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A Lagrangian model for drifting ecosystems
reveals heterogeneity-driven enhancement
of marine plankton blooms

Enrico Ser-Giacomi 1,2 , Ricardo Martinez-Garcia3,4, Stephanie Dutkiewicz1 &
Michael J. Follows1

Marine plankton play a crucial role in carbon storage, global climate, and
ecosystem function. Planktonic ecosystems are embedded in patches of water
that are continuously moving, stretching, and diluting. These processes drive
inhomegeneities on a range of scales, with implications for the integrated
ecosystem properties, but are hard to characterize. We present a theoretical
framework that accounts for all these aspects; tracking thewater patch hosting
a drifting ecosystem along with its physical, environmental, and biochemical
features. The theory resolves patch dilution and internal physical mixing as a
function of oceanic strain and diffusion. Ecological dynamics are para-
meterized by an idealized nutrient and phytoplankton population and we
specifically capture the time evolution of the biochemical spatial variances to
represent within-patch heterogeneity. We find that, depending only on the
physical processes towhich thewater patch is subjected, the planktonbiomass
response to a resource perturbation can vary in size up to six times. This work
indicates that we must account for these processes when interpreting and
modeling marine ecosystems and provides a framework with which to do so.

Plankton blooms in the ocean represent someof themostmassive and
rapid biomass growth events in nature. Planktonic organisms are the
base of themarine food chain, contribute to the cycling of carbon, and
preserve ocean biodiversity1,2. Notably, phytoplankton blooms are not
uniformly distributed across the seascape. The large spatio-temporal
scales of phytoplankton distribution are set by seasons and basin-wide
circulation. On a smaller scale, eddies3 and fronts4,5 contort these
patterns, and localized injections of nutrients into the sunlit layer allow
for the formation of frequent and ephemeral blooms (e.g., as seen in
satellite observation, Fig. 1). Such pulses of resources could be caused,
for instance, by upwelling of nutrient-rich water3, a burst of micro-
nutrients from dust deposition6, the wake of islands7, or by deliberate
fertilization experiments as have been carried out in several location in

the ocean8,9. The rich structure in observed chlorophyll at those scales
demands tools for interpretation. Howdo suchbloomevents evolve as
a result of the local bio-physical environment?

Once favorable conditions for growth are set, the fate of a
plankton ecosystem is indeed tightly linked to the physical evolution
of the patch of water that contains it. Here we define a patch as a
physical body of ocean water identified by precise position, shape and
size at a given time. Thus, the interplay of strain and diffusion gener-
ated by oceanic currents can strongly deform, dilute and mix a water
patch and such processes could affect the associated ecosystem in
various ways10–14. Dilution has been proposed as a prominent driver of
plankton productivity by modulating concentrations of nutrients and
biomass within a patch of water9,15–17. This has been associated either
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with a condition of stoichiometric unbalance where a nutrient inside a
bloom becomes suddenly limiting9,15,18 or with the effect of diluting
grazer concentrations in a regionwhere they are higher than average16.
On the other hand, the high level of spatial heterogeneity - i.e.,
patchiness - generated by ocean turbulence across a wide range of
scales can also potentially affect biomass production19–23. Indeed, due
to the often non-linear response of plankton to nutrients, biomass
growth can depend not only on average concentrations of resources
but also on their spatial heterogeneity. Thus, a mechanistic under-
standing of the dynamics of plankton ecosystems in its entirety
requires a Lagrangian approach - that is following the water patch
within which plankton live. At the same time, the role of spatial het-
erogeneity inside such dynamic ecosystems should be carefully
addressed.

However, the combined impact of the Lagrangian evolution of a
water patch and the associated spatial heterogeneity as aspects of the
same evolving system has not yet been addressed. Lagrangian models
to date always assume a water parcel is well-mixed, i.e. spatially
homogeneous13,16,17,24, and patchiness of quantities such as nutrients or
biomass has never been implemented in a Lagrangian frame of
reference25–28. By combining both we will be better able to disentangle
thephysical from thebiological driversof the generation,maintenance
and decay of plankton blooms in the ocean5.

Herewe introduce a new framework to track, from first principles,
a generic plankton ecosystem from a Lagrangian perspective. We
define a Lagrangianpatchas aphysicalbodyofwater of arbitrary shape
and size containing such an ecosystem. We study the physical
dynamics, the evolution of spatial heterogeneity within the patch as
well as the biochemical interactions between nutrients and their con-
sumers. Though the theoretical approachwe develop could be used in
many applications, we concentrate on the ecological response to
pulses of resources within such Lagrangian ecosystems while they are
subjected to dilution with its resource-poorer surroundings. As first
application, we model the biophysical evolution of the artificially-
fertilized bloom during the SOIREE campaign obtaining predictions
consistent with the observed data13,29. More generally, we then
demonstrate that dilution, driven by strain and diffusion, is respon-
sible for the initial generation of patchiness in Lagrangian plankton
ecosystems. Finally, we show that such heterogeneity can in turn sig-
nificantly enhance plankton growth highlighting the existence of
optimal dilution rates that maximize the patch-integrated biomass.

Results
Lagrangian ecosystems theory
We develop a theoretical framework to study a generic plankton
ecosystem inhabiting a Lagrangian patch of water at the ocean surface.
The Lagrangian perspective - that is tracking in space and time the
samephysicalwatermass - allowsus to naturally address the ecological
responses to favorable (or unfavorable) environmental conditions
occurring in the patch itself (Fig. 1). In this section we layout all the
essential concepts and quantities to describe our approach; the
mathematical developments are extensively illustrated in the Meth-
ods. Model variables are listed in Table 1. We first focus on the physical
evolution of the patch and then we describe the associated tracers
dynamics.

Any Lagrangianwater patch in the ocean associated with an initial
physical body of fluid, undergoes continuous changes in position, size
and shape due to the effect of ocean motions (Fig. 2). To model the
physical transformations of the patch, we approximate it by an ellipse
containing a prescribed percentage of its surface11,30. This allows to
track the evolution of the same mass of fluid in time along with its
dilution and mixing with surrounding waters. The patch shape is thus
described, at time t, by the length L(t) and the width W(t) of such
ellipse. Its characteristic size is defined as S(t) = L(t) +W(t) while its area
is A(t) =πW(t)L(t) (Methods). From a Lagrangian perspective all rigid-
like movements associated with the patch, such as translation and
rotation, are ignored because they are implicitly incorporated in the
displacement of the frame of refs. 31–33. Previous studies have shown
that a water patch in the open ocean is primarily affected by horizontal
strain and diffusion11,13,30. The strain rate γ(t) is responsible for the
elongation of the patch, augmenting its aspect ratio. Diffusion κ(t)
describes the small-scale processes that cause the entrainment of
surrounding waters within the patch. With the addition of water into
the patch, its area increases (Fig. 3). Solving a Lagrangian advection-
diffusion equation10,11,21,30,32,34,35 we obtain analytical expressions for the
evolution of W(t) and L(t) and from them we derive the patch area
increase rate as function of γ(t) and κ(t) (Methods):

dAðtÞ
dt

=πκðtÞ W 2ðtÞ+ L2ðtÞ
W ðtÞLðtÞ

" #
: ð1Þ

FromEq. (1) we see that diffusion has a stronger proportional effect on
the area increase when the perimeter-to-area ratio of the patch is
larger. The strain rate controls how fast this ratio increases. Indeed the
quantity W2(t) + L2(t) is proportional to the square of the perimeter of
the ellipse encompassing the patch and thus dAðtÞ

dt / κðtÞðperimeterÞ2
area .

Therefore, even though strain does not directly contribute to mix the
patch with the surrounding, it makes diffusion more efficient by

Fig. 1 | A plankton bloom offshore of Namibia. The picture was taken by the
MERIS (Medium Resolution Imaging Spectrometer) instrument aboard ESA’s
Envisat satellite on 6/11/2007. The red dashed elliptical line indicates the water
patch where the bloom is occurring. Coupled biophysical processes lead to a
marked spatial heterogeneity - i.e patchiness - within the region.

Table 1 | Symbols, names and units of the model variables

Variable Name Units

L, W, S Length, width and size of the patch km

γ Strain rate 1/day

κ Diffusion km2/day

pi Patch concentration of i-tracer μmol/m3

si Surrounding concentration of i-tracer μmol/m3

ν Maximum growth rate day−1

α Remineralization fraction −

m Mortality rate day−1

k Half-saturation constant μmol/m3

τ Integration time day

LBA Lagrangian biomass anomaly MgC
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increasing the patch perimeter. Consequently, the dilution rate can be
defined as the rate at which surrounding waters are entrained in the
patch and can be identified with the area increase rate of Eq. (1).

Experimental measurements have shown that, due to the com-
plexity of ocean turbulence, strain, and diffusion values change
depending on the spatial scale considered10,11,30,36–39. Hence, while a
Lagrangian patch is expanding, it can be subject to a range of different
values of strain and diffusion. To describe this effect we make the
strain and diffusion rates depend on patch size (Methods):

γðtÞ= f γ SðtÞ½ �, ð2Þ

κðtÞ= f κ SðtÞ½ �: ð3Þ

This allows us to describe the patch evolution across different dyna-
mical regimes in the ocean, from sub-meso to gyre scales, matching
the corresponding strain and diffusion functional forms10,38. This
approach permits us to recreate physical patch dynamics observed in
the real ocean, such as the decrease and successive increase of the
patch width W, that cannot be modeled assuming fixed strain and
diffusion values.

To characterize the plankton ecosystem associated with a
Lagrangian patch, we need to describe its drifting components (i.e.
resources and organisms) - generally referred as tracers - in terms of
their spatial distributions. Due to diffusive processes at the patch
boundaries and its consequent increase in area and dilution, tracers
inside the patch will interact and mingle with tracers at the patch
surrounding14. To model such dynamics explicitly, the inside and
outside distributions of tracers have to be described separately. For-
mally, for a generic tracer i, its distribution fields (in terms of, for
instance, abundance or mass) within the patch and at its surrounding
are denoted as pi(x, t) and si(x, t), respectively. Since the tracer fields
are not uniformacross the ocean, we use the Reynold’s decomposition
to account for spatial heterogeneity25–28,40:

piðx, tÞ= hpiðx, tÞi+p0
iðx, tÞ ; siðx, tÞ= hsiðx, tÞi+ s0iðx, tÞ ð4Þ

where 〈pi(x, t)〉 and 〈si(x, t)〉 are spatial means while p0
iðx, tÞ and s0iðx, tÞ

arefluctuations. Thus, secondmoments - that are spatial variances and
covariances - are denoted as hp0

iðx, tÞ2i, hs0iðx, tÞ2i and hp0
iðx, tÞp0

jðx, tÞi,
hs0iðx, tÞs0jðx, tÞi for any tracer i and j (Fig. 4). We identify the threemain
determinants of the evolution of tracer fields inside the patch as:

• Entrainment of surrounding waters
• Internal mixing
• Biochemical interactions
Entrainment is intimately related with the patch dilution that, in

turn, can be modeled in terms of the patch area increase. We derive
general analytical expressions to quantify the effect of such process on
the derivative of first (spatialmeans) and second (spatial variances and
covariances) moments of the tracer distributions (Methods and

Fig. 2 | The transformation of the shape of a 2-dimensional Lagrangian patch
(salmon color) for three consecutive times t0 < t1 < t2. Conceptually, we can can
think of these images as if we had dyed all the watermolecules in the left “patch” at
t0 and then watched is evolution over time. The patch is modeled as an ellipse

(black line) with a co-moving center ofmassX(t) and changing characteristic length
L(t) and widthW(t). The characteristic size of the patch is S(t) = L(t) +W(t) while its
area is A(t) =πW(t)L(t) (Methods).

Fig. 3 | Strain and diffusion effects (blue lines) on an initially circular Lagran-
gian patch (salmon color). From top to bottom, the change in time of the patch is
sketched. Diffusion (left side) isotropically dilutes the patch through small-scale
mixing occurring at its boundary. Strain (right side) stretches the patch conserving
its area by increasing its length and compressing its width. Considered together,
strain and diffusion generate a wide range of possible combinations of patch
shapes and sizes.
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Supplementary Fig. 1):

dhpiðx, tÞi
dt

=
dAðtÞ
dt

hsiðx, tÞi � hpiðx, tÞi
AðtÞ , ð5Þ

Note that, while the evolution of first moments depends only on the
difference between means, the derivatives of second moments are a
function of means, variances and covariance.

Internal mixing, on the other hand, is driven by the diffusion of
tracers within the patch. Such process reduces the spatial variances
and covariances of the tracer fields, but leaves the spatial means
unchanged. We model it assuming an exponential decay for variances
and covariances35,41–43:

hp0
iðx, tÞp0

jðx, tÞi∼ e
� κðtÞ

SðtÞ2t , ð7Þ

where κðtÞ
SðtÞ2 is the effective decay rate associated with the diffusion κ(t)

at the spatial scale S(t) (Methods).
Biochemical interactions among tracers within the patch can be

addressed using first and second moments of the associated dis-
tributions pi(x, t)’s. Due to the modularity of the approach proposed
here, different models involving any number of tracers can be imple-
mented, from resource-consumer to niche or neutral models24,44–50.

External factors such as temperature or light can also be directly
included as modulators of biochemical dynamics.

Entrainment, mixing, and interactions are thus the three funda-
mental actors that shape the spatial distribution of tracers within a
Lagrangian plankton ecosystem. Synthesizing the above develop-
ments, we can write a master equation for the time evolution of a
generic tracer distribution pi(x, t) encompassing such physical and
biochemical processes:

dpiðx, tÞ
dt

= E piðx, tÞ; siðx, tÞ
� �

+M piðx, tÞ
� �

+
X
j

I ij piðx, tÞ;pjðx, tÞ
h i

,

ð8Þ

where E includes the contribution of entrainment fromEqs. (5)-(6)),M
the effect of internal mixing from Eq. (7) and I ij the interactions
between tracer i and j which can have different functional forms
depending on the dynamics considered. By virtue of the generality of
Eq. (8), our framework can be adapted to different spatio-temporal
scale while focusing on various physical and biochemical dynamics.

Modeling a fertilized patch: setup and ensemble simulations
We simulate the dynamics of a Lagrangian plankton ecosystem by
integrating Eq. (8). As prototypical approachwemodel for 30 days an
ecosystem initially residing in a 10 km wide and 10 meters thick cir-
cular patch (model sensitivity shown in Supplementary Fig. 3). This
setting encompasses relevant spatio-temporal scales typical of nat-
ural as well as artificial fertilized blooms8,9,16,22,51. Functional forms fγ
and fκ for the scaling-laws of strain and diffusion are chosen tomatch
their experimentally measured values at the specific spatial scales
spanned by the patch size evolution, that are of the order of
10–100 km (Methods).

To address the response of a Lagrangian ecosystem to localized
conditions favoring population growth, we focus on the biochemical
interactions between two ideal tracers: an inorganic resource
pr ≡ pr(x, t) and a planktonic consumer pb ≡ pb(x, t) nourished by the

resource. We assume a Monod kinetics and a linear mortality rate for
the consumer16,44,45. Hence, the general term I ij ½piðx, tÞ;pjðx, tÞ� of
Eq. (8) can be made explicit:

dpr

dt
= � ν

pr

pr + k
pb +αmpb, ð9Þ

dpb

dt
= + ν

pr

pr + k
pb �mpb, ð10Þ

where ν is the maximum growth rate, k is the half-saturation constant,
m the linearmortality rate and α is the fraction of dead biomass that is
recycled into the resource pool. Accordingly, the biomass “export”
rate out of the patch corresponds to m(1− α)pb. Following Eq. (4), we
can use the Reynold’s decomposition27,28 to evaluate the contribution
of first and second moments to Eqs. (9) and (10) (Methods).

We stimulate Lagrangian blooms of consumer pb by fertilizing the
patch with a pulse of resources that mimics, for instance, processes
like nutrient upheaval, dust deposition, fertilization experiments or,

Fig. 4 | Tracers distributions in the patch (salmon color) and at its surrounding
waters (blue color). When the assumption of well-mixed concentrations is taken
(top panel), for a given tracer i, we need to specify only its mean concentration in
the patch 〈pi(x, t)〉 and at the surrounding 〈si(x, t)〉. Instead, if we account for spatial
heterogeneity (bottom panel), secondmoments of tracers distributions have to be
considered, both in the patch hp0

iðx,tÞp0
jðx,tÞi and at the surrounding hs0iðx,tÞs0jðx,tÞi,

for any i and j.

dhp0
iðx, tÞp0

jðx, tÞi
dt

=
dAðtÞ
dt

hs0iðx, tÞs0jðx, tÞi � hp0
iðx, tÞp0

jðx, tÞi
h i

+ hsiðx,tÞi � hpiðx, tÞi
� � hsjðx, tÞi � hpjðx, tÞi

h i
AðtÞ : ð6Þ
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more generally, any perturbation to the average ocean state that
causes a local inhomogeneity of resource concentrations. To this aim,
we initially (at t =0) fix the second moments to zero and the first
moments at steady state, internally to the patch and at its surround-
ings. This corresponds to an initial state where everything is well-
mixed and spatial means of tracer distributions are stationary. Then,
we initialize each numerical experiment by increasing the resource
mean in the patch 〈pr〉 and tracking the ecosystem response. To pro-
vide a concrete and realistic interpretation of the model outputs, we
set Eqs. (9) and (10) to recreate an idealized iron-phytoplankton
dynamics (Methods), adopting values for the biological parameters
derived from literature15,29,44,52–54 (model sensitivity shown in Supple-
mentary Figs. 3, 4, 5 and 8).

Asfirst application, we simulate the iron-fertilized bloomduring the
SOIREE experiment29 in the SouthernOcean (see Fig. 5).We focus on this
campaign since it is, to our knowledge, the one for which we have the
most detailed description of the physical evolution of the water patch
hosting the bloom. For this specific simulation we use initial values for
strain and diffusion of γ=0.12day−1 and κ=0.1 km2/day. In this way the
width and length of the modeled patch match satellite observations of
the SOIREE bloom taken at 9 and 42 days13. The resource r represents
iron and the consumer b is a generic phytoplankton type. In accord with
experimental data and dedicated models, the simulated bloom that we
recreate peaks after 14 days and it reaches values ~ 15 times higher than
the surrounding biomass concentration18,29. The mean biomass curve
predicted by the model follows the in-situ measures taken during the

first 15 days of the campaign.We also conducted sensitivity experiments
to show that other strain and diffusion combinations donotwell capture
the observations (Supplementary Fig. 2), suggesting a tight relation
between the physical and ecological evolution of the SOIREE bloom.
Thus, despite the simplicity of the biochemical dynamics considered,
our model is able to reproduce the main bio-physical patterns of a
plankton bloom and demonstrates the key role of dilution.

We also provide the time evolution of secondmoments of tracers
distributions even though they were not measured during the SOIREE
experiment. Biomass variance peaks about 10 days after the iron var-
iance and it reaches higher values. This is consistent with observations
showing that the plankton distributions are more patchy than the
nutrient ones19,20. The covariance curve unveils how, for high-resource
concentrations, biomass and iron are spatially correlated while, when
the resource starts to be depleted, the correlation becomes negative.
This inversion almost coincides with the mean biomass peak. This
suggests the existence of a dynamical relationship between covar-
iance, and more generally of tracer heterogeneity, and biomass
growth21,27,28,35. However, the relative contribution of physical versus
intrinsic biochemical factors in generating spatial heterogeneity still
remains implicit.

To unveil the interrelation between physical forcings and bloom
dynamics we produce several ensembles of simulations (Methods).
Within each ensemble, we explore ranges of strain and diffusion
values maintaining the same initial input of the nutrient. Such com-
binations of parameters allow us to explore a wide spectrumof patch

Fig. 5 | Modeled bio-physical dynamics of the iron-fertilized bloom during the
SOIREE experiment. Initial values of iron and biomass concentrations as well as
biological model parameters are set to resemble the ones measured during the
campaign (Methods). Solid line represent the time evolution of model variables:
patch width and length (top-left), iron and biomass spatial means (top-right), iron

and biomass spatial variances (bottom-left) and iron-biomass covariance (bottom-
right). Stars corresponds tomeasured values for the corresponding variables from
to in-situ sampling or remote-sensing. Biomass is expressed in iron currency for
visualization convenience.
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dilution rates. In order compare the differences in response between
well-mixed patches and heterogeneous patches, we confront
ensembles where second moments are switched off with ones where
they are fully considered. In well-mixed ensembles variances and
covariances are thus always set to zero while in the heterogeneous

ensembles they are free to vary. We also perform independent
simulations exploring the model sensitivity and robustness (Sup-
plementary Figs. 3, 4, 5, 7, and 8).

We then introduce a synthetic metric to be able to compare dif-
ferent simulations within ensembles. In particular, we aim at char-
acterizing the overall response of a Lagrangian ecosystem to a
resource perturbation with respect to its steady state. We measure
such deviation by defining a quantity called Lagrangian biomass
anomaly (LBA):

LBA=
1
τ

Z τ

0
AðtÞ hpbi � hsbi

� �
dt: ð11Þ

The above expression is the average over the time window τ of the
anomaly of biomass residing in the patch with respect to the sur-
rounding value 〈sb〉. Indeed, for any time t, the term AðtÞ hpbi � hsbi

� �
is

the difference between the absolute biomass in the patch and the
biomass of a regionof the surrounding of the same areaA(t). If LBA >0,
the patch biomass has been on average higher than the surrounding
and the opposite if LBA < 0. Hence, the LBA is based on biomass
standing stock (potentially evaluated with Chlorophyll) and so pro-
vides a useful real-world metric which could be based on remote-
sensing. In the model the LBA is also a proxy for the biomass export;
combining Eqs. (9), (10) and (11), the temporal mean of the export rate
anomaly turns out to be m(1− α)LBA.

Dilution and spatial heterogeneity trade-offs in enhancing
Lagrangian ecosystem biomass
We start by considering the ensemble where patches are forced to be
well-mixed, as this is the usual assumption in Lagrangian studies aswell
as inside grid cells of Eulerian models. We first note that the LBA is
always positive, meaning that any fertilized patch produced more
biomass than the surrounding (see Fig. 6). However, higher dilution -
driven by stronger strain and diffusion - leads to lower LBA respect to
low dilution regimes. This might be what we intuitively expect: in a
well-mixed Lagrangian ecosystem, the modification of patch mean
concentrations described by Eq. (5) due to the entrainment of
resource-poorer water always reduces biomass production with
respect to the case of a “closed patch” with no exchanges with the
surroundings. In other words, any intrusion of surroundingwater from
outside of a well-mixed patch leads to less increase of biomass than if
there was no external water entrained.

If instead we consider the more realistic case where the patch is
spatially heterogeneous, Eq. (6) shows that dilution by itself, asso-
ciated with the intrusion of external water with different tracer con-
centrations, can generate spatial heterogeneity. In this scenario, our
ensemble simulations reveal the existence of a region in the strain-
diffusion parameter space in which the LBA is maximal (see Fig. 6). We
conclude that dilution-driven spatial heterogeneity could greatly
enhance the biomass of a plankton ecosystem. To further support this,
in Fig. 7 we plot, for the two ensembles, the LBA versus the average
dilution factor - that is ratio between the temporal mean of the patch
area and its initial value. In the well-mixed case, the LBA decreases
monotonically with dilution and its values can be up to 6 times smaller
than in the heterogeneous ensemble, which instead presents a more
complex pattern with a marked LBA peak at intermediate dilutions.

Figures 6 and 7 show that the LBA of the heterogeneous ensemble
is very similar to thewell-mixedone for small dilution values. However,
for the heterogeneous case, after touching a minimum valley, the LBA
surface rises steadily until reaching a maximum ridge. To investigate
such behavior, we calculate the contribution of spatial heterogeneity
to biomass production by subtracting all first-moment terms to
Eq. (33) and integrating in time. We find that this quantity is below (or
close to) zero in the decreasing part of the LBA surface and becomes
positive when the LBA begins to rise after reaching itsminimum values
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Fig. 6 | Lagrangian biomass anomaly from ensemble simulations. We show the
Lagrangian biomass anomaly (LBA) measured in tonnes of carbon [Mg C] for an
ensemble ofwell-mixed (a) and spatially-heterogeneous (b) patches across realistic
ranges of strain [day−1] and diffusion [km2day−1] for onemonth of integration. Panel
(c) shows the LBA difference between heterogeneous and well-mixed ensembles.
The values reported for strain and diffusion are referred to the initial time of the
simulations, as the patch size increases, they change accordingly to the respective
scaling laws. All the other model parameters are kept constant (Methods). Each
pixel of the heatmaps corresponds to the LBA attained by a single simulated patch
under the effect of a specific combination of strain and diffusion. In (a) spatial
heterogeneity is neglected by switching off the second moments of the tracer
distributions. The maximum LBA values are reached for the minimums of both
strain and diffusion i.e. for the smaller dilution rates. Instead, in (b), spatial het-
erogeneity is explicitly considered by modeling the second moments of the tracer
distributions. The LBA in this case reaches much higher values than in the well
mixed case as explicitly shown in (c). LBA maxima for the heterogeneous case
populate an extended ridge in the LBA surface highlighting the fact that the asso-
ciated optimal dilution values can be obtained from various combinations of strain
and diffusion.
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(Supplementary Fig. 6). We conclude that there is a dilution threshold
that has to be passed to generate a level of spatial heterogeneity suf-
ficient to abruptly enhance growth with respect to the well-mixed
scenario. Above such threshold, the detrimental effect of the smearing
of resource concentrations is overcompensated by spatial hetero-
geneity, allowing the LBA to rise for increasing dilution values.

The key point to understand the enhancement of LBA driven
by spatial heterogeneity is the positive contribution of spatial var-
iances and covariance to the consumer growth rate27,28. In general,
Eqs. (32)-(36) highlight how the non-linear contribution of second
moments can affect the derivatives of the means that can thus
deviate importantly from the ones estimated using only first
moments. In particular, as already shown for the SOIREE simulation
(Fig. 5), the role of a positive spatial covariance seems to be crucial in
enhancing biomass growth. We first note that, in a fertilized and
growing patch, covariance is mostly positive due to fact that the
water inside the patch is rich in both resource and concentration
while the recently entrainedwater presents lowconcentrations of the
two tracers. This configuration results in a positive spatial correlation
between resource and biomass - i.e. positive covariance. Then, con-
sidering a simplified analytical model, it can be shown that the bio-
mass growth rate, when calculated including spatial heterogeneity
with positive covariance, is higher than the growth rate calculated
only with the mean biomass and resource (Methods). This finally
provides an heuristic explanation of why a positive covariance gen-
erated by dilution can increase the growth of the consumer.

Another aspect to consider when interpreting the LBA patterns is
that dilution also increases the total patch volume. Indeed, large

patches that underwent strong dilution, even if presenting a low bio-
mass concentration, can attain larger LBA values relative to small
patches with higher mean biomass concentrations (see Eq. (11)). This
underlines the importance of a Lagrangian perspective to avoid mis-
leading interpretations based only on Eulerian concentration fields i.e.
focusing only on mean values without considering the volume asso-
ciated with them.

As a confirmation of the robustness of our results, we find that the
two distinct qualitative patterns of Fig. 6a versus Fig. 6b, i.e. a mono-
tonous decrease versus the existence of a maximum ridge, are con-
served in additional series of ensembles when varying the patch size,
integration time, theparametersμ and k andwhenconsidering aperfect
recycling of resource by setting α = 1 (Supplementary Figs. 3–5). For
these simulations, when necessary, initial tracers concentrations are
also changed consistently to ensure a steady-state surrounding. In the
case where μ and k are altered, the optimal LBA occurs at different
strain/diffusion (Supplementary Fig. 4): this dependence is consistent
with the hypothesis that different organisms can be better adapted to
different degrees of turbulence12,16,55,56. Regarding the recycled fraction
of thenutrients, wefind that it canplay a relevant role in the LBAbudget
especially in the late period of the bloomwhen the initial resource pulse
is already depleted. Moreover, in an ensemble where we assume the
extreme case of a “desert” surrounding - that is putting to zero all
surrounding tracer concentration - we observe the same contrasting
patterns between the heterogeneous and well-mixed ensembles (Sup-
plementary Fig. 7). Finally, we also produce an ensemble using a
quadratic mortality ratem0 in Eq. (10), substitutingmpb withm0p2

b. This
allows us to implicitly account for some level of grazing on the

Fig. 7 | Lagrangian biomass anomaly versus average dilution. We show the
Lagrangian biomass anomaly (LBA) measured in tonnes of carbon [Mg C] versus
average dilution factor for ensembles of heterogeneous (red) andwell-mixed (blue)
patches for onemonth of integration. Each dot corresponds to a single simulation.
For thewell-mixed ensemble, the LBAdecreasesmonotonicallywith dilution. In the

heterogeneous ensemble the LBA presents a sharp and shallow minimum at low
dilutions before a steady increase until reaching its maximum at intermediate
dilutions. In the higher range of dilutions, the LBA of the heterogeneous ensemble
is up to 600% larger than in the well-mixed one.
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planktonic consumer44,45. Again, thequalitative differencebetweenwell-
mixed and heterogeneous ensembles remains (Supplementary Fig. 8).
We also note that, for this configuration, the well-mixed ensemble
presents a tiny LBA peak at low but not null dilution rates, breaking the
typical monotonous decrease observed in all the other model setups.
This is consistent with a positive effect of dilution on phytoplankton
growth observed in models that explicitly consider grazing dynamics,
even in well-mixed conditions16.

Discussion
Previous Eulerian-based research has demonstrated that spatial het-
erogeneity can increase productivity relative to a well-mixed
environment25–28,40. However, this has been only studied from the
perspective of biological interactions and not of the drivers that create
and modulate patchiness. On the other hand, Lagrangian approaches
have been shown to be the most effective way to model and observe
themechanisms driving local bio-physical dynamics in the ocean since
they focus on the real ‘landscape’ where a drifting ecosystem is
evolving11–14,17,19,57,58. Our work establishes a connection between the
study of ecological heterogeneity and the Lagrangian perspective of
fluid flows and provides a theory to describe plankton ecosystems in
the ocean.

The passage of weather systems, dust deposition events, and
internal (sub)meso-scale physical processes continuously stimulate
changes in the resource environment throughout the oceans. Our
model reveals that such localized, transient enhancement of resources
can lead to very different subsequent signatures in biomass depending
upon the local strain, diffusion and surrounding tracer concentrations.
Consequently, the measurable response (e.g. Chlorophyll concentra-
tion) of two resource injections of similar magnitude can be very dif-
ferent depending on the dilution rate. Thus, the relationships between
remotely sensed Chlorophyll and produced biomass may be more
complex than first intuition suggests. Nevertheless, it may be possible
to account for aspects of this influence by interpreting the nature of
the bio-physical environment.

Dilution has been already proposed in the past as a positive factor
for plankton growth due to its effects of supplying nutrients or
removing grazers9,15,16,18. Consistently, our model is able to reproduce
such dynamics, in particular emulating the decrease of grazers pressure
using a quadratic mortality (see Supplementary Fig. 8). However, here
we show that dilution can also enhance biomass growth through only
the physical mechanism of creating heterogeneity, without invoking
other biologically driven mechanisms. We also foresee that, due to an
increase of trophic efficiency caused by spatial heterogeneity27,28, the
Lagrangian biomass anomaly increment can be transferred to higher
trophic levels (e.g., grazers). A more diluted and thus heterogeneous
ecosystem would also be expected to have a reinforced stability that
would ultimately boost the level of biodiversity that it can sustain27,28,40,50.
From a community ecology perspective, entrainment can be quantita-
tively related to the rate at which organisms from outside the commu-
nity disperse towards it46. This brings a key input - that is the dispersal
rate - to community assembly theories allowing predictions of macro-
ecological features such as diversity, Species-Abundance Distributions
(SADs), Species-Area Relationships (SARs) and Taylor’s law24,46,47,49,50.

Our theoretical approach provides a bottom-up general framework
to assess plankton ecology in the ocean from first principles. Indeed, a
Lagrangian ecosystem can be regarded as the fundamental building
block of more complex assemblages. Here, as proof of concept, we
showed that our model can reproduce the features of the artificially
fertilized bloom SOIREE29. However, our model can be applied to any
Lagrangian ecosystem such as, for instance, the one illustrated in Fig. 1.
Vertical dynamics can be included to describe exchanges across differ-
ent depths56. In situationswhere strain and isotropic diffusionwould not
dominate the physical dynamics, higher moments of the deformation
tensor could be taken into account to extend our model59. Our

framework could also be compared with alternative formulations in
which an effective diffusivity is used to introduce characteristic time-
scales in the system57,58. Also the complexity of the biochemical inter-
actions can be escalated addingmore tracers and new trophic layers44,45,
possibly including active plankton behavior. Moreover, instead of
assuming ‘mean-field’ surrounding distributions, implementing multi-
patches simulations would allow us to model how Lagrangian ecosys-
tems interact with one another through the exchange of tracers while
mixing and diluting. Though here we focused on a particular spatio-
temporal scale, our approach can be adopted across wide ranges of
physical and biochemical scales. This would permit us to explore how
much aplankton ecosystem conserve thememory of its Lagrangian past
unveiling its ‘lifetime’ i.e. for how long it can be considered significantly
different from the surrounding14. More generally, this could ultimately
help in revealing the effective spatio-temporal dynamics of an ecological
perturbation across the seascape22,57,58.

In summary, we present a framework that addresses the role of
dilution and spatial heterogeneity (i.e. patchiness) on the response of
plankton biomass to a local resource pulse. Nutrient injections are
ubiquitous in the oceans and the interpretation of their biomass sig-
natures contributes to our evaluations of ocean productivity. Perhaps
unintuitively, we find that lateral dilution of such a feature can sig-
nificantly enhance the integrated biomass anomaly due to the local
generation of patchiness. These results therefore offer a significant
addition inour understandingof bloomdynamics and are crucialwhen
considering natural or deliberate nutrient fertilization events. In par-
ticular, our study shows that neglecting patchiness leads to a several-
fold underestimate of the integrated biomass response to a resource
injection. Hence we believe that accounting for dilution and unre-
solved patchiness, by a synergic use of remote-sensing observations,
drifter and dye releases, is an important goal for biogeochemical
sampling strategies and future modeling approaches.

Methods
Geometric description of a Lagrangian patch
We describe a Lagrangian patch as a two-dimensional evolving ellipse
encompassing the majority of its surface10,11,21,30,34. To this aim, we
associate to the patch a concentration of an ideal passive tracer that
covers it at the initial time. This corresponds to theoretically dying all
themolecules of thepatch at a given timeand tracking the evolutionof
the dye concentration at subsequent times.We denote such dye-patch
concentration by θ(x, t) and we assume that the isolines of such dis-
tribution describe elliptic areas. We define L(t) and W(t) as the spatial
variances of the distribution θ(x, t) along the axes of the ellipse10,21,34.
We thus identify 2W(t) as the patchwidth (theminor axis of the ellipse)
and 2L(t) as the the patch length (themajor axis of the ellipse)while the
patch center of mass is denoted as X(t) (see Fig. 2). The characteristic
patch size is defined as: S(t) ≡W(t) + L(t). Consequently, the area of the
ocean surface associated with the patch is:

AðtÞ=πW ðtÞLðtÞ ð12Þ

Lagrangian advection-diffusion equation and patch physical
evolution
We take a Lagrangian perspective focusing on the trajectory and the
modification of the water patch. To this aim we chose a reference
frame that is translating and rotating with the patch. In this way all
the rigid-like movements - that are the ones that do not change the
relative positions of the fluid elements in the patch - are ignored32.
Since we consider here incompressible flows, we set the divergence to
zero and the velocity field can be locally associated to an elliptically
symmetrical stagnation flow. The associated stirring effect on the
patch, at the spatial scale S(t), can be described by a strain rate coef-
ficient γ(X(t), S(t), t) ≡ γ(t) (see Fig. 3). Advection, rotation and stirring
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are not responsible for the dilution of the patch in the surrounding
since they are not directly related tomixing. Indeed under their action,
the area associated to the patch remains constant in time. On top of
such deterministic stirring dynamics we superimpose the effect
of diffusion related to unresolved scales of the velocity field smaller of
the typical patch size S(t). We denote the size dependent diffusion as
κ((X(t), S(t), t))≡ κ(t) (see Fig. 3).

We derive then the advection-diffusion equation for the dis-
tribution θ(x, t)10,21,30,34:

∂θðx, tÞ
∂t

+vðx, tÞ � ∇θðx, tÞ= κðtÞ∇2θðx, tÞ, ð13Þ

where v(x, t) is the velocity. In a proper Lagrangian frame of refs. 21,32
when the contracting direction is aligned with the x-axis and the
expanding one with the y-axis, Eq. (13) becomes:

∂θ
∂t

� γðtÞx ∂θ
∂x

+ γðtÞy∂θ
∂y

= κðtÞ∇2θ, ð14Þ

where, for brevity, we omitted in the notation the temporal and spatial
dependence of θ(x, t).

The zeroth and second order spatial integrals of the tracer dis-
tribution θ are:

Mx
0ðtÞ=

Z
θðx, tÞ

����
y=0

dx ; Mx
2ðtÞ=

Z
x2θðx, tÞ

����
y=0

dx, ð15Þ

My
0ðtÞ=

Z
θðx, tÞ

����
x =0

dy ; My
2ðtÞ=

Z
y2θðx, tÞ

����
x =0

dy: ð16Þ

Hence, the squares of the width and length of the patch can be
expressed as:

W 2ðtÞ= Mx
2ðtÞ

Mx
0ðtÞ

, ð17Þ

L2ðtÞ= My
2ðtÞ

My
0ðtÞ

: ð18Þ

Deriving in time the above expressions and integrating in space Eq.
(14), we obtain the time evolution for the patch width and length11,21,34:

∂W 2ðtÞ
∂t

= + 2κðtÞ � 2γðtÞW 2ðtÞ, ð19Þ

∂L2ðtÞ
∂t

= +2κðtÞ+2γðtÞL2ðtÞ: ð20Þ

Combining the above equations with Eq. (12) we finally obtain the
increase rate for the patch area:

dAðtÞ
dt

=πκðtÞ W 2ðtÞ+ L2ðtÞ
W ðtÞLðtÞ

" #
: ð21Þ

Entrainment effects on tracer distributions
Diffusion at the patch boundaries causes entrainment of surrounding
waters in the patch. The rate at which this process happens can be
estimated from the rate at which the patch area is growing i.e. from
dA(t)/dt. We derive here the contribution of such processes on the
evolution of first and second moments of tracers inside the patch. In

this section the patch is explicitly indicated with pat while its sur-
rounding is indicatedwithsur. For an interval of timeΔt the area of the
patch at time t will increase from A to A +ΔA. For mass conservation,
the surface intruded in the patch bringing waters with different com-
position, should correspond exactly to ΔA. In the following we derive
the equations describing how means, variances and covariances
changewhenwemerge the two regionspat andΔpat, of surfaceA and
ΔA respectively, with different tracer compositions (see Fig. 4 and
Supplementary Fig. 1).

Let’s derive the equation for themean valuesfirst. By definitionwe
can write:

hpiðx, tÞipat =
1
A

Z
pat

piðx, tÞds, ð22Þ

hpiðx, tÞiΔpat =
1
ΔA

Z
Δpat

siðx, tÞds, ð23Þ

where in the second equation the integrand is si(x, t) because Δpat is
intruding from the surrounding of the patch. Considering the mean
value of both areas merged at time t +Δt we have:

hpiðx, t +ΔtÞipat∪Δpat =
1

A+ΔA
Ahpiðx, tÞipat +ΔAhsiðx, tÞisur

� �
: ð24Þ

Using the definition of derivative df ðtÞ
dt = f ðt +dtÞ�f ðtÞ

dt , taking the limits
ΔA→ dA→0 and Δt→ dt→0, we obtain:

dhpiðx, tÞipat
dt

=
1

AðtÞ
dAðtÞ
dt

	 

hsiðx, tÞisur � hpiðx, tÞipat

� �
ð25Þ

With a similar approach and using the definition of spatial var-
iance we can derive the equation for the derivative of the variances.
The variance of both volumes merged at time t +Δt is:

hp0
iðx, t +ΔtÞ2ipat∪Δpat =

1
A +ΔA

Z
pat

piðx, tÞ2ds +
Z

Δpat
siðx, tÞ2ds

	 


� hpiðx, t +ΔtÞipat∪Δpat

� �2
ð26Þ

Developing the integral terms and using Eq. (24):

hp0
iðx, t +ΔtÞ2ipat∪Δpat =

1
A+ΔA

	 

A hp0

iðx, tÞ2ipat + hpiðx, tÞipat
� ��

+ΔA hs0iðx, tÞ2isur + hsiðx, tÞisur
� ��

� 1
A+ΔA

	 
2

Ahpiðx, tÞipat +ΔAhsiðx, tÞisur
� �2

:

ð27Þ
Developing all terms, taking the limits ΔA→ dA→0 and Δt→ dt→0

and using the definition of derivative we obtain:

dhp0
iðx, tÞ2ipat
dt

=
1

AðtÞ
dAðtÞ
dt

	 

hs0iðx, tÞ2isur � hp0

iðx, tÞ2ipat
�

+ hsiðx, tÞisur � hpiðx, tÞipat
� �2



:

ð28Þ

Finally, generalizing Eq. (28), we have an expression for the deri-
vative of the covariance between tracer i and j:

dhp0
iðx, tÞp0

jðx, tÞipat
dt

=
1

AðtÞ
dAðtÞ
dt

	 

hs0iðx,tÞs0jðx, tÞisur � hp0

iðx, tÞp0
jðx, tÞipat

�
+ hsiðx, tÞisur � hpiðx, tÞipat
� �

hsjðx, tÞisur � hpjðx, tÞipat
� ��

:

ð29Þ
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Internal mixing within the patch
A passive tracer in a turbulent flow is subjected to mixing processes
that tend to homogenize its concentration in time. Several approaches
have been developed to theoretical model the decay of the moments
of a tracer distribution35,41–43. Froma patch perspective, internalmixing
does not affect spatial means but it contributes to smooth variances
and covariances. In particular, the decay rate of tracer second
moments can be related to the diffusion acting at the corresponding
spatial scale41,43. Using that the diffusion coefficient κ(t) represents the
effective diffusion at the scale of the patch size S(t), we conclude that
the decay rate of tracers variances and covariances in the patch is35,42:

hp0
iðx, tÞp0

jðx, tÞi∼ e
� κðtÞ

SðtÞ2
t
: ð30Þ

From the above functional dependence we finally derive the expres-
sion for the internal mixing contribution to the time derivative of
second moments:

dhp0
iðx, tÞp0

jðx, tÞi
dt

= � κðtÞ
SðtÞ2

hp0
iðx, tÞp0

jðx, tÞi: ð31Þ

First and secondmoments contributions to biological dynamics
Based on the Reynold’s decomposition for tracer distributions of Eq.
(4) we can derive the contribution of spatial means, variances and
covariances to Eqs. (9) and (10). To this aim, we use a closure method
to provide analytical expressions for time derivatives of first and sec-
ondmoments in the patch25–28,40. In the following, to simplify notation,
we omit the dependence of tracer distributions on t and x.

The equations for the evolution of the means are:

dhpri
dt

= � ν
hprihpbi
ðhpri+ kÞ

+ νk
hpbihp02

r i
ðhpri+ kÞ3

� νk
hp0

rp
0
bi

ðhpri+ kÞ2
+αmhpbi, ð32Þ

dhpbi
dt

= + ν
hprihpbi
ðhpri+ kÞ

� νk
hpbihp02

r i
ðhpri+ kÞ3

+ νk
hp0

rp
0
bi

ðhpri+ kÞ2
�mhpbi: ð33Þ

The evolution of the variances are:

dhp02
r i

dt
= � 2νk

hpbihp02
r i

ðhpri+ kÞ2
� 2ν

hprihp0
rp

0
bi

ðhpri+ kÞ
+2αmhp0

rp
0
bi, ð34Þ

dhp02
b i

dt
= + 2ν

hprihp02
b i

ðhpri+ kÞ
+ 2νk

hpbihp0
rp

0
bi

ðhpri+ kÞ2
� 2mhp02

b i: ð35Þ

Similarly, we can obtain the evolution of the covariance:

dhp0
rp

0
bi

dt
= ν

hpri
ðhpri+ kÞ

hp0
rp

0
bi � hp02

b i
� �

+ νk
hpbi

ðhpri+ kÞ2
hp02

r i � hp0
rp

0
bi

� �
+m αhp02

b i � hp0
rp

0
bi

� �
:

ð36Þ

Bio-physical parameters setting for ensemble simulations
Wedetail below the setting of physical and biological parameters used
for the main ensemble simulations (Figs. 6 and 7). Other ensemble
simulations to address the model sensitivity using different sets of
parameters are presented in the Supplementary Information (Sup-
plementary Figs. 3, 4, 5, 7 and 8).

We set the Lagrangian ecosystemmodel to study the evolution of
a horizontal circular patch of initial diameter of S(0) = 10 km and
constant thickness of 10m. We track its evolution over a time window

(i.e. the integration time) of τ = 30 days with a time-step of ~ 14min.
The ranges of realistic values of initial strain and diffusion used are
based on in-situ observations11,30,36,38,39. They corresponds to:
0.01 < γ < 0.6day−1 and 0.01 < κ < 0.6 km2day−1, respectively. We then
implement specific scaling laws of γ and δ for the spatial scales of
10–100 km spanned by our ensemble simulations:

γðtÞ= f γ SðtÞ½ �=αSðtÞ�2
3, ð37Þ

κðtÞ= f κ SðtÞ½ �=βSðtÞ, ð38Þ

where α and β are chosen in a way that γ(t = 0) and κ(t =0) match
realistic values at the scale of the initial patch size S(t =0). For the study
of the SOIREE experiment we use as initial value of strain and diffusion
γ =0.12 and κ =0.1, respectively.

We identify the resource pr with iron and the consumer pb with
phytoplankton. We also assume that resource and consumer can be
reasonably approximated to be passive tracers with no active
behavior.We do notmodel resource recycling (α = 0) with exception
of the sensitivity analysis reported in Supplementary Fig. 5 in which
we instead use a complete remineralization rate (α = 1). The Fe:C
ratio used is 10−5 15,44. The initial iron concentration in the patch is
1 μmol/m3 and 0.1 μmol/m3 at the surrounding while the initial
phytoplankton concentration in iron currency, both in the patch and
at the surrounding, is 0.0249 μmol/m3 13,29. Initial variances and
covariance are set to zero. The maximum phytoplankton growth
rate and its linear mortality rate are: ν = 1.05 day−1 and
m = 0.05 day−1 15,29,44,52. The half-saturation constant for iron is:
k = 2 μmol/m3 53,54.

Simplified analytical model of an heterogeneous patch
Herewe introduce a simplifiedmodel to investigate the role of positive
covariance for biomass growth. Let’s consider an analytical model of a
patch composed by just two sub-regions of equal size. In sub-region 1
the concentrations of resource is r1 and of biomass is b1, respectively
wehave r2 andb2 for sub-region 2. If we identify the total growth rate of
the patch as the average of the growth rates of the two sub-regions we
would have:

ν

2
r1b1

r1 + k
+

r2b2

r2 + k

� �
ð39Þ

If we instead do the opposite, i.e., average first the concentrations of
the twosub-regions andonly after compute a singlegrowth rate for the
entire patch, we have:

ν

4
ðr1 + r2Þðb1 +b2Þ

r1 + r2
2 + k

" #
ð40Þ

Then, we can consider the case in which we have a positive spatial
covariance in the patch by setting:

r1 = r + δr ; b1 =b+ δb ð41Þ

r2 = r � δr ; b2 = b� δb ð42Þ

The difference of the two different growth rate above, i.e. expression
(39) - expression (40), becomes:

Δ= ν
ðk + rÞδb� bδr

ðk + rÞðk + r � δrÞðδr + k + rÞ kδr ð43Þ

Assuming that k + r > δr, then Δ is positive if and only if (k + r)δb > bδr.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All external data used, such as observations or laboratory measures,
are freely available from the corresponding publications cited along
the text.

Code availability
The code used to perform all the simulations presented in the manu-
script is freely available on-line at: https://github.com/serjaaa/
lagrangian-ecosystem-model.
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