fig. S9b–d).

Conceivably, sequence of ENSO events might affect the ENSO’s
impact on economy averaged over a period. For example, if an
extreme El Niño occurs in the last year of the period, therefore its
growth effect is felt beyond the period, it might affect the period-
averaged impact. To avoid any potential dependence on ENSO event
sequence, wedevelop a counterfactual 21st centuryNiño3.4 timeseries

such that it follows the same projected evolution (therefore the same
sequence) but its standard deviation is scaled to have the same
amplitude as that in the 20th century (Supplementary Fig. S10a; see
‘Counterfactual ENSO and scenario’ in Methods). The counterfactual
future ENSO timeseries is taken as the ENSO evolution if future ENSO
variability does not change under greenhouse warming. We then
compare ENSO impact on economyusing our econometricmodel with
the projected and the counterfactual future ENSO timeseries as inputs.
We begin our assessment of the economic impact by the difference in
annual global GDP growth rate averaged over the 21st century. This is
carried out for each model.

All climatemodels simulate a net economic growth reduction, and
the net reduction becomes greater as the ENSO amplitude increases
under all four IPCC emission scenarios, supported by a strong inter-
model consensus (Fig. 3b). The multi-model ensemble median (mean)
increase in the century-average reduction of global GDP growth is
estimated to be 0.19%, 0.18%, 0.12%, and 0.10% (0.25%, 0.23%, 0.19%,
and0.17%)per annumunder the SSP5-8.5, SSP3-7.0, SSP2-4.5, andSSP1-
2.6 scenario, respectively (Fig. 3b). Further, there is a strong inter-
model relationship between changes in ENSO SST variability and
changes in century-averaged global GDP growth rate reduction, using
all CMIP6 models under all four IPCC emission scenarios (Fig. 3c).
Models that generate a greater increase in ENSO amplitude system-
atically generate a greater global GDP growth rate reduction.

Substantial additional loss from future increase in ENSO
amplitude
We estimate the ENSO-induced economic production loss from the
future growth rate reduction, using projections from the SSPs (ref. 46)
that define the secular evolution of country-level population and
economic development. The SSP projections cover the period from
2010 to the end of 21st century, forced under different emission levels
(see ‘Climate and economic data’ inMethods). Assuming that loss from
ENSO permanently imprints on the long-term economic development,
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Fig. 3 | Projected increase in economic growth reduction from changed ENSO.
aChanges inNiño3.4 SST standarddeviation from the 20th century (1900−1999) to
21st century (2000-2099) based on CMIP6 models under four IPCC scenarios. Box
indicates the range between 25th and 75th percentile, and whisker indicates the
range between 5th and 95th percentile. Different colors refer to four IPCC sce-
narios. Also shown is the multi-model ensemble median (white) and mean (black)
for each scenario. b Same as a, but for the differences in ENSO-induced century-
average global GDP growth rate reduction between the projected and

counterfactual scenario in the 21st century from CMIP6 models under four IPCC
scenarios. c Relationship between changes of Niño3.4 variability (21st century
minus 20th century) and differences in ENSO-induced century-average global GDP
growth rate reduction (projected minus counterfactual scenario) from CMIP6
models under four IPCC scenarios. Different colors refer to four IPCC scenarios.
The slope indicates that, for example, a 1.0 s.d. increase in ENSO amplitude can
cause a 1.63%more loss in GDP growth rate. The R square and P-value of fitting are
also given.
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we develop a counterfactual ENSO for future assuming no change (see
‘Counterfactual ENSO and scenario’ in Methods), and two “no-ENSO”
future economic growth projections from 2020 onward, in which
global economic production loss from the projected and the coun-
terfactual ENSO in each year is taken out from the projected GDP
timeseries (Supplementary Fig. S10b). The difference is taken as the
additional economic loss from changing ENSO. Several fixed-rate dis-
counting schemes, ranging from 1% to 5% per annum, where, for
example, a 1% discount rate means that society values a given amount

of consumption in 1 year roughly 1% less than its values today, are
employed.

To illustrate, we use distributions of the additional economic loss
to quantify the probability under different emission scenarios at a 3%
discount rate (Fig. 4a–d). There is >80% chance of an additional eco-
nomic loss from ENSO changes in all four IPCC emission scenarios,
with a median increase ranging from US$14 trillion for the SSP2-
4.5 scenario (Fig. 4c) to US$33 trillion for the SSP5-8.5 scenario
(Fig. 4a), aggregated over the last 80 years of the 21st century.

Fig. 4 | Projected increase in economic production loss from changed ENSO.
a–d Probability distribution of the future change in ENSO-induced economic pro-
duction loss under aSSP5-8.5,b SSP3-7.0,cSSP2-4.5, andd SSP1-2.6 scenario at a 3%
discount rate, aggregated over the period of 2020–2099. Light and dark shading
for each distribution indicate the 5th–95th and 25th–75th range, respectively, with
solid vertical line showing themedian. eNonlinear relationshipbetween changes of
Niño3.4 variability (21st centuryminus 20th century) and changes of ENSO-induced
cumulative global GDP loss (projected minus counterfactual scenario) over the
period of 2020–2099 from CMIP6 models under four IPCC scenarios. Different
colors refer to four IPCC scenarios. The R square and P-value of fitting are given.
f Sources of uncertainty of the estimated changes of the cumulative global GDP
loss. The total uncertainty is a combination of uncertainty from different emission

levels and future socio-economic development (‘SSP’), different CMIP6 models
with different ENSO amplitude changes (‘Climate model’), different choices of
discount rate schemes (‘Discount rate’), bootstrapped historical response function
of global economy to ENSO (‘Regression’), and bootstrapped ENSO timeseries
under a given amplitude (‘ENSO sequence’). All factors are allowed to change for
‘Total’ uncertainty while only listed factor is allowed to change with the others
fixed: ‘SSP’ fixed to SSP5-8.5, ‘Climate model’ fixed to the multi-model ensemble
median, ‘Discount rate’ fixed at 3%, ‘Regression’ fixed to the point estimate, and
‘ENSO sequence’ fixed to the original ENSO sequence (see ‘Assessment of uncer-
tainty’ in Methods). Each black vertical line is a point estimate (for example, with
four SSP scenarios there are 4 estimates shown for ‘SSP’ uncertainty), with red
vertical line indicating the median.

Article https://doi.org/10.1038/s41467-023-41551-9

Nature Communications |         (2023) 14:5887 6



Reduction in emissions effectively cut the additional loss; under the
SSP1-2.6 scenario, a strong mitigation pathway for achieving the Paris
Agreement target of limiting warming to 1.5–2.0 °C relative to the pre-
industrial level, the additional loss reduces by ~50% from that in the
high-emission scenario of SSP5-8.5.

Importantly, there is a nonlinear relationship between changes in
ENSO SST variability and additional economic losses, using all CMIP6
models under four IPCC emission scenarios. Models that generate a
greater increase in ENSO amplitude tend to generate a greater addi-
tional loss in global economic production, and the tendency is sys-
tematic and statistically significant (Fig. 4e). This nonlinearity means a
heightened risk of increased ENSO amplitude to global economy, with
manymodels generating an additional loss in the order of hundreds of
trillion US dollars and possibly as high as US$374 trillion, at a 3% dis-
count rate in the high-emission scenario.

There are multiple sources of uncertainty, including model dif-
ferences, emission scenarios, discount rates used, our econometric
model, and ENSO event sequences.We assess the uncertainty by firstly
quantifying the relative contribution from these individual factors, one
by one by keeping other factors fixed at a chosen level, and subse-
quently the combined uncertainty (Fig. 4f) (see ‘Assessment of
uncertainty’ in Methods). Uncertainty in climate models, that is, the
inter-model differences in ENSO amplitude change, is the largest
source of all other factors. Econometric model regression and ENSO
sequences contribute to a relatively small uncertainty range, suggest-
ing that our econometric model is reasonably stable and insensitive to
economic parameters or random elements such as chaotic processes
in the occurrence sequences of ENSO events. That there is a weak
sensitivity to ENSO sequences is in contrast to finding of a simulta-
neous and independent study, which uses a linear econometric model
and suggests a large uncertainty source from ENSO event sequences
by assuming that El Niño and La Niña exert a perfectly symmetric but
opposite impact47.

Our result of an increased loss in global economy from future
ENSO cycles is underpinned by a greater impact of El Niño than that of
La Niña and by an increased ENSO variability in the future climate. The
greater El Niño impact than that of La Niña is in turn a consequence of
the 3-years-long effect on economy that accelerates after the initial
shock in the occurrence year; both the initial shock and the lagged
effects are far smaller during La Niña. Therefore, a period of ENSO
cycles sees a net reduction in global economic production dominated
by the loss from extreme El Niño events. Under greenhouse warming,
ENSO amplitude increases substantially in all likely emission scenarios,
translating to an additionalmedian loss inglobal economicproduction
in the range of US$14-33 trillion over the last 80 years of the 21st
century, that is generally larger in higher emission scenarios; the
possibility of an additional loss in hundreds of trillion US dollars can-
not be excluded. Achieving the Paris Agreement reduces about half of
the increased economic loss. There are transmission pathways of
impact from increased future ENSO variability that are not incorpo-
rated here, for example, through affecting ocean warming, ice shelf
and ice sheet melt, which contribute to sea level rise48–50 leading to
additional economic loss. The additional economic damage from
changes in ENSO amplitude in the 21st century highlights the urgency
of mitigating emissions of greenhouse gases.

Methods
Climate and economic data
To construct ENSO timeseries and its global teleconnection, we use
multiple observational and reanalysis datasets: Monthly sea surface
temperature data are from Hadley Centre Sea Ice and Sea Surface
Temperature dataset (HadISST) (ref. 51), with a 1° grid resolution
covering the period of 1950–2021. Monthly land-based surface air
temperature and precipitation data are from ECMWF Reanalysis ver-
sion 5 (ERA5) (ref. 52), with a 0.1° grid resolution for all land areas

covering the period of 1950-2021. These variables are bilinearly inter-
polated to a horizontal grid of 1° × 1°.Monthly anomalies referenced to
the period of 1950-2021 are constructed by removing the monthly
climatology, and then quadratically detrended at each grid to remove
the long-term greenhouse warming and any low-frequency climate
variability. We also use other products such as NOAA Extended
Reconstructed SST version 5 (ERSSTv5) (ref. 53) and University of
Delaware54 to confirm robustness of our results.

We use country-specific annual economic data from re-estimating
the World Bank Development Indicators55, which contains Gross
Domestic Product (GDP) per capita (in constant 2015 US$, inflation-
adjusted) for all countries in the world covering the period of
1960–2019, although data for only a subset of years are available for
some countries. We also use the data from Penn World Tables version
10.0 (ref. 56) to test robustness of our results. The population density
data is obtained from the Gridded Population of the World (GPW)
version 4 (ref. 57).

Toproject the future changeof ENSOunder greenhousewarming,
we use climate outputs from the state-of-the-art climate models in the
CoupledModel Intercomparison Project phase 6 (CMIP6) (ref. 45). The
CMIP6 models are forced with historical anthropogenic and natural
forcing from 1850 to 2014, and different emission scenarios thereafter
from 2015 to 2100. There are four IPCC emission scenarios used, which
are SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, from the scenario for
achieving target of Paris Agreement to high-emission scenario. For a
givenmodel, outputsmight not be available for all emission scenarios,
and only the first available experiment from each model for each
scenario is used (Supplementary Table S4). All the outputs are bili-
nearly interpolated to a horizontal grid of 1° × 1°. Monthly anomalies
referenced to the period of 1900–1999 are constructed by removing
the monthly climatology, and then quadratically detrended at each
grid over the 1900–2099 period to remove the long-term trend.

To estimate the economic production loss from future ENSO
changes, we use projections from Shared Socioeconomic Pathways
database version 2.0 (ref. 46), which consist of several scenarios of
projected socio-economic development associated with various
degrees of climate forcing over the 21st century.We use the timeseries
of country-level economic production (in constant 2015 US$, inflation-
adjusted) and population over the period of 2020–2099 under four
SSP scenarios (SSP1, SSP2, SSP3, and SSP5) as the baseline to construct
counterfactual global GDP growth and then calculated economic loss
from ENSO in the future.

ENSO index and country-specific teleconnection
Weuse Niño3.4 index to define the ENSO timeseries in the observation
and CMIP6models, which is themonthly SST anomaly averaged in the
region of 5°S-5°N, 120°-170°W. Because ENSOgenerally peaks in boreal
winter (December-February, DJF), we use DJF-averaged Niño3.4 index
to measure interannual variability of ENSO.

As the economic impact of ENSO is underpinned by the direct
climate response to ENSO for individual countries, we construct
country-specific ENSO teleconnection to evaluate the extent to which
climate of individual countries is affected by ENSO as follows:
(1) We regress normalized monthly grid-point surface air tempera-

ture and precipitation anomalies onto normalized D(0)JF(1)
Niño3.4 index from May(0) to April(1) (noting the spring
barrier58), yielding two fields of monthly regression coefficients
τx,y,m and ρx,y,m for surface air temperature Tx,y,m and precipita-
tion Px,y,m at each longitude-latitude grid point ðx,yÞ and calendar
monthm, respectively. We use partial regression for temperature
with precipitation’s impact removal to control the correlation
between temperature and precipitation, and vice versa.

(2) We accumulate thesemonthly coefficients fromMay(0) toApril(1)
that are statistically significant above the 95% confidence level,
and then take the absolute value of the sum to obtain the
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cumulative teleconnection strength τx,y and ρx,y (Supplemen-
tary Fig. S5).

(3) We average the grid-point teleconnection strength to country-
specific τi and ρi, weighted by population density in 2020.We use
population density weighting rather than other approaches (for
example, areal weighting) for its better representation of reaction
of human-based economic activity to climate anomaly within a
given country. Economic impact transmitted from climate shock
is generally driven by human interactions and transactions.
Population density weighting puts more emphasis on areas with
higher concentration of people, which are typically the centers of
economic activity. However, as we have shown, a common shock
to most countries dominates, rendering our results insensitive to
approaches adopted.

(4) We accumulate the country-specific temperature and precipita-
tion teleconnection strengths as the total cumulative teleconnec-
tion strength ψi (Supplementary Fig. S6). We assign those
countries with ψi>0:5 to the “teleconnected” group, and
0<ψi ≤0:5 to the “weakly-teleconnected” group (Fig. 1a; Supple-
mentary Fig. S6b).

Empirical econometric model
A distributed-lag timeseries model estimated by the Ordinary Least
Squares (OLS) is applied to assess the nonlinear effect of ENSO on
global economic production. Economic growth for each country is
represented by the first difference of natural logarithm of annual GDP
per capita. Combining the factors including observed climate variables
and unobserved time-invariant and time-trending covariates, we then
build the model as:

Δlogðyit Þ=
Xn
l =0

fα1,lEt�l +α2,lE
2
t�l +β1,lT it�l + β2,lT

2
it�l

+ λ1,lPit�l + λ2,lP
2
it�lg+μi +θ1it + θ2it

2 + εit

ð1Þ

where yit is GDP per capita in country i and year t, l is the lag year to
year t, E is DJF-averaged Niño3.4 index in year t � l, T and P are
annual mean surface air temperature and precipitation in year t � l,
after removing the ENSO’s signal through linear regression.
Consistent with previous literatures with respect to ENSO’s socio-
economic impact20,28, we include the country-fixed effect (μi) as a
“control” variable that represents time-invariant factors such as
history, culture backgrounds and geographic location, and the
country-specific linear and quadratic time trend (θ1it +θ2it

2) as
“control” factors that change over time within a country, such as
development, trade liberalization and technological progress. We
also incorporate specific control variables such as trade openness,
share of agricultural GDP and financial depth as sensitivity tests, and
our estimation is insensitive to these factors. We drop the year-fixed
effect that represents time-varying factors common across coun-
tries such as global recession, since the year-fixed effect introduces
high risk of collinearity as ENSO timeseries could be correlated with
time-specific factors, making it harder to disentangle the separate
impacts from ENSO and time-fixed effects. ENSO can be treated as a
time-specific global phenomenon that commonly affects countries.
Including year-fixed effects weakens the statistical influence of
ENSO, leading to an underestimation of the real impact of ENSO on
economic growth59. In contrast to previous studies which depict
different impact of El Niño and La Niña through a Heaviside step
function22,23, we incorporate a continuous nonlinear effect of ENSO
in a quadratic function in which both the linear and the nonlinear
components include lagged effects. These lag terms account for
growth effects after the contemporaneous climate shock of an
ENSO event, allowing subsequent acceleration in the impact on
economic activity after the initial shock.

Equation (1) is simultaneously fitted by all the country-year sam-
ples from 181 countries over the period of 1961–2019 (N = 7404).
Inclusions of annualmean temperature and precipitation are aimed to
parallelly estimate the impact from mean state change, with assump-
tion that ENSO-induced temperature and precipitation anomalies are
independent to the mean change. We test this assumption by remov-
ing ENSO signal from annual mean temperature and precipitation by
linear regression, which goes

T *
it =Tit � Et � riðTi,EÞ ð2Þ

where T *
it is the annual temperature after ENSO signal removal in

country i and year t. riðTi,EÞ is the linear regression coefficient of
annual temperatureTi onto theDJFNiño3.4 index E in country iduring
the period of 1950-2021. Same process is applied for annual mean
precipitation Pit . There is little difference in the coefficients of ENSO
impact after removing ENSO signal from annual mean temperature
and precipitation.

We test different lag years to obtain the optimum one for ENSO’s
growth effect. ENSO continue to have negative effect till year 3, after
which time little further impact is seen and uncertainty increases
(Supplementary Fig. S2; Supplementary Table S1). As such, a 3-year lag
is applied (n = 3) to estimate the growth effect of ENSO. We estimate
loss from ENSO in each year as:

ΔgE
t = exp

Xn
l =0

ðα1,lEt�l +α2,lE
2
t�lÞ

( )
� 1 ð3Þ

where ΔgE
t is the ENSO-induced change in growth rate of annual GDP

per capita in year t. Hence, the in-dollar-value impact of ENSO in year t
is obtained by

ΔYE
t =Δg

E
t �

X
i

yit ð4Þ

whereΔYE
t is the ENSO-induced global per capita GDP change in year t.

Counterfactual ENSO and scenario
To avoid any influence from sequence of ENSO events when assessing
change of ENSO-induced economic growth reduction under green-
house warming, we develop counterfactual scenarios with hypothe-
tical future ENSO timeseries. The counterfactual future ENSO is re-
scaled from original timeseries in the 21st century to be of the same
amplitude as in the 20th century, that is:

EC = ESSP � σðE
HIST Þ

σðESSPÞ
ð5Þ

where EC is the counterfactual Niño3.4 timeseries, EHIST and ESSP are
Niño3.4 timeseries under the 20th and 21st century, respectively. This
approach retains the temporal evolution of ENSO in a SSP scenario to
remove any uncertainty that might arise from the sequence of indivi-
dual El Niño and LaNiña events (Supplementary Fig. S10a). The growth
rate difference between the original and counterfactual scenarios in
each year ΔgE

t is calculated as:

ΔgE
t = exp

Xn
l =0

ðα1,lE
SSP
t�l +α2,lðESSP

t�l Þ
2Þ

( )
� exp

Xn
l =0

ðα1,lE
C
t�l +α2,lðEC

t�lÞ
2Þ

( )
ð6Þ

Toproject the economic development in global GDP absent ENSO
in the future, we build a counterfactual global GDP growth based on
SSP projections. We assume that ENSO permanently reshapes the
global economy as its impact in each year aggregated over a long-term
period. The counterfactual GDP growth starts at year 2020, in which
the GDP is the same as particular SSP pathways. Then the cumulative
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growth rate reduction from ENSO in each year (both con-
temporaneous effect at that year and growth effect from previous
years) is restored to the original GDP growth rate. As such, the coun-
terfactual GDP is generated and aggregated to the end of 21st century,
which is calculated as:

yCt = y
C
t�1 � ð1 + gt +Δg

E
t Þ ð7Þ

where yCt is the counterfactual global GDP per capita at year t,
gt =

yt
yt�1

� 1 is the growth rate at year t based on the original output of
SSP database (Supplementary Fig. S10b).

Statistical significance test
We implement several sets of Bootstrap method60 to assess statistical
significance of the historical response function and multi-model pro-
jections. To quantify uncertainty in estimates of α1 and α2, we apply
different bootstrap strategies (1) Sampling by country in which the 181
countries are randomly resampled to construct another 10,000 reali-
zations of 181-element lists. In the resampling process, any country is
allowed to be selected again. These resampled lists of countries are
used to re-estimate the Eq. (1) and obtain the estimates of α1 and α2.
(2) Sampling by year, in which the 59 years from 1961–2019 period are
randomly resampled to construct another 10,000 realizations of 59-
element lists. In the resampling process, any year is allowed to be
selected again. These resampled lists of years are used to re-estimate
the Eq. (1) and obtain the estimates ofα1 and α2. (3) Sampling by 5-year
block, in which we divide the country-year data into 5-year blocks (like
1961–1965, 1966–1970 and so on), and resample these blocks as (2).
The 1.96 s.d. of the 10,000 estimates of α1 and α2 represents the 95%
confidence interval. We use strategy (1) in our presentation of results,
but we also show that the robustness of our historical response func-
tion is insensitive to alternative bootstrap strategies (Supplemen-
tary Fig. S3).

We also apply several sensitivity tests by omitting some of data
and re-estimating Eq. (1). In one such test, we re-estimate the econo-
metric model under 50-year running window periods of 1960–2009,
1961–2010, …, and 1970–2019. In another, we randomly drop 3 indi-
vidual years of data from the period of 1960–2019 to re-estimate the
econometric model for 1000 times by the Bootstrap method. We find
that our historical response function is insensitive to these tests
(Supplementary Fig. S4).

A similar Bootstrap method allowing repeat is used to test sta-
tistical significance of a difference between the 20th and 21st century,
or between a counterfactual and its original SSP scenario in the 21st
century, in multi-model ensemble mean Niño3.4 variability and eco-
nomic growth reduction. Specifically, their individual values (corre-
sponding to models) in each century are resampled randomly to
construct 10,000 realizations of multi-model ensemble mean values,
and standard deviation of the 10,000 realizations for each century is
calculated.When themulti-model ensemblemean difference is greater
than the sum of s.d. values of the 10,000 realizations of the two cen-
turies, the multi-model ensemble mean difference is statistically sig-
nificant above the 95% confidence level (Supplementary Fig. S9).

Heterogeneity of response function
To test the heterogeneity of ENSO effect across different groups of
countries (Fig. 1), we allow interaction between both the linear and
quadratic termsofNiño3.4and an indicatorDi forwhether a country is,
for example, a teleconnected country. We then incorporate it into the
econometric model by

Δlogðyit Þ=
Xn
l =0

fα1,lEt�l +α2,lE
2
t�l +Diðα3,lEt�l +α4,lE

2
t�lÞ+β1,lTit�l

+ β2,lT
2
it�l + λ1,lPit�l + λ2,lP

2
it�lg+μi + θ1it +θ1it

2 + εit

ð8Þ

Di =
1 if country i is a teleconnected country

0 if country i is a weakly� teleconnected country

�

whereα1,l andα2,l represent the linear andnonlinear coefficients of the
response function for weakly-teleconnected countries, and α3,l and
α4,l represent the adjustments to α1,l and α2,l that are only applicable
to teleconnected countries. Thus, the response functions of tele-
connected and weakly-teleconnected countries are statistically differ-
ent if both α3,l and α4,l are significantly distinguishable from zero
(p < 0.05). We apply the same approach to agriculture-dependent/-
independent and high-income/lower-income countries. We find that
while some coefficients of linear terms α3,l are significant, coefficients
of nonlinear terms α4,l are indistinguishable from zero for these
groups of countries (Supplementary Table S2). This means that the
commonnonlinear nature reflects the feature that the global spillovers
and cascading effects dominate global economic impact of ENSO. On
the other hand, the heterogeneous magnitude of response is due to
several different factors. One is linked to geographical locations in that
strongly-teleconnected countries tend to be in the tropics and lower-
income countries; another is economic structure in that there tends to
be a high proportion of agriculture in GDP in lower-income countries;
further, in lower-income countries, the level of preparedness and the
capacity to mitigate are relatively low.

To test any country-level heterogeneity of ENSO effect across
individual countries, we include the interaction of the common ENSO
shock with country-specific teleconnection in the econometric model
by

Δlogðyit Þ=
Xn
l =0

fα1,lEt�l +α2,lE
2
t�l + γ1,lψiEt�l + γ2,lðψiEt�lÞ2 + β1,lT it�l

+β2,lT
2
it�l + λ1,lPit�l + λ2,lP

2
it�lg+μi + θ1it +θ2it

2 + εit
ð9Þ

whereψiEt�l is the interaction term between the common ENSO shock
and country-specific teleconnection. We find that coefficients of the
interaction terms only show a weak statistical significance (Supple-
mentary Table S3), suggesting a major contribution of common ENSO
shock to the global impact.

Assessment of uncertainty
Our projection of additional loss in global economic production con-
tains several sources of uncertainty, including various future socio-
economic baseline and climate forcing from different SSP scenarios,
varying changes in ENSO amplitude across climate models, choices of
discount rate, and historical function regression. Given the counter-
factual GDP timeseries is associated with ENSO timeseries, the
sequence of ENSO is also a potential factor of uncertainty. We there-
fore re-arrange the ENSO timeseries in each CMIP6model to construct
10,000 timeseries, which have the same amplitude but different
sequences of ENSO events. To quantify the relative contribution from
the above factors to uncertainty, we hold four of five factors fixed and
allow the fifth to change. The factors are fixed as follows: SSP scenario
is fixed to SSP5-8.5, climatemodel projection of ENSO changes is fixed
to the multi-model ensemble median, discount rates are fixed at 3%,
historical function regression is fixed to the point estimate, and ENSO
sequence is fixed to the original sequence of timeseries as simulated in
each climate model. For the total uncertainty, each factor is allowed
to vary.

The total uncertainty leads to a 95% confidence interval of chan-
ges in global economic loss from -US$247 trillion to US$20 trillion,
while SSP scenario uncertainty alone leads to a 95% confidence interval
of -US$36 trillion to -US$14 trillion, climatemodel uncertainty to a 95%
confidence interval of -US$290 trillion to US$25 trillion, discount rate
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uncertainty to a 95% confidence interval of -US$90 trillion to -US$15
trillion, historical regression uncertainty to a 95% confidence interval
of -US$55 trillion to -US$22 trillion, and ENSO sequence uncertainty to
a 95% confidence interval of -US$47 trillion to -US$38 trillion (Fig. 4f).
Climatemodelswith various ENSOamplitude changes contributemost
to the total uncertainty, suggesting the projected additional economic
loss is highly dependent on ENSO amplitude change in the future.

Data availability
All datasets related to this paper are publicly available and can be
downloaded from the following websites: HadISSTv1.1: https://www.
metoffice.gov.uk/hadobs/hadisst/, ERA5: https://www.ecmwf.int/en/
forecasts/dataset/ecmwf-reanalysis-v5, ERSSTv5: https://psl.noaa.gov/
data/gridded/data.noaa.ersst.v5.html, University of Delaware: https://
psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html, World Bank
Development Indicators: https://databank.worldbank.org/source/
world-development-indicators, Penn World Tables v10.0: https://
www.rug.nl/ggdc/productivity/pwt/, GPWv4.11: https://sedac.ciesin.
columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-
unwpp-country-totals-rev11, CMIP6: https://esgf-node.llnl.gov/search/
cmip6/ SSP database version 2.0: https://tntcat.iiasa.ac.at/SspDb/dsd?
Action=htmlpage&page=10.

Code availability
Codes for the main results are available on Zenodo at https://zenodo.
org/record/8238350.
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