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Activity-dependent organization of
prefrontal hub-networks for associative
learning and signal transformation

Masakazu Agetsuma 1,2,3,4,5 , Issei Sato6, Yasuhiro R. Tanaka7,
Luis Carrillo-Reid 8, Atsushi Kasai 9, Atsushi Noritake 10, Yoshiyuki Arai3,
Miki Yoshitomo1, Takashi Inagaki 1, Hiroshi Yukawa5,11,
Hitoshi Hashimoto 9,12,13,14,15, Junichi Nabekura 1 & Takeharu Nagai 3

Associative learning is crucial for adapting to environmental changes. Inter-
actions among neuronal populations involving the dorso-medial prefrontal
cortex (dmPFC) are proposed to regulate associative learning, but how these
neuronal populations store and process information about the association
remains unclear. Here we developed a pipeline for longitudinal two-photon
imaging and computational dissection of neural population activities in male
mouse dmPFC during fear-conditioning procedures, enabling us to detect
learning-dependent changes in the dmPFC network topology. Using regular-
ized regression methods and graphical modeling, we found that fear con-
ditioning drove dmPFC reorganization to generate a neuronal ensemble
encoding conditioned responses (CR) characterized by enhanced internal
coactivity, functional connectivity, and association with conditioned stimuli
(CS). Importantly, neurons strongly responding to unconditioned stimuli
during conditioning subsequently became hubs of this novel associative net-
work for the CS-to-CR transformation. Altogether, we demonstrate learning-
dependent dynamic modulation of population coding structured on the
activity-dependent formation of the hub network within the dmPFC.

Animals learn to adapt to changing environments for survival. Asso-
ciative learning, such as classical conditioning, is one of the simplest
types of learning that has been intensively studied over the past
century1,2. It is based on repeated pairings of a neutral conditioned
stimulus (CS) such as a tone, and an unconditioned stimulus (US) such
as foot shock, that eventually elicits a conditioned response (CR), e.g.,
freezing response in the associative fear learning paradigm to the CS
alone. During the last two decades, technical developments in mole-
cular, genetic, and optogenetic methods have enabled the tagging of a
population of neurons in the brain whose specificmanipulation allows
control of the associative memory3. Findings from such studies sug-
gest that information processing by specific neuronal populations is
likely to underlie associative memory. How information is stored and

processed by the neural population to encode and retrieve the asso-
ciativememory, however, remains unclear3. In addition, although it has
been suggested that the formation of associativememorymay involve
novel associative connections between the originally distinct CS and
US networks to enable the CS-to-CR transformation, direct evidence is
quite limited.

The prefrontal cortex (PFC) is a brain region that regulates
associative fear memory, which is evolutionarily conserved in
mammals, from humans to rodents4–9. Dysfunction of the PFC may
lead to various psychiatric diseases, including post-traumatic stress
disorder10, and the associative fear learning paradigm has been used
as a research model to investigate the underlying mechanisms of
this disorder. The dorsal part of the medial prefrontal cortex
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(dmPFC) of rodents is a brain region demonstrated to be important
for the retrieval of associative fear memory11–16. During fear memory
retrieval and evoked freezing responses (i.e., CR), activated indivi-
dual neurons17 or enhanced synchrony of neural populations14 in the
dmPFC are observed, while pharmacological or optogenetic silen-
cing of the dmPFC and its projections to specific downstream tar-
gets suppresses fear memory retrieval11,12, revealing that associative
fear memory is normally stored in the dmPFC. Recent studies also
uncovered how the dmPFC works together with other brain
regions12,16,18, including the basolateral amygdala, hippocampus,
and paraventricular nucleus of the thalamus, each of which areas
have also been intensively studied in the research field of learning
and defensive behaviors as well as human psychiatric
disorders3,10,19–22. Therefore, the dmPFC can serve as an interesting
target to address the fundamental question of what structural and
computational alterations in the prefrontal networks are required
to organize novel associative memories (in the present study, the
term “network” describes a functional group of neurons, or a neural
population, that contributes to forming an information-processing
system). Also, studies of the dmPFC may contribute to our under-
standing of how novel associative memory is stored in the dmPFC
together with pre-existing networks, such as those regulating sen-
sory and motor information.

To address these points, here we developed a pipeline for long-
itudinal imaging and computational dissection of neural population
activities in the dmPFC during fear-conditioning procedures in mice,
which enabled us to uncover learning-dependent changes in the
internal neural network topology and computationof the dmPFCupon
memory acquisition.

Results
Fear-conditioning system under the microscope with the head-
fixed configuration
To perform longitudinal imaging of neuronal population activities in
the dmPFC during fear-conditioning procedures in mice, we first
developed a system to perform cued-fear conditioning and memory
retrieval while imaging neural activity in the brains of awake and
behaving mice with a two-photon microscope (Fig. 1 and Supplemen-
taryFig. 1), whichenabledus to record theneural activities ofhundreds
of neurons with single-cell resolution. Themicewere head-fixed under
themicroscope objective and placedona runningdisk. The rotationof
the disk was recorded to assess the mouse locomotion state (Fig. 1a)
(the term “state” is defined to describewhether amouse is locomoting,
spontaneously stationary, or expressing a CS-induced freezing-like
response). Tones and foot shocks were delivered as the CS and US,
respectively. Two different tones were used; one was associated with

Fig. 1 | Cued-fear conditioning during two-photon microscopy. a Developed
system for cued-fear conditioning under a two-photon microscope. b (top)
Experimental protocol. CS, conditioned stimulus; US, unconditioned stimulus; FC,
fear conditioning. (bottom) An example of CS+-evoked changes in the locomotion
of a mouse on day [D] 4, the day after fear conditioning. See Supplementary Fig. 1
and Methods for details. c, d Locomotor speed before the tone onset and during
the tone presentation was compared at different experimental phases. During the
first 29 sec of the first trials on D3 (i.e., before any CS+-US pairing), mice (N = 23)
exhibited no significant change during the CS+ and CS− presentations (c, left). On
D4 (the day after fear conditioning), the CS+ suppressed locomotion as a CR, while
the CS− induced no significant change (c, right, and d). After repeated presenta-
tions of the CS+ (5th–12th trials on D4), the CRs became smaller until no significant
change in locomotion was observed upon CS+ presentation (d). e Statistical

comparison between locomotion during CS− and that during CS+ at each testing
phase on D4. Locomotion during CS+was significantly lower only during trials 1–4,
and not after repeated presentations to the CS+ (5th–12th trials). The same data
shown in d (for “during”) are presented for different statistical comparisons. Note
that locomotionduring the pre-tone-onset (“before”) was not significantly different
between the CS− and CS+ conditions. f Significant correlation between locomotion
and freezing-like response (p <0.0001, Pearson’s correlation test, N = 23). Each
circle represents an individual mouse. Blue dotted line, linear fitting. Two-tailed
tests for all analyses; *p <0.05; **p <0.01; n.s., not significant by Wilcoxon signed-
rank test. p =0.426 for CS− and p =0.715 for CS+ in c-left; p =0.465 for CS− and
p =0.0097 for CS+ in c-right; p =0.465, 0.0097, 0.101, and 0.670 from left to right
in d; p =0.021, 0.078, and 0.465 from left to right in e; p <0.0001 for f. Error bars,
s.e.m. Source data are provided as a Source Data file.
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the US (CS+) and the other was not (CS−) (Fig. 1b and Supplementary
Fig. 1). We followed the fear-conditioning protocol applied in previous
studies using freely locomoting mice14,15,23. For example, we used the
same number and types of tones and the same interval at each step,
except thatweused 7CS+-USpairings rather than the 5 or 6 used in the
previous studies and that we used a milder foot shock current (see
Methods for details). In the present study, the term “session” is defined
as a series of CS presentations with or without a paired US on each day
(e.g., a habituation session, a fear-conditioning session, and a post-
fear-conditioning [post-FC] session on the day after the fear con-
ditioning), while the term “trial” indicates each 30-sec CS presentation
(with or without the US). We also use the term “phase” in the present
study to distinguish early and late trials during the same (consecutive)
session.

After 2 days of adaptation to the head-fixed system, on day 3 (D3),
the mice underwent a habituation session, in which they alternately
received 4 presentations of the CS− and CS+ without the US (Fig. 1b
and Supplementary Fig. 1a, b). The habituation session was immedi-
ately followed by the discriminative fear-conditioning session on the
same day, in which the CS+ was paired with the US (Fig. 1b and Sup-
plementary Fig. 1c, d). The US duration was 1 sec and it co-terminated
with the CS+ trial. The CS− and CS+ trials were performed alternately
(inter-trial intervals, 50–150 s). The next day (day 4, D4), the condi-
tioned mice underwent a post-FC session, in which they received 4
presentations of the CS− and 12 presentations of the CS+ without US
presentation (four presentations of the CS− and CS+ trials alternately,
followed by 8 CS+ trials; Fig. 1b and Supplementary Fig. 1e, f). Beha-
vioral analyses revealed that themice learned to exhibit a freezing-like
response, i.e., decrease their locomotion as a conditioned response
(CR), specifically during the CS+ presentation, only after the fear
conditioning (Fig. 1b, c). We refer to this expression of the CS+-evoked
CRs during the early post-FC session asmemory retrieval12. We used 23
naive mice to evaluate our head-fixed system for fear conditioning,
while we succeededwith the dmPFC imaging in 11mice on D3, and 7 of
these 11 mice were successfully imaged on both D3 and D4, from the
same set of neurons. Compared with the CS+ evoked change in loco-
motion of the entire cohort mice (Supplementary Fig. 2a), the change
in locomotionof themice used for the longitudinal imaging (explained
in the later section) was consistent (Supplementary Fig. 2b). On the
other hand, as reported previously14,15,23, the CR observed during the
early phase onD4wasextinguished after repeated exposure to theCS+
only (Fig. 1d, e) (we refer to this progressive decrease in the CR
observed after the repeated CS+-only presentation during the late
post-FC session as extinction14,15,23). These results indicate the potential
usefulness of our system in studying brain computation during fear
memory retrieval and following extinction.

To score the freezing-like CR, the locomotion speed of mice was
referred to, and if no movement was detected for at least 1 sec, the
mouse was considered to be expressing a freezing-like response. With
this measure, we also confirmed the significant enhancement of this
freezing-like response by the CS+ presentation (Supplementary
Fig. 2c). Using Pearson’s correlation and calculating the r and p value,
we confirmed that the locomotion speed was negatively and sig-
nificantly correlated with the freezing-like response; mice with less
locomotion showed more freezing-like responses and vice
versa (Fig. 1f).

Evaluation of the nature of the CR and its dependency on
the dmPFC
Prior to investigating neural activities in the dmPFC, we considered
two points: (1) whether the CR and the memory retrieval rely on the
dmPFC in this behavioral protocol, and (2) whether the CR observed
with this system is physiologically similar to the typical freezing
response observed in freely moving mice and different from the reg-
ular stationary state (i.e., a spontaneous non-locomotive state without

CS+). To test the contribution of the dmPFC tomemory retrieval in our
head-fixed system, we performed chemogenetic silencing of the
dmPFC by designer receptors exclusively activated by designer drugs
(DREADD). To evaluate the nature of the freezing-like response
observed in our head-fixed system, we simultaneously monitored
heart rate during the D4 post-FC session (Supplementary Fig. 3a–c)
because previous studies suggested that freezing is accompanied by
heart rate deceleration in freely moving mice24 as well as in other
species25.

We observed that, as in freely locomoting mice24, some control
mice exhibited a reduced heart rate when the CS+ was presented and
mice were not locomoting in our head-fixed system during the D4
post-FC session, and this heart rate deceleration was accompanied by
the suppression of the locomotion (Supplementary Fig. 3d, e). In
another case, the mouse showed low-level basal locomotion even
without the CS+ (Supplementary Fig. 3f). In this case, while showing no
explicit change in the locomotion level by the CS+, the mouse clearly
had a reduced heart rate. This observation suggested that the regular
stationary state (without CS+) and non-locomotive state during CS+
(i.e., freezing-like response as a CR) might be physiologically different.
We further performed the statistical evaluation and confirmed that the
heart rate during this freezing-like response under the CS+ presenta-
tion was significantly slower than that during the regular stationary
state in the control mice (Supplementary Fig. 4a–d).

Importantly, during the CS+ presentation onD4, the heart rates of
locomotive mice were significantly faster than those during the CS+-
evoked freezing-like response (Supplementary Fig. 4k, right), sug-
gesting the physiological difference between these two states during
the CS+ presentation. This observation is essential for the present
study since we further utilized the state difference to extract the
neuronal population encoding the information for the CS+-evoked
freezing-like response. The heart rates without the CS presentation
were also similarly enhanced during locomotion; those during the
locomotive state were significantly faster than those during the non-
locomotive state (Supplementary Fig. 4k, left).

Then, we further tested the role of the dmPFC by specifically
targeting the excitatory neurons in the dmPFC for the silencing
experiments. We bilaterally injected the adeno-associated virus (AAV)
in the dmPFC to express the inhibitory human M4 muscarinic choli-
nergic Gi-coupled DREADD (hM4Di). The mice were intraperitoneally
injected with clozapine-N-oxide (CNO) 30min before the first trial on
D4 (post-FC session; i.e., the day after fear conditioning). On the D4,
bilateral silencing of the dmPFC significantly suppressed the CS
+-evoked reduction of the heart rate in comparison with the control
mice; no significant change was evoked by the CS+ presentation in
dmPFC-silenced mice (Supplementary Fig. 4e–h), and there was a
significant difference between the dmPFC-silenced mice and non-
silenced control mice (Supplementary Fig. 4i, j).

These results suggest that the freezing-like response as a CR
observed in our system is physiologically similar to typical freezing in
terms of heart rate deceleration, and likely dependent on the dmPFC
excitatory neurons which is consistent with the previous studies in
freely locomoting mice11,12.

Overall, these results demonstrated that our head-fixed system
and the fear-conditioning protocol would be potentially useful for
observing changes in neural population activity upon associative fear
learning.

Longitudinal imaging of neural population activities in mouse
dmPFC during fear-conditioning procedures
Next, to monitor the neural activities in the dmPFC by two-photon
microscopy, we implanted a 2-mm microprism along the rostral mid-
line of the brain to optically access the dmPFC region. Although the
size of the prismwas larger than thatof prisms used in previouswork26,
there was sufficient space and no callosal fibers between the
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hemispheres around the dmPFC area, especially at the rostral region,
enabling smooth insertion of the prism without cutting prefrontal or
callosal neural fibers (Fig. 2a). Using a genetically encoded Ca2+ indi-
cator,GCaMP6f, expressedby anAAV, the activities fromawide region
of the prefrontal area were chronically visualized (Fig. 2b, c and Sup-
plementary Movie 1). To specifically record the activity of the excita-
tory neurons27 and separate them from inhibitory neurons that may
have a distinct function in the dmPFC13, the GCaMP6f was expressed
under the regulation of the CaMKII promoter28,29. The CS and US pre-
sentation did not disturb image acquisition (Supplementary Movie 2).
We focused on analyzing the activities of the surface layer neurons
(~150–200μm depth below the pial surface along the midline) in the
dmPFC area (see theMethods for details). Inmost of the data analyses,
the neural representation during the first three trials of the fear con-
ditioning on D3 (D3-early) was compared with those during the first 3
trials onD4 (D4-early) to assess the changes occurring as a result of the
fear conditioning. The data obtained during the last 3 trials on D3 (D3-
late) were used to assess the late conditioning phase, and the data
obtained during the last 3 trials onD4 (D4-late) were used to assess the
extinction phase.

Prior to investigating population coding in the dmPFC, we asses-
sed single-neuron responses to the CS+ and CS− before and after the
acquisition of the fearmemory (Supplementary Fig. 5;n = 1165 neurons
from N = 7 chronically recordedmice; for each mouse, n = 91, 116, 249,
99, 288, 157, 165 neurons respectively).We found that ~60% of neurons
exhibited a change in neural activity following exposure to the CS+
and/or CS−, and ~20% of neurons showed responses to both the CS+
and CS−. The distributions of these types of neurons were consistent
throughout the learning process (Supplementary Fig. 5d). This type of
responsiveness of individual neurons to variable task-relevant aspects
has also been reported in the primate PFC30, and is proposed to
enhance the number of tasks that each neural circuit containing a
limited number of neurons can handle in a high-dimensional space
implemented by a population of networked neurons30,31. This encour-
aged us to further analyze the population coding for associative fear
memory, which was followed by the comparison with the single-
cellular responsiveness.

Extraction of the neuronal ensemble encoding the CR
To dissect the computational architecture composed by a neural
population in the dmPFC implementing a novel associative memory,
we next extracted a group of neurons encoding the freezing-like
conditioned response (named the CR ensemble; CRE in figures) based
on the neural population activities during D4-early (i.e., memory
retrieval phase) (Fig. 2d–f), and further analyzed the features of the
extracted ensemble to investigate the change induced after fear con-
ditioning. In addition, we aimed to elucidate whether the CR-coding
ensemble and the regularmotor-coding ensemble overlapped or were
distinct from each other.

We used the elastic net32, a model-based regularization algo-
rithm that enabled us to select the neural population corresponding
to the CR as well as to independently extract the motor-coding
ensemble for comparison. L1-regularization algorithms such as
LASSO also allow the selection of the neural population, but if there
is a group of highly correlated neurons, L1 regularization tends to
select only 1 neuron from the group and ignore the others32 (see the
Methods for details). Importantly, neuronal activity in the cortical
network is correlated14,33, and, as we describe below, a substantial
number of correlated pairs was observed in our recording data. On
the other hand, the elastic net that we use in the present study is
formulated as the combination of L1 and L2 regularizations, can
perform better for the regression and classification problems by
balancing these regularizations, and is advantageous to avoid
missing such correlated neurons during the selection32 (see the
Methods for details).

Models were fitted on neural population activities to estimate the
likelihood of locomotion state at each time point. Sparse models with
high fitting performance (CR-ensemble model for neural population
data of each mouse) were produced by this procedure (Fig. 2d). Since
the sparse model estimates or predicts the mouse locomotion states
by referring to the activities of a limited number of neurons (among
the entire recorded neurons), this method enabled us to select neu-
rons that were informative for estimating the corresponding loco-
motion state, the CR.

We extracted theCR ensemble using the elastic net by referring to
population neural activity data recorded during the CS+ presentation
of D4-early (Fig. 2d, e). The fitting performance (ratio of correct esti-
mation) of the obtained model was calculated to evaluate the model.
We demonstrated that the CR of themice could be estimated at a high
accuracy using the obtained model and the neural activities of these
selected CR ensemble neurons (Fig. 2f).When using the elastic net, the
degree of inclusion of correlated pairs can be adjusted by the hyper-
parameter “alpha”32. We systematically tested a wide range of alpha
values (Supplementary Fig. 6) and evaluated whether informative
neurons were left as unselected neurons at each alpha by measuring
the information (fitting performance of a model) of the remaining and
unselected neurons (Fig. 2g, h, and Supplementary Fig. 6; see also
Methods). This procedure enabled us to confirmwhether the neurons
informative for estimating the CRweremaximally extracted as a result
of the optimization of the alpha.

This systematic optimization procedure revealed a general trend
that a larger alpha tended to select a smaller number of neurons as the
CR ensemble (Supplementary Fig. 6b, top), as expected from the
general feature of the elastic net. Interestingly, the fitting performance
by the small CR ensemble was quite high, equivalent to the fitting
performance by the larger CR ensemble (Supplementary Fig. 6b,
middle), while the removal of such a small portion from the whole set
of neurons was not always sufficient to substantially diminish the
information left in the remaining neurons (Supplementary Fig. 6b, top
and bottom, and d–f). This suggests that the CR was redundantly
encoded in the dmPFC at the level of the population coding (a detailed
discussion of this redundancy is provided in the Discussion).

After determining the optimal alphas for individual circuits (i.e.,
each group of neurons simultaneously observed in the individual
mice), we observed a substantial reduction of the fitting performance
when all the neurons selected for the CR ensemble were removed
(Fig. 2h, and Supplementary Fig. 6), confirming that a sufficiently large
portion of the dmPFC neurons encoding the CRwas selected as the CR
ensemble by our method.

We eventually confirmed that the CR ensemble obtained by the
optimal alpha was highly informative for estimating the CR during D4-
early (mean± SE of the estimation accuracy, 0.9450 ±0.0265, N = 7
mice; see an example case shown in Fig. 2f; the summary of the indi-
vidual data is shown later in Fig. 3h [“CRE to CR”]). As for the spatial
distribution, the CR ensemble was spatially intermingled in the field of
view, as shown in Fig. 2e.

The CR ensemble is distinct from the regular motor-coding
ensemble
We then evaluated the specificity and uniqueness of the extracted CR
ensemble. For this purpose, we independently extracted a group of
regular motor-coding neurons (named regular stationary state [RS]
ensemble; RSE in figures) using the elastic net for comparison (Fig. 3a).
To extract the RS ensemble, instead of the population neural activity
data during the CS+ presentation that were used to extract the CR
ensemble, weused the population neural activity data recordedduring
the no-CS period (i.e., whole-daydata, including the period prior to the
CS presentation and that during the inter-trial interval; see the Meth-
ods for details). Interestingly, the selection of the RS ensemblewas not
clearly affected by the alpha values (Supplementary Fig. 7). This
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Fig. 2 | Longitudinal in vivo imaging in dmPFC and extraction of the CR
ensemble. a Microprism implantation along the midline for optical access to the
dmPFC without cutting nerves. GCaMP6f was expressed in the dmPFC excitatory
neurons by the AAV under the CamKII promoter regulation. b In vivo two-photon
microscopy to detect activities at the single-cellular resolution visualized by
GCaMP6f, chronically (day [D] 3 and D4) from the same set of dmPFC neurons. See
also Supplementary Movies 1 and 2. Scale bar, 250μm. c Longitudinal detection of
spontaneous Ca2+ activities on D3 and D4 from 10 example dmPFC neurons.
d Extraction procedure for the CR ensemble (CRE). See the Methods for details.
e An example of the extracted CRE. (left) Selected neurons. (right) Mean neural
activity during CR (freezing-like response) is shown in color. f Time-course changes
of neural representation encoded by the CRE (of the one shown in e) under the CS+
presentation on D4 (memory retrieval phase). The plots show a part of the whole
length of the data (during the CS+ presentation). Overall estimation accuracy was

97.36% in this example. g Schematic diagram showing how the extracted CRE
neurons (circled by the purple lines) were verified through comparison of the
fitting performances between CRE removed (when all CRE neurons were removed)
and Non-CRE removed (when Non-CR ensemble [Non-CRE] neurons were
removed). The fitting performance by the “CRE removed” should be substantially
decreased compared with the “Non-CRE removed” if most of the neurons infor-
mative for the CR are sufficiently selected as the CRE. h An example of the com-
parison of the fitting performances, revealing the poor remaining information in
the “CRE removed” (in the samemouse analyzed in e and f).d, f,h black dots on the
top of the graphs and pink color indicate the timing of the actual CR, while blue
lines show the likelihood of locomotion states estimated by the activity of the
respective neural populations. As a neural activity, ΔF/F (c) or z-normalized ΔF/F
(d and e are shown).
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suggests a possible difference in the coding structure between the CR
ensemble and the RS ensemble, and that the RS was less likely to be
redundantly encoded in the dmPFC at the level of the population
coding.

The RSmodel, a model for estimating the RS based on the neural
population activities of the RS ensemble (Fig. 3a), showed high per-
formance not only for estimating the locomotion state during the no-
CS period (RS model to interval (no CS) in Fig. 3b, top, and c), but also
for decoding the locomotion state during the CS+ presentation on D3,
i.e., during the early phase of the fear conditioning (RS model to D3-
early [during CS+] in Fig. 3b, middle, and d). This result suggested that
the RS model was applicable to the data obtained when CS+-related
activities were also observed (as shown in Supplementary Fig. 5), and
thus, like cross-validation by the data with the additional noise, con-
firmed the reliability of the RS model obtained using our elastic net-
basedmethod.No significant change in thedecodingperformancewas
observed during the fear conditioning (D3-early vs D3-late; Supple-
mentary Fig. 8).

The fitting performance for the RS estimation by the RS model
was also similar between D3 and D4 (i.e., the day of the fear con-
ditioning vs the day of the post-FC session) (Fig. 3c). The decoding
performance of the RS model to the locomotion state during the CS+
on D4-early, i.e., during memory retrieval, was significantly reduced,
however, compared with that of D3-early (RS model to D4-early [dur-
ing CS+] in Fig. 3b, bottom, and d; results of the detailed analyses are
also summarized in Supplementary Fig. 8). These results suggest that
the locomotion states during the memory retrieval, or the CR, could
not be explained by the RS model. We also found that most of the
neurons selected as the CR ensemble were unique and did not overlap
with the RS ensemble (Fig. 3e–g). We further observed that the CR
model was specific to the CR (the locomotion state during D4-early
under CS+ presentation) and not applicable to the RS (locomotion
state during no CS) on D4 (Fig. 3h). These results suggest that the CR
ensemble extracted by our method based on the elastic net was
unique, not the simple motor-coding population, and dominantly and
exclusively explained the locomotion states of the mice during the CR

Fig. 3 | Emergence of the unique CR ensemble after fear conditioning.
a Schematic diagram for extracting the RS ensemble (RSE) with building the RS
model. As a neural activity, z-normalized ΔF/F is shown. b–d Estimating and
decoding locomotion states by the RSmodel.b In an examplemouse, the RSmodel
possessed high performance for estimating RS (day[D]4-interval; top) and decod-
ing locomotion states during CS+ at D3-early (D3E; middle). However, the perfor-
mance decreased for the locomotion states during CS+ at D4-early (D4E; bottom).
c No significant difference in the original RS-model performance between D3 and
D4. d (left) Significant decrease in the RS-model decoding performance for loco-
motion states during CS+ at D4E, compared with D3E. (right) The changes in the
decoding performance visualized by subtracting D3E values from others (D3-late
[D3L], D4E, D4-late [D4L])). e Schematic diagram for comparing the overlap
between the CR ensemble (CRE) and the RSE. fAVenn diagram and a spatialmap of

an example mouse showing the limited overlap between the CRE and RSE.
g Summary of the overlapbetween theCRE andRSEof all 7mice (n = 1165 neurons).
h The decoding performance of the CRmodel to the RS was statistically compared
with the fitting performance of the CR. Of 11 successfully imagedmice, 7mice were
longitudinally imaged on D3-D4. Because data from 1 of the 7 mice on D3 did not
meet the RS-modeling criteria, N = 10 for D3 (c, d); N = 6 for D3-D4 paired com-
parison (d);N = 7 for D4 (c and Supplementary Fig. 8). TheCRmodels (at D4E)were
successfully built in all seven mice (h). The fitting/decoding performances are
indicated by the accuracy, while the AUC was similar (Supplementary Fig. 8). Two-
tailed, Wilcoxon rank-sum test (c, p =0.887) and paired permutation tests (d-left,
p =0.016; d-right, p =0.244, 0.016, 0.531 from left to right;h, p = 0.008) were used.
*p <0.05; **p <0.01; n.s., not significant. Redbars,median; box ind-right, 25th–75th
percentiles. Source data are provided as a Source Data file.
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(i.e., CS+-evoked memory retrieval) as an encoder of the acquired
associative memory.

As widely introduced in the cued-fear conditioning paradigm34–36,
we used different floor (i.e., running disk) textures for D3 and D4 to
change the context (see the Methods for details). One might consider
this difference to be a causal factor of the difference in the decoding
performance between D3-early and D4-early shown in Fig. 3b, d (RS
model to locomotion states during CS+). Importantly, however, this
reduced decoding performance at D4-early (i.e., memory retrieval
phase) was substantially recovered on the same day with the same
running disk at D4-late (i.e., extinction phase; no significant difference
betweenD3-early andD4-late, and a significant differencebetweenD4-
early and D4-late; Fig. 3d, right, and Supplementary Fig. 8), suggesting
that the contextual differencewas not the causal factor of the reduced
decodability at D4-early.

These results established that the CR, or the locomotion state
occurring as a result ofmemory retrieval,was dominantly explainedby
the CR ensemble, supporting the idea that the CR ensemble system-
atically extracted by ourmethodwas a dominant and specific group of
neurons encoding the CR that emerged on the day after the fear
conditioning during the memory retrieval phase and was suppressed
during the extinction phase.

Coactivity within the CR ensemble is specifically enhanced after
fear conditioning
In theCRensemble, weobserved a slight but significant increase inCS+
activatable neurons, but no change in CS+ inactivated neurons after
fear conditioning (Supplementary Fig. 9a–d). In contrast, other cells
(Non-CR ensemble: neurons that were not extracted as the CR
ensemble; Non-CRE in figures) exhibited no significant changes in the
CS+ activatable neurons, with a significant increase in CS+ inactivated
neurons. Neurons in the RS ensemble did not exhibit any significant
change in CS+ responsiveness. We detected no significant change in
CS− responsiveness in any of the categories. Because the CR ensemble
was discriminated by the neural activity data and locomotion states
during theCS+, not by comparisons between thoseduring theCS+ and
those during the presentation of other stimuli or the interval, our
method produced no bias toward the CS+ during the selection of the
CR ensemble.

In addition to the analyses based on the number of CR
ensemble neurons responsive to the CS+, we investigated the
characteristics of the extracted CR ensemble neurons by further
analyzing the activity level of these neurons at different phases and
different experimental days. When we looked at the responsiveness
of individual neurons, some of the neurons activated by the CS+
(“CS+ activated neurons”) in the CR ensemble neurons showed
higher responses during the D4-early compared with the D3-early
(Supplementary Fig. 9e, f). We further statistically tested whether
they showed differences in responsiveness at different phases (D3-
early, D3-late, D4-early, D4-late). Comparison between D3-early and
later phases suggested that the CS+-activated CR ensemble neurons
showed significantly higher responses to the CS+ during D4-early
(Supplementary Fig. 9g). This enhancement declined during the D4-
late (Supplementary Fig. 9g). At D3-late, while comparison between
the groups showed no significant difference from the D3E, a subset
of neurons showed higher responses than most of the neurons at
D3-early, which was indicated by the higher top 25 percentile line
(gray boxes in Supplementary Fig. 9g). These observations for the
responsiveness of individual neurons suggest the existence of a
mechanism by which fear conditioning (or repeated CS-US pairings)
results in the CS+ dominantly activating a subset of dmPFC neurons
that also encode the CR.

To elucidate the mechanism underlying associative learning and
memory at the neural population level, we measured the coactivity in
the extractedCR ensemble of eachmouse during theCS+presentation

by calculating pairwise correlation coefficients33. The pairwise corre-
lation coefficients are widely used to evaluate neural population
activity and are reportedly related to improved or impaired network
computation33,37–39. We investigated the changes that occurred as a
result of fear conditioning and found that only the positively corre-
lated fraction was enhanced after the fear conditioning specifically
within the CR ensemble, and not in the outside network (Non-CR
ensemble) (Supplementary Fig. 10a). Statistical analyses demonstrated
that this enhancement in positive correlation after the fear con-
ditioning, as well as the enhanced ratio of significantly and positively
correlated pairs, specifically occurred in the CR ensemble (Supple-
mentary Fig. 10a–c).

We also performed analyses based on shuffled datasets, as
described in previous studies33,40 to consider the possibility that a
change in basal activitymaycontribute to the change in the correlation
coefficient. Analyses based on the shuffled data, where the activity of
each neuron was preserved but the temporal order was randomly
shuffled neuron by neuron, revealed no significant difference between
the CR ensemble and Non-CR ensemble (Supplementary Fig. 10a, c),
suggesting that the specific enhancement of the coactivity of the CR
ensemble in the real data did not derive from the enhanced basal
activity.

A similar enhancement of the coactivity was observed in the CR
ensemble excluding the RS ensemble-overlapped neurons (Supple-
mentary Fig. 10a–c). In addition, changes in the coactivity across the
categories (coactivity between the CR ensemble and the Non-CR
ensemble neurons) were significantly smaller than those within the CR
ensemble (Supplementary Fig. 10c). These results led us to hypothe-
size that the functional connectivity within the CR ensemble was spe-
cifically enhanced as a result of the fear conditioning, contributing to
enhancing the coactivity.

Enhanced internal connectivity and association with the CS in
the CR ensemble after fear conditioning
To test the hypothesis above, we introduced a probabilistic gra-
phical model method, the conditional random field (CRF) model41,42.
This method evaluates the contribution of specific neurons to the
overall network activity by modeling the conditional probability
distribution of a given neuronal population firing together or of a
suppressive relationship (see the Methods for details). We gener-
ated a graphical model in which each node represents a neuron in a
given neural population and edges represent the dependencies
between neurons, which enabled us to estimate the functional
connectivity between dmPFC neurons that were simultaneously
recorded (Fig. 4a). Among the various mathematical algorithms
used to evaluate the possible functional connectivity of neural
networks and ensembles, the CRF model is one of the most reliable
methods because the results of the calculation (functional con-
nectivity) have already been carefully evaluated by two-photon
holographic optogenetics and consequential behavioral
modulation41,42. In the present study, we calculated the ratio of these
relevant connections (both coactive and suppressive) per all pos-
sible connections for each node as a “functional connectivity score”
for each neuron (see the Methods for details).

Using this method, we found that, after the fear conditioning
(D4-early), the functional connectivity was significantly higher in
the CR ensemble (Fig. 4b). This method also allowed us to evaluate
the information coding of any arbitrary label, e.g., CS+ or CS−, and
we found that the CS+ information encoded by the CR ensemblewas
significantly higher than that of the Non-CR ensemble (Fig. 4c).
Importantly, our method did not produce any bias to the CS+ in
selecting CR ensemble neurons, as explained above. Therefore, this
result indicates that the neural population encoding the CR was
dominantly associated with the CS+ information in the post-
conditioning dmPFC network. In addition, we found that the
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enhancement in both the functional connectivity and CS+ predict-
ability was experience-dependent and derived after the fear con-
ditioning, dominantly in the CR ensemble neurons (Fig. 4d, e). In
contrast, the changes in information coding for the CS− were not
significantly different between the CR ensemble and the Non-CR
ensemble (Fig. 4e). Therefore, the emergence of the CR ensemble
after fear conditioning was accompanied by enhancement of the

internal coactivity (Supplementary Fig. 10), functional connectivity,
and an association with the CS+ selectively within the CR ensemble.
These results indicate that fear conditioning drives a reorganization
of functional connectivity in the dmPFC, which may lead to the
formation of an information-processing neural network to trigger
the CR by the CS+ (i.e., a neural network for the CS+-to-CR
transformation).

Article https://doi.org/10.1038/s41467-023-41547-5

Nature Communications |         (2023) 14:5996 8



US-responsive neurons during fear conditioning subsequently
become hubs of the CR ensemble
Finally, we hypothesized that the functional reorganization that we
observed in the dmPFC after fear conditioning occurs via activity-
dependentmodulation during the repeatedCS+-USpairing. This ledus
to search for the signature of this plasticity.

During the fear conditioning, we observed that some of the
dmPFC neurons strongly responded to the US (Fig. 4f). Interestingly,
the total number of US-responsive neurons during the fear con-
ditioning (D3) was 64, while 47 became included in the CR ensemble,
suggesting that 73.44%of the neurons responding to theUSduring the
fear conditioning became integrated into the CR ensemble. The sta-
tistical analyses demonstrated that neurons responsive to the US
during fear conditioning were predominantly and significantly more
involved in the CR ensemble after the fear conditioning (Fig. 4g, h).
Similarly, we evaluated the CS responsiveness of the neurons becom-
ing the CR ensemble. During the D3-early (i.e., the early phase of the
fear conditioning), the total number of CS+-responsive neurons was
495, while 278 became included in the CR ensemble, suggesting that
56.16% of the neurons responding to the CS+ during the D3-early
became integrated into the CR ensemble. We similarly evaluated the
CS−-responsiveness, and found that the ratio for the CS− is 55.43%.
During the D3-late, the ratio for CS+ or CS− was 57.65 or 56.44 %
respectively, which are slightly higher than those at D3-early. Also, all
of the ratio values are smaller than that of the US-responsive neurons.
Further statistical analyses revealed that neural responses to the CS+
during D3-early were not significantly implicated in whether the neu-
rons became included in the CRE on the day after fear conditioning
(Supplementary Fig. 11a, left). On the other hand, neurons responding
to the CS+ during D3-late (i.e., after the repeated CS+-US pairing) were
predominantly involved in the CRE on D4, which was statistically
confirmed (Supplementary Fig. 11b, left), though the difference
between the CRE and the Non-CRE was smaller than the case of the US
responsiveness (Fig. 4h). There was no statistical significance in the
case of CS− (Supplementary Fig. 11a, b, right panels). These results
suggest that theUS-responsive neurons (shown asUSR in figures)were
preferably integrated into the CR ensemble, in which functional con-
nectivity might also be modulated and strengthened by US-evoked
activity, perhaps together with the paired CS+ responsive neurons.

To test this possibility, we performed further analyses based on
the CRF modeling. We found that the US-responsive neurons became
functionallymore connectedwithin theCR ensemble than theNon-US-
responsive neurons (i.e., neurons that were not defined as US-
responsive neurons; NonUSR in figures), while these differences
were not observed in the Non-CR ensemble (Fig. 4i). This higher con-
nectivity was a result of the fear conditioning (Fig. 4j). The information
coding for the CS+ was also significantly higher in the US-responsive
neurons, specifically in the CR ensemble (Fig. 4k). As expected from
this enhanced information coding for the CS+, we also observed that

the functional connectivity between the US-responsive neurons and
the neurons activated by theCS+was significantly enhancedwithin the
CR ensemble as a result of the fear conditioning (Supplementary
Fig. 12a), while there was no significant difference for the neurons
inactivated by the CS+ (Supplementary Fig. 12b). These results suggest
that the US-responsive neurons were dominantly associated with the
CS+-activated neurons when they became integrated into the newly
emerged CR ensemble.

According to a previous study, higher functional connectivity and
higher decoding performance of sensory stimuli are typical features of
pattern-completion cells whose activation could efficiently enhance
the entire ensemble activity for a specific sensory stimulus and pro-
mote the stimulus-associated behaviors ofmice41. In the present study,
we observed that the CR ensemble neurons becamemore activated by
the CS+ as a result of the fear conditioning (Supplementary Fig. 9). The
functional connectivity between the CS+-activated neurons and the
US + -responsive (activated) neurons was enhanced as a result of the
fear conditioning (Supplementary Fig. 12). The information coding for
the CS+ in such US-responsive neurons was also enhanced in the CR
ensemble but not in the outside network (Non-CR ensemble) (Fig. 4k).
We also observed that the US-responsive neurons possessed sig-
nificantly higher functional connectivity within the CR ensemble than
the other neurons (Fig. 4i), of which enhancement was experience-
dependent (Fig. 4j). TheCR ensemble encoded theCR information and
was distinct from the regular motor-coding neurons (Figs. 2 and 3).
Conclusively, these results visualized the possible signal flow from the
CS+ to the CS+-activated neurons in the CR ensembles, then to the US-
responsive neurons, and further to the entire CR ensembles, most of
which association or responsiveness was enhanced as a result of the
associative fear learning paradigm. In other words, the US-responsive
neurons in the dmPFC gained features of pattern-completion cells and
became a hubof the novel neural ensemble linking theCS+ to theCR, a
memory-evoked response, after the repeated CS+ and US pairings.

Discussion
In the present study, we developed a pipeline for longitudinal two-
photon imaging and computational dissection of the neural popula-
tion, which allowed us to investigate learning-dependent dynamic
modulation of population coding for associative fear learning, struc-
tured on an activity-dependent hub-network formation within the
dmPFC. We observed that the repeated CS+-US pairing for the asso-
ciative learning encouraged dmPFC reorganization characterized by
adaptive rearrangement of the functional connectivitywithin a specific
subset of dmPFC neurons and promoted the development of the
unique CR-coding neural network distinct from the regular motor-
coding neural networks in the dmPFC. This functional reorganization
within the dmPFC was accompanied by enhanced internal coactivity,
functional connectivity, responsiveness to the CS+, and information
coding for the CS+, which were enhanced as a result of the fear

Fig. 4 | Enhanced functional connectivity and CS+ predictability in the CR
ensemble with an emergent hub of US-responsive neurons after fear con-
ditioning. a Functional connectivity in an example neuronal circuit, estimated by
the CRF model. Top 50% edge potentials were visualized. b Higher functional
connectivity within the CR ensemble (CRE) compared with the others (Non-CRE)
during the day[D]4-early (D4E). c Higher decoding performance for CS+ in CRE
comparedwithNon-CREduringD4E.dEnhanced functional connectivitywithin the
CRE in an example circuit after fear conditioning (cf., a; n = 67CRE neuronsmarked
by red ellipses [left, spatial maps] or black dots [right, functional connectivity
scores]). e Changes in functional connectivity and cellular decoding performance
(for CS+ and CS−) in CRE, CRE-noRSE (CRE excluding those overlapping with RS
ensemble), or Non-CRE, evaluated by calculating D4E-D3E differences (N = 7 mice,
2000 times bootstrap resampling). f, gdmPFCneuronal responses to theUS onD3.
Neural activities (mean over seven trials) were aligned at the US onset ordered by
the magnitude of response for 1.5 sec from the US onset. As neural activity,

z-normalized ΔF/F is shown. Green dotted lines, US onset; yellow bar, 1-sec US
presentation. f (top) All neurons. (middle) US-responsive neurons (USR). (bottom)
Mean ± s.e.m. of respective categories. g US responses of CRE or Non-CRE. h US-
responsive neurons on D3 were predominantly involved in the CRE or CRE-noRSE
on D4. i–k Comparison of functional connectivity scores (i–j) and CS+-decoding
performances (k) between USR and others (NonUSR) at D4E (i, k), or between D3E
and D4E (j), either within the CRE or Non-CRE. N = 7mice in Fig. 4 (except for a, d).
Two-tailed, paired permutation test (b, p =0.016; c, p =0.016), bootstrap
resampling-based analysis (e: p <0.001, < 0.001, 0.013, 0.006, 0.411 and 0.270, left
to right), Fisher’s exact test (h: top, p =0.001; bottom, p =0.008), Wilcoxon rank-
sum test (i: CRE, p =0.020; Non-CRE, p =0.999; k: CRE, p =0.001; non-CRE,
p =0.350), and Wilcoxon signed-rank test (d: p <0.0001; j: CRE, p =0.003; Non-
CRE, p =0.554) were used. *p <0.05; **p <0.01; ***p <0.001; ****p <0.0001; n.s., not
significant. Red bars, median; boxes in d, e, i–k indicate 25th–75th percentiles. See
Methods and Source Data for details.
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conditioning. Upon this prefrontal reorganization, neurons activated
by the US during fear conditioning were subsequently and pre-
dominantly integrated into the CR ensemble. Detailed analyses com-
bining traditional measures based on the single-cellular
responsiveness with the CRF graphical modeling technique proposed
apossible signalflow in the extractedCR ensemble during thememory
retrieval, which may allow the signal transformation from the CS+ to
theCR via theUS-responsive neurons. The eventual network stemming
from these US-responsive neurons gained typical features of pattern-
completion cells of the CR ensemble, which are supposed to work as a
hub in the dmPFC to predominantly relay the CS+ information and
promote the CR (Supplementary Fig. 13).

The comparisons between D4-early (D4E) and D4-late (D4L), i.e.,
memory retrieval and extinction phases also support the emergence
and the temporal specificity of the extracted CR ensemble. We
observed that the reduced decoding performance at D4-early by the
RS model, a model to predict the regular stationary state, was sub-
stantially recovered at D4-late (Fig. 3d and Supplementary Fig. 8). Also,
we additionally demonstrated that the mean activity level of the CS+-
activated neurons in the CR ensemble once became significantly
enhanced during the D4-early (compared with the D3-early), but this
enhancement declined during the D4-late (Supplementary Fig. 9g).
These results support that the CR ensemble was a dominant and spe-
cific group of neurons encoding the CR, emerged on the day after the
fear conditioning, was activated during the memory retrieval phase,
and was suppressed during the extinction phase.

A previous study investigated the population coding by the
dmPFC neurons during memory retrieval using the electro-
physiological recording technique16, reporting that the dmPFC neural
population encodes information related to the CS+ and the upcoming
CS+-triggered defensive behavior (avoidance behavior), silencing of
which suppresses this memory-driven defensive response. In the
study, how the population coding emerged was not addressed, which
could be advantageously addressed by the two-photon-based long-
itudinal imaging techniques instead. Also, other recent studies repor-
ted that the assimilation of US activity with the CS occurred in the
dmPFC18,43. But the direct relationship between such emergent CS-US
assimilation of the neural representation and the information coding
by the neural population during the memory retrieval remained
unclear.

The novelty of the present study is that we first extracted the
specific subpopulation of dmPFC neurons that encoded the CR and
emerged as a result of the fear conditioning, of which specificity and
distinction from the regularmotor-coding population were confirmed
with the advantage of the longitudinal two-photon imaging, and the
elastic net. The regularized regression method (elastic net) allowed us
to systematically extract the exact neurons that were dominantly and
sufficiently encoding the CR, and distinguish them from the regular
motor-coding ensemble. We demonstrated that the enhancement of
the functional link between CS+ and US-responsive neurons was spe-
cifically developed in the CR-coding subpopulation, named the CR
ensemble in the present study, as a result of the fear conditioning.
Furthermore, the combination of the conventionalmeasures based on
the single-cellular responsiveness and the newCRF graphicalmodeling
technique based on the analyses of coactivity in the neural population
contributed to investigating the possible signal flow and its
experience-dependent dynamic change in the dmPFC which may
underly the CS+-to-CR signal transformation.

To our knowledge, this is thefirst in vivo evidence revealing (1) the
emergence of a neural population encoding the CR (CR-ensemble) in
the dmPFC as a result of CS+-US pairing, (2) that the CR-ensemble is
distinct from the regular motor-coding ensemble, (3) that the emer-
gence of the CR-ensemble in the dmPFC is based on an enhanced
association (functional connectivity and information sharing) between
the US-responsive neurons and the CS+ responsive neurons, and

(4) that these changes specifically occurred in the neural population
that encodes the CR after the CS+-US pairing, and not in the outside
network (Non-CR ensemble). This observation is consistent with the
observation in the basolateral amygdala, which indicated that entire
recorded neurons in the amygdala revealed the assimilation of the CS+
and US as a whole population, and that it was significantly correlated
with the enhanced behavioral responses44, which supports the relia-
bility of our results. Also, the same study44 reported the enhancement
of the CS+ responsiveness in the basolateral amygdala during the
repeated CS-US pairing for the conditioning. We found that the CS+
responsiveness in the dmPFC during the late fear conditioning phase
significantly affected the integration possibility of these responsive
neurons into the CR ensemble (Supplementary Fig. 11). This result
suggests the possible dynamic interaction between dmPFC and
amygdala during the development of the associativememory network.

More than 60 years ago, Hebb proposed that repeated co-
activation of a group of neuronsmight create amemory trace through
the enhancement of connections45. Previous studies based on the
artificial manipulation of neuronal activity suggested the in vivo con-
tribution of the enhanced neural activity to form the associative
memory network, and studies based on molecular markers such as
CREB or immediate early genes provide strong support that the
activity-dependent mechanism underlies endogenous associative
learning3,46–48. Our results, based on longitudinal live imaging and
model-based analyses, not only support these findings but also allow
for detailed visualizationof theneural networkdynamics.Weobserved
that the US-responsive neurons (Fig. 4f–k), perhaps with CS+ respon-
sive neurons (Supplementary Figs. 9, 11, 12), were dominantly inte-
grated into the specific neural population encoding the CR, suggesting
that Hebbian plasticity (i.e., fire together, wire together) or someother
co-activation based mechanism underlies the reorganization of the
prefrontal network functional connectivity during associative learning
and enable the emergenceof a specific link between theUS-responsive
neurons and the CS+ responsive neurons to form a novel CR network
in the dmPFC.

The dmPFC is defined differently among previous studies. Using
our two-photonmicroscopy imaging system through amicroprism,we
precisely adjusted the anatomical coordinates of the field of view for
the imaging. We recorded neural population activities precisely from
the dorsal part of themedial prefrontal cortex (Supplementary Fig. 14)
using the position of the dorsal surface of the brain, sinus, and pial
surface along the midline, which were usually visible through the
imaging window, as a guide. We specifically targeted the surface layer
of the dmPFC (~150–200μm from the pial surface along the midline).
This precision and the detailed coordinate information will be crucial
for more systematic comparison of the present study with previous
and future related works.

Graphical modeling (CRF modeling) enabled visualization of the
functional dependence between individual neurons of these selected
neurons based on a mathematical model accounting for the con-
tribution to the population coding, indicating the possible signal flow
in the dmPFC underlying associative fear memory as discussed above.
A previous study that introduced a similar type of mathematical ana-
lysis evaluating neuronal co-activation also reported the increased
functional coupling of the US-responsive neurons and CS-responsive
neurons in the ventral hippocampus as a result of contextual fear
learning49. Together with this study for contextual fear learning and
another previous study in visual discrimination learning42, our results
strengthened the usefulness of this type of functional connectivity
analysis based on neural coactivity during learning and memory
retrieval.

We observed that individual dmPFC neurons responded to mul-
tiple task-relevant aspects (Supplementary Fig. 5), which has also been
reported in the primate PFC30 and referred to as “mixed selectivity”. A
similar feature was observed in the mouse caudal PFC during a
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decision-making task50, suggesting that this feature is not specifically
observed in our behavioral paradigm. As a potential advantage, mixed
selectivity is proposed to enhance the number of tasks that a limited
number of neurons can handle through high-dimensional neural
representations implemented by a population of neurons30,31. A further
detailed investigation is important to understand how the dmPFC
neural population encodes multiple memories and tasks.

Weobserved that theCR informationwas redundantly encoded in
the dmPFC at the level of the population coding. Our analysis based on
the elastic net allowed us to select neurons encoding a specific loco-
motion state as a population of neurons. By the adjustable parameter
named alpha, we could not only optimize the number of the selected
neurons but also search for possible overlap in information coding.
Note that this method analyzed the information coding not as indivi-
dual neurons 1-by-1 but as a population. Interestingly, at some alpha
value, even without (i.e., after removing) the minimum number of
neurons required to estimate the CR information at ~100% accuracy,
the remaining neurons still possessed the CR information at high
accuracy, similar to the pre-removed neuron set (in Supplementary
Fig. 6b, at the right bottom panel, zero (dark blue) for some alpha in
themouse#5, for example,means nodifference betweenpre-removed
and post-removed). We needed to adjust the alpha and the size of the
selected neurons tomaximally extract the neural population encoding
the CR information, depending on the mouse. This observation itself
suggested that the CR information was redundantly encoded by mul-
tiple neural populations in the dmPFC (i.e., both minimally-extracted
population A and remaining population B encoded the CR informa-
tion). In terms of the population coding, this type of tendency was not
observed when we extracted the regular motor-coding population,
named the RS ensemble (Supplementary Fig. 7), suggesting that
population coding of the CR information in the dmPFCmay be unique
and based on the redundant coding. The observation at each single-
cell level has demonstrated that many neurons show similar response
types to tones or foot shocks (Fig. 4, and Supplementary Figs. 5, 9), but
our study also revealed that they were functionally connected to each
other, and seemed to work together in the CR ensemble during the
memory retrieval phase. It would be interesting to further investigate
how andwhy these individual neurons contribute to the redundant (or
separate) groups of neurons.

The advantage of the redundancy is not clear, but because fear
memory is critical for animal survival, it is possible that the redundant
coding for fear memory is not inefficient but rather evolutionarily
crucial. On the other hand, although the redundancy can also be
considered inefficient in terms of the short-term cost, because the
dmPFC is known to be involved in long-term memory via brain-wide
networks12,18,21, it would be interesting to investigate whether the
redundantly encoded information for the CR is maintained or dimin-
ishes by longer-term continuous recording, andwhether it is related to
the brain-wide regulation ofmemory using virus-based anterograde or
retrograde fluorescent labeling techniques to simultaneously dissect
the downstream or upstream structures.

As we have successfully discriminated the specific neural popu-
lation encoding the CR as well as the detailed internal structure with a
hub of the US-responsive neurons, further testing the causality of the
identified structure to the locomotion state by holographic
optogenetics41 could be intriguing. Importantly, however, we also
found that the dmPFC responds to auditory signals even prior to the
associative learning (Supplementary Fig. 5) and that the CR ensemble
predominantly includes the US-responsive neurons (Fig. 4h). There-
fore, to validate the causality as a memory network, the stimulation
experiment needs to be carefully designed because enhancing the
sensory coding can also modify behavioral responses in a task based
on the sensory stimuli as demonstrated before41, and because acti-
vating US-responsive neurons may sufficiently encourage innate
defensive freezing responses as unconditioned responses. Further

mathematical dissection and additional anatomical dissection as dis-
cussed in the preceding paragraph would be the next important step
to more precisely identify the memory-specific connections and
information flow to be tested by holographic optogenetics.

Methods
Animals
All animal experiments were carried out in accordance with the Insti-
tutional Guidance on Animal Experimentation and with permission
from the Animal Experiment Committee of Osaka University (author-
ization number: 3348), or in accordance with National Institutes of
Health guidelines and approved by the National Institute for Physio-
logical Sciences Animal Care and Use Committee (approval number
18A102). Male C57BL/6 mice housed under a 12-h light/dark cycle with
free access to food and water in a temperature-controlled environ-
ment (22–24 °C and 30–60% humidity) were used for all experiments.
Behavioral experiments were performed during the dark cycle (i.e.,
when mice were normally awake) using singly-housed mice. Mice at
4–6 months of age were used for the behavioral and imaging
experiments.

Virus injection
To express GCaMP6f, a genetically encoded calcium indicator to
monitor neural activity, we used a gene expression system based on
the AAV vector. Viruses were injected into mice at postnatal day (P)
50–120 for in vivo experiments, at least 1month before themicroprism
implantation, which was followed by the in vivo experiments
1–3 months after the implantation. Injection procedures were per-
formed as described previously33, with some modifications. During
surgery, themicewereanesthetizedwith isoflurane (initially 2% [partial
pressure in air] and then reduced to 1%). A small circle (~1mm in dia-
meter) of the skull was thinned over the left medial prefrontal cortex
(mPFC) using a dental drill to mark the site for a small craniotomy.
AAV1/CamKII.GCaMP6f was obtained from the University of Pennsyl-
vania Vector Core, and injected into the left mPFC (slightly away from
the imaging target area to avoid damaging the field of view) at 3 sites
(depth 1.0, 1.5, and 2.0mm from the dorsal surface of the brain,
volume 375 nl/site) to cover the dorsal mPFC, over a 5-min period at
each depth using a UMP3 microsyringe pump (World Precision
Instruments). The X-Y coordinates for the injection site were usually
0.5mmlateral to themidline and 2.0mmrostral to bregma, but if large
blood vessels obstructed the position, we shifted the insertion site
slightly to avoid the vessels. The beveled side of the injection needle
was faced to themidline so that the needle could be smoothly inserted
and the virus would cover the superficial layers of the mPFC. We
carefully designed our injection protocol (especially the volume and
depth) towidely cover themPFCareas,which include, according to the
nomenclature in the Allen Brain Atlas (https://atlas.brain-map.org/),
the ACA (anterior cingulate area), PL (prelimbic area), and dorsal part
of the IL (infralimbic area). The anatomical coordinates of the field of
view for the two-photon imaging were precisely targeted to record
neural population activities from the dorsal part of the mPFC (i.e.,
dmPFC) using the position of the dorsal surface of the brain, the sinus,
and the pial surface along the midline, which were usually visible
through the imaging window prepared as described below, as a guide.
We recordedneural activities through the implantedmicroprism in the
dmPFC that specifically included the PL and part of the ACA, and little
or none of the IL, specifically from the superficial layer (~150–200μm
from the pial surface along the midline) of the dmPFC (see Supple-
mentary Fig. 14 for details; the field of view ranged from a depth of
~0.4–1.8mm and centered at a depth of ~0.8–1.4mm from the peak
point of the dorsal surface of the brain above the dmPFC).

To performchemogenetic silencing of the dmPFCbyDREADD,we
expressed the inhibitory humanM4muscarinic cholinergic Gi-coupled
DREADD (hM4Di) fused to mCherry bilaterally in the dmPFC based on
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the AAV vector (AAVdj/CaMKIIα-hM4Di-mCherry). For the non-
silenced control, we used AAVdj/CaMKIIα-mCherry. The pAAV-
CaMKIIα-hM4Di-mCherry plasmid was constructed by excising the
hM4Di-mCherry sequence from the pAAV-hSyn-DIO-hM4Di-mCherry
plasmid51 and inserting it into thepAAV-CaMKIIα-DIO-hM3Dq-mCherry
plasmid51 using SalI and EcoRV sites and standard cloning techniques.
The pAAV-CaMKIIα-mCherry plasmid was previously constructed by
Niu et al.51. Using these plasmids, the AAVdj/CaMKIIα-hM4Di-mCherry
and AAVdj/CaMKIIα-mCherry were produced and purified respec-
tively, following the methods described previously52,53. Viruses were
injected bilaterally into the dmPFC at postnatal day (P) 60–90, which
was followed by the behavioral experiments ~1 month after the injec-
tion. The beveled side of the needle was faced rostrally so that viruses
could be injected into the anterior dmPFC where we observed the
neural activities in the present study.We targeted0.4mm lateral to the
midline in both hemispheres, ~2.0–2.1mm rostral to bregma (we
adjusted the position to avoid hitting the bold blood vesicles on the
surface of the brain), and a depth of 1.5mm from the pial surface with
450nl/site. After the behavioral experiments as described in the
“Silencing dmPFCexcitatoryneurons byDREADD” section, the brainof
the mouse was removed following perfusion with phosphate-buffered
saline (PBS, pH 7.4) and 4% paraformaldehyde (in PBS) under iso-
flurane anesthesia (2%), fixed in 4% paraformaldehyde at 4 °C over-
night and sliced into 200-μmcoronal sections. Slices weremounted in
Vectashield with DAPI (Vector Labs, H1500), and fluorescence images
were obtained by an Olympus BX63 or a ZEISS LSM 980. Only mice in
which bilateral expression in the dmPFC was confirmed were used to
evaluate the effect of dmPFC silencing.

In vivo two-photon imaging
In vivo two-photon imaging was performed as described
previously26,33, with modifications to pair with our new experimental
system. At 1–3 months after the virus injection, the mice were anes-
thetized with isoflurane (initially 2% [partial pressure in air] and
reduced to 1%). A titanium head plate described in a previous paper by
Goldy et al.54 was selected for the present study to minimize the area
lying over the ear and to minimize the blockage of auditory input
through the ear. The head plate was attached to the skull with dental
cement. For the subsequentmicroprism implantation, a square cranial
window (~2.3 × 2.3mm) was carefully made with minimal bleeding
above the right mPFC, the hemisphere opposite to the virus injection
site. An implantable microprism assembly26, comprising a 2-mm right
angle glass microprism (TS N-BK7, 2mm AL+MgF2, Edmund) bonded
to a 2 × 2mm square cover glass (No.1; Matsunami) for the middle
position and a 4 × 4or 3 × 4mmglasswindowat the surfacepositionof
the imaging window, was prepared and inserted into the subdural
space within the fissure along the midline as described previously26 to
avoid harming any nerves surrounding the mPFC network in both
hemispheres, therebyallowing for visualizationof the leftmPFC,which
was previously injected with the GCaMP6f virus, through the imaging
window. The area directly beneath the microprism was compressed
but remained intact. This insertion procedure sometimes caused a
small amount of bleeding that covered the imaging site, but even in
that case, the imaging window became clear after waiting at least a
month before performing the experiments. As reported before26, the
mice recovered quickly and displayed no gross impairments or beha-
vioral differences compared with non-implanted mice, enabling
chronic imaging of the dmPFC in behaving mice.

The activities of dorsal mPFC neurons were recorded by imaging
fluorescence changes with a FVMPE-RS two-photon microscope
(Olympus) and aMaiTaiDeepSeeTi:sapphire laser (Spectra-Physics) at
920 nm, through a 4× dry objective, 0.28N.A. (Olympus) or a 16×water
immersion objective, 0.80N.A. (Nikon). Mean ( ± SE) frame rate was
8.96 ± 0.87 (frames/sec). GCaMP6f signals were detected via the band-
pass emission filter (495–540nm). As the GCaMP6f was expressed

under the regulation of the CaMKII promoter28,29, all of the recording
targets were assumed to be excitatory neurons27. Scanning and image
acquisition were controlled by FV30S-SW image acquisition and pro-
cessing software (Olympus). To smoothly set the mice below the
objective lens for the imaging, light and minimal-duration isoflurane
(2.0% for <2–3min) anesthesia was used, and behavioral and imaging
experiments were started 5min after the mice awoke and began
locomoting on the running disk, which was visually confirmed via the
video camera (VLG-02, Baumer) under infrared light-emitting diode
illumination (850nm: LDL-130X15IR2-850, CCS Inc.). To detect neural
activity from the same set of neurons in each mouse over multiple
days, the depth from the surface of the brain (dmPFC area) and con-
figuration of blood vessels and basal GCaMP6f signals in each field of
view were recorded and referenced as described previously55.

Fear conditioning, memory retrieval, and extinction under the
microscope
The experiments were designed according to previous studies13,15,23,
with some modifications to optimize conditions for the two-photon
microscope system. Details are described in Supplementary Fig. 1. In
the present study, we define the term “state” to describe whether a
mouse was locomoting, spontaneously stationary, or expressing a
CS+-induced freezing-like response. We followed the fear con-
ditioning protocol applied in previous studies in freely moving
mice13,15,23. For example, we used the same number and types of
tones and the same intervals at each step, except that we used 7 CS+-
US pairings rather than the 5 or 6 pairings in the previous studies and
we used a milder foot shock current (as explained below). In the
present study, the term “session” is defined as a series of CS pre-
sentations with or without a paired US on each day (e.g., habituation
session, fear conditioning session, and a post-FC session on the day
after the fear conditioning session), while the term “trial” indicates
each 30-sec CS presentation (with or without US) (Supplementary
Fig. 1c). We also use the term “phase” in the present study to dis-
tinguish the early and late trials during the same (consecutive) ses-
sion. The heads of the mice were fixed under the objective lens for
two-photon imaging, allowing them to run freely on the running disk
placed below them, and locomotionwasmeasured by the rotation of
the running disk, as previously described56. Experiments were per-
formed in a completely dark environment to protect the detector
(photo multiplier tube) for the two-photon imaging from the room
light. We prepared 2 different types of running disks to establish 2
different contexts as used in conventional fear conditioning
experiments for head-unfixed mice13,14,23. Disk A was made of light-
colored plastic with ridges from the center to the rim that the mice
could grip to allow them to easily rotate (and walk on) the disk56.
Disk A was used for adaptation (Day [D] 1 and D2) and for memory
retrieval and extinction (D4). Disk B was built for the fear con-
ditioning (D3), and comprised a grid made of stainless steel bars
(Fig. 1a), which was attached to a foot shock generator (SGA-2010,
O’HARA & CO., LTD) via an electrical slip ring so that electrical
current to this running disk for the foot shock (US) could be stably
delivered to the mouse irrespective of whether the running disk was
rotating. The behavioral sessions on each day began only after the
mouse was constantly locomoting for more than 5min. The running
disks and the surrounding area (inside the cage for the microscope)
were cleanedwith 70% ethanol before and after each experiment. To
score regular stationary state or freezing-like responses as a CR, the
speed of themouse locomotion wasmeasured by the rotation speed
of the running disk56. Mice were considered to be stationary (during
the no-CS period) or expressing a freezing-like response (during
CS+/memory retrieval) if no movement was detected for at least
1 sec. On D1 and D2, the mice underwent an adaptation session with
disk A for an hour each day, to familiarize them with the novel
environment. On D3, the mice underwent a habituation session in
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context B, in which they received 4 presentations of the CS− and CS+
alternately (total CS duration, 30 sec for each trial; consisting of 50-
ms pips at 1 Hz repeated 30 times; pip frequency, 7.5 kHz or white
noise, respectively, 80-dB sound pressure level (60-dB basal room
noise produced by the heating, ventilation, air conditioning system,
and 20-dB for the CS). The habituation session was immediately
followed by discriminative fear conditioning13,14,23 on the same day
by pairing the CS+ with a US (1-sec foot shock, 7 CS+-US pairings).
Compared with the protocol used in the previous studies14,15,23, a
slightly higher number of repeated CS+-US pairings was used (5 CS
+-US pairings in the previous studies), while the intensity of the foot
shock current was much milder (0.6mA or 0.5mA in the previous
studies). The intensity of the foot shockwas usually 0.03–0.07mA in
the present study, but when mice failed to respond to the US, likely
due to the running disk becoming dirty or wet from the mice and
thus possibly suppressing or shunting the flow of current during the
experiment, an intensity of 0.10–0.45mA was used. Of the total 23
mice that we used for the behavioral experiments without chemo-
genetic manipulation of brain activity, seven mice required a higher
shock intensity; 0.10, 0.15, 0.25, 0.35, 0.35, 0.35, or 0.45mA. Note
that, as explained in the next paragraph and Supplementary Fig. 2,
the intensity adjustment did not enhance the conditioned response
(CR, i.e., enhancement of the freezing-like response or decrease of
the locomotion) but instead resulted in the equivalent responses.
Also, 2 out of 5 mice injected with AAVdj/CaMKIIα-hM4Di-mCherry
and 1 out of 5 mice with AAVdj/CaMKIIα-mCherry required a higher
shock intensity (0.15, 0.15 for AAVdj/CaMKIIα-hM4Di-mCherry, and
0.15 for AAVdj/CaMKIIα-mCherry, respectively). The response to the
foot shock (and whether or not the intensity was sufficient) was
manually evaluated on the basis of the detection of enhanced
locomotion and/or vocalizations emitted by the mice immediately
after foot shock onset (example recording of these responses to the
foot shock are shown in Supplementary Fig. 1d). We confirmed that
at least 5 of a total of 7 CS+-US pairings induced an unconditioned
response. The onset of the US coincided with the onset of the last
sound pip of each 30-sec CS trial. The CS− and the CS+ trials were
performed alternately (inter-trial intervals, 50–150 sec). On D4,
conditioned mice underwent a post-FC session on disk A, which
included an early memory retrieval phase and a following late
extinction phase as described in the Results section (they received a
total of 4 presentations of the CS− and 12 presentations of the CS+ as
shown in Supplementary Fig. 1). During the experiment (D1–4), the
mouse was continuously encouraged to locomote by administering
a 4-ul drop of 0.1–0.3% saccharin water per 100 cm of locomoting,
provided through a spout placed near their mouth55 so that the
freezing-like response could be discriminately detected as
decreased locomotion (Fig. 1). The mice were not water-deprived.

To clarify howweneeded to adjust the intensity depending on the
experiment, we measured the current on the wet disk without mice.
We observed a clear tendency for moisture to reduce the amount of
current. To further complicate matters, we observed that the amount
of current did not become weaker as a function of the wetness but
rather became zero, while the current above a certain level gradually
began to flow (i.e., it did not suddenly become stronger). Although it
was difficult to monitor the actual current flow through the mouse
during the actual experiments, according to the observation above, we
assumed that gradually increased currents provided a similar shock
level to each mouse. Actually, when we compared the behavior of the
mouse group that experienced a stronger foot shock (0.10–0.45mA)
and the group experiencing a weaker shock (0.03–0.07mA), we
observed no significant difference in the freezing-like response and
locomotion level during theCS+ in thefirst four trials of theD4post-FC
session, supporting that adjusting the current level to produce a
similar behavioral response to the US resulted in similarly aversive

experiences to the mice for the fear conditioning (Supplementary
Fig. 2d, e).

The locomotion speed and timings of the tones and the foot
shock were synchronously recorded with image acquisition (GCaMP6f
imaging in dmPFC) using NI software (LabVIEW 2015/2018; National
Instruments) and NI-DAQ (National Instruments). The results shown in
Fig. 1 and Supplementary Fig. 2 indicate that this protocol led to the
mice successfully learning the CS+-US association, and that locomo-
tionwas reduced in response to theCS+, but not theCS−, only after the
fear conditioning session, enabling us to observe changes in neural
representations in the dmPFC occurring as a result of the fear
conditioning.

Electrocardiogram recording and heart rate analysis
To measure the heart rate during the CR or fear memory retrieval (on
day 4), an electrocardiogram (ECG)was recorded from the awakemice
using a previously described method for anesthetized mice57 with
some modifications. A single pair of electrodes was anchored sub-
cutaneously as illustrated in Supplementary Fig. 3a; The negative
electrode (−) was placed in the mouse’s right upper chest, and the
positive electrode (+)wasplaced in the left abdomen. ECG signals were
referenced to the ground (left upper chest). The ECG was amplified
with a gain of 1000 and filtered between 10 and 1000Hz together with
a notch filter (60Hz), all of them using a differential AC amplifier
(model 1700; A-M Systems, Inc.). The cables were bound above the
mouse, and the cable bundle was clipped to a flexible magnetic stand
base holder and then connected to the amplifier (Supplemen-
tary Fig. 3b).

The ECG signal was synchronously recorded using LabVIEW
2015/2018 and NI-DAQ together with locomotion and other stimu-
lus timings at a 1000-Hz sampling rate. We analyzed the records
using MATLAB R2014a and R2019b (MathWorks, Natick, MA). Our
head-fixed system allowed us to stably record the ECG in awake
mice, and mild motion artifacts could be eliminated by subtracting
the baseline level calculated by the moving average. The typical
R-wave peak of each heartbeat was clearly identified (Supplemen-
tary Fig. 3c), and the detected peaks were used to calculate the heart
rate (beats per minute [bpm]) for each 100-ms bin to evaluate the
dynamic change accompanied by tone presentations and beha-
vioral change (Supplementary Fig. 3d–f).

In the present study, it was important to examine (1) whether the
freezing-like response observed in our head-fixed system is physiolo-
gically similar to freezing in freely movingmice and different from the
regular stationary state (without CS+) and (2) whether it is dependent
on the dmPFC activity or not. We simultaneously performed the ECG
recording to monitor the heart rate and the DREADD-based manip-
ulation of the dmPFC activity together with non-silenced controlmice.
We describe how we performed their statistical evaluation below.

We first analyzed the difference in the heart rate between the
freezing-like response (under the CS+ presentation) and the regular
stationary state (without CS+) to evaluate the nature of the freezing-
like response in our system using the control mice. 4 out of 5 control
mice (non-silenced and CNO-injected mice) showed heart rate decel-
eration during the CS+-evoked freezing-like response (Supplementary
Fig. 4a, b). For the statistical comparison, we first used a paired per-
mutation test to compare the heart rates between the freezing-like
response (under the CS+ presentation) and the regular stationary state
(without CS+) since it requires no assumptions regarding the data
distribution calculating a statistic (difference of means) of paired
permuted data. The p value calculated from the distribution of the
statistic obtained by permutation was “<0.0625” for this comparison
(Supplementary Fig. 4b), which is the minimum value for the com-
parison of four pairs in the paired permutation test. We further per-
formed tests based on bootstrap resampling to more systematically
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evaluate the difference between the two groups (the heart rate during
the freezing-like response vs that during the regular stationary state).
For this purpose, we first calculated the bootstrap means for each
individual, which was further used to calculate the medians for each
group. This was repeated in total 2000 times (Supplementary Fig. 4c)
(we also describe details for the bootstrap resampling in the section
“Imaging data analyses and statistics”), and eventually obtained 2000
ratio values (heart rate during the freezing-like response was divided
by thatduring the regular stationary state; SupplementaryFig. 4d). The
p value was calculated from the distribution (Supplementary Fig. 4d).
This analysis certified that the heart rate during this freezing-like
response under theCS+presentationwas significantly slower than that
during the regular stationary state. We also statistically confirmed that
the heart rates during the freezing-like response and those during
locomotion under the CS+ presentation on D4 (the first 4 trials during
the post-FC session) were significantly different (Supplementary
Fig. 4k, right), suggesting the physiological difference between these
two states during the CS+ presentation. This observation is also
important for the present study since we further utilized this state
difference to extract the neuronal population encoding the informa-
tion for the CS+-evoked freezing-like response. The heart rateswithout
the CS presentation were also similarly enhanced during locomotion;
those during the locomotive state were significantly faster than those
during the non-locomotive state (Supplementary Fig. 4k, left).

Similarly, we analyzed the heart rate of the dmPFC-silenced mice
(Supplementary Fig. 4e). The paired permutation test indicated that
the heart rates between the non-locomotive state (under the CS+
presentation) and the regular stationary state (without CS+) were not
significantly different in the dmPFC-silenced mice (Supplementary
Fig. 4f). The analyses based on the bootstrap resampling also revealed
no significant difference in the dmPFC-silenced mice (Supplementary
Fig. 4g, h).

As for the analyses based on the bootstrap resampling in the
present study, calculating the median of multiple mice to evaluate
each group (not themeans used for other bootstrap resampling-based
analyses in the present study) can be advantageous when outliers are
included in a small-size group (Supplementary Fig. 4b, f). But we need
to be careful that it might also lead to the wrong conclusion by
ignoring some of the samples. Therefore, we also tested the statistical
comparison based on the median for the group calculated by addi-
tional bootstrap resampling-based on the mean value for each indivi-
dual obtained by bootstrap resampling (here we first calculated the
bootstrap mean for each individual as described above, and addi-
tionally we calculated bootstrap median for each group using such
individual value). By verifying these results, we obtained similar results
confirming that the heart rate during the freezing-like response in the
control group was significantly slower compared to the regular sta-
tionary state (p = 0.019) and that the dmPFC-silenced mice showed no
significant change (p = 0.614).

We also directly compared the dmPFC-silenced mice
(AAVdj/CaMKIIα-hM4Di-mCherry) and non-silenced control mice
(AAVdj/CaMKIIα-mCherry). For this purpose, we first scored the dif-
ferences between the impact of the CS+ on the heart rate and that of
the CS− in each mouse (each was calculated by dividing the 29-sec
during-trial heart rate with the 29-sec pre-trial heart rate based on the
first 4 trials of either the CS+ or the CS− on D4). For the statistical
comparison in eachmouse, this value was not directly calculated from
the original data but through the bootstrap resampling. Since mice
behaviors are not consistent over multiple trials, all-time-point data
(1-sec bin in the case of the heart rate data, i.e., 29 × 4 samples in total)
were pooled to perform the resampling, calculate the bootstrap
means, and further calculate the differences between the impact of
the CS+ on the heart rate and that of the CS− in each mouse for
each resampling round. After repeating this resampling 2000 times,
we statistically evaluated whether the distribution of the difference

values (2000 samples for the CS+ vs CS−) are statistically different
from zero (i.e., whether the impact of the CS+ on the heart
rate and that of the CS− in each mouse are significantly different). 4
of 5 control mice (AAVdj/CaMKIIα-mCherry) showed significant
decreases (Supplementary Fig. 4i). On the other hand, 1 of 5 control
mice (AAVdj/CaMKIIα-mCherry) exceptionally showed enhanced
locomotion (flight-like response) that was accompanied by an
enhanced heart rate even when the mouse was not locomoting under
the CS+. This type of flight-like response was very exceptional in the
case of the naive mice (non-CNO injected), and only 1 of 23 naive mice
showed certain, but milder, enhancement of locomotion. We included
this mouse (one control mouse showing flight-like responses) for fair
statistics in direct comparisons of dmPFC-silenced and non-silenced
control mice, and observed that the enhancement of the heart rate of
the mouse was also significant (Supplementary Fig. 4i). Because the
previous study showed the dmPFC also contributes to a flight-like
defensive behavior16, we expected that not only the freezing-like
response but also the flight-like response could be suppressed by
silencing the dmPFC. We further observed that 4 of 5 dmPFC-silenced
mice showed no significant difference between CS+-evoked change
and CS−-evoked change and none of them showed significant
enhancement of the heart rate by the CS+ (Supplementary Fig. 4i).
Fisher’s exact test indicated that a statistically significant association
existed between the dmPFC activity and CS+-evoked change in heart
rate, supporting that the dmPFC normally contributes to memory
retrieval (Supplementary Fig. 4j). Note that, the mouse of flight-like
responses was excluded when evaluating the physiological nature
of the freezing-like response in the control mice (since it was a
rather flight-like exceptional response). Also, this type of exceptional
mouse was not included in the imaging data analyses to extract the
CR ensemble.

Silencing dmPFC excitatory neurons by DREADD
To test the contribution of the dmPFC to memory retrieval after the
fear conditioning in our head-fixed system, we performed chemoge-
netic silencing of the dmPFC using the DREADD platform. We injected
the AAVdj/CaMKIIα-hM4Di-mCherry bilaterally in the dmPFC to
silence the activities of the excitatory neurons, or AAVdj/CaMKIIα-
mCherry as a non-silenced control, as described in the section “Virus
injection”. The mice were given an intraperitoneal injection of
clozapine-N-oxide (CNO; 5mg/kg body weight) 30min before the first
trial of the D4 post-FC session. To evaluatewhether the CRobserved in
our head-fixed system is physiologically similar to freezing, we simul-
taneously monitored heart rate during the experiments as described
under the subheading “Electrocardiogram recording and heart rate
analysis” because freezing is reportedly accompanied by heart rate
deceleration in freely locomoting mice24 as well as in other species25.
Only mice in which bilateral expression in dmPFC was confirmed (as
described under the subheading “Virus injection”) were used to eval-
uate the effect of the dmPFC silencing.

Vocal recording and visualization
Vocalization of the mouse during the fear conditioning was recorded
using an ultrasonic microphone (CM16/CMPA, Avisoft) amplified
(UltraSoundGate 116H, Avisoft) and digitized at 250 kHz (by a
software, Avisoft-RECORDER USGH, Avisoft). For the visualization of
the vocalization, we generated a spectrogram using a multitaper
method58. In this analysis, multiple time tapers were designed using a
set of 6 series of discrete prolate spheroidal sequences with the time
half bandwidth parameter set to 359. The length of these tapers was set
to 512 data samples (~2ms at 250 kHz). The stored waveform was
multiplied by each taper and transformed into the frequency domain.
These multiplied waveforms were averaged in the frequency domain.
This procedure could produce a stable spectrotemporal representa-
tion of vocal sound with background noise attenuated.
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Imaging data analyses and statistics
The raw images of the GcaMP6f signals in the dmPFC were processed
to correct for brain motion artifacts using the enhanced correlation
coefficient image alignment algorithm60. To apply the same regions of
interest (ROIs) for analyzing the images obtained acrossmultiple days,
the movies from the same mouse were precisely aligned with each
other using the same enhanced correlation coefficient algorithm as
above, while, for a local shift (shift of a few pixels in a small number of
neurons among all recorded cells), the corresponding ROIs were
manually adjusted.

The ROIs for the detection of neural activity were automatically
selected using a constrained nonnegative matrix factorization algo-
rithm inMATLAB R2014a/R2019b as described previously61, with some
manual adjustment. Further steps to process the GcaMP6f signals for
measurements of the signal change (ΔF/F) of each neuron were per-
formed as described previously33,62; although the same constrained
nonnegative matrix factorization package for ROI detection also pro-
vides an option for signal processing that was not sufficiently opti-
mized to analyze our data, whichwere obtained over several days with
more than 30,000 frames each day. Fluctuations in the background
fluorescence, which contains synchronous fractions across nearby
neurons61,62, was subtracted before calculating the ΔF/F of GcaMP6f
signals as described previously33. Briefly, a ring-shaped “background
ROI”was created for each ROI 2–5 pixels away from the border of each
neuronal ROI to a width of 30–35 pixels, and the size was adjusted to
contain at least 20 pixels in each background ROI after completing the
following steps. From the background ROI, we removed the pixels that
belonged to any neuronal ROIs, and the ROIs that contained artificially
added pixels (black pixels added at the edge of the image due to the
motion correction procedure) at any time point. We then removed the
pixels that, at some timepoint(s), showed signals exceeding that of the
neuronal ROI by 2 standard deviations of the difference between each
backgroundROIpixel time series and theneuronalROI timeseries. The
resulting background ROI signals were averaged at each time point,
and a moving average of the time series was calculated. Using the
moving average instead of the raw background ROI signal was helpful
to minimize the production of an artificially large increase or decrease
at each time point due to the subtraction, which couldhave altered the
analyses of the timingof neural activations. Pixelswithin eachneuronal
ROI were also averaged to give a single time course, and then the
background ROI signal was subtracted. Then, the ΔF/F of GcaMP6f
signals of all recordedneuronswas calculated. Formost of the analyses
and comparisons of the results frommultiplemice, theΔF/F data were
further z-normalized within each experiment (same mouse, same day)
as described previously13,23, and as explained below (for more details).
On the other hand, particularly for the CRF modeling used to evaluate
the functional network connectivity, the spike probabilities were
inferred from theΔF/F as an alternative estimate of neuronal activation
using a constrained sparse nonnegative calcium deconvolution
method61. We used the code “constrained_foopsi.m”61, and the para-
meters used in the calculation were not manually selected but esti-
mated from the data by the code. After inference of the spike
probability and further thresholding by 2 standard deviations, the
obtained binominal data were further binned (bin size: 1 sec). Impor-
tantly, the results obtained by CRF modeling were consistent with the
results of the coactivity analyses based on the ΔF/F (and z-normalized
ΔF/F) (Supplementary Fig. 10), providing substantial support that the
analyses based on both estimates complemented each other for the
data analyzed in the present study. While neurons for the analyses
were initially automatically detected, neurons responding to noisy
signals with no apparent calcium transient at any time during the
experimental days were identified by visual inspection and excluded
from further analysis.

For the statistical analysis, we usedMATLABR2014a/R2019b. The
Wilcoxon signed-rank tests for paired comparisons or the Wilcoxon

rank-sum test (equivalent to Mann-Whitney U test) for unpaired
comparisons was used to determine statistical significance (p < 0.05)
unless otherwise indicated. Two-tailed tests were selected for all
statistical analyses. All p-values less than 0.0001 are described as
“p < 0.0001” (or ****). Graphs were produced by MATLAB R2014a/
R2019b or Excel (Microsoft). When comparing two groups (e.g., CR
ensemble vs Non-CR ensemble) consisting of the results of multiple
mice, in addition to the analyses using original data (e.g.,N = 7 [D3] vs
N = 7 [D4]) (Figs. 3d, h, 4b, c, and Supplementary Figs. 8, 10b), we
performed tests based on resampling (Fig. 4e and Supplementary
Figs. 4c, d, g, h, k, and 10c) to more systematically estimate repre-
sentative values (e.g., mean or mean difference) of each group where
the number of recorded neurons in eachmouse (field of view) varied.
We resampled the same sample size from each data (each mouse,
each day) with replacement (i.e., collected a bootstrap sample). For
example, if the original data of a mouse contained data of 100 neu-
rons, the size of the resampled data for the mouse was also 100
neurons (but with accepting overlapped sampling). For 100 pairs
(e.g., correlation coefficients between neurons), 100 pairs were
resampled. During this resampling, we sampled the data from the
same set of neurons for each day (for example, if resampled data for
D3 contained the 4 data from neuronal pairs A-B, A-B, C-D, E-F, the
resampled data for D4 also contained data from pairs A-B, A-B, C-D, E-
F), so that we could further calculated differences between D3 and D4
of each original pairs (e.g., “Change in each score (D4Eminus D3E)” in
Supplementary Fig. 10 could be calculated from these resampled
differences; with this way, we could also calculate D3L minus D3E,
etc.). After we calculated the bootstrapmean for eachmouse (at each
category [e.g., CRE, NoCRE, etc.]), we obtained a bootstrap mean of
the differences (e.g., D4E minus D3E) across all mice (N = 7) at each
category. Toconsider the differencebetween twodifferent categories
(e.g., CR ensemble vs Non-CR ensemble), we further calculated the
difference of two bootstrap means. These bootstrap means were
collected with 2000 independent bootstrap samples. The p value was
calculated from the distribution of bootstrap means (examples for
the calculation are shown in Supplementary Fig. 4d and h). On the
other hand, when statistically comparing original data (Figs. 3d, h, 4b,
c, and Supplementary Figs. 8, 10b), we used a paired permutation test
that requires no assumptions regarding the data distribution, calcu-
lating a statistic (difference ofmeans) of paired permuted data. The p
value was calculated from the distribution of the statistic obtained by
permutation. The p-values obtained by thismethod and the evaluated
statistical significance were very similar to those obtained by the
paired t-test in almost all cases.Whenplotting the entire large number
of samples, we used a MATLAB code, CategoricalScatterplot (https://
github.com/AbstractGeek/CategoricalScatterplot).

In the present study, to compare changes in neural responses and
ensemble representations occurring as a result of the fear condition-
ing, without any bias, we did not exclude neurons that showed no
response to the CS on D4 from the analyses, which was done in some
previous experiments23. Neurons for the analyses were automatically
selected based on the neural responses, as described above, and all
neurons that exhibited clear activity during at least 1 of the experi-
mental days were included for the analyses irrespective of whether it
was during the CS presentation or only during no CS presentation,
considering the previous work suggesting that not only the neurons
that typically respond to the CS, but also other types of neurons
(including those of mixed selectivity) are important for population
coding in the prefrontal network30.

The significance of CS-induced neural responses was determined
as reported in previous studies13,23. Signals during CS presentation
were normalized to baseline activity using a z-score transformation, as
described previously13,23. The CS-induced neural activity for each sti-
mulus was then calculated as the mean of the activity during ~1 sec
from each stimulus onset (depending on the imaging frame rates, we
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set the number of frames to be used for this calculation so that sam-
pling duration was closer to 1 sec but the frames that overlapped with
the next stimulus onset was excluded). The last sound pip of each 30-
sec CS trial was also excluded from this analysis because, during fear
conditioning, the last sound pip of the CS+ overlappedwith the US (we
excluded the last pip data not only for analysis of CS+-evoked
responses during fear conditioning but for all data analyses on bothD3
andD4, for bothCS+ andCS−). Theywere averagedover blocks of 3 CS
trials consisting of 87 individual sound pips in total, for D3-early (first 3
trials during the fear conditioning session), D3-late (last 3 trials during
fear conditioning on D3), D4-early (first 3 trials on D4, as responses
during memory retrieval), and D4-late (last 3 trials only for CS+ on D4
as responses during extinction), respectively, or used to statistically
test whether the responses of each neuron were significantly different
from zero (baseline) and to define CS-activated / -inactivated neurons.

One concern was that the off kinetics of the GcaMP6f signal might
not be sufficiently fast to consider the responses to 87 individual
sound pips as independent data, and thus statistical evaluation based
on these responses might not be reliable. As shown in Supplementary
Fig. 5c, however, neurons categorized as producing a significant
response tended to exhibit substantially higher mean responses than
those that produced non-significant responses, providing support that
this criterion was helpful for determining the characteristics of the
individual neurons. Also, because of the limited number of trials at
each phase (3 trials for each [D3-early/D3-late/D4-early/D4-late]), sta-
tistics based on the trial-by-trial comparison could not be performed
to evaluate the CS-induced neural responses.

The US number was limited (a total of 7 stimuli per mouse);
therefore, to define US-responsive neurons, the mean neural activity
(z-normalized as described above) of each neuron for 1.5 sec from US
onset was calculated, and US-responsive neurons were defined as
neurons with 1 or higher mean neural activity. The number of the
selectedUS-responsive neuronswasvery limited (zeroor only a few for
some of the mice) as they were only around 5% on average, and
therefore all the analyses shown in Fig. 4h–k were performed with
pooled data from all of the mice (N = 7 mice).

To evaluate the co-activation of neural activity in the dmPFC
network, we calculated cell-to-cell pairwise correlations within each
ensemble using Pearson’s correlation coefficient, from the GCaMP6f
signals (z-normalized ΔF/F) of 2 cells over the duration of the CS+
presentation, as described before33. The calculated correlation coeffi-
cientswere statistically analyzed. As a complementary analysis,we also
used the inferred spike probability to analyze the functional con-
nectivity, as explained in the section describing the CRFmodel, which
revealed consistent results as shown in the Results. We further per-
formed analyses based on shuffled datasets, as described in previous
studies33,40 to discuss the possibility that changes in the basal activity
contribute to the change in the correlation coefficient. For this, while
the total activity of each neuron was preserved, only the timing of the
neural activity was randomly shuffled within each neuron, followed by
the calculation of the correlation coefficients between neurons.

Extraction of neuronal ensembles by the elastic net
To systematically extract a group of neurons (ensemble) encoding the
CR (i.e., suppressed locomotion triggered by CS+ as a result of the
memory retrieval), or that encoding the RS (i.e., stationary state during
no CS presentation), we used the elastic net32, a regularization and
variable selection algorithm based on the regression model. Models
were fitted on neural population activities (Fig. 2) to calculate the
likelihood of locomotion state at each time point with high accuracy.
Sparse models that rely on the activities of a limited number of neu-
rons were produced by the elastic net, which enabled the selection of
neurons informative for estimating the corresponding locomotion
states, the CR (Figs. 2d–h, 3f–h and Supplementary Fig. 6) or the RS
(Fig. 3 and Supplementary Fig. 7). Because this method allowed us to

identify different ensembles for different locomotion states indepen-
dently from the same group of neurons, we used it to verify whether
neurons in the CR ensemble were unique or mostly overlapped with
the RS ensemble (Fig. 3). For the elastic net, we used the “lassoglm”

function of MATLAB R2019b. The hyperparameter “alpha (α)” for the
elastic net enables adjustment of the size of the selected neurons
depending on the data, and lowering the alpha value tends to increase
their inclusion (Supplementary Fig. 6).

When extracting the CR ensemble, we used neural activity data
only during the CS+ presentation of D4-early (i.e., when mice showed
the CR as a result of memory retrieval) and identified neurons infor-
mative for distinguishing whether animals exhibited CR (freezing-like
response) or were locomoting during the CS+ (Fig. 2). Therefore, the
auditory information of the CS was not used to build the elastic net
model for extracting the CR ensemble. While mice exhibited the CR as
suppressed locomotion during D4-early (Fig. 1), they locomoted
intermittently during the CS+ presentation. Both labels (CR and loco-
motion) are required to perform the regression based on the elastic
net; only mice for which the data contained at least 10% of each label
(CR and locomotion) during the CS+ presentationwere used to extract
the CR ensemble. On the other hand, to extract the RS ensemble, we
used data only during the no-CS period (whole D3 or whole D4 data,
respectively), including the initial term (before the first CS presenta-
tion on each day) and the inter-trial interval (which includes both the
pre-CS+ and pre-CS− terms without any bias), excluding 30-sec data
after each CS+/CS− trial (when the neural representation might still be
affected by the preceding CS).

Learning for the elastic net was formulated as follows:

min
β0,β

1
N

XN

i= 1

�yi logeyi � 1� yi
� �

log 1� eyi
� �� �

+ γPα βð Þ
 !

, ð1Þ

where

eyi =
1

1 + exp � β0 +x
T
i β

� �� � , ð2Þ

Pα βð Þ= ð1� αÞ
2

kβk22 +αkβk1 =
Xp

j = 1

ð1� αÞ
2

β2
j +α βj

���
���

� �
: ð3Þ

N is the number of observations (time points); yi is the state (CR/
stationary yi = 1 or locomotive yi = 0) at observation i (i = 1,…,N); xi is
data (neuronal activity), a p-dimensional vector (neural activities of p
neurons) at observation i; T denotes the transpose of a vector; γ is a
positive regularization parameter; parameters β0 and β are a scalar
variable and a p-dimensional vector, respectively. βj is the coefficient
for the corresponding neuron j estimated by this model. Because this
method is designed to sparsely leave the coefficients βj for the
respective neurons, we could identify neurons with non-zero coeffi-
cients as those providing substantial information (i.e., ensemble
neurons).

The elastic net is a hybrid of ridge regression and LASSO (Least
Absolute Shrinkage and Selection Operator) regularization: when
alpha (α) = 1, elastic net is the same as LASSO, while as alpha approa-
ches 0, the elastic net approaches the ridge regression. The parameter
alpha indicates the L1 ratio as formulated as the penalty term Pα βð Þ; it
interpolates between the L1 norm of β and the squared L2 norm of β.
Parameter alpha directly controls the sparseness of β. Tuning alpha is
effective for 2well-knownproblems in LASSO32. 1) LASSO is sensitive to
correlations between variables and can choose 1 if there are 2 highly
correlated and useful variables, whereas by tuning alpha the elastic net
ismore likely to select bothuseful variables,which leads tomorestable
variable selection. In other words, highly correlated variables have a
coefficient of zero, except for 1 in LASSO,whereas in the elastic net, the
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highly correlated variables take non-zero values together by tuning
alpha. 2) The number of variables that can be selected is limited in
LASSO when the amount of training data is small. For example, in
LASSO, the maximum number of variables that can be selected is N
when N < p. In contrast, the elastic net can increase the number of
variables up to p by tuning alpha. Thus, in the elastic net, tuning alpha
can include (select) variables that may be missed in LASSO. In fact, it
appeared that our recording data actually included strongly correlated
pairs of variables (neuronal activities) (Supplementary Fig. 10), sug-
gesting that the elastic net is suitable for the present study.

The tuning parameter γ controls the overall strength of the pen-
alty. We varied γ with 7 values evenly logarithmically spaced between
10−2.5 and 10−3.3, and the γ value with minimum expected deviance,
which was calculated by 7-fold cross-validation, was systematically
selected for each dataset, at each alpha (for the alpha tuning, a wide
range of the alpha values was tested as explained later).

To prepare the template neural activity dataset for modeling
while avoiding an imbalance in the number of labels for respective
states (e.g., CR or not [locomotive] when extracting the CR ensemble),
the same number of neural activity vectors (neural population activ-
ities at randomly selected time points) from respective states were
resampled (chosen randomly with replacement from the original
vector set). A total of 900 samples for each state were used to produce
each model. The produced models and non-zero-coefficient neurons
varied slightly trial by trial, even with the same template dataset. To
accurately define each ensemble (and the non-zero-coefficient neu-
rons), we performed this procedure (random resampling and model-
ing) 100 times and obtained the distribution of the coefficient values
for each neuron (we performed this 20 times, instead, when evaluating
the performances of “CR ensemble removed”, “Non-CR ensemble
removed”, “RS ensemble removed”, and “Non-RS ensemble removed”,
which are explained later, because we additionally repeated whole
modeling procedure for them 10 times). Gaussian fitting was per-
formed to define the centroid and 95% confidence interval of each
distribution for each coefficient. Then, to build the model, the 95%
confidence interval was used to determine whether or not each coef-
ficient was significantly different from zero (enabling us to maintain
sparsity), and the centroid was used to define the final coefficients of
non-zero coefficient neurons.

The goodness of a model was considered “fitting performance”
when we evaluated the performance to estimate locomotion states
from neural activity data containing all or part of the training dataset.
On the other hand, “decoding performance (or predictability)” was
defined as the score obtained by the prediction of the states from data
excluding the training dataset.

The obtained model was evaluated by calculating the accuracy or
the area under the curve (AUC) of the receiver operating characteristic
(ROC) curve, but in the present study, we observed that those scores
were very similar to each other (Supplementary Fig. 8). Accuracy
denotes the ratio of correct estimations per whole observations (time
points). The AUC of the ROC curve, which is another parameter for
validating the performance of the model and is suggested to be more
accurate when labels are imbalanced, was also calculated.

Based on the above-described procedure, a wide range of alpha
values was systematically tested (Supplementary Fig. 6) to find the
optimal alpha value. In some previous studies, the alpha value was
arbitrarilyfixed for the analysis63–65. Because the dmPFCneurons in our
data, as well as cortical neurons in general, include strongly correlated
pairs of variables (neuronal activities), however, it appeared important
to carefully optimize alpha when attempting to maximally select
informative neurons and further compare them with unselected neu-
rons (CR ensemble vs Non-CR ensemble neurons) or an independently
selected group (vs RS ensemble).

Ideally, if all the informative neurons can be selected into the CR
ensemble, the remaining neurons should have poor information and

show poor fitting performance. According to this idea, to optimize the
alpha value and the number of selected neurons, we built a model at
each alpha for each mouse (Fig. 2d, g) and compared the difference in
fitting performance between “CR ensemble removed” and “Non-CR
ensemble removed” (Fig. 2g) by calculating the difference between
their AUCs (“AUC CRE-rem” and “AUC nonCRE-rem”; Supplementary
Fig. 6a). “AUC CRE-rem” is the AUC value calculated by an elastic net
model built with the neurons excluding the original CR ensemble
neurons. “AUC nonCRE-rem” is the AUC value calculated by the neu-
rons excluding neurons other than original CR ensemble neurons,
randomly selected, and the number of excluded neuronswas the same
as the number of original CR ensemble neurons (so that the number of
neurons used to calculate “AUCnonCRE-rem”was set to be the sameas
that used for calculating “AUC CRE-rem”). The “AUC difference”
(Supplementary Fig. 6a) between those 2 values was calculated to
estimate the degree of remaining information, and in principle, we
defined the best alpha based on themaximumAUCdifference for each
mouse independently. In addition, for further statistical evaluation to
define the optimal alpha as explained below, we repeated these pro-
cedures 10 times for both “AUC CRE-rem” and “AUC nonCRE-rem”.

As shown in Supplementary Fig. 6b, although the fitting perfor-
mance of the original CR ensembles (i.e., AUC original in Supplemen-
tary Fig. 6a) was not drastically affected by the alpha (Supplementary
Fig. 6b, middle), the size of the CR ensemble was affected, and a
smaller alpha generally resulted in a larger number of selected neurons
for each CR ensemble (Supplementary Fig. 6b, top), suggesting that
the CR information might be redundantly encoded in the dmPFC as
discussed in the main text. Also, the influence of the alpha on the AUC
difference was more complicated. As explained above, we defined the
best alpha based on the maximum AUC difference for each mouse
independently, but in some cases, as shown in Supplementary Fig. 6d
(mouse #3), the other alpha(s) had an AUC difference(s) that was not
significantly different from the maximum AUC difference. In such
cases, the alpha of the smallest ensemble size among those alphas, i.e.,
the largest alpha among them, was selected to avoid unnecessarily
including additional neurons that did not improve the AUC difference
(e.g., in mouse #3, alpha =0.1, 0.05, 0.01 showed similar AUC differ-
ences and there was no statistically significant difference among them
[Wilcoxon rank-sum test, alpha of maximum AUC difference vs the
other alpha, n = 10 estimates for each calculated as explained above],
so in this case, the largest alpha 0.1 among those 3 was selected to
define the CR ensemble for this mouse).

These results revealed two important points. First, searching
around the alpha value is important in some cases. Considering this,
we also screened several alphas for the RS ensembles (Supplementary
Fig. 7), and found no difference among the various alphas for the RS
ensembles, even if we tested an additional number of reference frames
(means of the neural activities over several past or future frames were
used asneural activity data to estimate a single label at each timepoint;
the Friedman test, a nonparametric statistical test similar to the para-
metric one-way repeated measures ANOVA, revealed no significant
difference between them). Therefore, in the present study, we fixed
the alpha to define RS ensembles at 0.75 for most of the analyses,
except for the data in Supplementary Figs. 7 and 8where we evaluated
the influence of the alpha on RS ensembles.

Second, fear memory triggering the CR might be redundantly
encoded in the dmPFC. As discussed above, although the fitting per-
formance of the original CR ensemble was not affected by alpha
(Supplementary Fig. 6b, middle), the size of the CR ensemble was
affected, and a smaller alpha generally resulted in a larger number of
selected neurons for each CR ensemble (Supplementary Fig. 6b, top).
In addition, when the alpha was fixed at alpha (α) = 0.9 (α >0.9 did not
work for some mice in our data), although the uniqueness of the CR
ensembles was maintained and the ratio of the CR ensemble neurons
overlapping with RS ensembles was 26.84% (Supplementary Fig. 6e),
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which was very similar to the case of alpha-optimized CR ensembles
(Fig. 3), the size of this CR ensemble (α =0.9) was 2 times smaller than
that of the alpha-optimized CR ensembles (Supplementary Fig. 6f).
Importantly, 97.82% of the neurons selected at α = 0.9 were also
selected in the alpha-optimizedCR ensembles (Supplementary Fig. 6f),
suggesting that the neurons selected at the largest alpha might be
more reliable and robust for decoding among all informative neurons.
In addition, even after the removal of such “core” neurons, the
remaining neurons also possessed CR-related information (Supple-
mentary Fig. 6b, d), indicating that the CR information was redun-
dantly encoded in the dmPFC.

To evaluate the dominance of the CR ensembles vs the RS
ensembles, we applied the RS model to predict the CR or the loco-
motion states during CS+ before and after fear conditioning (Fig. 3b–d
and Supplementary Fig. 8). We also investigated the overlap between
them (Fig. 3e–g).

In previous studies, unsupervised algorithms, such as conventional
Principal Component Analysis and other dimensional reduction algo-
rithms, were widely used to visualize the neural representation
embedded in the neural population activities14,66. These algorithms,
however, do not directly indicate the neurons corresponding to
respective locomotion states. Also, some recent studies introduced
unsupervised methods to extract subgroups of neurons by detecting
the neurons within a population that repeatedly coactivated41,67, but in
the present study, this procedure did not work well to extract a repe-
ated pattern of neural population activity that accurately explained all
of the CR events. Moreover, because we attempted to evaluate the
similarity and overlap between neural ensembles encoding distinct
locomotion states, we eventually selected the elastic net, which allows
independent identification of neural populations encoding distinct
locomotion states as performed in the present study.

Conditional random field models to evaluate functional con-
nectivity and cellular decoding performance
To evaluate changes in the functional connectivity between neurons
and cellular decoding performance for the CS (CS+ or CS−) in the
recorded neural population, we used CRFs as described previously41,42,
whichmodel the conditional probability distribution of the interaction
among neuronal ensemble members, as described below.

We used CRFs to capture the contribution of specific neurons to
the overall network activity defined by population vectors belonging
to a given neuronal population. We generated a graphical model in
which each node represents a neuron in a given neural population and
edges represent the dependencies between neurons, which enabled us
to estimate the functional connectivity between dmPFC neurons that
were simultaneously recorded (~300 neurons).

For this analysis, the spikeprobabilitieswere inferred from theΔF/
F as an alternative estimate of neuronal activation, which was per-
formed as explained under the subheading “Imaging data analyses and
statistics”. After thresholding the spike probability (2 standard devia-
tions), the obtained binary datawere further binned (bin size: 1 sec) for
the CRFmodeling. To train the model, we used 80% of the time points
of the activity data (of all simultaneously recorded neurons), which
were randomly selected from all-time points, and the remaining 20%
was used for the cross-validation to evaluate the fitting of the con-
structed model and eventually select the best model.

We constructed a CRF model in two steps: (1) structure learning,
and (2) parameter learning. For structure learning, we generated a
graph structure using L1-regularized neighborhood-based logistic
regression42. Here, λS is a regularization parameter that controls the
sparsity (or conversely, the density) of the constructed graph struc-
ture, leaving only relevant functional connectivity, including both
coactive and suppressive relationships. Also, a previous study showed
that this number of connections is enhanced as a result of optogenetic
induction of the rewiring of the local network42, demonstrating the

reliability of the functional connectivity estimated by CRF models. In
the present study, we calculated the ratio of these relevant connec-
tions (both coactive and suppressive) per all possible connections for
each node as a “functional connectivity score” for each neuron. Before
comparing the functional connectivity between different ensembles
(e.g., within-CR-ensemble vs within-Non-CR-ensemble) or different cell
types (e.g., US-responsive neurons vs Non-US-responsive neurons), we
first calculated the whole network connectivity (using all simulta-
neously recorded neurons) without stratifying by ensembles or cell
types, and further separated them into different categories.

The CRF modeling also allowed us to evaluate the information
encoded by individual neurons41,42. In the present study, to measure
the information for a given stimulus (CS+ or CS−), we computed the
standard ROC, taking as ground truth the timing of a particularCS. The
AUC from the ROC curve that represents the performance of each
neuron was calculated and used to compare the encoded information
in different ensembles, different neuron types, and different days (e.g.,
D3 fear conditioning session vs D4 post-FC session). As recently
demonstrated41, high ranks for this value in the neural population
indicate high potential to recall the neural and cognitive representa-
tion of a given stimulus.

The following is a detailed description for constructing the CRF
model, as reported in previous studies41,42. The XN and YN describe an
N-dimensional space where the dimensionality describes the total
number of active neurons. We used indicator feature vectors
x = ½x1,x2, . . . ,xM �, where xm 2 XN , for each edge and node, and target
binary population activity vectors y= ½y1,y2, . . . ,yM �, where ym 2 YN for
N neurons and M samples (time points). For each sample, the condi-
tional probability can be expressed as follows:

p ymjxm;θ� �
=
expð ϕ xm,ymð Þ,θ� �Þ

Z ðxm;θÞ , ð4Þ

whereϕ is a vector of the distribution expressed in log-linear form, θ is
a vector of parameters with parameters for the log-linear distribution,
and Z is the partition function as follows:

Z xm;θ
� �

=
X
y2Y

expð ϕ xm, y
� �

,θ
� �Þ: ð5Þ

The conditional probability can be factoredover a graph structure
G= ðV ,AÞ, where V is the collection of nodes representing observation
variables and target variables, and A is the collection of subsets of V .
Based on the graph structure, the model parameters can be written
separately for nodes and edges as ϕ= ϕV ,ϕA

	 

and θ= fθV ,θAg 2 RN ,

respectively. Given binary x and y, node parametersϕV and θV include
2 sets of distributions and the parameters corresponding to the node
state 0 and 1, whereas edge parameters ϕA and θA include 4 sets of
distributions and theparameters, corresponding to the edge states00,
01, 10, and 11. The conditional dependencies can then be written as
follows:

p Y jX ;θð Þ= exp
�P

i2Vθiϕi X ,Y i

� �
+
P

α2Aθαϕα X ,Yα

� ��
Z ðX ;θÞ : ð6Þ

This model is a generalized version of Ising models, which have
been applied previously for modeling neuronal networks68. The log
likelihood of each observation can then be written as follows:

l θ;Xm,Ym� �
= ϕ Xm,Ym� �

,θ
� �� logZ ðXmÞ: ð7Þ

To reduce the complexity of the model, we first learned a sparse
graph structure that represents variable dependencies, and then
constructed a CRF on the learned structure. Given the inferred binary
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spikes from raw imaging data, we constructed CRF models in 2 steps:
(1) structure learning and (2) parameter learning.

For structure learning, we learned a sparse graph structure
G= ðV ,AÞ using L1-regularized neighborhood-based logistic regression
for each node r69 as follows:

min
θnr

l θs; x
� �

+ λskθs
nrk1

n o
, ð8Þ

where

l θs; x
� �

= � 1
n

Xn

i= 1

log
exp 2xr

P
t2Vnrθ

s
rtxt

� �

exp 2xr
P

t2Vnrθ
s
rtxt

� �
+ 1

ð9Þ

and

θs
r = θs

ru,u 2 Vnr	 

, ð10Þ

where \r denotes except r, and θs is a vector of regression para-
meters for structure learning. Here, λs is a regularization para-
meter that controls the sparsity (or conversely, the density) of the
constructed graph structure. This is essentially a logistic regres-
sion of variable Xr on the other variables X nr , with L1-regulariza-
tion. The regression coefficients thus represent the neighborhood
structure and the sign pattern. We implemented L1-regularization
as described previously41,42. We constructed a large number of
structures (100+) across a broad range of λs, from which we
stochastically selected a number of structures for subsequent
parameter learning. We ensured proper bracketing by including
the largest and smallest λs structure in this priming set. In further
iterations of parameter learning, the sets of the obtained struc-
tures were systematically tested and the best model was selected
using the log likelihood of the learned models as feedback.

For parameter learning, we aimed to learn the potential node and
edge parameters (ϕ and θ). Based on the learned structure, we used the
Bethe approximation to approximate the partition function and itera-
tive Frank-Wolfe methods for parameter estimation by maximizing the
log likelihood of observations with a quadratic regularizer70 as follows:

l θ;X ,Yð Þ=
XM

m= 1

l θ;Xm, Ym� �� λp
2
kθk2: ð11Þ

Here, λp is a regularization parameter that controls the learned
parameters and helps prevent overfitting. Cross-validation was per-
formed to find the best λs and λp via held-out model likelihood. We
varied λs with 100 values (between 0.00001 and 0.5, sampled uni-
formly) and λp with 4 values (1, 10, 100, and 10,000). To obtain the best
model parameters, 80% of the data were used for training, and 20% of
the data were withheld for validation. Cross-validation was performed
by using all possible combinations of the above parameters and cal-
culating the likelihood of the withheld data. Then, the best model
parameters were determined by selecting the parameter set with a
locally maximum likelihood in the parameter space.

We also evaluated the cellular contribution for predicting the
stimulus conditions (CS+ and CS−) in the population, as described
previously41,42. For the ith neuron in the population, we compared its
activity or inactivity in all M imaging frames (time points) for each
model. With the 2 resulting population vectors in themth frame among
all samples, we calculated the log probability of them coming from the
trained CRF model as follows:

pm
i,1 =pðymjxmni , xm

i = 1;θÞ ð12Þ

pm
i,0 =pðymjxmni , xm

i =0;θÞ: ð13Þ

Then, we computed the log-likelihood ratio as follows:

li,1�0 = logpm
i,1 � logpm

i,0

	 

,m= 1, . . . ,M ð14Þ

and calculated the standard ROC curve with the ground truth as
the timing of each tone (CS+, CS−). The prediction ability of all nodes
(neurons) for all presented stimuli (tones) is then represented by
an AUC matrix A, where Ai,d represents the AUC value of node i pre-
dicting tone d. Additionally, we calculated the node strength S= fsig of
each neuron in the CRF model. We then computed the predicted
AUC Ar and node strength Sr of each node r from 100 CRF models
trained on shuffled data. The final ensemble for tone d is defined as
follows:

fijAi,d >mean Ar
d

� �
+ std Ar

d

� �
, Si >mean Sr

� �
+ std Sr

� �g: ð15Þ

Statistical analysis
Statistical analyses in the present study were performed as
described above (in “Methods” as well as in the main text and
figure legends).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data files are provided with this paper. The data that support
the findings of this study are also available from the corresponding
author upon reasonable request. The anatomical information in the
Allen Brain Atlas (https://atlas.brain-map.org/) was used for the ana-
tomical description, determination of the virus injection area, and
evaluation of the recorded brain regions. Source data are provided
with this paper.

Code availability
For data analyses in the present study, commercial software
and publicly available codes were used (details are described in
the Methods section). For the statistical analysis, we used MATLAB
R2014a and R2019b (MathWorks, Natick, MA). Graphs were
produced by MATLAB R2014a/R2019b (MathWorks) and Excel
(Microsoft). When plotting the entire large number of samples, we
used a MATLAB code, CategoricalScatterplot (https://github.com/
AbstractGeek/CategoricalScatterplot). Raw images of the GCaMP6f
signals in the dmPFC were processed to correct for brain motion
artifacts, using the publicly available code for the enhanced correla-
tion coefficient image alignment algorithm (Evangelidis and Psarakis,
2008; https://jp.mathworks.com/matlabcentral/fileexchange/27253-
ecc-image-alignment-algorithm-image-registration). The ROIs for the
detection of neural activity were automatically selected using a con-
strained nonnegative matrix factorization algorithm in MATLAB
R2014a/R2019b, and the code is also publicly available (Pnevmatikakis
et al., 2016; https://github.com/flatironinstitute/CaImAn-MATLAB).
For inferring the spike probabilities from the ΔF/F as an alternative
estimate of neuronal activation, the publicly available code “con-
strained_foopsi.m” (Pnevmatikakis et al., 2016; https://github.com/
flatironinstitute/CaImAn-MATLAB) was used. For the elastic net,
we used the “lassoglm” function of MATLAB R2019b. For the
CRF modeling, we used the publicly available code
developed previously (Carrillo-Reid et al., 2019; Carrillo-Reid et al.,
2021; https://github.com/hanshuting/graph_ensemble; https://github.
com/darikoneil/Identification-of-Pattern-Completion-Neurons).
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