
Article https://doi.org/10.1038/s41467-023-41512-2

First fully-automatedAI/MLvirtual screening
cascade implemented at a drug discovery
centre in Africa

Gemma Turon 1,4, Jason Hlozek 2,4, John G. Woodland 2,3, Ankur Kumar 1,
Kelly Chibale 2,3 & Miquel Duran-Frigola 1

Streamlined data-driven drug discovery remains challenging, especially in
resource-limited settings. We present ZairaChem, an artificial intelligence (AI)-
and machine learning (ML)-based tool for quantitative structure-activity/
property relationship (QSAR/QSPR) modelling. ZairaChem is fully automated,
requires low computational resources and works across a broad spectrum of
datasets. We describe an end-to-end implementation at the H3D Centre, the
leading integrated drug discovery unit in Africa, at which no prior AI/ML
capabilities were available. By leveraging in-house data collected over a dec-
ade, we have developed a virtual screening cascade for malaria and tubercu-
losis drug discovery comprising 15 models for key decision-making assays
ranging from whole-cell phenotypic screening and cytotoxicity to aqueous
solubility, permeability, microsomal metabolic stability, cytochrome inhibi-
tion, and cardiotoxicity.We show how computational profiling of compounds,
prior to synthesis and testing, can inform progression of frontrunner com-
pounds at H3D. This project is a first-of-its-kind deployment at scale of AI/ML
tools in a research centre operating in a low-resource setting.

The cost of bringing newmedicines from the bench to the bedside has
risen steadily since the 1970s1. Recent estimates suggest amedian cost
of $1.3 billion per drug2 with research and development taking an
average of 10 years3. To avoid costly failures, the drug discovery
industry has turned to artificial intelligence (AI) and machine learning
(ML) to accelerate research timelines and reduce attrition rates, with
investments in AI/ML soaring in the last five years4. The application of
AI/ML aims to transform drug discovery from a slow, sequential, high-
risk process to a fast, finely-tuned and integrated pipeline that expe-
dites the delivery of novel clinical candidates with reduced risk of
failure5. Amongst other applications, AI/ML is now embedded within
quantitative structure-activity/property relationship (QSAR/QSPR)
modelling, boostingperformance andproviding additional insights for
drug design6,7.

The promise of AI/ML for biomedicine extends to the field of
infectious diseases, which are currently underrepresented in drug
discovery portfolios8. Infectious diseases predominantly afflict lower-
to-middle-income countries (LMICs), most of which are situated in the
Global South. For example, Africa carries over 95% of the 240 million
annual global cases of malaria9 and 25% of global deaths from
tuberculosis10. Historically, efforts to tackle these challenges have
principally occurred in the Global North; consequently, African drug
discovery efforts have largely been dependent on international fund-
ing agencies with programmes driven from abroad. AI/ML methods
offer an opportunity to revitalise and expedite drug discovery projects
conducted in low-resource settings; however, a lack of data science
expertise and limited access to computational resources hinder the
uptake of AI/ML at research institutions and universities in LMICs11. It is
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anticipated that lowering these barriers may lead to important scien-
tific contributions from those countries that disproportionately suffer
from the bulk of infectious diseases, a milestone towards their
eradication.

Since its launch in 2010, the Holistic Drug Discovery and Devel-
opment (H3D) Centre at the University of Cape Town in South Africa
has made significant advances in innovative drug discovery projects
and infrastructure development, intimately aligned with capacity
strengthening across the African continent12. This includes the dis-
covery of the first-ever small-molecule clinical candidate, for any dis-
ease, researched on African soil by an international team led by an
African drug discovery centre13 which subsequently reached Phase II
human trials in African malaria patients. To advance its mission of
discovering and developing novel, life-saving medicines for infectious
diseases that predominantly affect African populations, H3D works
closely with the Ersilia Open Source Initiative (EOSI), a non-profit
organisation aimed at disseminating AI/ML methodologies applied to
urgent biomedical needs in LMICs.

Here we describe ZairaChem, an automated pipeline for AI/ML-
based QSAR/QSPR modelling, designed for fast and easy imple-
mentation in low-resource settings. We demonstrate the application of
ZairaChem to key assays in the antimalarial and antitubercular drug
discoveryprograms conducted atH3D.TheAI/MLmodels are arranged
in the form of a virtual screening cascade that mirrors the progression
of compounds in a ‘real-world’ experimental setting. Virtual screening
is a critical tool in drug discovery, allowing for the identification of new
hits and the prioritisation of compounds for testing, resulting in a
significant reduction in experimental attrition rates. The developed AI/
ML assets include models corresponding to whole-cell phenotypic
screening assays against Plasmodium falciparum (Pf) and Mycobacter-
ium tuberculosis (Mtb), as well as common absorption, distribution,
metabolism, excretion and toxicity (ADMET) assays such as aqueous
solubility, microsomal metabolic stability and cardiotoxicity.

This is the first comprehensive AI/ML-based QSAR/QSPR virtual
screening cascade that, to our knowledge, has been brought to pro-
duction in a drug discovery setting on the African continent. Zair-
aChem can run on conventional computers and is fully automated,
requiring limited data science expertise and allowing for periodic
model updates with new data. We believe that this virtual screening
cascade, based on in-house data and free open-source software, has
the potential to set the basis for sustainable, affordable and scalable
drug discovery initiatives in the Global South.

Results
Available data and screening cascades at H3D
We have modelled two virtual drug discovery cascades focused on
identifying potential novel antimalarial and antituberculosis com-
pounds and their ADMET properties. We have selected assays repre-
sentative of each step of the experimental drug screening cascade and
for which H3D had sufficient available in-house data (i.e., at least 100
molecules), viz. whole-cell screening data against P. falciparum (NF54
and K1 strains) andM. tuberculosis (H37Rv strain), cytotoxicity against
two mammalian cell lines (CHO, HepG2), aqueous solubility, micro-
somal metabolic stability in human, mouse, and rat liver microsomes,
and permeability (Caco-2). Key assays for compound progression in
the cascadebut forwhichonly a small subset of datawas available (e.g.,
human cytochrome P450 (CYP) inhibition and hERG blockade) have
been developed using publicly-available data (see Materials and
Methods). Advanced drug metabolism and pharmacokinetics (DMPK)
assays have not been included in the virtual screening cascade at this
stage of implementation. Supplementary Table 1 lists a brief descrip-
tion of each assay, the number of compounds available, and cut-offs
used to obtain binary outcomes (1/0; active/inactive, soluble/not
soluble, etc.). Activity cut-offs were determined through consultation

with experts at H3D to ensure the relevance of model predictions for
projects across different disease areas.

Automated AI/ML modelling with ZairaChem
To streamline model development and facilitate adoption and main-
tenance of the AI/ML assets at H3D, we developed ZairaChem, an
automated AI/ML tool to train classificationmodels able to predict the
probability of “1” (typically an “active” assay outcome) of new com-
pounds, given only their chemical structures represented as SMILES
strings (Fig. 1a, Materials and Methods). In brief, molecules are repre-
sented numerically using a combination of distinct descriptors,
including physicochemical parameters (Mordred14), 2D structural fin-
gerprints (ECFP15), inferred bioactivity profiles (Chemical Checker16),
graph-based embeddings (GROVER17), and chemical language models
(ChemGPT). The rationale is that combining multiple descriptors will
enhance applicability over a broad range of tasks, ranging from aqu-
eous solubility predictions to phenotypic outcomes. Subsequently, a
battery of AI/ML algorithms is applied using modern automated
machine learning (AutoML) techniques aimed at yielding accurate
models without the need for human intervention (i.e., algorithm
choice, hyperparameter tuning, etc.). The AutoML frameworks
FLAML18, AutoGluon19, Keras Tuner20 and TabPFN21 were incorporated,
covering mostly tree-based methods (random forest, XGBoost, etc.)
and neural network architectures.

In order to demonstrate the applicability of the ZairaChem
pipeline to a broad chemical space as well as to a variety of
prediction tasks, we benchmarked the tool in the Therapeutics
Data Commons ADMET binary classification tasks22. Out-of-the-
box, ZairaChem models demonstrated state-of-the-art (SOTA)
performance across all classification tasks, scoring between 1st
and 4th in all benchmark datasets (Supplementary Table 2). Fur-
thermore, we compared the prediction performance of our in-
house activity models against models from the literature to assess
the potential impact of our tool at H3D over existing tools
(Supplementary Fig. 1). These external tools include predictors
for bioactivity available from the Ersilia Model Hub; namely, a
version of the malaria inhibition prediction (MAIP)23 model for P.
falciparum and ChemTB24 for M. tuberculosis, as well as
ADME@NCATS25,26 suite for ADME predictions for solubility,
microsomal stability in rat and human, and CYP inhibition
(CYP2C9, CYP2D6, CYP3A4). While all models provide hit
enrichment within the H3D chemical space, the ZairaChem pipe-
line enables the training of in-house models with internal data for
greater predictive power.

Figure 1 exemplifies ZairaChem applied to the H37Rv strain of
Mtb. As of November 2021, 3,244 molecules had been screened in this
assay at H3D, spanning a diverse chemical space (Fig. 1c). In total, 81
chemical series are represented, with 20 series covering 80% of the
molecules. Setting anMIC90 cut-off of 5 μMyields 483 actives available
for training theAI/MLmodel (Fig. 1b). 20%of the datawas held as a test
set. An ensemble of models was fitted based on the multiple small-
molecule descriptors, and performance was evaluated for eachmodel
individually (Fig. 1f). The outcome of models inside the ensemble was
aggregated in a consensus score estimating the probability of obser-
ving an “active” (1) assay outcome. Indeed, in the hold-out test set,
known active molecules scored higher than known inactive com-
pounds (Fig. 1d). Measured in the receiver operating characteristic
(ROC) space, the consensus score achieves an area under the ROC
curve (AUROC) of 0.92, higher than any of the individual classifiers
alone. In this case, adefault score thresholdof0.5 canbe established to
classify predictions as “actives” (1) and “inactives” (0). Based on this
threshold, the model predicted 90 active molecules from the test set,
of which 71 were true positives, corresponding to a precision of 78.9%
and a recall of 66.4% (Fig. 1h).
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Systematic AI/ML modelling of H3D screening cascades
We applied the ZairaChem pipeline to the experimental assays avail-
able at H3D (Fig. 2a and Supplementary Table 1). The resulting models
showed good performance (AUROC>0.7, Fig. 2b) and well-scaled
prediction scores within the [0-1] range for all in-house datasets: Pf
NF54, Pf K1, Mtb H37Rv, CHO, HepG2, aqueous solubility (Aq Sol),
Caco-2 permeability (Caco-2) and intrinsic clearance (CLint) for human
(H), mouse (M), and rat (R) microsomes (Fig. 2c, Supplementary Fig. 2
and Table 3). We observed that ZairaChem classifiers successfully up-
rank active compounds (Fig. 2d), with significant enrichment of hits
within the top 50 candidates (Fig. 2e). We found similar performance
for the remaining assays developed with in-house data beyond those
depicted in Fig. 2 (Supplementary Fig. 2 and 3).

Data points were scarce for key assays related to more advanced
stages of the screening cascade. Experiments related to drug meta-
bolism and off-target binding, such as interactions with cytochrome
P450 enzymes (CYPs) or inhibition of the hERG ion channel, are costly
and often not performed on-site for many drug discovery organisa-
tions. In the case of CYPs, we gathered bioactivity data for over 15,000
molecules available from the PubChem BioAssay27 and ChEMBL
databases28. We built AI/MLmodels for the CYP3A4, CYP2C9, CYP2C19
and CYP2D6 isoforms. Remarkably, except for CYP2C19, CYP models
built with public data were able to achieve good performance
(AUROC>0.65) in the H3D chemical space (Fig. 2b, d, Supplementary
Fig. 3, Table 3), assigning high scores to active (“1”, CYP inhibitors) and
low scores to inactive compounds (“0”, no CYP inhibition observed)
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(Fig. 2c and Supplementary Fig. 2). These models successfully enable
the selection of compounds that are not likely to interact with the
selected CYPs (10 bottom-ranking compounds; Fig. 2e, Supplementary
Fig. 4 and Table 4).

In addition to publicly-available datasets, pre-trained AI/ML
models are becoming more frequent in the scientific literature. The
coremission of EOSI is to collect such public models in a unified, easy-

to-use repository named the Ersilia Model Hub29 (https://ersilia.io/
model-hub). As of May 2023, the Ersilia Model Hub contains over one
hundredmodels for drug discovery, with a focus on infectious disease
research. To demonstrate the potential of this resource, we chose to
fetch a hERG blockade prediction model, corresponding to
CardioToxNet30 and also available through the Ersilia Model Hub. This
model was used “as is”, without further fine-tuning with H3D data, and
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showed excellent accuracy (AUROC=0.852) on H3D compounds
(Fig. 2b, d, Supplementary Table 3), with good discriminative scores
between active (1, cardiotoxic) and inactive compounds (0, non-car-
diotoxic) (Fig. 2c), as well as an enrichment of inactivity in the bottom-
ranked 50 compounds (Fig. 2e).

Furthermore, tomeasure the advantage of using AI/MLmodels to
prioritise compounds for experimental screening, we have calculated
the hit enrichment potential of each model. Overall, assays where an
“active” outcome is desired (Pf NF54, Pf K1, Mtb H37Rv, Aq Sol, and
Caco-2) showbetween 25% and 70%hit rate improvement in the top 50
molecules. For example, out of 50 randomly-selectedmolecules in the
Pf NF54 dataset, by chance, 10 would be active (20%); however, if we
rank thedata according to theAI/MLmodel scores, 45molecules (90%)
are found to be active (IC50 < 0.1μM). Assays where the desired out-
come is “inactivity” showahit rate improvement for inactivemolecules
of 18% to 46% in the bottom 50 molecules (for cytotoxicity, clearance
and hERG models) or bottom 10 molecules (for CYP P450 models) as
ranked by the AI/ML model score (Supplementary Table 3, Supple-
mentary Figs. 4 and 5).

Finally, we demonstrate the ability of the ZairaChem pipeline to
facilitate transference from literature data towards a narrower che-
mical space. We show how models trained on external datasets (P450
CYPs models) can improve their performance when in-house data
points are included in the training set. Notably, the AUROC of the
worst-performing models on H3D data (CYP2C19 and CYP2D6) both

improve upon the addition of internal data points (Supplemen-
tary Fig. 6).

AI/ML performance by chemical series
In the early stages of a drug discovery project, derivatives of a com-
pound which retain the structural core, or pharmacophore, are
designed and synthesised to optimise the biochemical and bioactivity
properties of that chemical series. Focusing on Mtb and Pf bioactivity
prediction, we investigated how many molecules of a given chemical
series were needed to illuminate that space. We trained sets of models
on bioactivity data and gradually increased the number of training
points from specific chemical series to observe the effect of increasing
“local” training data on model performance. As expected, the pre-
dictive potential for a chemical series improved with an increase in
local data density, where approximately 30 molecules from a given
series provide a good starting point to produce predictive models
(Fig. 3c, g). Secondly, we measured the impact of the availability of
global data on model quality at the chemical series level (Fig. 3d, h) by
comparing models trained on 100 series-specific compounds alone to
training sets that also included the broader Pf andMtbH3D libraries. In
general, the addition of more data, even if corresponding to a more
general chemical space, improves model performance for analogues
within a chemical series. Series 2 of Mtb, the exception to this trend,
had very few active compounds available for training and is also
structurally distinct from the remainder of the H3D library for M.
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Fig. 3 | Model performance within chemical series corresponding to novel
regions of chemical space. PCA and UMAP projections of the chemical space of
the H3D Centre’s library for specific chemical series in the malaria (top row) and
tuberculosis (bottom row) disease areas. a, e PCA preserves the global distribution
of chemical space while b, fUMAP emphasises the clustering of structurally similar
data points. c, g Median AUROC scores from a five-fold cross-validation are mea-
sured for training sets with an incremental number of local training points for each
series, respectively. d, h The percentage of change towards a perfect model

(AUROC= 1) between amodel trainedon adataset that includes compounds froma
more general chemical space versus a model trained on series-specific data alone
(see calculation in Methods). The median AUROC score from a five-fold cross-
validation, for models trained with both 100 series-specific compounds and global
data, is plotted with a circle corresponding to the values of the right-hand-side
y-axis. Error bars indicate ± standarddeviation (n = 5). Source data are provided as a
Source Data file.
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tuberculosis, leading to poor model performance that the addition of
global data could not rescue.

Application to an unseen collection of compounds
To demonstrate the effectiveness of the virtual screening cascade for
de novo screening ofmolecular libraries, we reproduced the discovery
of a potent antiplasmodium compound at H3D from a series of 2,4-
disubstituted imidazopyridines31. In this study, the authors identified
two initial hits with moderate antiplasmodium activity against asexual
blood stage parasites (IC50 = 0.24μM and 0.49μM, respectively) and
derived a series of 65 compounds for experimental testing. All mole-
cules were tested against asexual blood stage drug-sensitive (NF54)
anddrug-resistant (K1) Pf strains. Their cytotoxicity inCHOcells aswell
as aqueous solubility (pH 6.5) were experimentally determined. In
addition, some molecules progressed further in the cascade and were
tested for cardiotoxicity risk (hERG blockade) and microsomal meta-
bolic stability (Mouse CLint). To validate the models in the context of
this series, we removed these compounds from the training sets of the
relevant AI/MLmodels in the virtual screening cascade (Pf NF54, Pf K1,
CHO, Aq Sol at pH 6.5, Caco-2, CLint Human, Rat, and Mouse). Zair-
aChem models show good performance (AUROC>0.75) on the
experimentally validated library (Fig. 4a). Next, we leveraged the
model scores to create visual fingerprints for ease of identification of
potential hits: those with high scores for the desired activities (dark
red) and low scores for the undesired activities (light blue) (Fig. 4b).
We selected a few molecules that showed the desired pattern (Fig. 4c)
and compared their predicted activity from the ZairaChem models
with the experimental results (Fig. 4d). Compound 1, the initial hit of
the series, is also shown for reference. We demonstrate that AI/ML
models allow for the selection of candidates with high chances of
progression in the cascade (compounds 37 and 55) and, conversely,
molecules with undesired side effects could be discarded prior to
experimental testing, despite their high bioactivity against Pf (com-
pounds 22 and 58). Indeed, compound 37, one of the molecules
selected by our model predictions for its high activity against Pf and
low toxicity profile, was the lead compound from this study, showing
in vivo efficacy in the humanised SCID NSG mouse malaria infec-
tion model.

Application to active research projects
Finally, to demonstrate the impact of these AI/ML models on the
drug discovery pipeline at H3D and to highlight the capacity of these
tools to facilitate the identification of lead-like compounds, we
applied the virtual screening cascade to two active medicinal
chemistry programmes in a ‘real-world’ prospective study (Fig. 4e)
following model deployment. These programmes, in the lead opti-
misation and hit-to-lead stages, respectively, are represented by the
naphthyridine and pyrazole chemotypes (Fig. 4f) which target the Pf
phosphatidylinositol 4-kinase andmycobacterial membrane protein
large 3 transporter, respectively. To build confidence in our model
predictions before adoption as a tool to direct chemical synthesis
efforts, all new derivatives from both chemical series were assessed
using our virtual screening cascade. We compared the model scores
of the previously-unseen compounds to the corresponding experi-
mental values for the assays once experimental data were obtained.
Predictions for the novel naphthyridine and pyrazole compounds
from the activity models (Pf NF54 and Mtb, respectively) and solu-
bility classifiers (at pH 6.5 and 7.4, respectively) showed broad
agreement (green) with the respective measured assay values, with
only limited instances where the model produced a confident yet
incorrect prediction (dark purple). The corresponding swarm plots
(Fig. 4g) show good separation between confirmed actives and
inactives, illustrating how our AI/MLmodels can efficiently prioritise
novel compounds and facilitate faster elucidation of structure-
activity relationships in a resource-constrained environment.

Indeed, in terms of precision (P) and recall (R) at a permissive pre-
diction cut-off (active if > 0.3), we found, for the naphthyridine
series: Pf NF54 P = 0.333, R = 0.529; solubility P = 0.648, R = 0.946;
and, for the pyrazole series: Mtb P = 0.577, R = 0.872; solubility
P = 0.727, R = 1.0; further model performance metrics at different
prediction cut-offs are presented in Supplementary Table 5. In
addition, models showed good prospective performance across
broader H3D chemical space when validated on all novel com-
pounds synthesised in the year following model development
(Supplementary Fig. 7). Therefore, this ‘real-world’model validation
demonstrates the ability of our AI/ML models to identify analogues
that are more likely to progress through the H3D drug discovery
pipeline, accelerating the discovery of promising compounds across
chemical series and disease areas.

Discussion
We have introduced ZairaChem, a robust and parameter-free AutoML
tool that makes use of a range of chemical descriptors in combination
with an ensemble of AI/ML algorithms to train QSAR/QSPR models
with SOTA performance out-of-the-box. Automation is key to ensure
continuous integration and deployment of the AI/ML assets in an
environment such as H3D, where data science capacity is (as yet)
limited. We applied ZairaChem systematically to the existing drug
discovery pipeline at H3D, yielding 15 production-ready models cor-
responding to key assays related to antimalarial and antitubercular
screening cascades. ZairaChem models, whether trained on in-house
data or from public data sources, showed excellent performance, with
most AUROC scores above 0.75. The resulting hit enrichment reduces
attrition rates of the experimental pipeline, potentially accelerating
the bench-to-bedside turnaround time. For example, here we show
that by testing just 50 compounds of the whole-cell screening data, we
find four times more active compounds against Pf (NF54 strain) and
Mtb (H37Rv strain) compared to testing the same number of com-
pounds selected at random. This is particularly relevant in the context
of research conducted within LMICs, where resources are typically
constrained.

Subsequent analysis of local (series-specific) regions of the che-
mical space explored how model performance for specific chemical
series is impacted by incrementally adding training compounds from
the same chemical series. With limited local training data, model
quality varies significantly from series to series; however, having
approximately 30 local molecules within a chemical series appears to
be a useful rule-of-thumb to produce models that can prioritise com-
pound designs for further rounds of synthesis. Additional data, whe-
ther local or global, generally further enhances model performance.

Finally, we have demonstrated how AI/ML-aided decision-making
can reduce attrition rates and accelerate project progression during de
novo library screening by recreating a study performed at H3D in
2020. The visual representation of compounds’ colour-vectors, based
on AI/ML model scores, allowing for the quick identification and
selection of the best compounds (highly potent against Pf with good
solubility and low toxicity) for experimental testing. We further
extended ourmodel validation to the available prospective data in the
year following the initial model training. The models showed good
capacity for prioritising novel compounds from active chemical series
across two different disease areas, expediting the discovery of pro-
mising drug leadswith reduced resource expenditure. In summary, the
ZairaChemvirtual screening cascadewill allow scientists to interrogate
a broader chemical space and better prioritise compounds for synth-
esis and testing by taking into account predicted assay outcomes that
might typically only be considered later in a drug discovery
programme.

ZairaChem is a highly modular pipeline that, contrary to tradi-
tional ‘static’ methods, can be extended to cover specific tasks. The
version described here is limited to single-output binary classification
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tasks, but the framework is prepared to deal with regression (i.e.,
continuous data) tasks. Likewise, although ZairaChem is now being
extended in new directions, including interpretability, data augmen-
tation for low-data regimes, and confidence estimation, these func-
tionalities were not implemented in the current study, which is
primarily focused on overall assessment of hit rates and predictive
performance. Finally, ZairaChem can natively incorporate any AI/ML

model available from the Ersilia Model Hub29, including modern
descriptors, embeddings extracted from pre-trained models such as
GEM (geometry-enhanced molecular representation)32, or models fit-
ted to a broad range of bioactivities using, for instance, the FS-Mol
training set33. Here, we chose four representative descriptors corre-
sponding to physicochemical properties, classical 2D structure fin-
gerprints, advanced graph embeddings, and bioactivity signatures.
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Improvement or extension of this default set is outside the scope of
the study; however, this could serve to further improve the perfor-
mance of the models presented here. It is worth noting that, in addi-
tion, the Ersilia Model Hub contains a growing number of predictive
models for specific assay outcomes, developed either by third parties
or by EOSI using publicly available data (e.g., from ChEMBL34 or Pub-
Chem BioAssay27). For example, the MAIP antimalarial model23 is
readily accessible, as well as popular ADMET servers (SwissADME,
ADMETlab 2.0)35,36 and hERG inhibition models. ZairaChem can treat
the outcomeof thesemodels as additional features for prediction. The
version of the MAIP model in the Ersilia Model Hub, for instance, can
predict H3D Pf NF54 outcomes with AUROC=0.73 as a standalone
estimator. Thus, the ZairaChem framework offers a unique opportu-
nity to transfer knowledge from the public domain to in-house mod-
elling efforts.

In conclusion, we have successfully developed and deployed an
AI/ML-based QSAR/QSPR virtual screening pipeline based completely
on open-source code and conventional computing capacity. All Zair-
aChem pre-trained H3D models are available for download and light
versions can be explored in a web-based GUI (https://bit.ly/h3d-app).
This is the first instance of a virtual screening cascade built with data
produced on and for the African continent. We hope that the work
presented here serves as a proof-of-concept for the potential of AI/ML
tools to support drug discovery efforts in LMICs. Incipient centres in
West Africa37 and Central Africa38 may benefit from similar imple-
mentations. More globally, ZairaChem offers a competitive, free, and
constantly-updated software solution to model small-molecule
bioactivity data, for which no strong data science skills are required
to run the tool.

Methods
Data collection
Bioactivity data for the assays defined in Supplementary Table 1 were
extracted from H3D’s curated database that contains experimental
data from the inception of H3D in 2010 up to November 2021. Each
dataset was curated from a single set of assay conditions to minimise
noise in the biological endpoints. During data pre-processing, com-
pounds with large variations in replicated assay measurements were
identified by first calculating themeanof the differences for all pairs of
experimental values and then comparing this as a ratio to the overall
mean experimental value to obtain a relative error. Compounds with a
relative error greater than 1 (i.e., compounds with highly variable data
compared to the mean) were removed from the dataset. The replicate
values for remaining compoundswere averaged regardless of date and
site of experiment development. H3D’s chemical and assay data was
collected with the Dotmatics software.

Cytochrome inhibition data was obtained for CYP3A4, CYP2C9,
CYP2C19, and CYP2D6 from PubChem (AID1851, AID899, AID891,
AID883, AID884) and ChEMBL. PubChem BioAssay data were already
binarized (1, active; 0, inactive). The ChEMBL database was queried
and only compounds with “Standard Type”, “IC50” or “Ki”, and “Stan-
dard Units”: “nM” were considered. Compounds were assigned as

“active” (1) if bioactivity was less than or equal to 10μM, and “inactive”
(0) otherwise. In addition, compounds with “Comment” equal to “Not
Active” or “No Inhibition” were classified as inactive. Bioactivity data
not matching these criteria were discarded.

The ZairaChem pipeline
Each H3D assay was modelled independently using ZairaChem with
default parameters. ZairaChem has two running modes, namely “fit”
and “predict”. ZairaChem training runs are scheduled to be executed
twice a year for all assays in the virtual screening cascade. Extensive
information on ZairaChem, especially for programmatic usage, is
available online as part of the code repository and Ersilia’s
documentation pages.

Data pre-processing. The data pre-processing module consists of
several steps. First, an input file is analysed and relevant columns are
identified. In particular, the column containing SMILES strings is kept,
together with the outcome (e.g., activity) column. ZairaChem deter-
mines the type of task (i.e., regression or binary classification). In this
study, only binary classification tasks were considered. Small-molecule
SMILES are standardised following the MELLODDY-Tuner protocol39.
MELLODDY-Tuner is also used to identify LSH-based aswell as Murcko
scaffold-based splits, which can be used optionally. In addition, Zair-
aChem enables random and time-based splits, as well as a splitting
scheme that takes into account clusters and LSH hashes to identify
equally sized splits. By default, random stratified splits are done.

Small-molecule descriptors. ZairaChem can query the Ersilia Model
Hub, EOSI’s repository of pre-trained, ready-to-use AI/ML models.
Some of the assets available in the ErsiliaModel Hub provide as output
a numerical vector for each molecule, typically capturing physico-
chemical or topological characteristics of the compound. By default,
ZairaChem calculates such vectors for each molecule, corresponding
to descriptor types that are representative of current approaches to
small molecule featurisation. We expect this comprehensive strategy
to favour good performance across a broad set of tasks, ranging from
solubility prediction to whole-cell assays. In particular, we calculate (1)
Mordred14 descriptors (an array of >1600 physicochemical para-
meters), (2) ECFP fingerprints (a count-based vector of 2048 dimen-
sions based on circular exploration (radius 3) of all atoms in a
molecule), (3) ChemicalChecker16,40 signatures (a densevector of 3200
dimensions capturing known and inferred bioactivity data across a
wide range of bioactivity outcomes), (4) GROVER41 embeddings (a
5000-dimension graph-based representation of the molecules), and
(5) ChemGPT42 embeddings (a chemical language model). Generally,
we found the selected set of by-default descriptors to be a reasonable
choice, with none of thembeing consistently better, orworse, than the
rest across tasks. Other vectorial descriptors are available in the Ersilia
Model Hub and can be specified to ZairaChem by simply referring to
their model identifier. Of note, we also include the Ersilia Compound
Embedding (https://github.com/ersilia-os/compound-embedding), a
dense 1024-dimensional embedding based on an adaptation of the

Fig. 4 | De novo screening of libraries using AI/ML models. Upper panel: a ROC
curvesofZairaChemmodels testedon the libraryof65 compounds (not included in
the training set). Legend indicates the AUROC values of each model. Only models
for which experimental validation was available for the 65 molecules are shown.
b Predicted scores for each compound, transformed to a scale of 0 to 1 for com-
parison between assays. Desired activities are shown in a red colour scale and
undesired activities are shown in a blue colour scale. Colour maps fade from 1 to 0
according to each model score. c Structure of selected compounds, including the
initial hit compound 1. d Comparison of the predicted score and the experimental
activity of selected compounds (non-existing squares indicate no experimental
data on these assays). Experimental activity is represented as 1 (dark blue or dark

red) or 0 (light blue, light red) for desired and undesired assay outcomes,
respectively. Lower panel: Prospective validation for two active chemical series at
H3D; naphthyridines active against Pf and pyrazoles targeting Mtb. e Model per-
formance is depicted through correlations of model predictions with experimental
results in which a green cell represents a correct model prediction while purple
cells indicate incorrect predictions. fThe core scaffold for each series is depicted as
well as g a swarm plot for individual compound predictions. n active/inactive: Pf
NF54 16/72, Aq Sol pH6.5 36/52,Mtb H37Rv 43/32, Aq Sol pH7.4 54/21. Boxes
indicate the median (central line), Q1 (upper bound) and Q3 (lower bound) and
whiskers extend to the data points up to 1.5 times in the interquartile range. Source
data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-41512-2

Nature Communications |         (2023) 14:5736 8

https://bit.ly/h3d-app
https://github.com/ersilia-os/compound-embedding


prototypical network presented by FS-Mol, and pre-trained on
ChEMBL bioactivity data. Details on the architecture and training
procedure of the Ersilia Compound Embedding can be found in the
corresponding code repository.

Continuous data descriptors are quantile-normalised andmissing
data is imputed with a nearest-neighbour approach. Invariant columns
are removed. GROVER is used as a reference descriptor for additional
processing. We perform PCA (four components) and UMAP (two
components). In addition, supervised versions of these techniques are
applied based on the binary outcomes. We choose linear optimal low-
rankprojection (lolP)43 as analternative to PCA for this supervised task.
UMAP accepts both unsupervised and supervised modes. In addition
to vector-like descriptors, it is possible to incorporate other models
from the Ersilia Model Hub as auxiliary predictor variables for Zair-
aChem. ZairaChem treats these auxiliarymodels as additional columns
in the pooling step described below.

AutoML methods. Currently, ZairaChem executes five AutoML
methods independently. Each of the AutoML models is focused on
enhancing a specific feature (e.g., interpretability, robustness, etc.) in
the overall ZairaChem pipeline. Overall, the pipeline combines deep
learning methodologies with tree-based methods and other classical
ML approaches.

The first AutoML module performs independent modelling for
each of the descriptors. The focus of this module is to identify which
descriptor types are themost appropriate for the task of interest. With
default parameters, five models are built, corresponding to the
descriptorsmentioned above. FLAML18 is used to perform rapid search
of Random Forest hyperparameters.

The second module is focused on visual interpretation of the
chemical space. Thus, this module takes as input the low-dimensional
PCA and UMAP projections obtained for the reference descriptor (in
total, 12 variables). We use AutoGluon-Tabular19 with default para-
meters to obtain robust classifiers and regressors.

The third module leverages GROVER, a data-driven descriptor
trained on a large collection ofmolecules. Thismodule is illustrative of
a “transfer learning” approachwhere a large chunk of a neural network
is “frozen” (the GROVER part) and a few extra layers are fine-tuned for
the task of interest. Here, we add an additional dense layer. The
number of dimensions of this layer, in addition to the training para-
meters, are automatically selected with Keras Tuner.

The fourth module leverages image-based representations of
the molecules, enabling application of computer vision techniques,
which are particularly advanced in the field of AI/ML. Compounds
are represented as MolMaps44. These are concise, multi-descriptor
images (maps) where regions of the image correspond to descrip-
tors that are correlated. For example, in a MolMap one can find a
region that relates to size and molecular weight, whereas other
regions are related to lipophilicity, solubility, etc. It has been shown
that convolutional neural networks can be used out-of-the-box
taking MolMaps as input, without the need for intense architecture
and hyperparameter search.

Finally, the fifth module includes the TabPFN classifier, a novel,
fully-trained transformer network that is able to perform Bayesian
inference in a single forward pass21. TabPFN is limited to small tabular
classification tasks of up to 1000 samples and 100 dimensions. We
used the TabPFN with the aforementioned descriptors, reducing their
dimensionality from 1024 to 100 using lolP. Since many datasets
contain more than 1000 samples, we devised a subsampling strategy
based on three imbalanced learning strategies (imb-learn package),
namely K-means SMOTE (for oversampling), edited nearest neigh-
bours (for undersampling) and a combination of over and under-
sampling with SMOTE-Tomek.

ZairaChem is prepared to be extended with additional AutoML
modules, if and as necessary. However, the trade-off between

computing time and gain in performance is an important considera-
tion before adding further modules.

Pooling. Each of themodels above provides point predictions that can
be aggregated in a consensus (pooled) prediction. By default, Zair-
aChem applies a “blending” approach, based on a weighted average
between individual predictions. The default weighting scheme is based
on the estimated performance of the individual predictors. Prior to
aggregation, prediction scores are power- and logit-transformed.

Reports and output. At the end of the ZairaChem pipeline, perfor-
mance reports are automatically provided, including the most com-
mon validation metrics for binary classification tasks. A single
spreadsheet with prediction output and performance metrics is pro-
vided as a primary result, along withmultiple reporting plots (AUROC,
PCA, UMAP projections, etc.). We use both PCA and UMAP dimen-
sionality reductions as complementary methods to visualise the che-
mical space: a PCA plot is a linear rescaling of the data that provides a
global overview of the dataset, while a UMAP plot is a nonlinear
rescaling method that emphasises the local clustering of structurally-
related compounds and provides insight into data homogeneity.

Web-based predictions. Interaction with light versions of the H3D
models is possible through a GUI in a web application (https://bit.ly/
h3d-app). Light models were created using FLAML on Ersilia Com-
pound Embeddings, based on the observation that, inside the Zair-
aChem ensembles, both components have good performance across
H3D prediction tasks. Light models preserve >95% of the original
performance (Supplementary Table 6). In the prediction app, we
provide the classification score along with a percentile calculated with
respect to a representative set of ca. 200,000 molecules extracted
from ChEMBL.

In addition, we provide fully equipped versions of the ZairaChem
models for local runs. All IP-sensitive small molecule structures have
been removed from any ZairaChem model folder.

ZairaChem benchmarking. We selected Therapeutics Data Commons
(TDC) as a benchmark framework. TDC contains multiple datasets
across a broad range of tasks and activities. Toprove SOTAperformance
onH3D’s data, we selected theTDCADMETGroup as the one containing
tasks most similar to the ones described in this project. In line with this,
only classification tasks were evaluated. Data were downloaded from
TDC and split into train and test according to the TDC guidelines.
Models were trained with default ZairaChem parameters with five-fold
cross-validation. Results were calculated using TDC guidelines.

Analysis of H3D’s chemical series
To investigate the change in model performance within a localised
region of chemical space through the incremental addition of local
training data, chemical series with at least 200 compounds were
selected from the H3D library for analysis.

Train-test splits. Datasets for model training were constructed
according to the following protocol: first, all compounds in a series of
interest were removed from the bulk global training data of the H3D
library; then, thedatawas shuffled and 100compoundswere randomly
selected with stratification as a standard test set; the remaining 100
molecules were systematically added back to the bulk H3D activity
data and models trained for each dataset. A final separate ‘local-only’
model was trained on the 100 series-specific compounds alone, with-
out the broader H3D library data, in order to investigate the effect of
global training data on model performance.

AUROC percentage change. To measure the contribution of addi-
tional global training data to a model’s performance in a localised
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chemical space, we calculate the percentage change in AUROC score
according to the following steps: (1) first, we find the difference
between the AUROC scores of themodel trained on 100 series-specific
compounds with the H3D library included as well as the ‘local-only’
model trainedon the series-specific compounds alone; (2) next, for the
‘local-only’model, we find the AUROC score that is still possible to be
achieved (1 - ‘local-only’ AUROC); (3) lastly, we take the difference in
model scores (from step 1) as a percentage of the score that could still
be achieved (from step 2). This metric represents the additional per-
formance gained or lost out of the total AUROC score that was still
available to capture. AUROC scores were calculated with the SciKit-
Learn package from a five-fold cross-validation.

Plots. Chemical space visualisation was constructed by describing
compounds using theMorgan Fingerprint algorithm, with a radius of 3
and vector length of 2048 as implemented in the RDKit package. These
fingerprints were then projected onto two dimensions through prin-
cipal component analysis as well as the UMAP algorithm and plotted
with the Matplotlib library.

Cell lines for experimental screening
CHO and HepG2 mammalian cell lines for cytotoxicity assays, the
Caco-2 cell line for permeability studies, and the H37Rv strain of
Mycobacterium tuberculosis were all acquired from ATCC (American
Type Culture Collection). Strains of Plasmodium falciparum (NF54 and
K1) came from the Malaria Research and Reference Reagent Resource
Center (MR4) at the ATCC, now called BEI Resources.

Inclusion and ethics statement
The research reported in this shared-authorship publication results
from a joint partnership during an on-site research visit of the Ersilia
Open Source Initiative to the H3D Centre in Cape Town. Roles and
responsibilities were agreed to when the project commenced andwith
continuous communication throughout. The majority of AI/ML mod-
elswere trainedon in-house data to accelerate drugdiscovery research
efforts at the H3D Centre, where no prior local AI/ML infrastructure or
skills existed. This project, together with various seminars and work-
shops, facilitated the development of local AI/ML capacity that could
be intentionally sustained after the conclusion of the research visit by
EOSI. In addition, these skills are intended for further dissemination to
researchers based inAfrica through theH3DCentre’s capacity-building
initiatives. While drug discovery in Africa is in a nascent state, we have
endeavoured, where possible, to reference relevant publications and
initiatives on the African continent, e.g., refs. 37,38, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This work contains AI/MLmodels built on top of H3Dproprietary data.
Data aremanaged at H3Dwith the Dotmatics software. Themajority of
the compounds used for training are proprietary data from the H3D
Centre from active drug discovery research programmes which are
subject to the intellectual property management plans as per funding
and collaboration agreements. Access requests to the raw model
training data for the PfNF54, PfK1,MtbH37Rv, CHO,HepG2, Clint H,M
and R, Caco-2 and Aq Sol can be made to susan.winks@uct.ac.za with
an expected responsewithin two days. However, all corresponding AI/
ML models are publicly available. ChEMBL and PubChem BioAssay
were used as additional sources of data for the CYP450 models. Raw
data can be directly accessed on the PubChem and ChEMBL websites
(https://pubchem.ncbi.nlm.nih.gov; https://ebi.ac.uk/chembl) and
processed data can be found here: https://bit.ly/h3d-ext-data. Bench-
marking of ZairaChem was performed using the Therapeutics Data

Commons ADMET classification tasks, available at https://tdcommons.
ai. Source data are provided in this paper.

Code availability
ZairaChem code is available at https://github.com/ersilia-os/zaira-
chem. Extended documentation can be found in the Ersilia Book
(https://ersilia.gitbook.io). ZairaChem benchmarks are reported at
https://bit.ly/h3d-tdc-bench. Code used for analysing data can be
found at https://bit.ly/h3d-code. Download links to the fully equipped
ZairaChem models are available at https://bit.ly/h3d-models. A light
versionof theH3Dmodels is available as aweb-basedappathttps://bit.
ly/h3d-app. Code for deployment can be found at https://bit.ly/h3d-
app-code.
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