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Deep learning at the edge enables real-time
streaming ptychographic imaging
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Coherent imaging techniques provide an unparalleled multi-scale view of
materials across scientific and technologicalfields, from structuralmaterials to
quantum devices, from integrated circuits to biological cells. Driven by the
construction of brighter sources and high-rate detectors, coherent imaging
methods like ptychography are poised to revolutionize nanoscale materials
characterization. However, these advancements are accompanied by sig-
nificant increase in data and compute needs, which precludes real-time ima-
ging, feedback and decision-making capabilities with conventional
approaches. Here, we demonstrate a workflow that leverages artificial intelli-
gence at the edge and high-performance computing to enable real-time
inversion on X-ray ptychography data streamed directly from a detector at up
to 2 kHz. The proposed AI-enabled workflow eliminates the oversampling
constraints, allowing low-dose imaging using orders of magnitude less data
than required by traditional methods.

Ptychography is a high-resolution coherent imaging technique that is
widely used in X-ray, optical, and electron microscopy. In particular,
X-ray ptychography has the unique potential for non-destructive
nanoscale imaging of centimeter-sized objects1,2 with little sample
preparation, having provided unprecedented insight into countless
material systems including integrated circuits3 and biological
specimens4. Strain information can be obtained additionally when
combined with X-ray diffraction5,6. In the optical regime, the compre-
hensive depth information of ptychography has allowed 3D imaging of
large and thick samples with micrometer resolution7, while novel var-
iations in the Fourier domain have enabled imaging in gigapixel scale8

with single shot exposure9. Last but not least, recent developments in
electron ptychography have witnessed the accomplishment of a
record-breaking deep sub-angstrom resolution10,11.

Ptychographic imaging is performed by scanning a coherent
beam across the sample with a certain degree of spatial overlap and

recording the resulting far-field diffraction patterns. Subsequently,
an image of the sample is recovered by computationally inverting
these measured patterns. The inversion of ptychographic data (or
phase retrieval) provides a solution to the phase problem, where
only the amplitude information about the wave exiting the sample,
and not its phase, is retained in the measured intensities. Currently,
real-time imaging with ptychography is limited by the use of con-
ventional phase retrieval methods. These methods do not produce
live results until after acquiring a few tens if not hundreds of dif-
fraction patterns, despite substantial advancement in the recon-
struction algorithms12. Moreover, the spatial overlap required for
the numerical convergence limits the sample volume that can be
imaged in a given amount of time and can cause extra damage in
dose-sensitive specimens.

State-of-the-art ptychography instruments bring about new and
prohibitive computational challenges with their drastically increased
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data rate. For example, one raster scan across an area of 1mm× 1mm
at 100nm step size yields 200 TB of raw data with a moderate size
detector of onemillion pixels in 16-bit dynamical range. This volumeof
data can be acquired in <24 h at a fourth-generation synchrotron
source, thus presenting adata rate of 16Gbps and requiring ~PFLOPsof
computation to perform phase retrieval13. To address this challenge,
scientists have increasingly turned to deep learning methods for data
analysis. An emerging strategy is to replace conventional analysis
techniques withmuch faster surrogate deep learningmodels14–17. Deep
convolutional neural networks havebeenwidely explored for coherent
imaging and have been shown to outperform conventional compute-
intensive iterative algorithms used for phase retrieval in terms of
speed, and increasingly also in reconstructionquality, especially under
low-light or other sparse conditions15,17–22. However, there has not been
a demonstration of real-time coherent imaging via deep learning to
date, either at the edge or through on-demand resources at high-
performance computing (HPC) facilities.

In this work, using X-ray ptychography as a representative tech-
nique, we demonstrate an artificial intelligence (AI)-enabled workflow
that can keep up with the current maximum detector frame rate of
2 kHz to achieve coherent imaging in real-time. This workflow uses
HPC resources for the online neural network training and a low-cost,
palm-sized embedded GPU system (the edge device) at the beamline
for real-time phase retrieval. We establish that this workflow is able to
achieve accurate ptychographic imaging under extreme experimental
conditions suchas very low spatial overlap and veryhigh framerate (up
to 2 kHz). Additionally, we show that the accuracy of the workflow
improves over the course of the experiment through continual learn-
ing. The proposedworkflow provides a simple and scalable solution to
the ever-growing data rate with state-of-the-art ptychography, and
can be easily extended to work with other imaging techniques at
light sources and advanced electronmicroscopes. This will potentially
allow real-time experimental steering and real-time identification of

experimental errors, saving significant effort and cost across a wide
range of experiments.

Results
Real-time streaming ptychography imaging workflow
The overall workflow for real-time streaming ptychographic ima-
ging, shown in Fig. 1, consists of three concurrent components: (1)
measurement, (2) online training, and (3) live AI inference. Diffrac-
tion patterns are captured on a detector downstream of the sample
while scanning a focused X-ray beam in a spiral pattern. At the end of
each scan, the resulting diffraction data are sent to the HPC
resources where phase retrieval is performed using conventional
iterative algorithm23,24. While iterative phase retrieval has also been
used to produce real-time feedback for ptychographic experiments,
this is typically too slow for data acquired with state-of-the-art
detectors running at their maximum speed (>1 kHz), which is going
to be a common practice at the fourth generation synchrotrons.
Instead, the results of iterative phase retrieval are cropped and
paired with the corresponding diffraction patterns to provide
labeled data for incremental training of a neural network. Herein-
after, one set of training data refers to one diffraction pattern paired
with a cropped image of the iteratively retrieved phase. The trained
neural networkmodel is periodically sent to the edge device for low-
latency inference with improved quality. The diffraction patterns are
also streamed concurrently to the edge device at the beamline over
the local area network by using a codec-based structured data
protocol25. Updated with the latest trained model, the edge device
infers on individual diffraction patterns, and streams the results
back to the beamline computer, providing the users with stitched
sample images in real-time. The workflow is entirely automated, as
documented in a video recording provided in the Supplementary
Information. We note that while the workflow currently relies on a
modified version of PtychoNN15, it can be replaced with any

Fig. 1 | Illustration of AI-enabled workflow for real-time streaming ptychography imaging. An animated version of the sketch can be found here27. Image by Argonne
National Laboratory.
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alternative neural network in a plug-and-play fashion. More detailed
information can be found in the “Methods” section.

AI inference accuracy at the edge
We first consider the ability of the workflow to reproduce results
from iterative phase retrieval under the same experimental con-
ditions. Figure 2 compares the AI-inferred and iteratively recon-
structed phases for a test scan with high spatial overlap. A spiral
scan was used with a step-size of 50 nm and a beamsize of
800 nm, corresponding to an overlap ratio of 0.9. Here the
overlap ratio is defined as 1�

ffiffi

ð
p

3ÞS=B, where S is the step-size of

the spiral scan and B is the beamsize. Comparison of the line
profiles in Fig. 2c shows that, once trained, AI inference results
are almost identical to those obtained with iterative phase
retrieval. Additionally, we note that the scanned area has features
(alphabetical letters) that were not present in the training dataset.
Supplementary Fig. 1 shows an example of the data included in
the online training of the neural network which consists of
entirely random patterns, although their refractive indices remain
the same as the training and test data merely correspond to dif-
ferent regions of the same sample etched into different features.

Low-dose ptychographic imaging through sparse-sampling
We then explore the possibility for the workflow to invert sparsely
sampled data. Because AI inference is performed independently on
each diffraction pattern, the notion of spatial overlap no longer
applies. A spiral scan with an overlap ratio of 0.9 is used as the starting
point, the iteratively retrieved phase of which serves as the ground
truth. We then gradually reduce the overlap by selectively removing
part of the data. At each step, a new iterative phase retrieval is per-
formed alongside the stitching of the AI inference results. The accu-
racy is evaluated as the structural similarity26 of the iteratively
retrieved or AI-inferred phase (see Supplementary Fig. 2) against the
ground truth. As shown in Fig. 3a, while the stitched AI inference
retains >90% accuracy even without any overlap (S = 460 nm, Fig. 3d),
the accuracy of conventional iterative methods drops rapidly with
decreasingoverlap ratio, to <80%at an overlap ratioof 0.6 (S = 180 nm,
Fig. 3c). It can thus be concluded that for an acceptable accuracy of
80%, the step size required for the workflow can be 2.5× the size
required for conventional iterativemethods. This in turn indicates that
for a given amount of time, the workflow can cover 6.25× the area
measured by conventional ptychographic imaging while simulta-
neously lowering the dose by the same factor on the sample. The latter
is particularly appealing for dose-sensitive samples such as biological
materials.

Robustness in low light
The beam dose can be further reduced by lowering the exposure
time of the experimental data. Because the accuracy of the
workflow is set by that of the trained model, the count rate of the
training data is kept high. We demonstrate two strategies to
address the disparity in the count rate between the training and
the experimental data. The more straightforward solution is to
scale up the experimental intensity before sending it to the edge
device. This approach has the advantage of not requiring
retraining of the neural network but only works with moderate
scaling factors due to amplification of the noise-to-signal ratio.
Figure 4a shows an example of the experimental data with an

Fig. 2 | Accuracy of AI inference compared to conventional iterative phase
retrieval. a Shows the cumulative phase from the workflow. The result is obtained
by stitching together individual AI inferences of the entire scan as described in the
“Methods” section.b Shows the results of iterative phase retrieval on the samedata.

c Shows the line profile comparison of the phase obtained with AI inference and
iterative methods. The position of the line cut is indicated by the white dashed line
in (a). The scale bar is 500 nm. Source data are provided as a Source data file.

Fig. 3 | Accuracy of AI inference on sparsely sampled data. a Shows the accuracy
of both AI inference and iterative phase retrieval, as a function of the overlap ratio.
Also shown are visualizations of the actual probe overlap for overlap ratios ofb0.9,
c 0.6, and d 0, by plotting the photon dose at each scan position. The average dose
is 20k ph/nm2 for an overlap ratio of 0.9, 1600 ph/nm2 for an overlap ratio of 0.6
and 250ph/nm2 for an overlap ratio of 0. A defocused probe is used, resulting in a
donut-shaped illumination on the sample that can be individually discerned at low
overlap. The scale bar is 1μm. Source data are provided as a Source data file.
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exposure time of 0.5 ms, corresponding to the maximum detector
frame rate of 2 kHz. Figure 4b shows an example of the training
data, exposed for 5ms. Figure 4c shows the stitched AI inference
results after upscaling the experimental intensity by a factor of
10, with an accuracy of 86% as measured against the groundtruth
image reconstructed by iterative phase retrieval (Fig. 4d). A video
recording of the live demonstration of inference at 2 kHz can be
found here27. The estimated dose for this demonstration was
6 ph/nm2. The second solution is to scale down the intensity in
the training data and retrain the model. This way a much larger
scaling factor can be achieved. No noticeable difference was
observed in the AI inference whether or not Poisson noise was
added after scaling down the intensity. As is shown in Supple-
mentary Fig. 3, an accuracy of over 80% is observed with a scaling
factor of as large as 10,000.

Effect of continual learning
To ensure a high accuracy of the AI-inferred phase, and to quickly
adapt to new sample features, the neural network model at the edge
is constantly updated through continual learning. Figure 5a shows
the performance of the workflow on two test-sample areas, shown
respectively, in Fig. 5b and c. The first area contains features similar
to the training data, in which case the accuracy of the training
improves rapidly, and highly accurate AI inference is achieved using
just the first 20,000 sets of training data. The second area contains
features unseen in the training data. The accuracy in this case
improves progressively over the course of the continual learning.
The change of slope in the structural similarity after 80,000 sets is
explained by added diversity, as the training data at this point starts

to include edges of the patterned areas. The continual learning
strategy is thus essential to achieve accurate AI inference on new
features. The reconstruction fidelity of the neural network at the
initial stage of continual learning is illustrated in Supplemen-
tary Fig. 4.

Discussion
The workflow described in this work provides a path to tackling the
data and compute needs for ptychographic imaging at next-
generation light sources and at advanced electron microscopes. As
shown in Fig. 6, the raw data acquisition rate for both state-of-the-art
X-ray28–30 and electron11 ptychography doubles every year, enabled by
the advancements in both scanning strategies and larger and faster
detectors31–35. For X-ray ptychography, the raw data rate reached
800Mbps a decade ago, and this still exceeds the throughput of the
most advanced iterative optimizers published in 202136,37. To put this
into perspective, it would take conventional methods an hour to per-
form phase retrieval on data taken in a second on a fully illuminated 10
Mega-pixel detector running at 32 bits and 2 kHz (640Gbps). Our
workflow overcomes this by leveraging the low-latency, high-
throughput surrogate models at the edge. The inference speed in
our demonstration is ultimately limited by the 1 Gbps network con-
nection on the detector control computer. For a detector image size of
512 × 512pixels, live inference at 100Hz is achieved, corresponding to a
capped incoming data rate of 0.5 Gbps. By reducing the image size to
128 × 128 pixels, live AI inference at 2 kHz is achievedwhile running the
detector at its maximum frame rate. Using a powerful GPU, the infer-
ence time was further reduced to 70μs per image (see the “Methods”
section), corresponding to a frame-rate of 14 kHz. For comparison, 500

Fig. 4 | Accuracy of AI inference on low count data. a Shows an example dif-
fraction pattern of a ptychographic scan with an exposure time of 0.5ms. b Shows
an example diffraction pattern of the training data with an exposure time of 5ms.
c Shows the stitched AI inferred phase on the low count dataset shown in (a),

obtained after upscaling the experimental intensity by a factor of 10. d Shows the
iteratively retrieved phase of the low photon count dataset shown in (a). The scale
bar is 500nm.

Fig. 5 | Effect of continual learning. a Evolution of structural similarity against the
ground truth for two selected test-sample areas during continual learning. Those
areas are shown respectively in (b) and (c). The training set consists of pairs of
iteratively retrieved phases and corresponding diffraction patterns on an area with

randomly etched features. After about 80,000 sets, the training data starts to
include the edge of the patterned areas. The scale bar is 500 nm. Source data are
provided as a Source data file.
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iterations of iterative phase retrieval took about 1min for a scan con-
sistingof963 images, corresponding to anequivalent frame-rate about
1000 times slower, at 16Hz.

Given sufficient data, the accuracy of the workflow improves over
the course of the experiment via continual learning and is ultimately
limited by the accuracy of the iterative phase retrieval used for the
training. Because access to on-demand HPC resources may be limited,
a strategy is devised to minimize the use of expensive HPC resources.
In the initial phase, when a new set of experimental data is received at
the HPC, it automatically triggers the image reconstruction service
using iterative methods. The results are then cropped and paired with
the corresponding diffraction patterns to form the labeled training
data. Part of this training data is used immediately to validate the
accuracyof the existing neural network. If a largemismatch is detected
between theAI-inferredphase from the latestmodel and the iteratively
retrieved phase in the training data, a retraining service is queued
which upon completion also sends the updated model to the edge
device. If the mismatch is within a certain tolerance level (for instance,
a difference of <10% in structural similarity), the automatic image
reconstruction and retraining services are suspended, with the
experimental data being sent and reconstructed at HPC periodically at
a prolonged interval (for instance, once every hour). Comparing the AI
inference using the existing neural network with the periodically
retrieved phase is particularly useful to check, among others, data
distributional shifts. The on-demand image reconstruction and
retraining services are resumed if a large mismatch is again detected.
Typically, a new network is trained from scratch at the beginning of
each experiment to better accommodate for differences in samples,
probe, and detector configuration However, more sophisticated
schemes such as the one described in the fairDMS approach38 can be
adopted to reuse models from previous experiments for achieving
more rapid training of the data.

One of the reasons behind the high inference accuracy demon-
strated in this work is that the neural network is trained specifically for
samples with a given range of refractive indices and for a fixed illu-
mination probe. This simplifies significantly the intensity (-input)
phase (-output) relationship for the neural network, thus allowing it to
accurately solve the inverse problem. As long as the refractive index of
the sample remains in the same range as those used in the training
data, the neural network can accurately predict new features it has
never seen such as those demonstrated in Fig. 2. If the refractive index
of the sample falls outside of the range however, a retraining of the
neural network is recommended. We note that it is not necessary to
retrain neural networks for small fluctuations in the sample or in the

probe. In fact, the neural network has been shown to be quite tolerant
to those changes. In Supplementary Fig. 5, we use the same model to
directly infer on experimentally acquired data with different count
rates from the same area. The stitched inference for when the count
rate has varied by a factor of 4 showsno visible difference compared to
the expected result. When the count rate has varied by a factor of 16,
the predicted sample structure still looks correct, but the predicted
level of phase is off by as much as ±0.2 rad. When the count rate has
varied by a factor of 40, even the predicted structure is wrong, and the
stitched inference is no longer usable. This shows that the trained
model can still produce reliable phase inference even if the count rate
has varied by as much as a factor of 4. The predicted phase will still be
usable as feedback for experimental steering39 even if the incoming
intensity has varied by as much as a factor of 16.

One significant advantage of the proposed workflow is in the field
of low-dose high-resolution imaging, which is relevant for a variety of
materials including biological samples and organic–inorganic per-
ovskites. Conventional ptychography is in particular damaging to
thesematerials due to the beamexposurewith overlapping constraint.
Beam damage is an even bigger problem for electron ptychography
than for X-ray due to the stronger interaction with materials of the
electron beam. In this work, low-dose high-resolution imaging is
achieved through two separate approaches. First, by performing AI
inference on individual diffraction patterns, the oversampling con-
straint is eliminated. We show a sample image with an accuracy of 90%
without any probe overlap between themeasured points. This reduces
the beam dose by a factor of 6 compared to that required by con-
ventional methods. In the second approach, the beam dose is further
reduced by a factor of 10 (upscaling the low-count rate experimental
data, Fig. 4) to 10,000 (downscaling the training data taken at higher
count rates, Supplementary Fig. 3) by performing AI inference on data
acquired with shorter exposure time. The upscaling method has the
advantage of working with low-count data, while the downscaling
method is convenient as it does not require retraining of the existing
model. Both approaches, in addition to reducing beam damage by a
few orders of magnitude, increase the measurement area per given
time by the same amount. We note that the proposed workflow still
requires high-overlapped data as well as iterative phase retrieval to
produce training data for the neural network, particularly at the
beginning of the experiment. As such, a good strategy for imaging
beam-sensitive samples is to first run conventional ptychographic
measurements in a small area with high overlap and a decent count
rate. This allows high-quality training data to be acquired, which
ensures the accuracy of the subsequent low-dose imaging on the
remaining area with essentially no overlap. The limitation of this
strategy is that by removing the overlap between themeasured points,
we have limited the possibility to perform iterative phase retrieval, and
by extension the possibility to perform continual learning.

Methods
X-ray ptychography experiment
X-ray ptychography data was taken at the hard X-ray nanoprobe
beamline at the Advanced Photon Source. The photon energy was
10 keV. Two sets of experimental data were acquired. The first set
was taken with an Amsterdam Scientific Instruments Medipix3
detector (516 × 516 pixels, 55 μm pixel size) sitting at 1.55 m down-
stream of the sample. The maximum frame rate was 100 Hz limited
by the data transfer bandwidth of the 1 Gbps network. The second
set was taken with a Dectris Eiger2 X 500K detector with 75 μm
pixels, located 0.9m downstream from the sample. Only a 128 × 128
subsection of the image is used, allowing live inference at the max-
imumdetector frame rate of 2 kHz. A Fresnel Zone Plate with 160 μm
diameter and 30 nm outermost zone width was used and defocused
intentionally to reach a spot size of about 800 nm. For each scan a
piezo motor moves the focusing optics, and hence the beam, in

Fig. 6 | Evolution of raw data rate for state-of-the-art X-ray and electron pty-
chography. Source data are provided as a Source data file.
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963 steps following a spiral pattern. The step size varies from 50 nm
(for training) to 200 nm while the exposure time varies from 0.4 s
(for training) to 0.5ms.

Iterative phase retrieval and image processing toolkit
Iterative phase retrieval was performed using the regularized Ptycho-
graphic Iterative Engine (rPIE)23 algorithm implemented in the Tike
toolkit40 (version 0.22.2). Tike provides an application programming
interface (API) to implement, parallelize, and run different types of 2D
ptychographic reconstruction algorithms, including PIE family and the
difference map (DM) algorithms. We have also performed phase
retrieval using DM to compare with those retrieved with rPIE shown in
the manuscript. As shown in Supplementary Fig. 6. The phases
retrieved with both methods are mostly consistent with each other.
The phase retrieved with DM is slightly less uniform, which is why we
have kept the rPIE retrievedphase for thiswork. All the reconstructions
shown in Supplementary Fig. 6 were performed on an RTX 2080 Ti
GPU, with 3 probe modes and 2000 iterations.

Tike supports high-performance scalable reconstruction opera-
tions via accelerators (GPUs) andoptimized communicationprimitives
tailored to ptychography36,41. The optimizations address the perfor-
mance bottlenecks with the process and/or thread synchronizations
during the overlapping (or halo) region updates using better com-
munication and task placement topologies. These optimizations
enable efficient multi-GPU and multi-node data processing that can
scale on high-end compute clusters and supercomputers.

During our experimental evaluation, we used ThetaGPU cluster at
Argonne Leadership Computing Facility (ALCF). ThetaGPU cluster
consists of 26NVIDIADGXnodes, each of which is equippedwith eight
A100 GPUs (connected with an NVLink switch), 360GB memory, and
an AMD EPYC 7742 processor. We reserved eight GPU nodes, i.e., a
total of 64 A100 GPUs, to perform phase retrieval and model training.
The updated trainedmodels are periodically sent to the edge device at
nanoprobe beamline at APS. ALCF and APS facilities are connected
with a 200Gbps link. We initiated model training and phase retrieval
operations periodically during data acquisition. We used 7 DGX nodes
(52GPUs) for concurrent phase retrieval operations and the remaining
node (8GPUs) for PtychoNN model training. We coordinated the
workflow components with Globus Automate/Flows (for workflow
definition), funcX42 (for remote function calls and resource manage-
ment), and Globus (for inter-facility data movement)43,44.

PtychoNN 2.0 architecture
Theworkflowuses a convolutional neural network that takes as input a
raw coherent diffraction image and outputs an inferred sample
structure in a single pass (live inference). In this paper, we use a
modified version of PtychoNN15 (PtychoNN 2.0) for live AI inference to
achieve low inference latency at the edge. The detailed architecture of
PtychoNN 2.0 is shown in Supplementary Fig. 7 and this network dif-
fers from PtychoNN in two different aspects. First, it predicts only the
phases and therefore does not contain the amplitude branch originally
present in PtychoNN. Second, each convolutional layer in PtychoNN
2.0 contains 0.5X the number of filters as PtychoNN. With these
modifications, the number of trainable parameters in PtychoNN 2.0 is
reduced to 0.7M parameters against 4.7M parameters in PtychoNN.
Reducing the model size has the obvious advantage of improving the
training times and also helps in lowering the inference latency at the
edgewithout significantly impacting the accuracy. Theperformance of
the two ML models is analyzed in terms of the quality of the phase
predictions and inference times. Supplementary Fig. 8 indicates that
PtychoNN 2.0 can give equally good predictions as PtychoNN.

As an edge device, NVIDIA’s AGX Xavier supports native
PyTorch implementations, we compared the inference times for
PyTorch against TensorRT for both ML models. Table 1 shows the
average execution times observed on AGX, over 50 iterations for

each of the models in TensorRT and PyTorch for a batch size of 1.
The AGX was operated in Max-N mode during these inference
runs. It has to be noted that the inference times shown in the
table exclude the pre-processing time. PtychoNN in Table 1 cor-
responds to the network discussed in ref. 15 and PtychoNN 2.0
refers to the lightweight model designed for faster ptychographic
reconstructions. TensorRT is observed to exhibit a speed up of
approximately 4× when compared to native PyTorch imple-
mentation for PtychoNN 2.0.

Neural network training
Compared to other works employing neural networks for phase
retrieval45–48, training is performed notably online in this workflow. In
other words, the neural network is constantly being updated during
the experiment as new diffraction data are acquired. Iterative phase
retrieval is performed on the HPC each time a new batch of data is
available. The diffraction data plus the phase-retrieved images are
appended to the existing corpus of training data, and the neural net-
work is trained for a further 50 epochs by using a cyclic learning rate
policy49. Network weights are updated by using the adaptive moment
estimation (ADAM) optimizer to minimize the mean absolute error
(MAE) between the target labels (output of iterative phase retrieval)
and AI inferences. The model state at each training epoch is evaluated
on unseen validation data, which is 10% of the training data. The vali-
dation data set is randomly chosen from the training data for every
epoch. The trained model with the lowest validation loss at the end of
50 epochs is pushed to the edge device for the AI inference on sub-
sequent scans. During the inference, the neural network will infer from
unseen test images that are not present in training or the validation
datasets. Supplementary Fig. 9 shows the training and validation losses
for the first training iteration with only one ptychographic dataset
(scan #1) and for training iteration 111 with 111 ptychographic datasets
(when scan #111 was added). While we do not see evidence of over-
fitting in the early iterations, we notice that the training loss slightly
diverges in the latter iterations. Here, the cyclic learning rate approach
was used at each training iteration to ensure that we are not stuck in a
local minimum even as we add more training data. A total of 113
experimental scans, each with 963 X-ray diffraction patterns were
acquired. At the end of the experiment, the total available training data
comprised 113 × 963 = 108,819 pairs of diffraction and sample images.
As is shown in Supplementary Fig. 10, the training time scales almost
linearly with the size of the training data. For 100,000pairs of data, the
training time is about 10min using 8 A100 GPUs at the ALCF.

Each diffraction pattern represents a certain field-of-view of the
sample illuminated by the probe at that scan position. We select this
field-of-view based on the FWHM of the probe. For a reconstructed
pixel size of 6.82 nm and a probe FWHM of 800 nm, an area of
128 × 128 pixels was cropped each time to be paired with the corre-
sponding diffraction pattern for the training. Because the measure-
ments were performed with a spiral scan on an irregular scan grid,
instead of grabbing data directly from the iteratively retrieved result,
the phase in the training data was interpolated on a regular grid with
128 × 128 pixels centered around the center of the beam illumination.

Stitching of AI inference results
The workflow produces, for each input diffraction pattern, an infer-
ence image of 128 × 128 pixels. Each inference image is centered
around the corresponding beam position on the sample which, for

Table 1 | Approximate inference times (ms) in TensorRT and
PyTorch on the AGX

Model # TensorRT PyTorch

PtychoNN 10± 1 15± 1

PtychoNN 2.0 2.3 ± 0.4 8 ± 1
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spiral scans, is not on a regular grid. The first step of stitching is thus to
interpolate all the AI inference results onto the same regular grid,
based on information such as the beam position and the pixel size of
the inference image. The stitched image is calculated by statistically
averaging all the interpolated results on the same but larger regular
grid. Alternatively, we have performed a weighted average of the
interpolated results using the probe amplitude as the weights. The
second approach yielded very comparable results as the original one
with no visible improvement in the quality of the final image.

Estimation of the spatial resolution
In order to estimate the spatial resolution of the iterative retrieved
phase and the AI-inferred phase, we have picked two scans that share a
large overlap area. We note that despite covering the same area, the
beam positions on the sample for these two scans were completely
different. Supplementary Fig. 11a and b shows the iteratively recon-
structed phase of the two scans, with the overlap area highlighted by
the red rectangle. We have performed Fourier shell correlation calcu-
lation on the overlapped area, the resolution of iterative phase
retrieval was about 35 nm, as indicated in Supplementary Fig. 11c. The
beam size on the sample was about 800 nm for those measurements.
Next, we perform NN inference on these two scans. For this test, we
retrained the NN after specifically removing those two scans from the
training data. The stitched inferences for the two scans are shown in
Supplementary Fig. 11d and e, with the overlap area highlighted in red.
Fourier shell correlation (Supplementary Fig. 11f) performed on the
overlap area of the two stitched inference images indicates a resolu-
tion of 20 nm, much better than the number obtained for iterative
phase retrieval. We are not confident this reflects the actual resolution
of the NN inference and have hence chosen not to include this in the
main manuscript.

NVIDIA’s Jetson AGX Xavier developer kit
We used the NVIDIA Jetson AGX Xavier developer kit50, an embedded
GPU platform, to demonstrate real-time ptychographic phase retrieval
at the edge. AGX Xavier is one among the Jetson series from NVIDIA
with a computational capability of 32 TOPs, dedicated to building
embedded ML solutions. Here the AGX Xavier is targeted as an infer-
ence device and the TensorRTTM Python API from NVIDIA is used for
accelerating the inference workflow. One of the primary means of
importing the model in TensorRTTM is via the ONNX format, and
therefore the PyTorch-trained model is converted to ONNX before
running the inference workflow.

Real-time phase retrieval at higher frame rates
The embedded GPU device (NVIDIA Jetson) can support real-time
feedback up to a frame rate of 100 Hz. Data acquisition rates for
ptychography experiments are growing rapidly and are soon
expected to exceed 50 Gbps. Therefore, it is important to reduce the
AI inference times to achieve real-time data analysis. Widely studied
and adopted techniques like reduced precision arithmetic and
quantization can be used to accelerate AI inference51. However, such
methods can degrade network accuracy and require careful fine-
tuning of hyperparameters. Since the neural network in the study,
PtychoNN 2.0, is a fully convolutional neural network and is com-
pute-limited, we explored the use of an advanced GPU that is
designed to accelerate ML workloads. We benchmarked the AI
inference time of an Ampere-architecture GPU (RTX A6000) for
high-speed inference with different batch sizes as shown in Table 2.
The Dectris Eiger2 X 500K detector used for high-speed data
acquisition can support a maximum data rate of 2 kHz at 16 bits. A
batch size of 8 was chosen for the AI inference at 2 kHz as the
inference time per frame is observed not to improve substantially
for higher batch sizes. Table 2 shows the average AI inference time,
plus standard deviations, as measured across 50 inference runs.

Data availability
The ptychographic experimental data used in the inference is publicly
available at https://doi.org/10.5281/zenodo.8121606. The source data
underlying the plots contained in this article is also provided as a
Source Data file Source data are provided with this paper.

Code availability
The code and machine learning model for the inference imple-
mented at the edge is available at https://github.com/vbanakha/
edgePtychoNN.

References
1. Jiang, Y. et al. Achieving high spatial resolution in a large field-of-

view using lensless x-ray imaging. Appl. Phys. Lett. 119, 124101
(2021).

2. Du, M. et al. Upscaling X-ray nanoimaging to macroscopic speci-
mens. J. Appl. Crystallogr. 54, 386–401 (2021).

3. Holler, M. et al. High-resolution non-destructive three-dimensional
imaging of integrated circuits. Nature 543, 402–406 (2017).

4. Deng, J. et al. Simultaneous cryo x-ray ptychographic and fluores-
cence microscopy of green algae. Proc. Natl Acad. Sci. USA 112,
2314–2319 (2015).

5. Hruszkewycz, S. O. et al. High-resolution three-dimensional struc-
tural microscopy by single-angle Bragg ptychography. Nat. Mater.
16, 244–251 (2017).

6. Hill, M. O. et al. Measuring three-dimensional strain and structural
defects in a single InGaAsnanowire usingcoherent x-raymultiangle
Bragg projection ptychography. Nano Lett. 18, 811–819 (2018).

7. Li, P. & Maiden, A. Multi-slice ptychographic tomography. Sci. Rep.
8, 2049 (2018).

8. Konda, P. C. et al. Fourier ptychography: current applications and
future promises. Opt. Express 28, 9603–9630 (2020).

9. Sidorenko, P. & Cohen, O. Single-shot ptychography. Optica 3,
9–14 (2016).

10. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-
ångström resolution. Nature 559, 343–349 (2018).

11. Chen, Z. et al. Electron ptychography achieves atomic-resolution
limits set by lattice vibrations. Science 372, 826–831 (2021).

12. Marchesini, S. et al. Sharp: a distributed GPU-based ptychographic
solver. J. Appl. Crystallogr. 49, 1245–1252 (2016).

13. APSScientificComputingStrategy (accessed January 2023); https://
www.aps.anl.gov/sites/www.aps.anl.gov/files/APS-Uploads/XSD/
XSD-Strategic-Plans/APSScientificComputingStrategy-2021-09-
24-FINAL.pdf (2021).

14. Liu, Z. et al. Tomogan: low-dose synchrotron x-ray tomographywith
generative adversarial networks: discussion. J. Opt. Soc. Am. A 37,
422–434 (2020).

15. Cherukara,M. J. et al. AI-enabledhigh-resolution scanningcoherent
diffraction imaging. Appl. Phys. Lett. 117, 044103 (2020).

16. Liu, Z. et al. Braggnn: fast x-ray Bragg peak analysis using deep
learning. IUCrJ 9, 104–113 (2021).

17. Yao, Y. et al. Autophasenn: unsupervised physics-aware deep
learning of 3d nanoscale Bragg coherent diffraction imaging. npj
Comput. Mater. 8, 1–8 (2022).

Table 2 | Approximate inference times (μs) per frame on the
RTX A6000 & AGX Xavier

Batch size # RTX A6000 AGX Xavier

1 370 ± 20 2300± 400

2 220± 20 1360± 340

4 130± 10 960± 110

8 90± 5 850± 140

16 70 ± 5 680± 30

Article https://doi.org/10.1038/s41467-023-41496-z

Nature Communications |         (2023) 14:7059 7

https://doi.org/10.5281/zenodo.8121606
https://github.com/vbanakha/edgePtychoNN
https://github.com/vbanakha/edgePtychoNN
https://www.aps.anl.gov/sites/www.aps.anl.gov/files/APS-Uploads/XSD/XSD-Strategic-Plans/APSScientificComputingStrategy-2021-09-24-FINAL.pdf
https://www.aps.anl.gov/sites/www.aps.anl.gov/files/APS-Uploads/XSD/XSD-Strategic-Plans/APSScientificComputingStrategy-2021-09-24-FINAL.pdf
https://www.aps.anl.gov/sites/www.aps.anl.gov/files/APS-Uploads/XSD/XSD-Strategic-Plans/APSScientificComputingStrategy-2021-09-24-FINAL.pdf
https://www.aps.anl.gov/sites/www.aps.anl.gov/files/APS-Uploads/XSD/XSD-Strategic-Plans/APSScientificComputingStrategy-2021-09-24-FINAL.pdf


18. Wengrowicz,O., Peleg,O., Zahavy, T., Loevsky, B. &Cohen,O.Deep
neural networks in single-shot ptychography. Opt. Express 28,
17511–17520 (2020).

19. Goy, A., Arthur, K., Li, S. & Barbastathis, G. Low photon count phase
retrieval using deep learning. Phys. Rev. Lett. 121, 243902 (2018).

20. Chan, H. et al. Rapid 3d nanoscale coherent imaging via physics-
aware deep learning. Appl. Phys. Rev. 8, 021407 (2021).

21. Zhou, T., Cherukara, M. & Phatak, C. Differential programming
enabled functional imaging with Lorentz transmission electron
microscopy. npj Comput. Mater. 7, 141 (2021).

22. Wu, L. et al. Three-dimensional coherent x-ray diffraction imaging
via deep convolutional neural networks. npj Comput. Mater. 7,
1–8 (2021).

23. Maiden, A., Johnson, D. & Li, P. Further improvements to the pty-
chographical iterative engine. Optica 4, 736–745 (2017).

24. Maiden, A. M. & Rodenburg, J. M. An improved ptychographical
phase retrieval algorithm for diffractive imaging. Ultramicroscopy
109, 1256–1262 (2009).

25. pvAccess (accessed June 2023); https://epics-controls.org/
resources-and-support/documents/pvaccess (2021).

26. Wang, Z., Bovik, A., Sheikh, H. & Simoncelli, E. Image quality
assessment: from error visibility to structural similarity. IEEE Trans.
Image Process. 13, 600–612 (2004).

27. Video Recordings for AI enabled on the Fly Phase Retrieval (acces-
sed June 2023); https://danielzt12.github.io/latest_news/2022/07/
11/AI-enabled-on-the-fly-phase-retrieval.html (2021).

28. Dierolf, M. et al. Ptychographic x-ray computed tomography at the
nanoscale. Nature 467, 436–439 (2010).

29. Pelz, P.M. et al. On-the-fly scans for x-ray ptychography.Appl. Phys.
Lett. 105, 251101 (2014).

30. Deng, J. et al. The velociprobe: an ultrafast hard x-ray nanoprobe for
high-resolution ptychographic imaging. Rev. Sci. Instrum. 90,
083701 (2019).

31. Broennimann, C. et al. The PILATUS 1M detector. J. Synchrotron
Radiat. 13, 120–130 (2006).

32. Johnson, I. et al. Eiger: a single-photon counting x-ray detector. J.
Instrum. 9, C05032 (2014).

33. Leonarski, F. et al. Jungfrau detector for brighter x-ray sources:
solutions for it and data science challenges in macromolecular
crystallography. Struct. Dyn. 7, 014305 (2020).

34. Tate, M. W. et al. High dynamic range pixel array detector for
scanning transmission electron microscopy. Microsc. Microanal.
22, 237–249 (2016).

35. Philipp, H. T. et al. Very-high dynamic range, 10,000 Frames/S pixel
array detector for electron microscopy. Microsc. Microanal. 28,
425–440 (2022).

36. Yu, X. et al. Scalable and accurate multi-GPU-based image recon-
structionof large-scaleptychographydata.Sci. Rep. 12, 5334 (2022).

37. Favre-Nicolin, V. et al. PyNX: high-performance computing toolkit
for coherent X-ray imaging based on operators. J. Appl. Crystallogr.
53, 1404–1413 (2020).

38. Ali, A. et al. fairDMS: Rapidmodel training by data andmodel reuse.
In Proc. 2022 IEEE International Conference on Cluster Computing
(CLUSTER) 394–405 (IEEE, Heidelberg, Germany, 2022).

39. Pithan, L. et al. Closing the loop: autonomous experiments enabled
by machine-learning-based online data analysis in synchrotron
beamline environments. Preprint at https://arxiv.org/abs/2306.
11899 (2023).

40. Tike: A Toolbox For Tomographic Reconstruction of 3DObjects from
Ptychography Data (accessed June 2023); https://tike.readthedocs.
io (2023).

41. Yu, X., Bicer, T., Kettimuthu, R. & Foster, I. Topology-aware optimi-
zations for multi-gpu ptychographic image reconstruction. In Proc.
ACM International Conference on Supercomputing. 354–366
(Association for Computing Machinery, New York, NY, USA, 2021).

42. Chard, R. et al. Funcx: A federated function serving fabric for
science. In Proc. of the 29th International symposium on high-
performance parallel and distributed computing (eds Parashar,
M. Vlassov, V. Irwin, D. & Mohror, K.) 65–76. (Association for
Computing Machinery, New York, NY, United States, 2020).

43. Bicer, T. et al. High-performanceptychographic reconstructionwith
federated facilities. InDriving Scientific and EngineeringDiscoveries
Through the Integration of Experiment, Big Data, and Modeling and
Simulation. SMC 2021. Communications in Computer and Infor-
mation Science, Vol. 1512 (eds. Nichols, J. et al.) 173–189 (Springer,
Cham, 2021).

44. Vescovi, R. et al. Linking scientific instruments and computation:
Patterns, technologies, and experiences. Patterns 3, 100606
(2022).

45. Guan, Z., Tsai, E. H. R., Huang, X., Yager, K. G. & Qin, H. PtychoNet:
Fast and High Quality Phase Retrieval for Ptychography. Technical
Report (Brookhaven National Laboratory (BNL), Upton, NY,
USA, 2019).

46. Nguyen, T., Xue, Y., Li, Y., Tian, L. & Nehmetallah, G. Deep learning
approach for fourier ptychography microscopy. Opt. Express 26,
26470–26484 (2018).

47. Harder, R. Deep neural networks in real-time coherent diffraction
imaging. IUCrJ 8, 1–3 (2021).

48. Chang, D. J. et al. Deep-learning electron diffractive imaging. Phys.
Rev. Lett. 130, 016101 (2023).

49. Smith, L. N. Cyclical learning rates for training neural networks. In
Proc. 2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), 464–472 (IEEE, Santa Rosa, CA, USA, 2017).

50. Nvidia Jetson AGX Xavier Developer Kit (accessed June 2023);
https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-xavier-series/ (2021).

51. Vanhoucke, V., Senior, A. & Mao, M. Z. Improving the speed of
neural networks onCPUs. Deep Learning andUnsupervised Feature
Learning Workshop, NIPS 2011. https://research.google/pubs/
pub37631/ (2011).

Acknowledgements
This research used resources of the Advanced Photon Source (APS),
Center for Nanoscale Materials (CNM), and Argonne Leadership Com-
puting Facility (ALCF), which are operated for the DOEOffice of Science
by Argonne National Laboratory under Contract No. DE-AC02-
06CH11357. This work was also supported by the U.S. Department of
Energy,Officeof Science,Officeof Basic EnergySciencesData, Artificial
Intelligence, and Machine Learning at DOE Scientific User Facilities
programunder AwardNumber 34532.M.J.C. andS.K. also acknowledge
support from Argonne LDRD 2021-0090—AutoPtycho: Autonomous,
Sparse-sampled Ptychographic Imaging. We gratefully acknowledge
the computing resources provided on Swing, a high-performance
computing cluster operated by the Laboratory Computing Resource
Center at Argonne National Laboratory. We gratefully acknowledge
insightful discussion and advice from Francesco De Carlo at the
Advanced Photon Source. We would also like to thank William Allcock
and his team at the ALCF for their help with the HPC resources used in
this work, including the on-demand computing testbed.

Author contributions
A.V.B., T.Z., S.K., A.M., and M.J.C. conceived the workflow. A.V.B., T.Z.,
and S.K. developed the workflow software with the assistance of T.B.,
Z.L., W.J., Y.J., S.V., Y.Y., and I.T.F.; T.Z., A.V.B., S.K., A.M., and M.J.C.
performed the synchrotron experiment with the assistance fromM.V.H.;
A.V.B., T.Z., S.K. performed the data analysis under the guidance of A.M.
and M.J.C.; E.S. and G.G. provided assistance on the use of the edge
computing hardware. D.J.C., S.H., and R.C. provided assistance on the

Article https://doi.org/10.1038/s41467-023-41496-z

Nature Communications |         (2023) 14:7059 8

https://epics-controls.org/resources-and-support/documents/pvaccess
https://epics-controls.org/resources-and-support/documents/pvaccess
https://danielzt12.github.io/latest_news/2022/07/11/AI-enabled-on-the-fly-phase-retrieval.html
https://danielzt12.github.io/latest_news/2022/07/11/AI-enabled-on-the-fly-phase-retrieval.html
https://arxiv.org/abs/2306.11899
https://arxiv.org/abs/2306.11899
https://tike.readthedocs.io
https://tike.readthedocs.io
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://research.google/pubs/pub37631/
https://research.google/pubs/pub37631/


use of high-performance computing hardware. All the authors dis-
cussed the results and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-41496-z.

Correspondence and requests for materials should be addressed to
Antonino Miceli or Mathew J. Cherukara.

Peer review information Nature Communications thanks Rama Vasu-
devanand theother, anonymous, reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© UChicago Argonne, LLC, Operator of Argonne National Labora-
tory 2023

Article https://doi.org/10.1038/s41467-023-41496-z

Nature Communications |         (2023) 14:7059 9

https://doi.org/10.1038/s41467-023-41496-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Deep learning at the edge enables real-time streaming ptychographic imaging
	Results
	Real-time streaming ptychography imaging workflow
	AI inference accuracy at the edge
	Low-dose ptychographic imaging through sparse-sampling
	Robustness in low light
	Effect of continual learning

	Discussion
	Methods
	X-ray ptychography experiment
	Iterative phase retrieval and image processing toolkit
	PtychoNN 2.0 architecture
	Neural network training
	Stitching of AI inference results
	Estimation of the spatial resolution
	NVIDIA’s Jetson AGX Xavier developer kit
	Real-time phase retrieval at higher frame rates

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




