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The tumor microenvironment shows a
hierarchy of cell-cell interactions dominated
by fibroblasts

Shimrit Mayer 1,3, Tomer Milo 2,3, Achinoam Isaacson1, Coral Halperin1,
Shoval Miyara 2, Yaniv Stein1, Chen Lior1, Meirav Pevsner-Fischer1,
Eldad Tzahor 2, Avi Mayo2, Uri Alon2 & Ruth Scherz-Shouval 1

The tumor microenvironment (TME) is comprised of non-malignant cells that
interact with each other and with cancer cells, critically impacting cancer
biology. The TME is complex, and understanding it requires simplifying
approaches. Here we provide an experimental-mathematical approach to
decompose the TME into small circuits of interacting cell types. We find, using
female breast cancer single-cell-RNA-sequencing data, a hierarchical network
of interactions, with cancer-associated fibroblasts (CAFs) at the top secreting
factors primarily to tumor-associated macrophages (TAMs). This network is
composed of repeating circuit motifs. We isolate the strongest two-cell circuit
motif by culturing fibroblasts and macrophages in-vitro, and analyze their
dynamics and transcriptomes. This isolated circuit recapitulates the hierarchy
of in-vivo interactions, and enables testing the effect of ligand-receptor
interactions on cell dynamics and function, as we demonstrate by identifying a
mediator of CAF-TAM interactions - RARRES2, and its receptor CMKLR1. Thus,
the complexity of the TME may be simplified by identifying small circuits,
facilitating the development of strategies to modulate the TME.

Tumors are ecosystems in which cancer cells and diverse non-
malignant cells of the tumor microenvironment (TME) interact with
each other. These interactions impact all aspects of cancer biology
including tumor progression, metastasis and response to treatment1–3.
Approaches to understand andmodulate the TMEare thusmajor goals
of cancer biology.

The TME is complex and heterogeneous. It is composed of cancer
associated fibroblasts (CAFs), tumor associated macrophages (TAMs),
T cells, NKcells, B cells, endothelial cells, pericytes andother cell types.
The non-malignant cells of the TME are genomically stable but plastic
in the sense that their transcriptomes and phenotypes are sculpted by
interactions with cancer cells and other cells of the TME. Fibroblasts,
for example, are rewired into diverse myofibroblastic, immune-
regulatory and antigen-presenting CAFs. These subpopulations have
distinct functions related to ECM production, adhesion and immune

regulation4–6. Bone-marrow derived monocytes differentiate into
macrophages that can acquire pro- or anti-inflammatory states in
response to different signals including cytokines and hypoxia7–9, con-
tributing to phenotypic plasticity of diseased tissues10,11.

The complexity of the TME poses significant challenges for ana-
lysis andmodulation. One can consider two extreme possibilities: If all
cell types strongly interact with all other cells, such that the network is
non-decomposable to smaller parts, understanding this network of
interactions may be difficult. At the other extreme, the network is
composed of a small set of recurring circuits, each of which has
autonomy in the sense that its dynamics and behavior are preserved
when the circuit is isolated. In this case, an understanding of the entire
network can be built up by analyzing each small circuit separately.
Notably, the latter possibility is found in intracellular networks such as
gene regulation networks (GRNs) which display recurring and
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autonomous network motifs12,13. These are recurring patterns of reg-
ulation, such as coherent and incoherent feedforward loops, that
occur in many different systems. Each motif has biological functions
which can be studied in isolation, such that the system’s behavior can
be built up from its basic motifs12,13.

Here we ask whether such network-motif structure and circuit
autonomy might occur between cells in the TME. We use single-cell
RNA-sequencing (scRNA-seq) data to define the network of interac-
tions between cell types in human breast cancer TMEs. Our analysis
reveals a hierarchical network structure, with CAFs at the top of the
hierarchy. To further explore the network dynamics, we use network-
motif analysis and identify a recurring two-cell circuit motif. The
strongest instance of this motif is a circuit containing CAFs and TAMs.
Within this circuit, CAFs can support themselves by means of an
autocrine loop and engage in mutual paracrine interactions with
TAMs. We then study the dynamics and functions of this circuit by
culturing fibroblasts and macrophages in-vitro, and find that it has
bistability with a viable steady state in which both cell types proliferate
and die, maintaining a fixed ratio. The interaction strengths and gene
expression profiles of the in-vitro circuit recapitulate those of the in-
vivo circuit, and enable testing the effect of ligand-receptor interac-
tions on cell dynamics and function, as we show by identifying
RARRES2, a potential mediator of CAF-TAM interactions, and its
receptor CMKLR1. Thus, the complexity of the TME may be amenable
to reductionist analysis by identifying and isolating small cell circuits.

Results
Analysis of the breast cancer microenvironment reveals a
hierarchy of interactions with a dominant CAF-TAM circuit
To begin to untangle the complexity of the TME, we mapped the
network of cell-cell interactions by analyzing published scRNA-seq
data from breast cancer patients14. We identified the cell types (Fig. 1a
and S1a) and scored their interactions (Supplementary Data 1) using
CellChat15, a tool for estimating ligand-receptor interaction strength.
We found multiple pairs of interacting cell types (Fig. 1b), and used
CellChat to score the strength of each interaction.

We found that the strongest interaction occurred between CAFs
and myeloid cells (comprised mainly of tumor-associated macro-
phages, hereafter referred to as TAMs), followed by the interaction
between CAFs andmast cells (Fig. 1b), and an autocrine loop in which
CAFs send ligands which they also sense by expressing their recep-
tors. In fact, CAFs were the cell type with the highest interaction
scores. These features are found also in mouse breast cancer scRNA-
seq data16. In mice, as in human data, CAFs are the most interacting
cell type and their autocrine interaction, as well as their interaction
with macrophages, are among the strongest (Fig. 1b, Supplementary
Fig. 1b). In normal breast tissue (from healthy individuals, see
methods), the strongest interaction of fibroblasts is also with mye-
loid cells (comprised mainly of macrophages, hereafter termed
macrophages), however bothmacrophages and fibroblasts engage in
strong interactions with other cell types (Supplementary Fig. 1c,
Supplementary Data 1).

To better understand the structure of the interactions among the
cell types, we constructed a weighted and directed cell-network from
the interactionmatrix (Fig. 1c, Supplementary Fig. 1d; SeeMethods for
details). This analysis revealed that the interaction network is hier-
archical and mostly feedforward, with CAFs at the top sending signals
to the other cell types, and TAMs at the bottom, receiving signals from
CAFs and other cell types (Fig. 1c).

We next asked whether this complex network of interactions can
be simplified and described in terms of repeating instances of smaller
circuits, which we can isolate and further explore. For this purpose we
employed network motif analysis, which detects small circuits that
occur in the network significantly more often than in randomized
networks.Webeganwith circuitsmadeof two interacting cell types.Of

the seven possible connected two-cell circuits (Fig. 1d), we found that
only one type recurs with an interaction score that exceeds those
found in randomized networks, and is thus a network motif12,13. This
circuit has two interacting cell types that send mutual paracrine sig-
nals, and each also has an autocrine signaling loop. This circuit appears
three times in the network, and all have CAFs as one of the nodes. Of
these circuits the strongest circuit in terms of total and mean inter-
action score is the CAF-TAM circuit (Fig. 1e). We also analyzed circuits
madeof three and four cell types (Fig. 1f, g, Supplementary Fig. 1e). The
most common circuits were made of combinations of the above-
mentioned two-cell circuit (Fig. 1e). The CAF-TAM pair participated in
the highest scoring instances of these three- and four-cell circuits
(Fig. 1g, Supplementary Fig. 1e). For example, the CAF-TAM circuit
interacts with cancer cells to form a three-cell circuit in which CAFs
send signals to cancer cells which in turn send signals toTAMs (Fig. 1h).

We also constructed a weighted and directed cell-network from
the interactionmatrix of thenormal breast tissue. This analysis showed
that fibroblasts are still near the top of the hierarchy andmacrophages
are at the bottom, however the network shows no significant 2-node
motifs (Supplementary Fig. 1f, g).

We conclude that the breast cancer TME interaction network is
hierarchical and composed of repeated occurrences of a specific two-
cell circuit motif. CAFs are at the top of the hierarchy and send out
many signals, whereas TAMs are at the bottom receiving end. The CAF-
TAM two-cell circuit is an example of this motif and is one of the
circuits with the strongest interactions in the network. Thus, studying
this circuit in isolation can improve our understanding of the TME
interaction network.

The isolated macrophage-fibroblast circuit shows bistability
with a viable steady state
Thediscovery of a cell circuitmotif in the TME raises the question of its
dynamics and autonomy. If one isolates the circuit and permits the
cells to interact without the remaining TME context, do the cell
populations reach a viable steady state, and do they recapitulate some
of their TME functions?

To test this, we analyzed the fibroblast-macrophage circuit. We
co-cultured fibroblasts from themammary fat pad togetherwith bone
marrow derived macrophages (BMDMs) from syngeneic BALB/cmice
and tracked cell populations over time. We tracked cell growth from
different initial concentrations of fibroblasts and BMDMs by flow
cytometry after 3 and 7 days of co-culture (Supplementary Fig. 2a),
and displayed their dynamics in a phase portrait17. The phase portrait
is a geometric representation of the dynamic behavior of a system. It
has two axes: the fibroblast (X-axis) and macrophage (Y-axis) cell
counts. Arrows (vectors) on the phase portrait indicate how cell
counts change from day 3 to day 7 (Fig. 2a). The phase portrait uses
many initial conditions and two timepoints to infer the dynamics from
any initial condition at all timepoints, by following the arrows.

On the Y-axis are macrophages in mono-culture, without fibro-
blasts. These cells could not promote their own growth (Fig. 2b).
However, co-culture with fibroblasts supported macrophage growth,
and revealed dynamic interactions (Fig. 2c). At sufficiently high initial
concentrations, both cell types reached a stable steady state - a point
towhich arrows converge fromall directions (greendot, Fig. 2c). In this
state, macrophages and fibroblasts continually turn over as indicated
by EdU incorporation measurements (Supplementary Fig. 2b, c; see
Methods), but maintain their numbers in a dynamic steady state. We
designate this state theON state. In the context ofwoundhealing, such
a state of mutually supporting fibroblasts and macrophages is termed
‘hot fibrosis’9,17,18.

Below a threshold combination of concentrations, both cell types
decline to zero (red dot, Fig. 2c). This is another possible steady state,
called the OFF state. This state is the expected outcome of successful
resolution of acute injury or acute inflammation.
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When fibroblasts grow alone, as seen on the X-axis of the phase
portrait, their dynamics depend on their initial cell numbers. Below a
critical threshold, which is an unstable fixed point (white dot, Fig. 2c),
fibroblast numbers decline to zero. Above this threshold, fibroblasts
are able tomaintain themselves, and their numbers rise to a fixed point
called the ON-OFF state (fibroblasts are ON, macrophages are OFF,
half-yellow dot, Fig. 2c). Fibroblasts at this fixed point continually turn
over in a dynamic steady-state, as indicated by EdU incorporation
(Supplementary Fig. 2b).

In physiological terms, a state in which fibroblasts maintain high
numbers in the absence of macrophages is referred to as ‘cold

fibrosis’18–20, and it is distinct from the ON state, which has macro-
phages together with fibroblasts.

We tested the robustness of the phase portrait assay in several
ways (Supplementary Fig. 2d–i). Biological replicates of the experi-
ment gave rise to similar phase portraits (Supplementary Fig. 2d).
Phase portraits derived from cell counts at days 7, 14, and 21 showed
qualitatively similar dynamics as the cell counts derived from days 3
and 7 (Supplementary Fig. 2e), suggesting approximate temporal
invariance. We repeated the analysis using a different mouse strain,
C57BL/6, andobtained a similar phase portrait (Supplementary Fig. 2f).
To accurately measure growth dynamics at very low initial cell
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Fig. 1 | Network analysis reveals a hierarchy of interactions with a dominant
CAF-TAM circuit in the breast tumor microenvironment. a UMAP visualization
of the main cell clusters in the breast TME in human scRNA-seq data from 32
patients14. b Heatmap of interaction strengths between pairs of cells based on
cumulative ligand-receptor interaction scores using CellChat15 applied to the
scRNA-seq data of (a). c Illustration of the structure of the network based on the
analysis in (b) shows hierarchy (the root node was chosen as the node with the
highest weighted outdegree). Arrow width is proportional to the interaction score.

d Network motif analysis of all 7 possible two-cell circuit patterns, tested for
abundance relative to randomized degree-preserving networks (bootstrapping
n = 10,000, see Methods). The dashed line represents a 0.05 p-value threshold.
e The top three two-cell interaction subgraphs scored by the average weight all
include CAFs. fNetworkmotif analysis of the 13 possible three-cell-circuit patterns.
The dashed line represents a 0.05 p-value threshold. g The top three scoring three-
cell circuit subgraphs. h The three-cell circuit of CAFs, TAMs and cancer cells.
Source data are provided as a Source Data file.
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concentrations (several cells per well) we scaled the experiment up
from 96-well plates to 6-well plates, which have a 30-fold larger area.
We accordingly multiplied cell numbers measured in 96-wells by a
factor of 30. We found qualitative agreement in the overlapping
regions of effective concentrations in 96 and 6 well assays (Supple-
mentary Fig. 2g, red vs. gray arrows). We also tested co-cultures of
BMDMswith fibroblasts from twoother organs—lung andmesometrial

fat. The resulting phase portraits were qualitatively similar, with the
same fixed-point structure (Supplementary Fig. 2h, i). We conclude
that the phase portrait assay is robust and replicable under multiple
different conditions.

We further asked whether addition of macrophages to an on-
going culture of fibroblasts—simulating the infiltration of BMDMs
into a tissue populated by resident fibroblasts—would yield similar
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interaction dynamics compared to those observed by simultaneous
plating of both cell types. We observed similar convergence towards
the ON state when macrophages were either added to the cultures
3 days after the initial plating of fibroblasts, or simultaneously plated
with fibroblasts, suggesting that the interaction dynamics are inde-
pendent of this variable (Supplementary Fig. 2g, pink arrows). This
finding further supports the conclusion that the ON-OFF state is
semi-stable—arrows converge to it on the x axis (changes tofibroblast
numbers) but point away from it along the y direction (changes to
macrophage numbers).

To evaluate not only growth but also function, wemonitored ECM
deposition—a key fibroblast function, known to be supported by
macrophages, in the co-culture setup. We assessed ECMdeposition by
measuring fibrillar collagen levels in different regions of the phase
portrait (Fig. 2d, e, seeMethods). As expected, macrophages alone did
not deposit collagen, whereas fibroblasts in monoculture did (Fig. 2e).
Co-culture with macrophages resulted in a 2–3 fold increase in fibro-
blast collagen deposition, and maximal collagen deposition was mea-
sured near the ON state, suggesting that this state is not only the joint
steady-state of the two cell types, but also the state of highest ECM
production (Fig. 2e). These findings support the notion that the
fibroblast-macrophage circuit in co-culturemaintains growth aswell as
functionality.

TheCAF-TAMcircuit occurs in vivo together with cancer cells that
significantly affect the TME21,22. To evaluate the impact of cancer cells
we compared growth in control medium to breast cancer conditioned
medium (CM). We obtained the cancer CM from 4T1 triple-negative
breast cancer cells syngeneic to the fibroblasts and BMDMs grown for
48 h. We added the cancer CM to co-cultures of mammary fibroblasts
and BMDMs, and obtained their phase portrait (Fig. 2f, g; red arrows).
In the presence of cancer CM (Fig. 2f, g) the phase portrait behaved
differently than that of the control medium (Fig. 2c). Macrophages in
cancer CMwere able to grow in the absence of fibroblasts (red arrows;
Fig. 2f), in contrast to controlmedia, in which their growth depends on
fibroblasts (gray arrows; Fig. 2f). This may relate to the composition of
4T1-CM which contains factors that regulate macrophage
proliferation23. A growth-promoting effect was also observed when
macrophages were grown in CM from normal (non-malignant) mam-
mary epithelial cells, however this effect was mild compared to the
growth-promoting effect of cancer CM (Fig. 2h).

The ability of macrophages to grow without fibroblasts led to a
change in the OFF state. This state, which was stable in the control
medium, became semi-stable in the presence of cancer CM, and was
lost when macrophages were added. The ON and ON-OFF states are
still observed with cancer CM (Fig. 2g).

Thephaseportraits highlight the dynamicnatureof thefibroblast-
macrophage interactions, the codependence of macrophages and
fibroblasts, and the effect of cancer CM on these dynamics.

Mathematical modeling infers growth interactions and
dynamics of the fibroblast-macrophage circuit
The experimental phase portraits provide a global view of the dynamic
behavior of the cell populations. To elucidate the forces that govern
these dynamics in different growth conditions, we developed a
mathematical model of interacting fibroblasts (F) and macrophages
(M) (Fig. 3a, b, equations provided inMethods). Ourmodel simplifies a
more complex model of biochemical reactions17,24, in order to provide
a minimal number of effective interaction parameters. This simplifi-
cationmakes it possible to infer the parameters from the data without
identifiability or overfitting concerns using a simple regression
approach (see Methods).

Themodel has 4 parameters per cell type (Fig. 3b). Fibroblasts are
removed at rate rF . Their proliferation is induced by paracrine inter-
actions frommacrophages at ratepMF , and by anautocrine loop at rate
pFF . Fibroblast numbers cannot exceed a carrying capacity KF - the
maximal cell population that prohibits further growth - which is
determined by environmental factors such as nutrients and space
availability17,25. Four analogous parameters define macrophage
dynamics: removal rM , paracrine and autocrine interactions pFM and
pMM , and a carrying capacity KM .

We estimated the values of the model parameters by fitting cell
numbers atday 7 given their numbers atday3 (Fig. 3c–e, seeMethods).
Many distributed different initial conditions allowed us to infer the
dynamics for any initial condition at all timepoints. Themodel showed
good fits for the experimental dynamics, explaining 84%–93% of the
variance in the data (Supplementary Fig. 3a–d) with a reasonably low
error in predicting the direction of growth of the cell populations
(Supplementary Fig. 3e, f). We also validated convergence and
robustness of parameter calibration by the Bayesian tool, PyDREAM26

(Supplementary Fig. 4a–c).
The inferred circuitmodels give rise to theoretical phase portraits

(Fig. 3f, g). These phase portraits are similar to the experimental ones,
and help to fill out regions that were difficult to reach experimentally
(e.g., low cell numbers). The phase portraits show the ON, ON-OFF,
OFF-ON, and OFF fixed points, as well as the unstable fixed points. All
of these fixed points can be calculated based on the inferred para-
meters (Fig. 3c–e, Supplementary Fig. 3g, h and Supplementary
Table 1). The inferred phase portraits also delineate the basins of
attraction (i.e., the regions in which trajectories converge to a given
fixedpoint) of theONandOFF states in the controlmedium, andof the
ON and OFF-ON states in the cancer CM (shaded in different colors;
Fig. 3f, g). Additionally, themodel provides inferred carrying capacities
(K), which are about 10-fold greater for macrophages than for fibro-
blasts, consistent with previous findings17,25 (Supplementary Fig. 3i, j).

The mathematical model also allows us to plot the rate of change
in cell numbers for each cell type on the phase portrait (Fig. 3h–k). In
this ‘heatmap’ plot, lack of dependence on fibroblast numbers is

Fig. 2 | Isolation of themacrophage-fibroblast circuit in-vitro allows analysis of
its dynamics and reveals bistability with a viable steady-state at high cell
numbers. a Illustration of the experimental procedure. Macrophages and fibro-
blasts were isolated from mice, co-cultured at different ratios for 3 or 7 days in
control or cancer CM, and counted by flow cytometry. b, c Experimental phase
portraits of macrophage-fibroblast dynamics in-vitro. Arrow tails represent cell
counts at day 3 of co-culture, and arrowheads represent cell counts at day 7
(starting from the same initial cell concentration). b Mono-cultured macrophages.
c Fibroblasts co-cultured with macrophages are presented above the horizontal
dashed line, mono-cultured fibroblasts are below the line. Fixed points are denoted
by dots: “ON”: green; “OFF”: red; unstable: white; “ON-OFF” state: half-yellow. The
following number of biologically independent samples was used: macrophages
only: n = 5; macrophages with fibroblasts: n = 24. The positions of the fixed points
were determined by the modeling of Fig. 3. d, e Quantification of the amount of
fibrillar collagen deposited after 7 days of co-culture of macrophages and fibro-
blasts. Macrophages only: n = 4; fibroblasts and fibroblast-macrophage co-cultures:

n = 3 biologically independent samples. Data are presented asmean. f Experimental
phase portrait of macrophages grown in mono-culture in the presence of 4T1
cancer CM (red arrows), overlayed on the control phase portrait presented in (b)
(gray arrows; performed in parallel to control media cultures); n = 10 biologically
independent samples. g Experimental phase portrait of macrophage-fibroblast
dynamics following in-vitro co-culture with 4T1 cancer CM (red arrows), overlayed
on the control phase portrait presented in (c) (gray arrows). Fibroblasts co-cultured
with macrophages are presented above the horizontal dashed line; mono-cultured
fibroblasts are presented below the line (performed in parallel to control media co-
cultures); n = 12 biologically independent samples for the cancer CM.
hMacrophage cell numbers following three days of growth in mono-culture in the
presence of Control or CM from normal mouse epithelial cells or from 4T1 cancer
cells; with n = 8 biologically independent samples. P-value was calculated using one
way ANOVA. Error bars represent ± SEM. b–h All data are combined from at least
three independent experiments. Source data are provided as a Source Data file.
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characterized by fixed horizontal shades, whereas lack of dependence
on macrophage numbers is characterized by fixed vertical shades.

The theoretical phase portraits (Fig. 3f, g) and their associated
heatmaps (Fig. 3h–k) help visualize the interdependence of fibroblasts
and macrophages, and the dramatic effect of cancer CM on the circuit
dynamics. In the control medium, fibroblasts barely depend on mac-
rophages, whereas macrophages are heavily influenced by fibroblasts.
This is also evident by the inferred circuit parameters (Fig. 3c, d), in
whichfibroblasts support their owngrowth through a strong autocrine
loop and support macrophages through a strong paracrine interac-
tion. Macrophages signal back with a much weaker paracrine interac-
tion and have a very weak autocrine loop.

Cancer CM changes the circuit dynamics. The phase portrait
contains a new stable OFF-ON state of macrophages (Fibroblasts are
OFF, macrophages are ON; Fig. 3g, orange dot), a shift of the unstable
fixed point b to a higher macrophage concentration, and a change in

the OFF state from stable in the control medium to semi-stable in
cancer CM. Although fibroblasts below a critical concentration still
flow to the OFF state, addition of macrophages causes the cells to flow
to the new OFF-ON state with macrophages alone (Fig. 3g, orange dot
drains the yellow region). Fibroblast growth rate is therefore self-
sustaining regardless of their seeding ratio with the macrophages.
Their effect on macrophages is reduced but non-zero, because the
measured macrophage growth rate still increases with fibroblast
number in CM.

Notably, in cancer CM, the proliferation rates and inferred circuit
interactions align with the hierarchy of the network from the in-vivo
scRNA-seq data (depicted in Fig. 1c). Fibroblasts remain highly
dependent on themselves due to a strong autocrine loop and are
minimally affected by macrophages (Fig. 3i). Additionally, the hier-
archy of the network indicates that macrophages are the main reci-
pients of signals from different cells, which suggests a decreased
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Fig. 3 | Circuit interactions and dynamics inferred by mathematical modeling.
a, b Theoretical cell circuits with the model parameters: pFF - fibroblast autocrine
loop; KF - fibroblast carrying capacity; rF - fibroblast removal rate; and pMF -
paracrine effect of macrophages on fibroblasts. Analogous parameters for the
macrophages are: removal rM ; paracrine and autocrine interactions pFM and pMM ,
respectively; and carrying capacity KM . c Best fit values for the parameters of the
fibroblast-macrophage circuits in control and cancer CM. The distribution of each
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95% confidence interval (CI; thin line). P-values and CI were calculated by boot-
strapping (n = 5000) and contrast distributions (seeMethods).d, e Theoretical cell
circuits with themean value of each parameter for control and cancer CM. Inferred

phase portraits showing the population dynamics of macrophages and fibroblasts
in control (f) or cancer CM (g). Basins of attraction are indicated by color: in the
control medium cells can flow to the “OFF” state (red dot) if they start in the red
regionor to the “ON” state (greendot) if they start in the green region. A population
of fibroblasts that resides to the right of the unstable fixed point, denoted a, will
flow to the “ON-OFF” state (half-yellow dot). In the cancer CM the flow in the red
region changes (indicated with a yellow region) - it drains to the “OFF-ON” state
(orange dot). h–k Heatmaps indicating the predicted average growth rate of
fibroblasts and macrophages in control and cancer CM. Red indicates growth and
blue indicates shrinkageof the cell population. Dashed lines are the nullclines of the
system; along them there is no change in the cell population.

Article https://doi.org/10.1038/s41467-023-41518-w

Nature Communications |         (2023) 14:5810 6



dependence on fibroblast growth factor secretion and a reduction in
growth factor paracrine interactions (Fig. 3k). The new OFF-ON fixed
point in which macrophages lose their dependence on fibroblasts is
explained by the inferred circuit in cancer CM (Fig. 3e). The removal
rate of macrophages is zero, signifying enhanced survival in the CM.
Thus, cancer CM changes all macrophage parameters to allow their
enhanced growth.

We also calculated models for the two other organs from which
we produced fibroblasts—lung and mesometrial fat. The model
showed global similarity of the phase portraits in the three organ
contexts. Nevertheless, their inferred circuits were somewhat different
from themammary circuit (Supplementary Fig. 3k–n).Mechanistically,
this may suggest that the ON state is achieved differently in different
organs. It also highlights the added value of a mathematical approach
when comparing different organs or disease contexts.

We conclude that the dynamics in the co-culture are generated by
an inferred circuit of interactions which is very similar to the circuit
determined from analysis of scRNA-seq of the human breast TME. The
hierarchy of interaction strengths is recapitulated by the in-vitro cir-
cuit, with the fibroblast autocrine and paracrine interactions stronger
than those of the macrophages. Macrophages are thus more depen-
dent on external growth conditions - be it reciprocal signaling with
fibroblasts or factors secreted to the medium by cancer cells, whereas
fibroblasts are more self-sufficient and can support their own growth.

The isolated circuit recapitulates in-vivo transcriptomic profiles
In addition to the dynamics of the circuit, we asked whether the
molecular phenotypes of the cells in the isolated co-culture circuit
recapitulate the in-vivo molecular phenotypes. We therefore per-
formed RNA-seq of fibroblasts and macrophages from co-cultures at
concentrations near the ON, ON-OFF, and OFF-ON states, in control
and cancer CM (Supplementary Fig. 5). Under normal growth condi-
tions (control medium), co-culture with fibroblasts strongly affected
the macrophage transcriptome, as indicated by clustering analysis
(Fig. 4a, first split). Fibroblasts were not affected as strongly by co-
culture with BMDMs (Fig. 4b), supporting the interaction hierarchy by
which macrophages are affected by fibroblasts more than fibroblasts
by macrophages.

To characterize these expression changes we performed pathway
analysis usingMetascape27 (Supplementary Data 2–3). Macrophages in
mono-culture expressed genes involved in cell cycle and DNA related
pathways. These were attenuated in the presence of fibroblasts and
greatly reduced with fibroblasts and cancer CM. Instead, these con-
ditions led to upregulation ofmigration, chemotaxis and inflammation
regulation (Fig. 4c). Fibroblast transcriptomes were generally unaf-
fected by the presence of macrophages. In contrast, cancer CM
modulated their transcriptome, though it did not alter it to the extent
that it did to macrophages. Cancer CM led to upregulation of vascular
development genes, ECM organization and support of epithelial
growth, but maintained many other pathways found in the control
medium (Fig. 4d).

To further understand whether the state of the cells in co-culture
mimics the in-vivo state, wemeasured the enrichment of TAMandCAF
signatures in the co-culture RNA-seq data, using single sample gene set
enrichment analysis (ssGSEA)28 with a protumorigenic signature for
TAMs29, and iCAF, myCAF and apCAF signatures for CAFs (Supple-
mentary Data 4)30. Macrophages co-cultured with fibroblasts or in
cancer CM showed enrichment of a pro-tumorigenic TAM signature,
and this enrichment was significantly induced by co-culture with both
fibroblasts and cancer CM (Fig. 4e, Supplementary Data 4).

We further confirmed the protumorigenic shift inmacrophages at
the protein level, by examining the cell-surface expression levels of
CD206, a known protumoral marker of TAMs7. Co-culture with cancer
CM led to upregulation of CD206 on macrophages, as expected10.
However the expression of CD206 was significantly induced by the

addition of fibroblast CM to the cancer CM, further demonstrating the
key role of fibroblasts in rewiring macrophages towards a protumoral
phenotype (Fig. 4f).

CAFs are heterogeneous and comprise of diverse populations
with distinct tasks—myofibroblastic CAFs (myCAF) that harbor ECM
and wound healing regulatory modules, inflammatory/immune reg-
ulatory CAFs (iCAF) characterized by a secretory phenotype and
immune cell regulatory activity, and antigen presenting CAFs (apCAF)
expressing MHC class II molecules8. To test whether CM induces CAF-
like transcriptional signatures, we applied ssGSEA28 on fibroblasts
grown in control or cancer CM. ssGSEA analysis of fibroblasts grown in
control medium demonstrated enrichment for both myCAF and iCAF
signatures. (The apCAF signature was not detected in normal fibro-
blasts, consistent with our previously published notion that apCAFs
are most likely not derived from tissue resident fibroblasts6). In the
presence of cancer CM, however, the iCAF signature was no longer
detected and themyCAF signaturedominated the population (Fig. 4g).
Macrophage co-culture had little effect on these scores.

In summary, the genes, pathways and signatures revealed by the
transcriptomic analysis, and their similarity to those found in mouse
and human tumors, highlight the potential value of a combined
experimental and mathematical cell-circuit approach to better
understand cell-cell interactions in the TME.

The isolated circuit highlights RARRES2 and CMKLR1 as
potential mediators of CAF-TAM signaling
The isolated cell circuit enables testing the effect of specific ligand-
receptor interactions on the dynamics, function and transcriptomes of
the circuit. We therefore asked which ligands are upregulated in both
human andmouseCAFs, aswell as in the co-culture. First, we identified
shared ligands between human and mouse breast CAFs based on
scRNA-seq datasets14,16, using the NicheNet tool31. This analysis
revealed 77 shared ligands which have potential receptors on TAMs
(Fig. 5a). Next, we assessed the expression of these ligands in the RNA-
seq data from our co-culture (Fig. 5b). We identified a cluster of 23
ligands upregulated in the presence of cancer CM (Fig. 5b, cluster 1).
We validated the expression of several genes from this cluster by qRT-
PCR and found that indeed they were significantly upregulated in
fibroblasts co-cultured in the presence of cancer CM (Fig. 5c, Supple-
mentary Fig. 6c).

This cluster included genes well known to mediate CAF-TAM
interactions in cancer, such as Tgfb1, Csf1, and Ccl232. It also included
Retinoic Acid Receptor Responder (Rarres2; also known as Chemerin),
a chemokine known to regulate inflammation, adipogenesis, and
metabolism through activation of the chemokine-like receptor 1
(CMKLR1)33,34. RARRES2was recently found to be expressed by CAFs in
colorectal cancer35. However, its role in the TME was not elucidated.
We therefore decided to focus our analyses on RARRES2. We found
that Rarres2 is upregulated in fibroblasts cultured in the presence of
cancer CM, and its expression is further induced by co-culture with
macrophages (Fig. 5c). Strikingly, its receptor, Cmklr1, is upregulated
in macrophages upon co-culture with fibroblasts or in the presence of
cancer CM (Fig. 5d). To directly test whether RARRES2 is not only
expressed by CAFs but also secreted by them, we isolated CAFs from
4T1 tumors, cultured them for 3 days and measured the levels of
RARRES2 in the medium by ELISA. We also isolated and cultured the
4T1 cancer cells themselves, as control (Fig. 5e). This analysis con-
firmed that RARRES2 is secreted from CAFs and not from cancer cells.
To gain insight into how RARRES2 affects TAMs, we monitored mac-
rophage proliferation and migration in the presence of control med-
ium, cancer CM, and cancer CMwith recombinant RARRES2. RARRES2
did not affectmacrophageproliferation (Supplementary Fig. 6d). It did
however significantly enhance macrophage migration (Fig. 5f), high-
lighting the potential role of RARRES2-CMKLR1 signaling in breast
cancer.
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To test the relevance of our findings to human disease, we com-
pared RARRES2 expression in CAFs to fibroblasts from normal breast.
Analysis of the human breast scRNA-seq dataset14 showed that
RARRES2 is specifically upregulated by CAFs and not by normal
mammary fibroblasts (Fig. 5g). Moreover, it is uniquely expressed by
CAFs and not by other cell types within the humanbreast TME (Fig. 5h,
Supplementary Fig. 6a). Next, to explore the potential effects of

RARRES2 expressiononTAMs inpatients,wecomputed the correlation
between CAFs expressing high levels of RARRES2 and macrophages
expressing a protumorigenic TAM signature associated with poor
survival29 in the human breast cancer RNA-seq dataset14. We found a
strong correlation, consistent with RARRES2 expression contributing
to a protumoral TAM phenotype (Fig. 5i). To further assess the clinical
relevance of RARRES2 expression, we compared the expression levels
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ofRARRES2 in low-grade vshigh-grade tumors.We found thatRARRES2
expression is significantly higher in high-grade cases compared to low-
grade cases (Fig. 5j). We conclude that RARRES2, identified through
our in-vitro circuit approach, mediates CAF signaling to TAMs in
mouse models of breast cancer and in human disease, and may serve
as a therapeutic target for future exploration.

Discussion
In this study we present an approach to analyze the TMEby breaking it
down into smaller cell circuits. We find that the network of cell inter-
actions in the breast TME is hierarchical with CAFs at the top. This
network consists of recurring instances of a two-cell circuit motif. The
strongest instance of this circuit is CAFs with an autocrine loop and
paracrine signal to TAMs, which have weaker paracrine and autocrine
signals. We tested the autonomy of this two-cell circuit by growing
fibroblasts and macrophages in co-culture in control and cancer-CM.
The in-vitro circuit recapitulates the hierarchy of the in-vivo interac-
tion strengths. It shows bistability with a viable steady-state in which
the two cell types support each other. It also recapitulatesmuch of the
transcriptomic phenotype seen in-vivo. The in-vitro circuit allows
identifying molecular players and testing the effects of modulating
them, as we demonstrate by identifying a potential mediator of CAF-
TAM interactions - RARRES2, and its receptor CMKLR1. We show that
this mediator enhances macrophage migration in vitro and is corre-
lated with protumorigenic TAM phenotypes and high tumor grade in
breast cancer patients. Thus, the TMEmay in principle be brokendown
into small cell circuits that can be profitably studied in isolation using
co-culture.

To discover recurring circuits we employed a network motif
approach. In the past, this approach was primarily used to analyze
intra-cellular networks such as gene regulatory networks (GRN12,13,36). It
revealed recurring regulatory circuits within cells, such as feedforward
loops, and formed the basis for understanding the logic of large gene
circuits by breaking them down into understandable smaller
circuits12,13. Here we applied network motif analysis to the network of
interactions between cells, rather than within a cell. We studied cell-
cell interactions in the breast TME with the aim of simplifying its
analysis in a similar way to GRNs. We first determined the network
using ligand-receptor analysis from scRNA-seq. The network has a
hierarchical structure, with CAFs at the top sending out themajority of
signals, and TAMs at the bottom, receiving signals from other cells.

Within this network we find a dominant two-cell circuit motif, in
which two cell types have autocrine loops and paracrine mutual sig-
naling. The strongest instances have CAFs as one of the nodes.We also
analyzed motifs of 3 and 4 cell types, and found that the higher order
motifs are comprised of combinations of this two-cell circuit motif.
This suggests that the two-cell circuit motif may be an elementary

building block of the TME. The network for normal tissue showed no
significant 2-node motifs. Motif analysis may thus help to discover
important differences between normal and disease states, by revealing
cell circuits that are crucial in each case.

In order to be useful as a basic building block, however, a circuit
must have a degree of autonomy, in the sense that it preserves its
dynamic and biological function even when isolated from the rest of
the network. Such autonomy is biologically useful, in analogy to
modules in a machine—it ensures that the circuit works reliably no
matterwhat the state of the rest of the network is37,38. Fromthepoint of
view of research, autonomy is crucial for a reductionist approach, as it
posits that isolating parts of a system can contribute to the under-
standing of its whole.

We find that the fibroblast-macrophage circuit is indeed autono-
mous—it recapitulates the interactions and transcriptomes when
grown in culture in-vitro, especially in the presence of cancer CM. The
circuit has the dynamic feature of bistability, in which depending on
initial cell concentrations, it can reach one of two stable steady-state
fixed points. One of these states is a viable steady-state in which both
cells turn over andmutually support each other. The other steady state
has zero cell types. Such bistability was recently exploited ther-
apeutically in the context of abrogating fibrosis in mice models in the
heart39 and liver40.

The complete dynamical mapping of the circuit in co-culture,
known as a phase portrait, allows one to infer the interaction strengths
between the cells using a mathematical model approach. We find that
the inferred interaction strengths largely recapitulate the in-vivo
strengths in the cell-cell network, although they are obtained in a
completely independent way. The strongest interactions are the
fibroblast autocrine and paracrine interactions, whereas the macro-
phage interactions aremuch weaker. Similarly, the effect of co-culture
on macrophage dynamics is much stronger than the effect of co-
culture on fibroblasts.

The circuit co-culture allows dissecting the effect of cancer by
means of growth in cancer CM. Cancer CM preserves the bistability
property and the viable two-cell steady state. This is an aspect of the
circuit’s dynamical autonomy. However it destabilizes the steady-
state of zero cells, and instead creates a new fixed point with mac-
rophages on their own. Such a macrophage-only state, in which
macrophages turn over and support their own growth, may
resemble aspects of macrophage activation syndrome and
autoinflammation41–43. Just as in the in-vivo network, in which cancer
cells send more signals to TAMs than to CAFs, cancer CM seems to
affect macrophages much more than fibroblasts. This may imply
that specific cancer cell signals are critical to shape the dynamics,
despite the fact that cancer cells are located in the middle of the
hierarchy in the in-vivo network.

Fig. 4 | RNA sequencing supports predicted changes in macrophage and
fibroblast cell circuits in cancer-conditioned medium. a, b Heatmaps showing
hierarchical clustering of differentially expressed genes (DEGs; basemean >5;
|LogFoldChange | > 1; FDR <0.1). a An interactionmodel (medium and culture) was
used to compareDEGsbetweenmacrophagesmono-cultured (only) or co-cultured,
with mammary fibroblasts in DMEM vs cancer CM. The mono-cultured macro-
phages in DMEMwere collected at day 0 (since they cannotmaintain themselves in
DMEM for 7 days), and at day 7 in cancer CM. The co-cultured macrophages were
collected after 7 days of co-culture with mammary fibroblasts, in either DMEM or
cancer CM. Macrophages in DMEM: n = 3 biologically independent samples, mac-
rophages in cancer CM: n = 4 biologically independent samples. b An interaction
model (mediumandculture)was used to compareDEGsbetweenfibroblastsmono-
cultured (only), or co-cultured, with macrophages in cancer CM vs. DMEM. Fibro-
blasts in DMEM: n = 3 biologically independent samples for each condition, Fibro-
blasts in cancer CM: only n = 2 biologically independent samples, co-cultured n = 4
biologically independent samples. c,d Pathwayanalysis of themacrophage clusters
from (a) and fibroblast clusters from (b) was conducted using Metascape27.

Selected significant pathways are shown, see full list in Supplementary Data 2–3
(FDR<0.05). eThe ssGSEA score of the protumorigenic TAMsignaturewas applied
to the macrophage RNA-seq data. Same biological replicates as indicated in (a).
f Flow cytometry analysis was conducted on macrophages to evaluate the
expression of the protumorigenic marker CD206. The macrophages were stained
after beingmono-cultured in the presence of control medium, 4T1-cancer CM, or a
1:1 mix of cancer CM and CM from fibroblasts induced by cancer (see Methods).
n = 9 biologically independent samples from a total of three separate experiments,
each experiment was normalized to the control mean fluorescence intensity (MFI).
e, f P-value was calculated using one-way ANOVA followed by Tukey’s multiple
comparisons test. Error bars represent ± SEM. Same biological replicates as indi-
cated in (a). g The ssGSEA scores of the iCAF,myCAF and apCAF signatures were
applied to the fibroblast RNA-seq data. P-value was calculated using two-way
ANOVA followed by Tukey’smultiple comparisons test. Error bars represent ± SEM.
Same biological replicates as indicated in (b). Source data are provided as a Source
Data file.
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Fig. 5 | RARRES2 and its receptor CMKLR1 are part of the CAF-TAM signaling
axis in breast cancer. a Venn diagram of potential CAF-to-TAM ligands shared
between breast cancer patient tumors14 and 4T1 tumors in mice16 based on the
NicheNet ligand-receptor tool. b Heatmap representation of the expression of the
77 shared ligands from (a) in fibroblasts from the in vitro cell-circuit, based onbulk
RNA-seq data from Fig. 4b. c, d qPCR of Rarres2 and Cmklr1 from fibroblasts and
macrophages.mono-cultured or co-cultured in control or cancer CM for 72 h. Data
are combined from at least three independent experiments. P-value was calculated
using two-way ANOVA followed by Tukey’s multiple comparisons test. Error bars
represent ±SEM. c Fibroblasts mono-cultured in control or in cancer CM n = 5,
fibroblasts co-cultured in control n = 5 or in cancer CM n = 4 biologically inde-
pendent samples. dMacrophages mono-cultured in control n = 4 or in cancer CM
n = 9, macrophages co-cultured in control or in cancer CM n = 7 biologically
independent samples. e RARRES2 secretion levels in the media were assessed by
ELISA from CAF n = 5 and 4T1 n = 4 biological biologically independent samples.
P-value was calculated using two-sided students’ t test, Error bars represent ± SEM.

f Transwell migration assay of macrophages in the presence of control medium
n = 10, or 4T1 cancer CM with n = 9 or without n = 12 recombinant RARRES2 for
24h, n indicates biologically independent samples. Luminescence values were
normalized to 4T1-CM in log2. Data are combined from at least three independent
experiments. P-value was calculated using one-way ANOVA followed by Tukey’s
multiple comparisons test. Error bars represent ± SEM. g Violin plot of RARRES2
expression based on human scRNA-seq of normal fibroblasts n = 17 versus CAFs
n = 32. P-value was calculated using two-sided students’ t test. h RARRES2 expres-
sion in different clusters from human scRNA-seq data, including CAF subclusters
(defined using markers shown in Supplementary Fig. 6a). i Linear regression
between RARRES2 expression in fibroblasts and TAM signature in macrophages.
Each dot represents one patient, based on human scRNA-seq14. P-value was cal-
culated using F-test for linear regression. j RARRES2 gene expression in breast
cancer patients14 stratified by grade, high grade = grade 3, n = 21; low-grade = grade
1 and 2, n = 10 patients. P-value was calculated using two-sided students’ t test.
Source data are provided as a Source Data file.
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Gene expression analysis confirms that macrophages are more
affected by context - presence of fibroblasts or cancer CM - than
fibroblasts. Co-culture with cancer CM shifts their gene expression
from self-maintaining, cell-cycle and DNA replication genes to protu-
morigenic TAM genes. Fibroblasts are pushed by cancer CM towards a
myCAF phenotype with ECM deposition as the characteristic upregu-
lated pathway.

Having established the autonomyof this two-cell circuit, we asked
whether it may help to identify molecular players in the TME and to
characterize the effects of modulating such factors. By intersecting
transcriptional patterns found in tumors and in our isolated co-culture
system, we identified the chemokine RARRES2 as a paracrine signal
sent from fibroblasts to macrophages and from CAFs to TAMs, indu-
cing CMKLR1 upregulation and macrophage migration. Previous stu-
dies have indicated that RARRES2 plays a significant role in mediating
cell trafficking to sites of inflammation and demonstrates angiogenic
properties44,45. In various cancers, RARRES2 can function as both a pro-
and anti-inflammatory mediator, depending on the context35,46. How-
ever, its role in the breast TME and specifically in breast CAFs remains
largely unexplored. We find that in breast cancer patients, RARRES2 is
expressed specifically in CAFs - it is not expressed in normalfibroblasts
or in any other cell type in the breast TME. Importantly, its expression
increases in high-grade tumors and its levels are correlated with a
protumorigenic TAM signature, highlighting the relevance of our
findings to humandisease, and the potential applicability of the circuit
approach to help identify novel players and understand their
biological role.

One limitation of our study is the useof cancer CM,whichmay not
fully replicate the complexity of interactions observed. For instance,
the experimental setupused toderive the cancerCM lackedfibroblasts
and macrophages, and hence lacked the feedback from these cells to
the cancer cells. Another limitation is the lack of spatial effects in the
analysis. Recent work in the context of kidney fibrosis has demon-
strated how local inflammation and hypoxia fields can affect a circuit’s
parameters, and thus the same circuitmay have different steady-states
in different parts of the tissue9. Emerging spatial omic approaches can
help to reveal the effects of such spatial fields on the circuits, and to
form a quantitative understanding of the heterogeneous tumor
landscape.

It would be important in future work to test the impact of mod-
ulating theothermolecular factors identified in this study thatunderlie
the circuit interactions, such as factors involved in the fibroblast
autocrine loop. Combinatorial targeting of these factors will likely be
required to provide therapeutic benefit. One could also extend this
study by adding cell types to understand the three- and four-cell cir-
cuits.We envision a research program to understand the small circuits
and to build from them a complete understanding of the TME with its
multiple cell types. Such aquantitative circuit understanding can guide
rational approaches to modulating the TME for cancer therapy.

Methods
Ethics statement
All animal studies were conducted in accordance with the regulations
formulated by the Institutional Animal Care and Use Committee
(IACUC; protocol #05420621-2). BALB/c and C57BL/6 mice were pur-
chased from Harlan Laboratories and maintained under specific-
pathogen-free conditions at the Weizmann Institute of Science (WIS)
animal facility. The light-dark cycle was 12 h. The ambient temperature
was 22 Celsius degrees and humidity was between 35 and 55%.

Cancer cells
4T1 female murine triple negative breast cancer cells were a generous
gift from the lab of Zvika Granot (HUJI, Israel, originally from ATCC).
These cells were transduced to express green fluorescent protein
(GFP) using the FUW-GFP vector. 4T1-GFP cells were cultured in

Dulbecco’smodified Eagle’smedium (DMEM; Biological Industries, 01-
052-1 A) with 10% fetal bovine serum (FBS; Invitrogen) and 5% P/S
(Biological Industries). Cell lines were tested routinely forMycoplasma
using EZ-PCRMycoplasmaTestKit (#20-700-20, Biological Industries).
cell lines were maintained below passage 10.

4T1 condition medium
4T1 cells were seeded at 1 × 106 cells/ml in 10 cm plates. 24 h later
(when the cells have formed a monolayer) the medium was replaced
with fresh medium. 72 h later, the medium was collected, filtered
through a 0.22μm strainer, and diluted with DMEMwith 20% FBS, at a
ratio of 1:1.

Normal mammary fat pad and mesometrial fat fibroblasts
isolation
Normal mammary fat pad and mesometrial fat fibroblasts were iso-
lated and dissociated from the mammary fat pads or the fat tissue of
two (BALB/c or C57BL/6, 8 weeks old) females per each biological
replicate. organs were minced and dissociated using a gentle MACS
dissociator, in the presence of an enzymatic digestion solution con-
taining 1mg/ml collagenase II (Merck Millipore, 234155), 1mg/ml col-
lagenase IV (Merck Millipore, C4-22) and 70U/ml DNase (Invitrogen,
18047019), in DMEM. The samples were filtered through a 70μm cell
strainer into cold PBS, and cells were pelleted by centrifugation at
350 g for 5min at 4 °C, and resuspended in red blood cell lysis buffer
(BioLegend 420301), then washed with PBS and centrifuged at 350 g
for 5minat 4 °C.Mammary and fatfibroblastswere seededon collagen
I (Sigma-Aldrich, Cat. C3867) coated 10 cm or 6-well plates, respec-
tively. The cells were expanded for 6 days in DMEM with 5% P/S and
10% of FBS and the media was replaced every 3 days.

Primary lung fibroblast isolation
Lungs of BALB/c female (8 weeks old) were excised, dissociated,
minced, and incubated with enzymatic digestion solution containing
3mg/ml collagenase A (Sigma Aldrich, 11088793001) and 70 unit/ml
DNase in RPMI 1640 (Biological industries, 01-100-1 A) using a gentle-
MACS dissociator, 30min at 37 °C. The samples were filtered through a
70-μm cell strainer into cold PBS and cells were pelleted by cen-
trifugation at 350 g for 5min at 4 °C and resuspended in red blood cell
lysis buffer, then washed with PBS and pelleted at 350 g for 5min at
4 °C. Lung fibroblasts were seeded onto 10 cm plates coated with
collagen I. The cellswere expanded for 5 days inDMEMwith 5%P/S and
10% FBS, and medium was replaced after 3 days.

Macrophage differentiation
Bonemarrow-derivedmacrophages from BALB/c (8 weeks old) female
mice were differentiated into macrophages by growth in DMEM with
10% FBS, 5% P/S and 20% L929 CM on a petri dish. The medium was
replenished at day 3, and the macrophages were reseeded for the
experiment on day 7.

Macrophage-fibroblast co-culture
The fibroblasts and the macrophages were isolated and expanded
separately for 7 days, after which the fibroblasts were trypsinized and
resuspended in an ice-cold MACS buffer (PBS with 0.5% BSA). The
samples were pelleted by centrifugation at 350 g for 5min at 4 °C,
incubated with anti-EpCAM (Miltenyi, 130-105-958) and anti-CD45
(Miltenyi, 130-052-301) magnetic beads, transferred to LS columns
(Miltenyi, 130-042-401), and the fibroblast-enriched, CD45/EpCAM-
depleted, flow-through was collected. The macrophages were har-
vested with non-enzymatic cell dissociation solution (Biological
Industries,03-071-1B) and washed with PBS without calcium and mag-
nesium (PBS (-/-)). The macrophages were stained with 2μMCFSE and
seeded together with the fibroblasts in 96-well or 6-well plates pre-
coated with collagen I. The co-cultures were grown in DMEMwith 10%
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FBS and 5%P/S, orwith 4T1-CM (performed in parallel to controlmedia
co-cultures). Every 3 days 50μl/1ml of medium (for 96 well/6 well,
respectively) were replaced with fresh medium. Macrophages and
fibroblasts were seeded at different concentration ranges (0–105 in 96
well and 0–5 × 106 in 6 well), with the same combination of cell con-
centrations seeded in parallel onto two different plates. Plates were
analyzed by Flow cytometry, one at day 3 and the other at day 7. Cell
counts from 96-well plates were multiplied by 30 to scale for 6-well
plates. We chose day 3 as the initial time point (and not an earlier time
point such as day 0), to ensure the cells are settled in the 2D layer in
terms of secreted factor interactions.

During the first day after seeding interactions occur in 3D within
the entire well volume, since it takes time for the cells to settle and
form a 2D layer at the bottom. Thus, their effective density during this
phase is very low and below the separatrix, predicting that their
numbers should crash. Indeed, we seeded cells with varied initial
conditions spanning the entire range of the phase plane and observed
that cell numbers at day 3 are much smaller than at seeding.

Flow cytometry for cell quantification
Fibroblasts and macrophages were harvested from tissue culture
plates by incubation with a non-enzymatic cell dissociation solution,
washed, and transferred to round-bottom 96-well plates. The cells
were then counted by flow cytometry using CFSE and anti-CD11b-
Pacific blue antibody (Biolegend, Cat.101224) as positive markers for
macrophages. Cells stained negatively for thesemarkerswere counted
as fibroblasts. Dead cells were excluded using DRAQ7 (Biolegend, Cat.
424001). Flow cytometry was performed using CytoFlex-S (Beckman
Colter). FACS analysis was performed using Flowjo software v.10.7.1.

Flow cytometry for CD206 marker
A total of 1 × 105 BMDM were seeded in collagen pre-coated 96-well
plate and cultured for 72 h in the presence of different mediums:
Control medium: 100 ul of DMEMwith 10% FBS. 4T1 cancer CM: 100 ul
of 4T1 cancer CM (as described above). 4T1 cancer CM+ FB CM: A
mixture of 100 ul of cancer CM and 100ul of fibroblast CM induced by
4T1 CM for 48h. Then, macrophages were harvested from tissue cul-
ture plates by incubation with a non-enzymatic cell dissociation solu-
tion, washed, and transferred to round-bottom 96-well plates. Cells
stained for anti-CD11b-Pacific blue antibody (Biolegend, Cat.101224)
and anti-CD206-BV711 (Biolegendi, Cat.141727).Dead cells were exclu-
ded using PI (Sigma Aldrich, P4170). Flow cytometry was performed
using CytoFlex-S (Beckman Colter). FACS analysis was performed
using Flowjo software v.10.7.1.

EdU (5-ethynyl-20 -deoxyuridine) assay
Mammary fibroblasts and macrophages were co-cultured in 96-well
plates at a range of concentrations (0,1 × 103, 1 × 104 and 3 × 104), and an
EdU incorporation assay was performed on day 7. EdU (10mM) was
added to the cells for 2 h, after which the cells were harvested, stained
with the live/dead exclusion marker Ghost-Dye-Violet450 (TONBO,
Cat.13-0863), and with anti-CD45-FITC (Miltenyi Biotec, Cat.130-110-
658). EdU incorporation was detected using the Click-iT Plus EdU Flow
Cytometry Assay Kit according to the manufacturer’s instructions
(ThermoFisher, Cat. C10634). Samples were then acquired using a
CytoFlex-S (Beckman Colter), macrophages were gated based on
positive staining for CD45, and fibroblasts were called based on
negative staining for this marker. Analysis was performed with
FlowJo 10.7.1.

Collagen deposition measurement in-vitro
Fibroblasts and macrophages were seeded in mono-culture or co-
culture (0, 1 × 103 and 1 × 104 cells), in 200ul ofDMEM, in collagen I pre-
coated 96-well plates. Per experiment, at least two technical replicates
per condition were used. Cells were left for 7 days in culture to assure

confluence before performing collagen content measurement using a
commercial Sirius Red collagen staining kit (Chondrex, Cat.9046), and
measured by Cytation 5-Imaging Reader (Biotek). The collagen mea-
surements obtained are normalized to the total protein amount
per well.

Cell size determination
Fibroblasts and macrophages were seeded in mono-culture at 3 × 104

cells in 8-well slide-containing chambers (Ibidi, Cat.80826) that were
pre-coated with collagen I. After 7 days, the cells were fixed in 4%
paraformaldehyde (PFA) for 10min at RT, washed twice with PBS (-/-),
and stained with DAPI (to mark nuclei), and CellMask™ Deep Red
plasmamembrane stain (ThermoFisher, Cat.C10046), according to the
manufacturer’s protocol. Images were taken with a Nikon Eclipse Ci
microscope ×10 objective. Segmentation was done using Cellpose47

with a Flow threshold of 0.8 and a cell probability threshold of −1 on
the DAPI and CellMask channel. The cells that touched the borders
were removed, and the cell sizes were quantified byQuPath48 using the
Cellpose segmentation.

Bulk RNA-seq
We performed RNA-sequencing of the co-cultures at the ON state. As
control, we analyzed mono-cultured fibroblasts and macrophages.
Fibroblasts fromdifferent organs andBMDMswere seeded at a density
of 3 × 105 cells into a precoated 6 well plate with collagen. The co-
cultures and the mono-cultures were grown in DMEM or 4T1-CM (as
described above) and were collected after 7 days. The macrophages
mono-cultured were collected at day 0 since they cannot maintain
themselves in control medium, and at day 7 in cancer CM. 1 × 104 cells
of fibroblasts and BMDMs were sorted using the FACSMelody instru-
ment (BD-biosciences). All live single cells (PI negative cells after debris
and doublet exclusion) were sorted. Cells staining positive for anti-
CD11b-Pacific blue (Biolegend, Cat.101224) and anti-F4/80-APC Cy7
(Biolegend. cat.123117) were sorted as macrophages, and cells staining
negative for these markers were sorted as fibroblasts. The cells were
collected directly into lysis/binding buffer (Life Technologies), and
mRNA was isolated using Dynabeads oligo (dT) (Life Technologies).
Library preparation for RNA-seq (MARS-seq) was performed as pre-
viously described49. Libraries were sequenced on an Illumina NextSeq
500 machine and reads were aligned to the mouse reference genome
(mm10) using STAR v.2.4.2a50. Duplicate reads were filtered if they
aligned to the same base and had identical UMIs. Read count was
performed with HTSeq-count51 in union mode, and counts were nor-
malized using DEseq252. Hierarchical clustering was carried out using
Pearson correlation with complete linkage, and on differentially
expressed genes, which were filtered with the following parameters:
basemean >5; |log fold change| > 1; FDR <0.1. Pathway analysis was
performed usingMetascape27, significant pathwayswere determined if
P <0.05, and FDR <0.05.

ssGSEA analysis
The ssGSEA analysis (Supplementary Data 4) was performed using
GenePattern28 on the RNAseq data. The gene signatures of protumori-
genic TAMs29 and in-vivo CAFs30 (GEO can be accessed via #GSE195858
and #GSE195865) is based on published data and appears in Supple-
mentary Data 4. The parameters used were gene.set.selection =ALL;
sample.normalization.method= rank; weighting.exponent =0.75; min.-
gene.set.size = 10; combine.mode = combine.add.

Ligand-receptor analysis for scRNA-seq data processing and
cluster annotation
We used published scRNA-seq of breast cancer patients14 and pub-
lished scRNA-seq of 4T1 mouse breast cancer model16. In the human
dataset, for cancer samples we focused only on the primary tumors
and excluded the lymphnode samples. Additionally, since themajority
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of samples (32) were from female patients and only 2 samples were
from male patients we excluded the male samples from our analysis.
For normal tissue control, we analyzed 13 samples defined as normal.
We did not analyze the preneoplastic BRCA1+/– samples. We filtered
cells by cutoffs of gene and unique molecular identifier count greater
than 200 or lower than 10,000, and a mitochondrial percentage less
than 20%. We used the Seurat v.4.0.053 method in R v.4.2.0 for data
normalization, dimensionality reduction, and clustering, using default
parameters. Formouse data we subgroupedmyeloid, CAFs and cancer
clusters by knownmarkers that were differentially expressed between
the cultures. For human data, the Normal and male samples were
removed from the analysis, we analyzed 32 patients. Shared nearest
neighbor modularity optimization-based clustering was then used.
Cancer, Myeloid and CAF cell clusters were selected based on classic
cell markers, and selected for downstream analysis. Based on the
clusters on the single cells datawe usedCellchat15 algorithm to identify
the total score interactions. To further identify potential ligands
between the CAF and TAMs we used NichNet31 algorithm.

Analysis of RARRES2 Expression in scRNA-seq
We used published scRNA-seq of breast cancer patients14 and reana-
lyzed it as described above. We present the RARRES2 gene in SCT
normalization in all the clusters. To compare the expression of
RARRES2 in normal versus CAF we integrated the normal patients and
subset only the fibroblast cluster based on fibroblast marker (DCN,
COL1A1), then calculated the RARRES2 expression per patient. In
addition, based on this expression, we correlated the enrichment of
the protumorigenic TAM signature29 per patient.

Normal epithelial cell conditioned medium
Normal epithelial cells were isolated using a similar protocol as
described above for the normal mammary fat pad. After one week in
culture, the cells were trypsinized and resuspended in ice-cold MACS
buffer (PBS with 0.5% BSA). The samples were pelleted by centrifuga-
tion at 350g for 5min at 4 °C, incubated with anti-EpCAM (Miltenyi,
130-105-958)magnetic beads, transferred to LScolumns (Miltenyi, 130-
042-401), and enriched for epithelial cells. Then, the cells were seeded
at a concentration of 300 × 103 cells/ml in 6 cmplates. After 24 h, when
the cells had formed amonolayer, themediumwas replacedwith fresh
medium. After 48 h, the medium was collected, filtered through a
0.22μm strainer, and diluted with DMEMwith 20% FBS at a ratio of 1:1.

Macrophage count in the presence of normal epithelial and
cancer CM
Mono-culturemacrophageswere cultured at a density of 1 × 105 cells in
a pre-coated 96-well plate with collagen, in the presence of control
medium (DMEM), 4T1 cancer cell CM, or normal epithelial cell CM,
whichwere both diluted in a ratio of 1:1 with controlmedium. The cells
were cultured for three days, and then harvested using cell titer Glo
(Promega, G7572), according to the manufacturer’s instructions.
Luminescence was then measured using a plate reader.

Isolation of CAFs from 4T1-GFP tumors
4T1-GFP cell line was orthotopically injected into themammary fat pad
of 8 week old BALB/c female mice (1 × 105 cells in 50 µl PBS). After
4 weeks, the mice were sacrificed and the tumors were harvested and
dissociated in gentle MACS dissociator with enzymatic solution con-
taining 3mg/ml collagenase (SigmaAldrich, 11088793001) and0.1mg/
ml Dnase in RPMI 1640 using the standard program for solid tumors.
To receive single cell suspension, the digested cell suspension was
filtered through 70 µ strainer with ice-cold PBS. The cells were pelleted
and lysed in red blood cell lysis buffer and depleted of CD45+ and
EpCAM+ cells as described above. Cells were stained for anti-CD45
FITC (Miltenyi 130-110-658), anti-CD31 FITC (Miltenyi 130-123-675), and
anti-EPCAM FITC (Miltenyi 130-117-752), anti-PDPN APC (Biolegend

127410) and anti-Ly6C Pacific Blue (Biolegend 128014). See Supple-
mentary Table 3 for antibodies information. Dead cells were excluded
using PI Staining (Sigma Aldrich, P4170). CAF were gated based on PI-,
CD45-, CD31-, EpCAM-, PDPN+. For sorting the CAF subpopulation, we
used LY6C+ as amarker for iCAF and LY6C- as amarker formyCAF. The
cells were sorted using a FACSAria Fusion (BD Biosciences) into FACS
tubes containing 1ml complete DMEM media. The maximum tumor
volume of 1000 (mm)3 was not reached in any experiment.

ELISA assay
The4T1-GFP cell line and sortedCAFswere plated at a density of 7 × 104

cells in 96-well plates precoated with collagen, and cultured in RPMI
1640 supplemented with 10% FBS. After three days, the plate was
centrifuged and the CM was collected. RARRES2 was detected in the
CM using a mouse Chemerin/RARRES2 kit, following the manu-
facturer’s instructions (Boster, EK1330).

Migration assay
A total of 2.5 × 105 BMDM were seeded into 8 µm transwell inserts
(Merck, PTEP24H48) in a 24-well plate and cultured for 24 h in DMEM
with 2% FBS. 4T1-GFP CM was added to the bottom chamber with or
without 3 nM recombinant RARRES2 (R&D, 2325-CM-025). After incu-
bation, the inserts were removed, and the plate was centrifuged for
10min at 4 °C. The medium was aspirated, and the cells were lysed
using Glo lysis buffer (Promega, E2661) according to the manu-
facturer’s instructions. Luminescence was measured in relative light
units using a plate reader.

Proliferation assay
A total of 1 × 104 BMDMwere seeded in a 96-well plate and cultured for
24 h inDMEMwith orwithout 3 nM recombinant RARRES2 (R&D, 2325-
CM-025). The cells were lysed using cell titer Glo (Promega, G7572)
according to the manufacturer’s instructions. Luminescence was
measured in relative light units using a plate reader.

Real-time PCR
RNA isolation was carried using the TRIzol Reagent, based on the TRI
reagent user manual (Biolab, 959758027100). Reverse transcription
was done by High-Capacity cDNA reverse transcription kit (Cat
4368814, Thermo Fischer Scientific) according to the manufacturer’s
instructions. Quantitative RT–PCR analysis was performed using Fast
SYBR Green Master mix (Applied Biosystems, 4385610) and data was
normalized to the house-keeping gene HPRT. See Supplementary
Table 2 for Primers list.

Network motif analysis
The analysis began by constructing a weighted directed graph using
the full interaction matrix as an adjacency matrix. Weak interactions
that collectively contributed to 10% of the total interaction weights
were excluded, resulting in a networkwith 30 edges. The root nodewas
chosen as the node with the highest weighted outdegree. To detect
2-node motifs we used the “IGLADFindSubisomorphisms” function
from the Mathematica package IgraphM to identify and enumerate all
2-cell interaction subgraphs thatwere isomorphic to the sevenpossible
2-node motifs. The average weight per edge was calculated for each
subgraph instance. Summing the weight averages within each sub-
graph class enabled comparison between different subgraph classes.
Todetermine the statistical significance of the identified subgraphs, we
generated 10,000 degree-preserving randomnetworks by rewiring the
connections within the original network using the “IGRewire” function.
Self-loops were allowed during the rewiring process. The rewiring
process preserves the in-degree and out-degree of each node of the
original network. The weights were randomly permuted. In each of the
randomized networks, the subgraph scoring procedure was repeated
for the various subgraph classes. The resulting distribution of scores
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was used to calculate the z-score for each subgraph in the real versus
randomized networks. Subgraphs with a z-score exceeding 1.65 were
considered statistically significant. The search for 3 and 4 node motifs
follows a similar procedure.

Mathematical modeling of fibroblast-macrophage circuit
The goal of the modeling was to infer the essential factors that influ-
ence the fibroblast-macrophage circuit based on the cell count data,
and to compare circuits in different contexts. These goals required a
model with a minimal number of parameters to avoid overfitting. We
therefore used steady-state assumptions for growth factor con-
centrations, leaving equations for the slower changes in cell numbers.
We also incorporated detailed biochemical reactions17,24 into aminimal
number of effective interaction terms. These assumptions yielded a
simple model for the rate of change of cell population, X , which is a
balance of proliferation and removal at rates pX and rX , respectively:

dX
dt

=pXX � rXX ð1Þ

We describe the fibroblast-macrophage circuit by two such equations,
one for each cell type (X = F forfibroblasts and X =M formacrophages).
Fibroblasts andmacrophages are removed at constant rates, rF and rM ,
respectively. Autocrine and paracrine interactions influence the
proliferation rate, pX , of each cell population through exchange of
growth factors ðGÞ. Proliferation is limited at high cell concentrations by
resources in themedium and by contact inhibition. To account for this,
we used a carrying capacity term (KX ) that makes the proliferation rate
decrease with growing cell population. This logistic term originates
from population ecology, and was verified for fibroblasts in vitro in
ref. 17. Combining these effects yields the following equations:

pX =μXGX ð1�
f ðFÞ
KF

Þ ð2Þ

dGX

dt
=αXX f ðX Þ+αYX f ðY Þ � rGX

GX ð3Þ

Equation (3) describes the dynamics of the growth factor for cell
population X . αXX is the autocrine rate and αYX is the paracrine rate
(Y denotes the other cell population). rGX

is the removal rate of growth
factor GX . The timescale of the growth factor dynamics is much faster
compared to the timescale of the cell turnover. Thus, we can solve the
steady state of Eq. (3) (a quasi steady state solution):

GX =
αXX

rGX

f ðX Þ+ αYX

rGX

f ðY Þ ð4Þ

and substitute it in Eq. (2) for the proliferation rate of each of the cell
populations:

pF = ðpFF f ðFÞ+pMFf ðMÞÞ � 1� f ðFÞ
KF

� �
ð5Þ

pM = ðpFMf ðFÞ+pMM f ðMÞÞ � 1� f ðMÞ
KM

� �
ð6Þ

Where pFF =
μFαFF
rGF

,pMF =
μFαMF
rGF

,pMM = μMαMM
rGM

,pFM = μMαFM
rGM

are parameter

combinations that represent the autocrine and paracrine effects of the
cell populations on each other.

These cellular interactions depend also on the population size,
f ðX Þ. Exploration of the data favored f ðX Þ= logðX + 1Þ, where log is the
natural logarithm, which represents a nonlinear relationship with
diminishing relative effects of large cell populations. This nonlinear

relationship provided better fits than a linear one, f ðX Þ=X (Supple-
mentary Fig. 7) Adding 1 inside the log is common when working with
counts, in order to avoid infinity at zero cells. The function f resembles
the saturation effect inMichaelis-Menten (MM) interactions.We chose
not to use MM expressions to keep the lowest number of parameters
possible, because eachMM term requires an additional ‘halfway point’
parameter. Using log means that carrying capacities are in log cell
numbers.

Statistical inference
Each cell-population equation has four parameters: the rates of auto-
crinepXX andparacrinepXY interactions, the rate of cellular removal rX ,
and the carrying capacity KX . We sought to infer these parameters
from the cell count measurements.

We divided Eq. (1) by the population size (X) to obtain the per-
capita growth rate, which is also the logarithmic derivative:
1
X
dX
dt = d logX

dt =pX � rX . In order to fit the data we approximated the
derivative as the change in cell population over the experimental time
interval (ΔT): d logX

dt ’ Δ logX
ΔT = logðX ðt +ΔTÞÞ�logX ðtÞ

ΔT . Reordering the equa-
tion gives:

logðX ðt +ΔTÞÞ ’ ðpX � rX ÞΔT + logX ðtÞ ð7Þ

Taken together, each cell population number at day 7, X7, can be
modeled by its number and the other cell population number at day 3,
X3 and Y 3, where ΔT =4 days:

logðF7Þ ’4 ðpFF logðF3 + 1Þ+pMF logðM3 + 1ÞÞ � 1� logðF3 + 1Þ
KF

� �
� rF

� �

+ log F3

ð8Þ

logðM7Þ ’4 ðpFM logðF3 + 1Þ+pMM logðM3 + 1ÞÞ � 1� logðM3 + 1Þ
KM

� �
� rM

� �

+ logM3

ð9Þ

Each arrow from the experimental phaseportrait is one sample for
the fitting procedure. N arrows in a given condition provide N samples
that are used to infer the 8 parameters of the corresponding model.
The head of the arrow (counts in day 7) is used as the dependent
variable, and the arrow’s tail (counts in day 3) serves as the indepen-
dent variable according to the mechanistic structure of our model.

Removal rates and carrying capacities were constrained to be
positive and thus estimated by the Trust Region Reflective (TRF)
method, a nonlinear least-squares approach54. We used the Python
implementation of this algorithm, curve_fit55.

The experimental noise in thedata led to uncertainty inparameter
estimations. To estimate this, we bootstrapped (resampled the data
with returns) the measurements 5000 times and inferred the para-
meters for each draw by the TRF algorithm. This provided a distribu-
tion for each parameter accounting for uncertainty and experimental
noise. We use the parameter distributions to calculate distributions of
contrasts between parameters from different conditions. Statistical
significance of parameter difference was determined based on the
percentile of zero (no difference) within the contrast distribution. We
also used PyDREAM26, a Bayesian tool for parameter inference, to
validate our approach (Supplementary Fig. 4).

The circuit equations with inferred parameters provided stream-
lines on a theoretical phase portrait. We calculated the nullclines,
defined as the set of points in the phase spacewhere there is no change
in the population of one cell type (dF/dt = 0 and dM/dt = 0). The
intersections between these nullclines provided the fixed points of the
system (Supplementary Fig. 3g, h). The net growth rate of each cell

Article https://doi.org/10.1038/s41467-023-41518-w

Nature Communications |         (2023) 14:5810 14



type from themodel was displayed as heatmaps (Fig. 3h–k), where the
growth rate changes sign at the appropriate nullcline.

Autocrine threshold for maintaining fibroblast population
Under cancer CM conditions, macrophages have no inferred effect on
fibroblasts growth. Therefore, the fibroblast equation is:

dF
dt

= F pFF f ðFÞ � 1� f ðFÞ
KF

� �
� rF

� �
ð10Þ

Fibroblast population crashes when dF
dt <0. Thus:

�pFF

KF
f 2ðFÞ+pFF f ðFÞ � rF<0 ð11Þ

To eliminate fibroblast’s non-zero steady states and make their
number collapse in the entire phase space, inequality (11) should hold
for any F . This happens when pFF <

4rF
KF
.

Statistical analysis
Statistical analysis and visualization were performed using R (Versions
3.6.0 and 4.2.0, R Foundation for Statistical Computing Vienna, Aus-
tria) and Prism 9.1.1 (Graphpad, USA). Statistical tests were performed
as described in each Figure legend. In the Bulk RNA-seq, three libraries
(one sample of mono-cultured fat fibroblasts and two samples of
mono-cultured mammary fibroblast) were excluded due to technical
problems with sequencing, as no reads were detected. In Fig. 5i, j one
patient exhibited values more than 4 standard-deviations of their
group mean in the RARRES2 expression, and was therefore defined as
an outlier and excluded from the analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The breast cancer scRNA-seq datasets of human14 and mouse16, which
were used in this study, are available on the Gene Expression Omnibus
(GEO) with accession G SE161529 and at https://datadryad.org/stash/
dataset/doi:10.6071/M3238R. Bulk RNA-seq data that support the
findings of this study were deposited in GEO: G SE218196. The gene
signatures of protumorigenic TAMs29 and in-vivo CAFs30 can be
accessed via GEO: G SE195858 and G SE195865. The remaining data are
availablewithin theArticle, Supplementary InformationorSourceData
file. Source data are provided with this paper.

Code availability
We used Mathematica 13.3 for the network motif analysis. Phase por-
traits and parameter inferenceof the cell circuits were calculated using
Python 3.7.4 and scipy package 1.7.3. Scripts and data needed to
reconstruct the analysis and figures https://github.com/tomermilo/
fibroblast_macrophage_circuits/tree/master.
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