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Network controllability of structural
connectomes in the neonatal brain

Huili Sun 1 , Rongtao Jiang 2, Wei Dai3, Alexander J. Dufford4,
Stephanie Noble 5,6,7, Marisa N. Spann8,9, Shi Gu10,11 &
Dustin Scheinost 1,2,12,13,14

White matter connectivity supports diverse cognitive demands by efficiently
constraining dynamic brain activity. This efficiency can be inferred from net-
work controllability, which represents the ease with which the brain moves
betweendistinctmental states basedonwhitematter connectivity. However, it
remains unclear how brain networks support diverse functions at birth, a time
of rapid changes in connectivity. Here, we investigate the development of
network controllability during the perinatal period and the effect of preterm
birth in 521 neonates. We provide evidence that elements of controllability are
exhibited in the infant’s brain as early as the third trimester and develop
rapidly across the perinatal period. Preterm birth disrupts the development of
brain networks and altered the energy required to drive state transitions at
different levels. In addition, controllability at birth is associated with cognitive
ability at 18 months. Our results suggest network controllability develops
rapidly during the perinatal period to support cognitive demands but could be
altered by environmental impacts like preterm birth.

The structural connectome is a comprehensive map of the anatomical
white matter connections studied as a complex network. It constrains
brain dynamics in children, adolescents, and adults1,2. An infant’s
structural connectome develops rapidly during the perinatal period
(approximately from the 28th week of gestation through the first
month of postnatal life). This development establishes the foundation
for later developing brain dynamics3–5. For example, a rich club of
interconnected cortical hubs and other topological properties of the
brain are already present by 30 weeks of gestation6–8. Similarly, infants
can be identified from repeated scans using structural—but not func-
tional—connectomes, suggesting that the structural connections

develop before associated function connections9–11. However, these
measures lack a mechanistic description of how these structural
changes support later brain dynamics. The question “How does an
infant’s structural connectome develop to constrain later brain
dynamics?” remains unanswered.

Network control theory (NCT) provides a formal framework to
study how brain dynamics arise from the structural connectome12.
Controllability is an energy-basedmeasurement, representing the ease
of switching between different brain states13. This control energy is
associated with gray matter integrity, glucose metabolism14, and effi-
ciency in cognitive execution15,16. In practice, it can be operationalized
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as two dependent but complementary measurements. Average con-
trollabilitymeasures the connectome’s ability to drive thebrain toward
nearby brain states. Modal controllability measures the connectome’s
ability to move the brain toward distant brain states. Regions in the
default mode network facilitate transitions to nearby states in adults
(i.e., higher average controllability). Whereas areas in the frontopar-
ietal network facilitate state transitions to far away states (i.e., higher
modal controllability)17. NCT is also applicable to studying brain
development. Controllability across the whole brain matures during
adolescence, reducing the theoretical energetic costs of transitions to
activation states necessary for adult-level executive functioning15,18,19.
These results highly suggest that a more controllable structural con-
nectome facilitates the brain dynamics needed for more cognitively
demanding tasks.

We leveraged NCT to address three questions about how the
structural foundation facilitates brain dynamics in the infant’s brain:
(1) whether the infant’s brain is controllable and how its capability in
controlling state transitions develops during the early stages of
infancy; (2) howmuch control energy is necessary for transitions to
different brain functional network activation states and how pre-
term birth affects the controllability and control energy cost; (3)
how NCT explains the distinct cognitive performance at 18 months
old. To answer these questions, we investigated the controllability
of structural connectomes during infancy using a large sample of
521 infants, including longitudinal data from 73 preterm infants
scanned twice across the perinatal period. We characterized the
spatial distribution of regional controllability and how controll-
ability develops from 28 weeks gestation through the first month of
postnatal life. We simulated the activation of different functional
brain networks based on the individual structural connectome and
calculated the control energy theoretically required in each

situation. In addition, we investigated the effect of preterm birth on
controllability and control energy. Finally, we explored how con-
trollability relates to individual differences in neurodevelopment at
18 months.

Results
We examined the average and modal controllability of the structural
connectomes in 448 term (209 female, 239 male) and 73 preterm (32
female, 41male) infants from the seconddata releaseof thedeveloping
Human Connectome Project (dHCP). Term infants were scanned once,
at around 2 weeks after birth (mean PMA=41 weeks). Preterm infants
were scanned twice, first at about 2 weeks after birth (mean
PMA= 33 weeks) and second at the term-equivalent age (TEA; mean
PMA= 41 weeks; Table 1). We used DSI-studio (http://dsi-studio.
labsolver.org/) to reconstruct the diffusion data using generalized
q-sampling imaging and create structural connectomes with mean
quantitative anisotropy value for an infant-specific atlas consisting of
90 nodes (Fig. 1a)20. Average andmodal controllability were calculated
from the structural connectome for each infant (Fig. 1b). As average
and modal controllability are not independent in brain networks13, we
focus the results on average controllability. Additional details and
results on modal controllability can be found in the supplementary
material (Fig. S1).

Controllability of the infant structural connectome
First, we investigatedwhole-brain (defined as themean across all brain
regions in a single infant) average and modal controllability in the
infant brain. For all three groups, there was a negative correlation
between whole-brain average controllability and modal controllability
(term: r = −0.37, p = 6.6e−16; preterm at birth: r = −0.84, p = 8.5e−21;
pretermat TEA: r = −0.34, p = 0.0031), suggesting that infant brainmay
prioritize thematuring support for one control strategy over the other
through its development (Fig. 2a). These results contrast positive
associations between whole-brain average and modal controllability
observed in adolescents and adults13,18. This may represent a shift in
structural brain controllability across development aligned with the
developmental trajectory of the brain’s morphometric phenotypes21.
There was no significant difference in these correlations between the
term and preterm at TEA groups. However, the correlation between
whole-brain average and modal controllability was significantly less
negative at TEA than at birth for preterm infants (z = 5.13, p = 3.0e−7),
further suggesting a developmental shift in average and modal con-
trollability in early life. Whole-brain average and modal controllability
may start negatively correlated in the third trimester, become less
negatively correlated over infancy and toddlerhood, and eventually
transition to positively correlated in childhood.

Table 1 | Demographic characteristics (mean (std))

Group Preterm Term

Scan At birth At TEA

Sex, num of females (%) 32/73 (43.84%) 209/448 (46.65%)

Gestational Age (GA) at birth (weeks) 30.72 (3.66) 39.93 (1.26)

Post Menstrual Age (PMA) at scan (weeks) 33.73 (2.32) 41.38 (1.58) 41.19 (1.72)

Motionparameters Average intra-volume translation (mm) 0.12 (0.051) 0.13 (0.052)

Average intra-volume rotation (a.u.) 0.18 (0.10) 0.19 (0.092)

Outlier ratio (%) 0.22 (0.088) 0.25 (0.083)

BSID-III Num of subjects (%) 56 (77%) 356 (79%)

Cognition 9.31 (2.95) 10.10 (2.12)

Language 17.91 (6.22) 19.28 (5.09)

Motor 19.26 (4.03) 20.62 (3.15)

Energy

Average controllability: 
nearby transition

Modal controllability: 
distant transition

Diffusion MRI

Tractography

Structural 
Connectome

Fig. 1 | Network control theory. a Using diffusion-weighted imaging (DWI),
structural connectomeswere created from automatic fiber tracking for 521 infants.
From these connectomes, average and modal controllability were calculated.
bControllability represents the ease of switching between different dynamic brain

states. Average controllability measures a regional capability to support nearby
state transitions. Modal controllability measures a regional capability to support
distant state transitions.
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The spatial distribution of the brain regions with high average
controllability was similar, but not the same, across each group
(Fig. 2b). On the network level, regions showing the highest average
controllability across groups were primarily located in the visual,
dorsal attention, and somatomotor networks. More detailed region
information is listed in supplementary materials (Table S1, Fig. S2).
Compared to the network roles of the controllability in adult’s brain
structural networks13, visual and somatomotor networks play a similar
role in average controllability, while the controllability of defaultmode
network appears to be different in the infant brain.

Controllability development over time
Results from the longitudinal sample of preterm infants showed that
the whole-brain average controllability significantly increased over the
perinatal period (Fig. 3a). Whole-brain average controllability

developedmore rapidly (z = 2.92,p = 0.0017) between28 and36weeks
PMA (r = 0.54, p = 9.5e−7) compared to 38–44 weeks PMA for preterm
infants (r = 0.11, p =0.36), indicating that the rapid development of
average controllability during the third trimester slowed down around
birth (Fig. 3a).

Node-wise comparison in the development rate showed that the
nodes with significant differences in their changes between the two
scans were mainly concentrated in the frontal and occipital lobes
(Fig. S3). The rate of controllability development of the frontal lobe at
the first scan during 28–36 weeks (mean node-wise r =0.44) was faster
than thatof the second scanatTEA (meannode-wise r =0.23). A similar
situation was observed in the occipital lobe, where the first scan wit-
nessed a relatively rapid increaseduring28–36weeks (meannode-wise
r =0.49), while the increment during the second scan at TEA slows
down (mean node-wise r =0.29).

For the term group, postmenstrual age at scan negatively corre-
lated with whole-brain modal controllability (r = −0.50, p = 2.7e−29;
Fig. S1c), but not whole-brain average controllability (r =0.029,
p =0.54; Fig. 3a). Together, these results suggest that the brain may
asynchronously prioritize the average controllability over the modal
controllability to support the establishment of a fundamentally effi-
cient brain network that is advantageous in driving the brain intomany
easy-to-reach states in its early developmental stage.

Preterm birth alters controllability of the infant brain
Term infants exhibited significantly higher whole-brain average con-
trollability compared to preterm infants at TEA (t = 3.28, p = 0.006,
df = 519). In addition, we examined regional differences in average and
modal controllability between the term infants and preterm infants at
TEA. Compared to term infants, preterm infants at TEA exhibitedwide-
spread, weaker average controllability (p <0.05, FDR corrected) in the
bilateral temporal lobes, motor cortex, inferior frontal gyrus, pre-
cuneus, and cuneus and sparser, greater average controllability in
bilateral angular gyrus and orbital frontal cortex (Fig. 4a).

On the whole-brain level, there were no group differences
between term and preterm infants at TEA for the average or modal
controllability development rate. On the regional level, most
preterm-birth-affected brain nodes are concentrated in the frontal
lobes, where preterm infants (mean node-wise r = 0.23) establish a
higher development rate compared to their term fellows (mean
node-wise r = −0.054) (Fig. 4b). Notably, these affected regions are
also included in a larger subset of occipital regions that significantly
drive the longitudinal development of infants’ brains. Regional con-
trollability development rate distribution for preterm and term
infants can be found in Fig. S4.

Term
Preterm at birth
Preterm at TEA

28                 31                 34                  37                 40                44PMA/
weeks

Preterm

Term

Fig. 3 | Controllability development during the perinatal period. a Average
controllability changes more rapidly between 28 and 36 weeks and begins to level
out around birth (Pearson’s correlation: preterm at birth:r =0.54, p = 9.5e−7; pre-
term at TEA: r =0.11, p =0.36; term: r =0.029, p =0.54; two-sided). The shaded
envelope denotes the 95% confidence interval.b The gradual change in normalized
average controllability is shown underneath the timeline on the brainmaps. Source
data are provided as a Source Data file.
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Preterm
at birth

Preterm
at TEA

Term

r=0.85
***

r=0.96
***

r=0.83
***

Normalized Controllability

Fig. 2 | Controllability distribution of the infant’s brain. a Negative associations
between whole-brain (or, the mean controllability across every brain region for a
single infant) average controllability and whole-brain modal controllability among
three subgroups (Pearson’s correlation: term r = −0.37,p = 6.6e−16; pretermat birth
r = −0.84, p = 8.5e−21; preterm at TEA r = −0.34, p =0.0031; two-sided). Each dot
represents the whole-brain average and modal controllability for a single infant.
The shaded envelope denotes the 95% confidence interval. b Normalized regional

average controllability was spatially similar across the preterm at birth, preterm at
TEA infants, and term groups (Pearson’s correlation: preterm at birth vs preterm at
TEA: r =0.85, p = 5.5e−26; preterm at TEA vs term: r =0.96, p = 1.1e−49; preterm at
birth vs term: r =0.83, p = 4.0e−24; two-sided). (*, **,*** indicates results are sig-
nificant at p <0.05, p <0.01, and p <0.001 for Pearson’s correlation.) Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-41499-w

Nature Communications |         (2023) 14:5820 3



Preterm
Term

t-statistic
Preterm - Term

-10               0               10

z-statistic
Preterm - Term

-5                 0                 5

Fig. 4 | Group differences in controllability between preterm and term infants.
a Average controllability distribution differences between preterm and term
infants (t stats value from the two-sampled two-sided t-test). b Average controll-
ability development rate differences between preterm and term infants (z stats
value from correlation comparison). c Positive correlations between regional

average controllability and their rate of development (correlation with age) for
both preterm (Pearson’s r =0.40, p = 1.1e−4; two-sided) and term infants (Pearson’s
r =0.18, p =0.083; two-sided). The shaded envelope denotes the 95% confidence
interval. Source data are provided as a Source Data file.

Fig. 5 | Control energy cost to activate brain networks.Whole-brain control
energy cost to activate each brain functional network were compared between
term (dark box on the left) and preterm infant (light box on the right) groups with
an unpaired two-sided t-test: Visual: t = 1.96, p =0.050; Somatomotor: t = −4.74,
p = 2.7e−6; Dorsal attention: t = 5.42, p = 9.2e−8; Ventral attention: t = −3.23,
p =0.0010; Limbic: t = 2.84, p =0.005; Frontoparietal: t = −5.35, p = 1.3e−7; Default

mode: t =0.41, p =0.68; Subcortical: t = −1.83, p-0.067. Boxes denote the 25th to
75th percentile and the median line. (*, **,*** indicates results are significant at
p <0.05, p <0.01, and p <0.001 for the two-sample two-sided t-test.) Regional
control energy required for term (on the left) and preterm infants (on the right) to
reach eachnetwork activation targetwere shownon the corresponding brainmaps.
Source data are provided as a Source Data file.
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Given the whole-brain trend of increasing average controllability
anddecreasingmodal controllabilitywith increasing age,we examined
how regional controllability affects its development rate. We found
significant correlations between a region’s controllability and its
development rate for average and modal controllability. In other
words, regionswith higher values of average controllability exhibited a
greater increase in average controllability with age for both term
(r =0.18, p = 0.083) and preterm at TEA (r =0.40, p = 1.1e−4) groups.
This association was significantly stronger from the preterm infants at
TEA than the term infants (z = 1.88, p =0.030) (Fig. 4c).

Sensitivity analyses
To ensure robust results, we conducted several sensitivity analyses.
Previous work has noted widespread changes in the structural con-
nectome during the perinatal period3–8. We investigated the sensitivity
of our results to other basic network features (i.e., strength and net-
work density; Table S2). When controlling for strength and network
density, results are similar with interpretations remaining unchanged
(see Tables S3, 4 and Figs. S5, 6). In addition, sex differences are known
in development and preterm birth. Thus, we repeated analyses for
female and male infants separately (Tables S5, 6) to investigate
potential sex effects. No significant change in the main results was
found due to sex differences.

Control energy cost to activate canonical functional networks
We further explored how the structural connectome may facilitate
brain dynamics in the infant brain. Using a validated simulation
approach15, we modeled state transition from the initial baseline
state to target “activated” states for eight canonical resting-state
networks, constrained by the structural connectome. At the initial
state, themagnitude of all regions’ activity was defined as 0 to act as
the baseline; for each target state, the magnitude of regions in each
functional network (i.e., visual, somatomotor, dorsal attention,
ventral attention, limbic, frontoparietal, default mode network; see
Table S8) was assigned 1, respectively, to represent different activity
patterns. For each simulated state transition, we calculated the
control energy cost for each node to drive the desired system state
changes for an individual infant based on their structural
connectome.

We compared the control energy required by preterm and term
infants to activate each functional brain network. At term-equivalent
age, term infants required lower energy to activate the frontoparietal
(t = −5.35, p = 1.3e−7, df = 518), somatomotor (t = −4.74, p = 2.7e−6,
df = 518), and ventral attention networks (t = −3.23, p =0.0010, df =
518) than preterm infants. However, preterm infants needed less
energy to activate the dorsal attention (t = 5.42, p = 9.2e−8, df = 518)
and limbic (t = 2.84, p =0.005, df = 518) networks. Interestingly, there
were no differences between the two groups in energy expenditure
required to activate visual, subcortical, and default mode networks,
indicating that preterm birth may not affect basic brain functions
related to visual tasks or resting-state.

In general, for each network, the nodes belonging to that net-
work required the largest amount of energy to activate the target
network (Fig. 5). Though, formost networks, control energy in other
networks was required to activate a network. For example, nodes in
the visual network required the largest energy to activate the visual
network, but nodes in the dorsal attention network and frontopar-
ietal also exhibited positive control energy. The ventral attention
and frontoparietal networks were exceptions in that positive con-
trol energy was restricted to nodes in the ventral attention and
frontoparietal networks, respectively. Finally, the control energy
expenditure of the transition from the baseline state to the targeted
state was significantly lower in real brain networks than in null
model networks that preserved both the strength and degree dis-
tribution (Table S7).

Controllability at birth is associated with cognitive assessments
at later ages
Finally, we investigated if individual differences in controllability were
associated with cognitive assessments at 18 months, measured by the
Bayley Scales of Infant and Toddler Development, 3rd Edition (BSID-
III). This analysis focused on a subset of 412 infants (356 term and 56
preterm infants) that had completed the assessment (mean
age = 18.92 months, s.d. = 1.78 months). Significant correlations were
found between BSID-III cognitive scores and controllability measure-
ments on the whole-brain level (average controllability: r = 0.12,
p =0.014; modal controllability: r = −0.24, p = 1.3e−6). Furthermore,
from a longitudinal perspective, a positive correlation was observed
between the cognitive score and the increasing modal controllability
for preterm infants from birth to TEA (r =0.31, p =0.023). Figure S7
shows scatter plots for each of these associations, along with the
correlations between controllability and other assessments (i.e., lan-
guage and motor) from BSID-III.

Discussion
Leveraging network control theory, we investigated the controllability
of structural connectomes in the perinatal period. Elements of con-
trollability were present at the beginning of the third trimester. Aver-
age controllability developed earlier compared to modal
controllability during the third trimester. At birth, regions with the
highest average controllability were in the frontal and occipital lobes.
Areas with the highest modal controllability were in the temporal and
parietal lobes. These broad patterns of controllability were observable
in preterm infants. However, regional controllability was ultimately
altered in several cortical regions. In addition, controllability at birth
was associated with cognitive ability at 18 months. Together, our
results exhibited the development of the controllability of structural
connectomes in the perinatal period.

During the perinatal period, the structure of the infant’s brain
changes rapidly22–24. Previous studies on infants have demonstrated
that fundamental network topologies of the white matter are present
but continue to mature over this period6,8,25,26. Further, the structural
connectome contains meaningful individual differences that can be
used as a ‘fingerprint’ to identify an individual9,27 and predict later
behaviors11,28,29. Consistent with these previous studies, controllability
rapidly changes during the newborn period. In addition, we found that
brain development is faster in those more controllable regions. This
result is consistent with a prior study on controllability development
during adolescence18, showing that stronger average ‘controllers’
experience a more significant increase from 8 to 20 years old.

The contrasting spatial and developmental patterns of average
and modal controllability are consistent across our analyses. These
patterns likely reflect the distinct but complementary nature of these
measures: brain regions with strong average controllability are mainly
located in the default mode system and more active during resting
state, while strong regions in modal controllability appear more in the
cognitive control system including frontoparietal and cingulo-
opercular systems and play important roles in tasks requiring high-
level cognitive control or task-switching according to previous
observations in the young-adult group17. Early in the perinatal period,
average controllability develops before modal controllability with
rapid changes. Whole-brain average and modal controllability are also
inversely correlated, suggesting the infant connectome can only sup-
port either nearby or far away state transitions, but not both. These
findings contrast with those fromolder individuals, where average and
modal controllability increase simultaneously over childhood and
adolescence18. Nevertheless, these results are consistent with infants’
developmental trajectories of behavior. Newborns first learn sensory
and motor behaviors (e.g., crying, grasping, listening)30–32. These
behaviors rely on similar neural circuits and presumably similar brain
states, thus, requiring the brain to support the transition between
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nearby states (i.e., higher average controllability). Further, regions of
the highest average controllability are in motor and sensory cortices.
In contrast, higher modal controllability facilitates an easier transition
between “far way” states and supports cognition and executive func-
tions. Corresponding functional networks are not developed in the
perinatal period33,34. These early foundations of modal controllability
appear essential for cognitive development at 18 months. Overall, the
contrasting patterns in average and modal controllability likely reflect
the comparative needs of the infant’s brain to support devel-
opmentally appropriate behaviors.

As more complex behaviors develop, one would expect an
increase inmodal controllability during later infancy and toddlerhood.
Nevertheless, further cross-sectional and longitudinal studies in later
infancy and toddlerhood are needed to link controllability findings in
early infancy and older individuals and to associate these changes with
emerging behavior. Studies in this period will allow for investigating
individual differences in controllability and behavior, as quantifying
behavior in newborns is difficult.

Our analysis suggests that preterm birth subtly alters the con-
trollability of structural connections. Consistent with these observa-
tions, altered structural connectivity is widely reported in preterm
birth8,35–38. While similar patterns of controllability remained intact, we
show evidence of alteration in both average and model controllability
for preterm infants. Intriguingly, many regions exhibiting these
alterations are in regions underlying well-known behavioral deficits in
individuals born preterm. For example, group differences in controll-
ability are observed in Broca’s andWernicke’s areas. Language deficits
are common in preterms, with functional differences observable from
the perinatal period through adulthood39–41. Similarly, altered con-
trollability in the motor cortex and social processing regions are
consistent with differences observed in preterm infants, children, and
adolescents42,43. Altered controllability in the perinatal period could
provide a structural explanation for these later functional differences.

While preterm infants show differences in controllability at TEA,
they might be able to “catch-up” to their term-born peers. The slopes
of the regional developmental for preterm infants are steeper than
those of term infants, suggesting that the regional controllability of
preterm infants at TEA matures faster than that of term infants. In
general, catch-up growth is typical in preterm infants and children. For
example, preterm infants weigh significantly less than their term-born
peers, but these differences are smaller or disappear at older ages44–46.
Additional studies in school-age children, adolescents, and adults born
preterm will be needed to map out these developmental trajectories
and assess if changes in controllability persist later in life.

Based on the control energy results, thewhitematter architecture
that supports future functional networks appears to be in place before
more complex behaviors emerge. For all networks, the control energy
of brain state transition was lower than in null models. This result
aligns with the prior study of control energy in the adolescent group15.
It indicates that brain topology is constructed to support efficient
brain dynamics even in early infancy. Finally, a mix of increased and
decreased control energywas observed in preterms compared to term
infants. Term infants were more efficient in facilitating the somato-
motor and frontoparietal networks, which may be attributed to the
rapid development of interhemispheric connectivity of these networks
during the perinatal period47. Further follow-up data is needed to
understand how these differences potentially mediate development
outcomes in preterms.

Several limitations should be noted. First, the term data is cross-
sectional from a relatively narrow age range. The longitudinal data
across the perinatal period is only for preterm infants. The lack of
longitudinal data for term infants and a broader developmental period
prevents inferences about the within-subject developmental trajec-
tories beyond the newborn period. As such, how controllability
develops through later infancy and toddlerhood remains unknown, as

how these changes support cognitive development. Follow-up long-
itudinal studies will be needed to clarify how and when controllability
reaches similar patterns to those observed in school-age children and
how these relate to cognitive outcomes. Once these trajectories are
known, future work could investigate how modified environment
factors can lead to changes in these trajectories. Second, though the
sample size is large for infant neuroimaging studies, preterm birth is
highly heterogeneous in its causes and outcomes48. The size and
variability of the preterm birth effects may not reflect a broader
population of preterm infants. Third, the linear model used in the
network control theory remains limited in fully unraveling brain
dynamics. However, both linear and nonlinear models can be used to
successfully predict brain dynamics from brain structure49. Also, the
current method is state-of-art in resolving the complex structural
features of human brain networks50. Similar methods have achieved
remarkable results in understanding healthy brain functions and tar-
geting therapeutic interventions for patients19,51,52. Fourth, consistent
with our controllability studies, we used simulations on a simplified
model to associate controllability with changes in brain dynamics,
instead of real fMRI data. Establishing associations with real fMRI data
remains a challenging but needed next step. Finally, several demo-
graphic and scanning-related factors, including sex, brain volumes,
motion artifact, and other signal noise during scanning, can bias
the estimation of developmental trajectories. While we conduct the
age-related analysis with the above factors as covariances to limit
the impact of these confounding variables, theymay still influence the
results and would benefit from further study.

In conclusion, we investigated the developmental trajectories of
the controllability of the infant structural connectome. Our findings
show that the infant brain’s controllability changes rapidly during the
prenatal period and is altered in preterm birth. This framework can be
used as a baseline for the controllability distribution of the infant brain
and to further understand the developmental substrates of neurode-
velopmental disorders. Insights into the normal network topology and
the alterations associated with neurodevelopmental disorders may lay
the foundation for individualized treatment to correct developmental
trajectories and improve outcomes.

Methods
Participants
All data were acquired from the Developing Human Connectome
Project53 (dHCP, http://www.developingconnectome.org/), a large,
cross-sectional open science study of infant brain development. The
study was approved by the National Research Ethics Service West
London committee, and written consent was obtained from partici-
pating families before imaging. We included 448 term infants (209
female, 239 male) and 73 preterm infants (32 female, 41 male) with
longitudinal scans (at birth and TEA) from the second data release of
dHCP. Preterm infants were born between 23.57 weeks and
37.00 weeks of gestation and scanned twice. The first was around
3 weeks after birth, at a mean of 33.73 weeks. The second was at term-
equivalent age with a mean of 41.38 weeks. Term infants were born
between 37.14 weeks and 42.29 weeks of gestation and scanned
between 37.43 weeks and 44.71 weeks. Demographic information is
summarized in Table 1.

MRI acquisition
All scans were collected in the Evelina Newborn Imaging Centre, St
Thomas’Hospital, London, UK. Diffusionmagnetic resonance imaging
(MRI) data and all other MRI data were acquired with a Philips Achieva
3 T scanner (Philips Medical Systems, Best, The Netherlands) with a
dHCP-customized neonatal imaging system including a 32-channel
receive neonatal heal coil (Rapid Biomedical GmbH, Rimpar, DE)53.
Infants were scanned during unsedated sleep after feeding and
immobilization in a vacuum-evacuated bag, with hearing protection

Article https://doi.org/10.1038/s41467-023-41499-w

Nature Communications |         (2023) 14:5820 6

http://www.developingconnectome.org/


and physiological monitoring (including pulse oximetry, body tem-
perature, and electrocardiography data) applied during scanning.

T2-weighted images were obtained using a Turbo spin echo
sequence (TR = 12 s, TE = 156ms, SENSE factor 2.11 (axial) and 2.54
(sagittal) with overlapping slices (resolution =0.8 × 0.8 × 1.6mm3).
T2w images weremotion corrected and super-resolved to a resolution
of 0.8 × 0.8 × 0.8mm3 54. Diffusion-weighted imaging (DWI) was
obtained in 300 directions (TR = 3.8 s, TE = 90ms, SENSE factor 1.2,
multiband factor 4, and resolution 1.5 × 1.5 × 3mm3 with 1.5mm slice
overlap) with b-values of 400 s/mm2, 1000 s/mm2 and 2600 s/mm2

spherically distributed in 64, 88 and 128 directions respectively using
interleaved phase encoding.

Diffusion MRI was reconstructed at an in-plane resolution of
1.5mm and slice thickness of 1.5mm. Images were denoised and cor-
rected for motion, eddy current, Gibbs ringing, and susceptibility
artifactwith the diffusion SHARDpipeline. In-scanner headmotionwas
estimated by the SHARD outlier ratio, which is themean outlier weight
of all slices detected in slice-to-volume reconstruction. A quality check
was conducted by neighboring DWI correction (NDC)55, leading to
34 scans being excluded due to their low NDC values calculated by a
median value-based outlier detector. The accuracy of b-table orienta-
tion was examined by comparing fiber orientations with those of a
population-averaged template56. Then, the reconstruction of the dif-
fusion datawasperformed in native spacewith generalized q-sampling
imaging (GQI) (Yeh, Wedeen, and Tseng 2010) with a diffusion sam-
pling length ratio of 1.25. The tensor metrics were calculated and
analyzed using the resource allocation (TG-CIS200026) at Extreme
Science and Engineering Discovery Environment (XSEDE) resources57.

After reconstructing images with GQI, the whole-brain fiber
tracking was conducted with DSI-studio (http://dsi-studio.labsolver.
org/) with quantitative anisotropy (QA) as the termination threshold.
QA values were computed in each voxel in their native space for every
subject. The tracking parameters were set as the angular cutoff of 60
degrees, step size of 1.0mm, minimum length of 30mm, and max-
imum length of 300mm. The whole-brain fiber tracking process was
performed with the FACT algorithm until 1,000,000 streamlines were
reconstructed for each individual. Here, we used a neonatal AAL-
aligned brain parcellation with 90 nodes20 to construct the structural
connectome for each infant. T2-weighted images in native DWI space
were used to provide information on region segmentation during the
construction of connectomes. The structural connectome for each
individual was then constructedwith a connectivity threshold of 0.001
and the pairwise connectivity strength was calculated as the average
QA value of eachfiber connecting the two end regions, which results in
a 90 × 90 adjacent matrix for each participant as the brain structural
connectome matrix.

Network control theory
The human brain can be considered as a natural complex system. One
importantway to understand the behavior of a complex system is from
the mechanism to control it, which means driving the system to the
desired state. Network control theory, aimed to address the problem
of how to control a system consisting of nodes (brain regions) and
edges (white matter tracts between brain regions), can illustrate the
dynamic changes in the short term or the developmental trajectory in
the long term that human brain goes through and distinguish the
cognitive dysfunction in disorder groups.

A network system can be represented as the graph G = (V, E),
where V and E are the vertex and edge sets respectively. Let aij be the
weight associated with the edge (i,j) in E and define the weighted
adjacency matrix of the graph G as A= ½aij �, where aij =0 when aij=2E.
Here, the individual structural connectome A in Rn×n is a symmetric
and weighted adjacency matrix whose elements ½aij � evaluate the
strength of the white matter fiber connecting between region i and
region j in the brain.

Dynamic processes and controllability metrics
For the definition of the neural dynamic processes, we adopt the prior
models that link brain structural networks to simplified brain dynam-
ics. Though the evolution of brain activity occurs in a nonlinear man-
ner, previous studies have demonstrated that the simplified linear
models can predict a significant portion of the variance in the neural
dynamic recorded by fMRI. Therefore, we employ a simplified noise-
free linear discrete-time and time-invariant network model:
xðt + 1Þ=AxðtÞ+BK ðtÞuK ðtÞ, where x denotes the brain state at a given
time, and A is the symmetric, undirected and weighted adjacency
matrix for the network. In our case, A represents the structural con-
nectome for each individual, whose element indicates the pairwise
strength of brain structural connection anddiagonal elements equal to
zero. The input matrix BK identifies the control points Κ in the brain,
where K= fk1, � � � ,kmg and BK = ½ek1 � � � ekm�. ei denotes the ith canoni-
cal vector of dimension N and input uK denotes the input control
strategy over time.

We further study the ability of a certain brain region to drive the
state of a dynamic system to a desired state, which is defined as
controllability. Classic control theory provides that the controllability
of the network from the set of network nodes K is equivalent to
the controllability Gramian WK being invertible, where
WK =

P1
τ =0A

τBKB
T
KA

τ . The input matrix B reduces to a one-
dimensional vector as we choose control nodes one at a time. Based
on this network control theory framework, we examine two diag-
nostics of controllability that describe the ability to drive the network
with different types of transitions as patterns of regional activity:
average controllability to measure the ability to drive nearby brain
state transition and modal controllability to estimate that of distant
brain state transition on the brain energy landscape. Average con-
trollability is defined by the average input energy from a group of
control nodes and overall potential target states. The average input
energy is proportional to TraceðW�1

K Þ, the trace of the inverse of the
controllability Gramian. Here, to keep the consistency with previous
studies13,18, we use TraceðWK Þ as the measurement of average con-
trollability to increase the accuracy of computation on small brain
networks andmaintain the information obtainedby thismeasurement.
As noted in the prior study, TraceðWK Þ encodes a well-defined metric
for controllability, equivalent to the networkH2 norm or the energy of
the network impulse response. Modal controllability is defined as
the ability of a node to control difficult-to-reach mode of the dynamic
network system and is computed from the eigenvectors ½vij � of
the adjacency matrix A. Here, we define the measurement of
modal controllability as ϕi =

PN
j = 1ð1� λj

2ðAÞÞv2ij of all N modes
λ0ðAÞ,:::,λN�1ðAÞ from brain region i, following the definition of pre-
vious studies.

Control energy cost during state transitions
To explore how the brain’s dynamic processes are constrained by the
structural connectome, we utilized network control theory to model
the energy required to activate specific brain networks over the
existing structural network topology of the infant brain. The baseline
state xð0Þ was set to zero to simulate the resting state of the brain,
while the target brain state xðTÞwas defined such that all regions in the
desired brain network had a magnitude of one, while all other regions
had a magnitude of zero, representing activation of the desired
regions.

Here, we followed the definition of the control task in the previous
studies15,58, where the system transitions from initial state to target state
with minimum-energy input as an optimal control problem, with the
cost function defined as a Hamiltonian, H p,x,u, tð Þ=xTx +uTu +
pTðAx +BuÞ. By solving the optimization problem u* =arg min(H),
control energy for each node ki was defined as Eki

=
R T
t =0jju*

ki
ðtÞjj2dt,

indicating the overall energy input required by the node to facilitate the
desired state transition.
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To validate whether the structure of infant brain networks facili-
tated transitions between the baseline state and targeted brain states,
we constructed a null model network with the preserved degree and
strength distribution of the original network for each individual59 and
compared the energy consumption differences between the null
model network and the original network with a paired two-sided t-test.

Statistical analysis
Whole-brain controllability was calculated as the mean controllability
across all brain regions, and regional controllability was calculated as
the mean controllability across all subjects. Confounds including sex,
brain volume, head motion, network strength and network density
were included in statistical analyses as additional regressors. To
examine whether significant differences exist in the regional con-
trollability between preterm infants at TEA and term infants, a two-
sample two-sided t-test was performed. The Benjamini-Hochberg false
discovery rate (FDR) method was used to correct for multiple com-
parisons. Pearson correlations were used to associate average and
modal controllability on the whole-brain and regional level and post-
menstrual age and controllability. To comparewhether the association
between controllability and age differs across different groups, a
comprehensive statistical comparison of correlations with cocor()
function in cocor package in R version 4.1.160 was used for the com-
parison of whole-brain controllability development rate between pre-
term at birth and preterm at TEA, and for the comparison of regional
controllability development rate between preterm at TEA and term.
The correlation comparison test with cocor package generated a
z-statistic to indicate the direction and amplitude of the difference
between two correlations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RawData from the Developing Human Connectome Project is publicly
available at http://www.developingconnectome.org/data-release/
third-data-release and can be downloaded upon request from
https://biomedia.github.io/dHCP-release-notes/download.html. The
relevant data to generate the figures are provided as Source Data
files. Source data are provided with this paper.

Code availability
Preprocessing code can be found at https://brain.labsolver.org/hcp_
d2.html. Network control theory code can be found at https://
complexsystemsupenn.com/codedata: (controllability https://
complexsystemsupenn.com/s/controllability_code-smb8.zip; control
energy https://github.com/ursbraun/network_control_and_
dopamine). Custom analysis code is available at https://github.com/
huiliii/infant_control.
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