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A robust normalized local filter to estimate
compositional heterogeneity directly from
cryo-EM maps

Björn O. Forsberg 1,2 , Pranav N. M. Shah 2 & Alister Burt3

Cryo electronmicroscopy (cryo-EM) is used by biological research to visualize
biomolecular complexes in 3D, but the heterogeneity of cryo-EM reconstruc-
tions is not easily estimated. Current processing paradigms nevertheless exert
great effort to reduce flexibility and heterogeneity to improve the quality of
the reconstruction. Clustering algorithms are typically employed to identify
populations of data with reduced variability, but lack assessment of remaining
heterogeneity. Here we develope a fast and simple algorithm based on spatial
filtering to estimate the heterogeneity of a reconstruction. In the absence of
flexibility, this estimate approximates macromolecular component occu-
pancy. We show that our implementation can derive reasonable input para-
meters, that composition heterogeneity can be estimated based on contrast
loss, and that the reconstruction can be modified accordingly to emulate
altered constituent occupancy. This stands to benefit conventionally
employed maximum-likelihood classification methods, whereas we here limit
considerations to cryo-EM map interpretation, quantification, and particle-
image signal subtraction.

Protein, DNA, and other molecular polymers sustain the fundamental
processes of life, and structural biology is the study of their functions
and interactions.Cryo-electronmicroscopy (cryo-EM) aims to visualize
them by aligning and averaging noisy images of many individual
macromolecules1–3, producing a 3D scalar field known as a map or
reconstruction. The reconstruction represents the local density or
scattering potential of the atoms that make up the imaged macro-
molecule, but other representations also exist4–9. The ability to con-
fidently deduce the molecular structure from the reconstruction
crucially depends on its local quality, which varies due to variability or
heterogeneity among the images used to build the reconstruction10.
Methods for isolating homogeneous subsets of particle images
through e.g. clustering are therefore employed11–15, and commonly
utilize gradient descent methods14,16,17. Methods that parameterize the
data have also been developed7,18–21. The ability to separate data com-
putationally by any method affords cryo-EM an unprecedented capa-
city to analyze the experimental particle distribution22,23, but this

ability can be sensitive to user input. Existing alignment and clustering
methods e.g. require a good initial (input) reconstruction to converge
with good fidelity, since it provides sufficiently accurate estimates of
image data parameters. However, lasting and potentially detrimental
reference bias or over-fitting may occur24. This can distort the recon-
struction and lead to misinterpretation or false features25, and is exa-
cerbated by the low signal-to-noise ratio (SNR) of cryo-EM data. So-
called ab-initio 3D reconstructions can now be made without user
input bias14,26,27, but it is important to note that this nonetheless incurs
downstream reference bias24. Current methods thus implicitly balance
useful reference bias that permits convergence of the alignment
against minimizing reinforcement of any reference bias arising from
either spurious correlations in the data or the initial reconstruction.
The imperative to minimize over-fitting has led to methods that avoid
detrimental reference bias28–30, and some which implicitly isolate use-
ful reference bias31,32 in a supervised fashion. Higher quality data and
more robust reconstruction methods have also led to more frequent
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iterative updates to the reconstruction than previously, based on
smaller subsets of the data. This has implicitly increased reference bias
within the reconstruction procedure by giving descent methods
higher inertia. It is thus appropriate and more prudent than ever to
investigate if and how its outcomes could be improved through sup-
plementing relevant reference bias based on the heterogeneity of the
reconstruction. However, until now no method has been published to
estimate the heterogeneity of the reconstruction, which states could
be inferred to exist in the data based on the final reconstruction and its
heterogeneity, nor which states can be extrapolated from the initial
reference during clustering.

Recently established methods assign a measure of heterogeneity
to the clusters23,33,34, attain more efficient or complete clustering35,36,
and systematically choose an appropriate number of clusters22. Con-
vergence of conventionally employed clustering is however largely
subjective, and heterogeneity in the data may remain unresolved
despite the apparent convergence of a given clustering algorithm37. As
a result, biologically relevant differences may not be apparent across
established clusters, and local reconstructions may suffer from undue
incoherent averaging.

The present work formalizes the notion that cryo-EM recon-
structions contain local information about latent heterogeneity38.
Heterogeneity leads to local attenuation of the reconstructed density,
a property we refer to as local scale. We provide OccuPy as a tool to
estimate this local scale at all points within a reconstruction. OccuPy
estimates local scale differences of arbitrary origin, e.g. due to flex-
ibility,misalignment, and/orpartial occupancy. OccuPy alsoprovides a
method to reduce the influence of the former, to better approximate
macromolecular occupancy generalized as a scalar field (see “Discus-
sion” section). This so-called occupancy mode is established by
application of a low-pass filter to approximately neutralize the influ-
ence of blur variation on differential local contrast. This isolates
composition heterogeneity of the reconstruction, which can justifiably
be modified to emulate reconstructions expected from more homo-
geneous image data. Since convergence of e.g. data clustering is
directedby referencebias for the cluster reference, it is also justified to
consider that modifications of the latter based on estimated hetero-
geneity might be useful to improve convergence34,39. OccuPy requires
only a reconstruction as input and runs in seconds without the need
for GPUs or HPC infrastructure. The approach is thus possible to
integrate into current cryo-EM processing pipelines based on both
clustering and machine learning.

In this work, we establish the necessary formalism and tools to aid
visual analysis of cryo-EM reconstructions, estimate local hetero-
geneity, and use it to improve current procedures. A GUI is provided
for ease of use (Supplementary Fig. 1), expanding the toolkit for
reconstruction analysis available to cryo-EM researchers.

Results
Local scale is accurately estimated against synthetic data
To evaluate if local scale can accurately estimate contrast degradation,
we utilized simulated data with induced contrast degradation. A
molecular model of malate dehydrogenase (PDB-1uxi, Fig. 1a) was
altered by decreasing the occupancy of chainA, leaving all other atoms
at full occupancy. Maps were generated based on this atomic model,
using the theoretical electron scattering factors implemented in
Gemmi40, and the local scale was finally estimated from suchmaps. As
evident in Fig. 1b, partial occupancy is qualitatively well estimated in
the absence of flexibility or other sources of variable resolution. Sys-
tematic investigation also shows that when resolution is homo-
geneous, local scale quantifies local occupancy accurately (Fig. 1c). The
application of a low-pass cutoff at 6Å to establish an occupancy-mode
estimate in this case reduces accuracy, ascribed to delocalization of
the reconstructed detail which introduces voxel correlation that leads
to a subsequent reduction of the effective sampling within the local

scale kernel window. Such a reduction in sampling under the estab-
lished method will result in a reduced percentile τ (see methods for
details). With a priori known occupancy, we can establish an empirical
value of τ that results in more accurate occupancy estimation by a
semi-exhaustive search at a fixed occupancy of 0.5 (Supplementary
Fig. 2a), which thus constitutes a proxy of the voxel correlation within
the local scale kernel window. This effective value τeff cannot be
determined this way in general of course, but it is illuminating to do so
in this analysis. It is observed that this accounts for the incurred pixel
correlation, and improves the accuracy of chain A occupancy at all
tested occupancies (Fig. 1c), despite being determined at a single
occupancy of 0.5.

Small-molecule (ligand) occupancy is of broad interest to quantify
and enrich in biological structures, so we also investigated if OccuPy
can do so accurately with a small enough filter window to segment the
ligand from its binding pocket. The analysis was thus repeated, instead
modulating the occupancy of the NAD co-factor of PDB-1uxi (1d). It is
evident that the surrounding does influence attainable granularity of
the scale estimate, tending it towards over-estimation, in particular at
lower ligand occupancy. Reducing the kernel size does mitigate this
effect, and illustrates that the kernel size need only encompass a few
voxels without significant detriment to the estimate when the fidelity
and sampling of the underlying data is sufficiently high.

We also evaluate the capacity of the occupancy mode to neu-
tralize local differences in resolution which might otherwise skew
occupancy estimate. The occupancy of chain A of PDB-1uxi was thus
fixed at 0.5 and the isotropic B-factor of all its atoms were modulated
in the range 25–400Å2 (Fig. 1e). It is evident that the occupancymode
drastically reduces the B-factor dependence of the scale estimate, as
intended. The remaining dependence is due to the lowpass filtration
itself, which causes reduced scale due to delocalization of signal out-
side the kernel window. It is thus evident that OccuPy provides a
reproducible and robust estimate, with some limitations. To illustrate
this directly, the occupancy of all atoms of one NAD co-factor in PDB-
1uxi was set to 0.4, leaving all other atoms at full occupancy. The
density generated clearly shows that this co-factor is not visible at the
same threshold as other elements (Fig. 1f). The same co-factor
becomes evident following occupancy estimation and subsequent
amplification, without being unduly exaggerated (Fig. 1g). Taken
together, OccuPy is able to estimate their local scale in a meaningful
way, but variations in resolution pose a challenge to accurate estima-
tion. Occupancy mode does decrease the dependence on resolution
but the theoretically derived values of τn neglect pixel correlation
introduced by it, which thus tends OccuPy towards under-estimation
of occupancy with increasing low-pass filtration.

Occupancy estimated from noisy real data without an
atomic model
In practice, real cryo-EM data is dominated by noise and ground truth
of the underlying particle distribution itself is not known. To validate
OccuPy in this setting, we first evaluate the RMS difference in local
scale across half-set reconstructions of all EMDB-entries in Supple-
mentary Note 1 of the Supplementary information, where this was
available. As expected, the consistency is variable subject to the
inherent noise of the reconstruction(s), which correlates so strongly
with resolution that the latter determines the consistency of the esti-
mated local scale almost entirely. Conveniently, the relative inherent
uncertainty of the local scale estimate due to noise expressed in per-
cent appears to be effectively proportional to the resolution in Å
(Supplementary Fig. 3). For most published maps (which are better
than 5Å) this implies an uncertainty below 5% relative error in the local
scale estimate.

Next, we utilized a set of particle images that have been aligned,
symmetry-expanded, and signal-subtracted to visualize the rotavirus
spike protein, which has partial occupancy on average. We estimate
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the spike foot occupancy of reconstructions using successively
reduced numbers of random images from this set, to investigate
robustness of the occupancy estimate to reduction in SNR and orien-
tation coverage. The same procedure was conducted for a higher
occupancy subset of the images, selected by conventional classifica-
tion in RELION. To allow targeted evaluation of the spike foot in the
absence of atomic assignment and at resolutions where atomic
assignment is not possible, we designate an auxiliary custom scale
estimation kernel (OccuPy option –target-mask), which derives a cus-
tom dedicated τ percentile independent of the global estimation
parameters. We find that increased noise tends local occupancy
towards slight over-estimation inOccuPy (Supplementary Fig. 4a). This
is rationalized by the use of a max-value filter as the primary contrast
metric within OccuPy, and highlights that while OccuPy employs rig-
orous adaptive methods to assign full occupancy, it is more sensitive
to error when the point of null occupancy is ambiguous. OccuPy
implicitly defines null occupancy based on the assumption that input
images have been conventionally normalized against background. This
assumption ensures that the estimated occupancy is not affected by
the inherent noise nor the accuracy of the estimated noise-model
(solvent model). However, it is evident that under elevated noise the
occupancy mode local scale is over-estimated, which is more notice-
able in regions where the occupancy is low and thus approaches the
noise distribution (Supplementary Fig. 4a). To remedy this, OccuPy
includes the option to re-calibrate the zero-point scale to the point
where confidence exceeds that of the noise model, termed noise-level
recalibration. However, at low SNR this is observed to instead risk an

under-estimate the occupancy-mode local scale where the solvent
peak does not significantly depart from the regions of interest (Sup-
plementary Fig. 4b). It is therefore advisable to combine this with the
use of a solvent-definition that delineates and accurate solvent model
in high-noise settings. The latter is also observed to largely compen-
sate for the under-estimation incurred by noise-level recalibration of
occupancy-mode local scale (Supplementary Fig. 4c). The implications
of applying the noise-level recalibration (or not) is further
discussed later.

This evaluation shows that the asymptotically derived local scale
can be relatively accurately estimated in the prescience of significant
noise. Asymptotic occupancy of 0.2 can e.g. be confidently estimated
within ± 0.1, based on a reconstruction using as few as 1000 particles.
The variance of the occupancy estimate in this analysis does exceed
that expected from sampling of a Bernoulli random variable at the
given asymptotic probability alone, which is attributed to the noise
and variations in Fourier completeness.

Modification by local scale emulates homogeneous data
The present work has devised methods to modify a reconstruction
proportionally to the estimated local scale by amplification or
attenuation of partial occupancy, as described in the methods section
and exemplified in Fig. 2 and Supplementary Fig. 5. These modifica-
tions will at most remove or equalize partial occupancy, but can be
adjusted to decrease the extent of modification. Consequently, these
modifications at full or finite power are natural methods tomodify the
reference bias in numerous current cryo-EM processing tools
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Fig. 1 | Local scale estimation of simulated data. aMalate dehydrogenase dimer
PDB-1uxi, with chains colored individually. Two NAD co-factors are also shown in
ball-and-stick representation. The occupancy of atoms in chain A was reduced and
the local scale estimated from synthetic maps generated from this atomic model.
Maps were also amplified with a power of 30. b Amplified maps, annotated by the
occupancy of chain A, and colored according to the estimated local scale. A gray-
scale volume slice of the input is also shown (insets). The kernel size and radius
used were 5 and 2.5 pixels (4.3Å and 2.15Å), respectively. cAverage local scalemap

value at atom positions of chain A, as a function of occupancy. The shaded area
represents the standard deviation. The dashed line denotes ideal estimation. d as
panel e, but for the NAD co-factors. Orange is equal to that of the red, using a
reduced kernel size and radius of 3 and 1.6 pixels respectively, and auto-calculated
τn= 0.89. e as panel c, but as a function of the b-factor of atoms, at occupancy 0.5.
f The density generated by reducing the occupancy of atoms in one NAD co-factor
to 0.4. g The density in panel c, following amplification based on occupancy-mode
local scale, also colored according to the estimated scale.
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completely or partially, respectively. The GUI also permits a sigmoid
modification that combines amplification and attenuation (Supple-
mentary Fig. 1), tailored to user-interactive visualization and mod-
ification such as subtraction. We therefore evaluate how amplification,
attenuation, and differential sigmoid modification of local scale man-
ifest in reconstructions with features encountered during cryo-EM
processing, including heterogeneity, flexibility, misalignment, and
amorphous regions such as inherently disordered detergent. First,
EMD-14085 displays partial constituent occupancy and limited flex-
ibility. As a result, we might expect the occupancy-mode local scale to
be accurate but under-estimate macromolecular occupancy (Fig. 2a).
In line with this, amplification restores low-occupancy components,
but also amplifies some inherent noise. In part, this noise is elevated in
an apparently spherical region which was presumably used as a mask
for classification to establish EMD-14085. The use of fully amplified
reconstructions for enforcing reference bias should thus be used with
caution or under due noise reduction, through e.g. subsequent low-
pass filtering. Conversely, attenuation acts conservatively at under-
estimated scale, and does not suffer any detrimental noise amplifica-
tion effects. Sigmoid modification with a tuned pivot value achieves
amplification without undue noise amplification, but omits compo-
nents with very low occupancy.

Second,weapplymodifications to EMD-3061 (Fig. 2b),whichhas a
region of detergent surrounding a transmembrane protein41, since
such regions are conventionally subject to signal subtraction31 to
reduce their influence on particle alignment and classification. Their
resolution is ill-defined42; their physical extent can be determined with
quantifiable accuracy, but any internal structure is effectively infinitely
poor. Further, such a region is expected to have full occupancy since
de-solvation of the transmembrane region is crucial for its structure,
but its amorphous nature results in incoherent averaging that reduces
local scale. This is also observed; the detergent micelle displays
reduced local scale. Because local scale does not represent occupancy
in this case, it can not be compensated by direct filtering to emulate
decreased heterogeneity. However, regions that display reduced local
scale due to incoherent averaging may still be suitably modified for
visualization and induced reference bias. Amplification in this case
leads to grave exaggeration of local mass since local scale is severely
underestimated due to resolution effects, even in occupancy-mode.
This also displaces the reconstruction gray-scale outside the expected
range,which further reduces itsfidelity as the expected reconstruction
from more homogeneous data. This again advocates that amplified

reconstruction may be unsuitable for direct interpretation or use
without further considerations. In the case of EMD-3061, attenuation
and sigmoid modification curiously also cause undue modification,
since no part of the input data is expected to be without a detergent
micelle. Theutility of suchmodification is however evident from its use
in existing protocols for signal subtraction to reduce the influence of
regions that cannot be coherently aligned, permitting structured
regions to be better resolved. In this capacity, attenuation and sigmoid
modification both appear well suited, signifying a direct way to weight
reconstruction data by an objectively determined local property. To
corroborate that such an approach is more broadly applicable to e.g.
macromolecularflexibility, we subject EMD-31466 to the same analysis
(Fig. 2c). This displays the same tendencies as EMD-3061, showing that
local scale can be used to (de-)emphasize local regions of recon-
structions in an automated or semi-automated manner using an
objectively estimated attribute.

Variations in local mass can be accommodated
OccuPy is not equipped to consider the expected average density,
charge, mass, or other causes for altered scattering potential of con-
stituent atoms, nor a physical image formation model. Instead, it
assumes that all regions with equal resolution and full occupancy will
produce an identical voxel intensity distribution. This does not hold
for atoms of unequal mass, which could potentially be estimated at a
different scale. To evaluate howrobustOccuPy is to such situations, we
first considered the case of a nucleosome protein-DNA complex (EMD-
32148), since the phosphate-rich backbone could lead to under-
estimated scale of protein components. This does not seem to be the
case (Fig. 3a). Next, we examined a high-resolution (1.22 Å) recon-
struction of apoferritin (EMD-11638). First, the region W used nor-
malize the scale estimate was reduced to a single pixel, which makes
the local scale estimate sensitive to single pixels with high values, e.g.
at high-mass atoms. Methionine side-chain sulfur atoms are thus esti-
mated at higher scale than surrounding protein (Fig. 3b). The default
size of the region W (Eq. (2), methods) efficiently diminishes the
influence of such heavy atoms by considering the max-value distribu-
tion of the highest contrast region found (Fig. 3c–d), unless it dom-
inates an entire regionW. This nevertheless emphasizes that full scale
(or occupancy) is a relative term in the absence of true underlying
mass, here defined based on the size of W and the percentile τ. A
smaller region W allows local mass to define full scale. Conversely, a
largerW will reduce the influence of local mass differences. However,
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Fig. 2 | Modification of reconstructed density by local scale. All isosurface
representations of each EMDB entry utilize the same threshold value for repre-
sentation. a EMD-14085 shown as a central slice, and iso-surface representation
colored by estimated local scale. Further, it was amplified (γ = 4), attenuated (γ = 2),

and sigmoid-modified (γ = 5, μ =0.22). b EMD-3061, as in panel a, with sigmoid
pivot μ =0.5. c EMD-31466, as in panel a, with sigmoid pivot μ =0.25. Central slices
of all modified reconstructions are also shown in Fig. 5.
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setting W too large may cause systematic overestimation of the scale
since no region of this size will be uniform at full scale. The default size
of W in OccuPy is chosen to consider the size granularity of biomole-
cular complexes typically reconstructed by cryo-EM, while neglecting
individual atoms. Validation of the tile size was considered in the
synthetic data validation (Fig. 2b, and can be adjusted by the user. To
further examine the potential pitfalls of the method, we also estimate
the scale of respiratory complex I (EMD-13611), which contains a
number of FeS clusters (Fig. 3e). Naturally, these FeS clusters are
estimated at full scale. In spite of this, the protein content is only
slightly under-estimated (Fig. 3f). A decreased value of τ can further
compensate for this (Fig. 3g), and the size of the region W may be
increased to define full scale (Fig. 3h). Both these parameter adjust-
ments reduce the influence of high local values, but the latter offers a
direct interpretation as redefining the granularity of the estimate
through the size of the reference region W.

Macromolecular flexibility can be partially accommodated
Local resolution variability within published reconstructions is
common and primarily due to flexibility43 and other sources of
misalignment24. We therefore evaluate OccuPy against a a recon-
struction of a flexible helical assembly (F-actin EMD-30171) for
which negligible variation in occupancy is expected (Fig. 4a). In line
with expectation, the local scale correlates with decreased resolu-
tion further from the box center (Fig. 4b, c). The local scale in
occupancy mode is less affected, but still indicates decreased
occupancy, which is not ideal. The estimated occupancy can be
validated by performing full amplification (power γ = 30), followed
by a low-pass filtration. Doing so for EMD-30171 reveals that mass
has been exaggerated in such regions (Fig. 4d), indicating that the
occupancy was strictly under-estimated. This can not be amelio-
rated by increasing the low-pass cutoff, in line with expectation (see
“Methods” section). To contrast these findings, EMD-12104, exhibits
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partial occupancy but negligible flexibility, in which case low-pass
filtration of the amplified map shows no emphasis on the regions
estimated at low occupancy scale (Fig. 4h), indicating accurate
occupancy estimation and appropriate amplification. To further
illustrate the fidelity of the local scale estimate as compared to
existing methods, EMD-13015 was used. The local resolution varies
as estimated by ResMap44 and RELION13 (Fig. 5a, b). The local scale
reproduces the relative contrast estimation (Fig. 5c). In occupancy-
mode, the local scale is more homogeneous, indicating that these
differences can be attributed largely to flexibility (Fig. 5d). The
occupancy estimated by LocOccupancy45 (Fig. 5e) however corre-
lates strongly to the estimated resolution, when provided with the
range of spatial frequencies over which resolution is deemed to vary
by consensusmethods. Other ranges were able to reduce this effect,
notably the omission of the range where resolution varies (Sup-
plementary Fig. 6). This indicates that LocOccupancy suffers the
same vulnerability to variation in resolution as OccuPy, and that the
implicit solution is similar to that advised in OccuPy.

Local scale can be estimated from sharpened maps
Maps are typically post-processed after reconstruction to maximize
information and fidelity. Global B-factor estimation and compensation
is most common46, but local filtering47–49 and machine-learning50 are
also employed. To investigate if post-processing introduces or
obscures expected features to the detriment of a faithful scale esti-
mate, wemodify EMD-3943 by common post-processingmethods and
then estimate local scale, since this reconstruction contains differ-
ential resolution in its subunits and partial occupancy of a bound
recycling factor (RRF). First, the local scale estimate of a map shar-
pened by a global B-factor exhibits a larger range (Supplementary
Fig. 7d), since local contrast is increased in proportion to SNR. The
local scale estimate in occupancy mode is however similar to that
estimated from the unmodified map. While OccuPy is not intended to
be used on post-processed maps, it nonetheless appears permissible.
Next, a local-resolution filtered reconstruction displays decreased
local scale in the subunit at lower estimated resolution. This recon-
struction is however highly similar to the originalmap, both in termsof
the local scale estimate and that in occupancy mode (Supplementary
Fig. 7g–i). Finally, a reconstructionmodifiedbydeepEMhancer50 shows
a very uniform full scale, apart from the RRF, which is likely at a lower
occupancy. Indeed the RRF is lower in occupancy-mode as well. Cur-
iously, the subunit occupancy scale is inverted with respect to the
unmodified input map (Supplementary Fig. 7k), indicating that Dee-
pEMhancer alters local mass dependent on the local resolution. Based
on this, we surmise that reconstruction post-processed by machine-
learning methods are not suited for use in OccuPy without further
prior validation.

Improved robustness of confidence estimate through solvent
definition
OccuPy estimates a solvent model and subsequent confidencemap to
avoid solvent noise amplification. Such a confidence map assigns a
value to each voxel, signifying the probability that it something other
than solvent, which can be considered a soft solvent mask. In some
cases this solvent model is incorrectly estimated due to unexpected
solvent characteristics, in which case an additional input mask can be
provided to limit the regions of the input map considered when
determining the solvent model. We denote this a solvent definition,
since it does not mask the output. We illustrate its use on the map of
the asymmetric unit of a viral capsid re-framed such that the solvent
volume is only 22% of the cubic map volume (42% of the map radius
sphere) (Supplementary Fig. 8a). The capsid interior also contains a
disordered component with low variance but higher mean than the
solvent. An accurate solvent definition (Supplementary Fig. 8b) that
excludes all protein content and capsid interior results in a single
Gaussian solvent peakand accurate confidence. If the viral capsid spike
and interior is not excluded by the solvent definition (Supplementary
Fig. 8c), the solventmodel and confidence is still accurately estimated.
(Supplementary Fig. 8f). This demonstrates that the solvent definition
does not strictly enforce what is amplified, permitting map modifica-
tion outside the provided solvent definition.

Discussion
This work defines local scale as an estimate of relative contrast in cryo-
EM reconstructions, which is assumed to be proportional to hetero-
geneity in the data used. In the absence of flexibility we further inter-
pret this as occupancy, signifying a mixing parameter of binary
composition inherent to the input data. This is consistent with the
accepted definition of occupancy in structural biology, where it
annotates the relative occurrence of atoms in amodel that best agrees
with the map on which it is based, whereas our interpretation anno-
tates themap itself. Thispermits quantificationwhere atoms cannot be
distinguished, but also leads to ambiguities in regions of partial dis-
order. It should thus be clarified that field-annotation of occupancy as
a mixing parameter of binary origin is only relevant to the extent that
the underlying heterogeneity is in fact binary. The local scale is a
natural generalization of occupancy (to heterogeneity more broadly)
where the origin is non-binary. It is nonetheless informative to attempt
to decompose the local scale as originating in either binary or con-
tinuous heterogeneity. The occupancy-mode local scale implemented
here attempts to omit the latter to render the local scale maximally
interpretable as a mixing component of binary heterogeneity, but
depending on the nature of the underlying heterogeneity this may not
be possible without ambiguity. This should be considered in inter-
preting the local scale output by OccuPy.
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Fig. 5 | Comparison of local resolution and occupancy estimation methods.
a The local resolution of EMD-13015 was estimated using ResMap44 in the range
2.3–4.3, with a resolution step of 0.25Å. b The local resolution was estimated using

RELION13 with a spacing of 10Å. c, d The local scale and and occupancy-mode local
scale estimated using OccuPy. e The occupancy estimated using LocOccupancy45,
using a resolution range of 2.5–6Å.
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Wegoon to demonstrate local scale can quantifymacromolecular
occupancy in cryo-EM reconstructionswithout amolecularmodel, and
be used as a meaningful means to modify them. However, accurate
estimation of local scale may require parameter tuning response to
reconstruction characteristics, which could lead to user confirmation
bias. LocOccupancy45 is the only other method designed to approach
quantification of compositional variation, meriting a direct compar-
ison. LocOccupancy requires a resolution range to be specified which
in some sense dictates the granularity of the estimation, whereas
OccuPy instead estimates local properties with a minimal kernel given
the resolution of the reconstruction, and regulates the granularity of
the occupancy estimate through the normalization region W. Both
LocOccupancy and OccuPy are also dependent on a percentile cutoff,
which signifies different characteristics in each implementation.
LocOccupancy sets this value to 0.25, signifying the top percentile that
defines full occupancy in some sense, whereas OccuPy automatically
sets a theoretically optimal value to minimize the probability of both
over- and under-estimating the occupancy. In further comparison,
LocOccupancy naturally maps each region to the [0, 1]-range, whereas
OccuPy instead normalizes by a value lower than the global maximum
and clamps the estimate to the [0, 1]-range. A clear benefit of LocOc-
cupancy is that it effectivelymarginalizes the occupancy estimate over
the desired resolution range, while OccuPy makes no such provision
and estimates occupancy-mode local scale under the assumption that
variations in local resolution have been neutralized. Despite this
apparent disadvantage, Fig. 5 suggests that OccuPys occupancy-mode
is able to disregard resolution-dependent contrast degradation better.
Fig. 5 also shows that the local scale is an accurate estimate of relative
local quality, which is tantamount to resolution. Resolution is however
a contested term in cryo-EM42,51. By consensus, the spatial frequency at
which the global Fourier shell correlation (FSC) drops below a given
significance46 is quoted as the best resolution at which the recon-
struction can be reliably interpreted. Local metrics also permit varia-
tions to be quantified under the term “resolution”. As discussed
elsewhere52 thesemeasures are not identical, and the termresolution is
thus not well defined. It is however clear that resolution correlates
positively with data amount and quality, and how coherently it can be
averaged. This in turn principally depends on macromolecular flex-
ibility and occupancy (as well as particle misalignment), which mirrors
that of the local scale estimated here. In this sense, the OccuPy local
scale does constitute a true estimate of relative local resolution.
However, OccuPy assumes that the density originates from identical
point scatters. Due to their variation in mass and occupancy, the local
scale is not a universal estimator of resolution. When resolution
becomes poorer than the physical spacing of the point source of
scattering, their environment also influences the scale estimate, as
shown in Supplementary Fig. 9. Bearing these points in mind we con-
clude that the local scale is an accurate estimate of the relative local
resolution, but that this estimate is dependent on properties that e.g.
FSC-based resolution estimates are independent of.

State-of-the-art cryo-EM processing attempts to parameterize
or embed data in a neural net using machine learning approaches,
which generalizes discrete classification. OccuPy finds further use in
this context, where it could validate remaining latent heterogeneity
in the resulting reconstructions, and provide intuitive quantifica-
tion of the latent space. OccuPy can also supply labels when
reconstructions in existing databases are used for training, or
indeed direct scoring functions employed to train occupancy-aware
machine-learning approaches. Amplification using OccuPy can also
serve to equalize reconstructions to improve initialization of
methods dependent on e.g. pseudo-atom fitting, since it reflects a
more homogeneous map where all regions of relevant considera-
tion appear more self-similar. OccuPy is thus not limited to visua-
lization or discrete classification, but supplies a measure of
heterogeneity that reflects natural variations in cryo-EM data that is

merited and possible to use for quantification and targeted con-
sideration in any cryo-EM processing paradigm.

Taken together, we find that OccuPy is the only tool able to
quantitatively estimate macromolecular occupancy within cryo-EM
reconstructions and modify it in a meaningful way, but that user
intervention may be necessary to assure fidelity in this process.
Through its GUI (Supplementary Fig. 1), users can directly adjust esti-
mation parameters such as input low-pass frequency, kernel size, and
normalization tile-size, and visualize the results. The solventmodel can
also be directly evaluated, and the optional input solvent definition
constructed. To permit easy integration with current processing
pipelines, a command-line interface and python module is also pro-
vided. From this interface, further evaluation is also facilitated by
invoking UCSF ChimeraX53 with a command-script that is part of the
default output. This will also display complementary visualizations to
evaluate the results. OccuPy may also be used to improve signal sub-
traction by providing accurate subtraction masks, and its capacity to
accurately estimate local scale with minimal user input suggests that
this capacity could be employed in iterative refinement procedures,
for which it is also the only viable method considering speed of
execution (Supplementary Table 1). OccuPy thus stands to improve
current procedures, where it could be used e.g. with a weak power to
bias reference-based alignment and clustering, however, this remains
to be validated in practice. OccuPy thus offers an example of how local
spatial analysis can improve interpretation of cryo-EM reconstruc-
tions, which stands to be developed further to benefit future recon-
struction analysis and refinement algorithms broadly.

Methods
A spatial filter to estimate local scale
The best-resolved region in a cryo-EM reconstruction displays the
highest contrast. We axiomatically define the images used tomake the
reconstruction to be completely homogeneous with respect to this
region. Globally homogeneous input data would thus result in a the-
oretically ideal cryo-EM reconstruction Fideal. In Fideal all non-solvent
regions exhibit identical local scale. In practice, contrast is attenuated
through local flexibility and/or partial occupancy, as well as the
inclusion of misaligned or bad particles. The observed map F can thus
be considered Fideal degraded by the local scale S:

F = F ideal � S ð1Þ

where <⋅> denotes pixel-wise multiplication and {S∣Si∈ [0, 1]∀ i}. S is
thus a normalized estimate of the local signal strength. We estimate S
using a windowed max-value filter over the local neighborhood Vi of
eachpixel i, i.e. by spatialfiltering. Thismeasures thewidth of the voxel
value distribution sampledwithinVi, which signifies signal above noise
in cryo-EM reconstructions. A max-value filter is fast, insensitive to the
inclusion of solvent, and robust to noise even for very small window
sizes. It is also capable of preserving sharp transitions, with respect to a
morphological dilation.

To normalize the estimated scale at each pixel i, we have to
determine the maximal expected value given the finite sampling in
regions around i. To do so, we first subdivide the reconstruction into
non-exhaustive regionsWj. A percentile filter with parameter τ is used
for robustness to high-value outliers, with due consideration to follow.
The region j with the largest such value is used to determine full scale
at a given percentile τ, and is used as a denominator to normalize the
scale estimate:

Ŝi =
max
i2Vi

Fi
� �

max
Wjf g

per
i2Wj

τ Fi
� � !l

½0,1� ð2Þ
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where we have defined a function ⌈ which clamps values to a specified
interval

x
�
½a,b� � max a,minðx,bÞð Þ ð3Þ

since the max-value reduction over Vi may exceed that of the
percentile τ in the full-scale region found. The established procedure
permits the intensity distribution of a small region to define full scale/
contrast, and does not enforce any specific portion of the reconstruc-
tion to be assigned any nominal scale value. It also obviates the need
for masking areas of interest. The set of regions {Wj} need not be
exhaustive since the denominator is globally defined. Occupy thus
utilizes a sparse set of j regions {Wj}, evenly distributed across the
reconstruction. By default, 8000 (203) regions of 1728 (123) voxels are
used, which represents a fundamental granularity of biomolecular
components thatworks in a broad range of test-cases. This is a tunable
parameter in the present implementation.

We now derive a reasonable choice for the percentile τ. We first
note that as long as sufficientlymany regionsW are sampled, Ŝi may be
an overestimate of Si by at most 1 − τ. On the other hand, Ŝi would
instead be an underestimate if the number of elements nV within V is
unlikely to have sampled as high as the percentile given by τ. As a
compromise, we seek the percentile τn of the distribution that equals
the confidence that the maximum value of n samples is also τn. Con-
sidering the reconstruction values in a local region to be a random
variable X, we solve

GYn
ðxÞ= 1� GX ðxÞ ð4Þ

where G is the cumulative distribution function (CDF) and Y is the
maximum value distribution

Yn = maxfX 1,:::,Xng ð5Þ

However, the CDF of Yn can be simplified as

GYn
ðxÞ=PðYn ≤ xÞ=

Qn
i= 1

PðXi ≤ xÞ=GX ðxÞn ð6Þ

Consequently, we can rewrite Eq. (4) as

GX ðxÞn = 1� GX ðxÞ ð7Þ

from which we see that τn is simply the only positive real root to the
polynomial

xn + x � 1 =0 ð8Þ

This result is independent of theunderlyingdistributionofX. However,
theCDFof Eq. (6) is only separable under the assumption that adjacent
voxels are independent. By setting τ in Eq. (2) to τn asdependent on the
kernel sizenV, we are thusguaranteed that Si atmostover-estimatedby
1 − τn, and under-estimated with a probability 1 − τn. By solving Eq. (8)
wefind that τn ≥0.9 fornV ≥ 27. This places narrowerror bounds on the
scale estimate for any realistic kernel size. In reality, the voxels
sampled within V are not independent, which reduces the effective
sampling number compared tonV, such that τ should reasonably be set
lower than τn. Additionally, a region W is assumed to exist that has
homogeneous and full scale.When this is not the case, the normalizing
value in the denominator of Eq. (2) may be increased due to e.g. high-
mass atoms in the full-scale region, or conversely decrease due to
inclusion of solvent. This will lead to systematic under- and over-
estimation of local scale, respectively.

Finally, we note that in OccuPy, the kernel size k (voxels along
each dimension) is automatically calculated in resolution-dependent

manner as the smallest odd integer larger than

k =2 � r=d ð9Þ

where r is the applied input low-pass filter or resolution of the input
reconstruction and d the input voxel size. The kernel size determines a
radial cartesian kernel as illustrated in Supplementary Fig. 10.

Establishing an occupancy-mode
We first note that F̂ ideal can be found as an estimate of Fideal as

F̂ ideal = F � Ŝ�1 ð10Þ

The instability of inverse filtering at low values of S is handled by
a complementary confidence estimation to follow. From Eq. (10),
it is clear that S constitutes a spatial filter capable of modifying
the estimated macromolecular occupancy without masking or
segmentation. The local scale S is however a measure of contrast
attenuation, which correlates with both resolution (peak broad-
ening) and occupancy (peak reduction). Modification of a
reconstruction through the use of S as a spatial filter is however
only appropriate to compensate or further exaggerate peak
reduction due to occupancy, not resolution. To omit resolution-
dependent effects, we employ the simple procedure of estimating
the local scale from a low-pass filtered copy of the input
reconstruction. We term this occupancy-mode local scale. The
low-pass procedure achieves resolution-dependent attenuation
by the same magnitude at all points in the reconstruction. All
regions estimated must thus be affected by the low-pass filter,
lest regions better resolved should be estimated at higher scale
by virtue of higher resolution. In addition, we implicitly assume
that local density values do not suffer differential influence by
peak broadening of nearby values. This is violated e.g. comparing
points internal to the protein core to those near solvent. This
violation becomes more severe at lower resolution, so that any
omission of resolution-dependent effects is countered by detri-
mental convolution of local contrast. The occupancy-mode local
scale will thus be difficult to establish faithfully by the low-pass
filter approach when the reconstruction displays large variations
in local resolution due to flexibility and imperfect particle image
parameters. The general local scale is however accurate with
arbitrary internal variation in local contrast.

Noise-level recalibration
OccuPy by default assumes that the image extraction performed
background normalization such that solvent background has been
globally defined to have zero mean. In this context, the zero-point
local scale is defined at a reconstructed voxel value of 0, which is
correct in the limit of no noise, and makes the local scale estimate
independent of the noise model estimate. However, one may
optionally recalibrate the zero-point occupancy to the upper noise
level, such that voxel values which are equally likely to originate from
the estimated noise model or not defines the zero-point of local-
scale. To do so, the primary confidence limit Sp is found, corre-
sponding to the local scale where confidence drops below 0.5. The
scale is then recalibrated as such:

S0 =
S� Sp
1� Sp

ð11Þ

γ-modification of estimated scale
To achieve attenuation or amplification or partial occupancy, Occupy
implements a proportional and inverse power scaling of the estimated
occupancy-mode scale S by a power γ analogous to conventional
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γ-correction.

F + γ = F � S + γ = F � S1=γ�1 = F̂ ideal � S1=γ
� �

ð12Þ

F�γ = F � S�γ = F � Sγ�1 = F̂ ideal � Sγ
� �

ð13Þ

Amplification in this context is thus attenuation of F̂ ideal by Ŝ
1=γ

, sig-
nifying less heterogeneity than what was estimated from the input
data. Attenuation is conversely application ofmore heterogeneity than
Ŝ. For consistency, the present implementationonly permits γ ≥ 1. F̂ ideal

corresponds to F+∞, a direct inverse filter of the input by Ŝ. γ-mod-
ification is illustrated in Supplementary Fig. 11a and exemplified
in Fig. 2.

Attenuation of a reconstruction can be directly applied to attain
precise and automatic masks for particle subtraction workflows31.
Conventionally, amaskM is providedwhere each voxel valuem∈ [0, 1]
determines the retention of image values:

Isubtracted = I � Pϕ F � ð1�MÞð Þ ð14Þ

where P is the projection operator and ϕ is the alignment of image I.
Conventionally the mask is constructed by manual volume seg-
mentation and user manipulation. Here, the estimated scale S and
the desired output scale S0 can be used to formulate an optimal
mask M :

F̂ ideal � S0 = F̂ ideal � S� ð1�MÞ � F̂ ideal � S () ð15Þ

M = S0=S ð16Þ

M is on the interval [0, 1] as long as S0<S, i.e. when the desired output
scale S0 is lower than the input scale S. This signifies strict attenuation,
which is reasonable as components are to be subtracted. Occupy
provides a simple interface to create such a mask, with any necessary
adjustments.

Sigmoid modification
OccuPy also implements a sigmoid modification, which attenuates
components below specified local scale value, but also amplifies
components above the same value. Like γ-modification, sigmoid
modification is dependent on the power γ. Again, γ = 1 signifies no
change, and increasing values result in increased modification. The
additional parameter μ signifies the threshold scale value that remains
unmodified and is thus denoted the pivot value. Formally, the scale S is
altered as

Sγ,μ = 1 + S�ð1�μsÞ
μs �ð1�SÞ

� ��γ� ��1 ð17Þ

where

μs =
1�μ
μ

� �1�1
γ
+ 1

� ��1

ð18Þ

The sigmoid modification is thus formulated as

Fγ,μ = F � Sγ,μ � S�1 = F̂ ideal � Sγ,μ
� �

ð19Þ

Like attenuation, sigmoid modification can be used to construct a
mask for particle subtraction according to Eq. (16), under the provision
that the sigmoid mapping is adjusted so that values above μ remain
unmodified. Sigmoid modification is illustrated in Supplementary
Fig. 11b, c and exemplified in Fig. 2f.

Suppression of solvent modification
Amplification is a form of inverse filtering, which is sensitive to noise.
OccuPy therefore estimates a solvent confidence map to avoid
amplification of solvent. While local signal-to-noise ratio (SNR) is a
reasonable estimate of the confidence in the reconstructed voxel
value, it is too strict for the purposes here.More leniently, we establish
the confidence as the relative probability of observing a given voxel
value in content over solvent. To do so, we determine a solvent model
Θ as a Gaussian fit to the main peak of the reconstruction histogram,
much like previous methods54, resulting in a confidence map for each
voxel. This is exemplified in Fig. 2c. OccuPy does not identify solvent
regions prior to this fit, but instead relies on the assumption that the
majority of the reconstruction volume is composed of solvent and has
a pronounced peak in the image histogram. If not, the solvent variance
is typically over-estimated, leading to decreased confidence of low-
scale regions. To permit more accurate fitting in these cases, a solvent
definition can be supplied in the form of a mask that covers the non-
solvent regions of the input reconstruction. This is not employed as a
mask, but instead delineates the regions omitted when fitting the
Gaussian solvent model. Consequently, it does not restrict the con-
fidence map and permits scale modification outside the provided
solvent definition. This is shown in Supplementary Fig. 8.

Formally, the confidence C computed as the ratio of the prob-
ability that each voxel pertains to the solvent model or not:

Ci =
PðAi 2 ½Fi � δ=2,Fi + δ=2�jFÞ

PðFijΘÞ ð20Þ

where δ is the bin of the reconstruction histogram. The spatial filter Ci

essentially constitutes a soft solvent mask that is applied to suppress
solvent, without segmenting the reconstruction or enforcing a hard
threshold.

Q± γ = F ± γ � C ð21Þ

Qμ,ν = Fμ,ν � C ð22Þ

Retention of solvent
OccuPy intends to modify reconstructions to mimic the expectation if
the input data were more homogeneous. Solvent should thus not be
excluded as described by Eq. (21). OccuPy therefore utilizes the inverse
confidence to retain the original solvent background.

R± γ =Q± γ + F � ð1� CÞ ð23Þ

Rγ,μ =Qγ,μ + F � ð1� CÞ ð24Þ

Further to this, attenuated noise is compensated in proportion to the
attenuation:

T�γ =R�γ +N � ðS� SγÞ � C ð25Þ

where N is the noise generated to have the same distribution and
spectral properties as the solvent of the input reconstruction.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All EMDB entries used for development of OccuPy are listed in Sup-
plementary Note 1 of the supplementary information. PDB-1uxi was
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used to generate synthetic test data. Source data for Fig. 1c–e and
supplementary Figs. 2–4 are provided in a Source Data file. Synthetic
densities (see “Results” section, Fig. 1 and Supplementary Figs. 1 and 2)
and subset reconstructions (see “Results” section and Supplementary
Fig. 4) are deposited in Zenodo 10.5281/zenodo.8229242. Source data
are provided with this paper.

Code availability
The software is publicly available at github.com/bforsbe/OccuPy, and
pypi.org/project/OccuPy/. Instructions, tutorials, and measures for
transparent reproducibility are hosted on occupy.readthedocs.io.
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