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1/4 is the new 1/2 when topology is
intertwined with Mottness

Peizhi Mai 1, Jinchao Zhao 1, Benjamin E. Feldman 2,3,4 &
Philip W. Phillips 1

In non-interacting systems, bands from non-trivial topology emerge strictly at
half-filling and exhibit either the quantum anomalous Hall or spin Hall effects.
Here we show using determinantal quantum Monte Carlo and an exactly sol-
vable strongly interacting model that these topological states now shift to
quarterfilling. A topologicalMott insulator is the underlying cause. Thepeak in
the spin susceptibility is consistentwith a possible ferromagnetic state atT = 0.
The onset of such magnetism would convert the quantum spin Hall to a
quantum anomalous Hall effect. While such a symmetry-broken phase typi-
cally is accompanied by a gap, we find that the interaction strength must
exceed a critical value for this to occur. Hence, we predict that topology can
obtain in a gapless phase but only in the presence of interactions in dispersive
bands. These results explain the recent quarter-filled quantum anomalous Hall
effects seen in moiré systems.

Although topological insulators1–16 represent a new class of bulk insu-
lating materials with gapless conducting edges, their physics is com-
pletely entailed by the band theory of non-interacting electrons. The
new twist is that should two atoms reside in each unit cell, the standard
insulating gap that obtains at half-filling, full lower band, does not tell
the whole story when spin-orbit coupling1–3 is present. As long as time-
reversal invariance ismaintained, two spinful counter-propagating edge
modes exist and exhibit a quantized conductance proportional to e2/h,
thereby giving rise to a quantum spin Hall (QSH) effect in two dimen-
sions. Within the Kane–Mele (KM)1,2 and Bernevig–Hughes–Zhang
(BHZ)3 models, the QSH effect obtains only at half-filling. In a general
non-interacting system, this physics obtains at a filling equal to the
inverse number of atoms per unit cell, 1/q. This physics is robust to
perturbations that yield only smooth deformations16 of the Hamilto-
nian. Additionally, the quantum anomalous Hall (QAH) effect, that is,
the existence of a quantized Hall conductance with zero net magnetic
field, also requires half-filling of the Haldanemodel17. As the QAH effect
breaks time-reversal symmetry while the QSH effect does not, it is dif-
ficult for them to be realized in the same material.

However, recently, both effects18,19 have been observed in the
same material in direct contrast to predictions of standard non-

interacting models1–3. In the AB-moiré-stacked transition metal
dichalcogenide (TMD) bilayer MoTe2/WSe2

18,19, the QSH insulator is
observed at ν = 2 with the QAH effect residing at ν = 1. To date, this
constitutes the first observation of the intertwining of these effects in
the same material and hence the question of the minimal model
required to explain the conflation of both is open. In terms of the
4-band KM/BHZ model, ν = 2 and ν = 1 correspond to half-filling and
quarter-filling, respectively. Numerous theories20–31 have been put
forth in this context, and themost recent experiment32 shows that both
valleys contribute to theQAH effect and hence valley coherence rather
than valley polarization is the operative mechanism. The striking
deviation from the standard theory raises the question: can interac-
tions drive either of these transitions away from half- to quarter-filling
in the KM/BHZ models?

It is this question that we address here. We show quite generally
that at a temperature above any ordering tendency, strong interac-
tions shift the QSH effect to quarter filling with a decrease of the spin
Chern number by a factor of two. However, the spin susceptibility
exhibits a peak indicating a tendency to ferromagnetism as the tem-
perature is lowered. Suchanordered ground statewould be consistent
with the Lieb–Schultz–Mattis33,34 (LSM) theorem and recent exact

Received: 8 March 2023

Accepted: 1 September 2023

Check for updates

1Department of Physics and Institute of Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. 2Geballe Laboratory of
Advanced Materials, Stanford, CA 94305, USA. 3Department of Physics, Stanford University, Stanford, CA 94305, USA. 4Stanford Institute for Materials and
Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. e-mail: dimer@illinois.edu

Nature Communications |         (2023) 14:5999 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7021-4547
http://orcid.org/0000-0001-7021-4547
http://orcid.org/0000-0001-7021-4547
http://orcid.org/0000-0001-7021-4547
http://orcid.org/0000-0001-7021-4547
http://orcid.org/0000-0002-8530-3590
http://orcid.org/0000-0002-8530-3590
http://orcid.org/0000-0002-8530-3590
http://orcid.org/0000-0002-8530-3590
http://orcid.org/0000-0002-8530-3590
http://orcid.org/0000-0002-4962-0548
http://orcid.org/0000-0002-4962-0548
http://orcid.org/0000-0002-4962-0548
http://orcid.org/0000-0002-4962-0548
http://orcid.org/0000-0002-4962-0548
http://orcid.org/0000-0003-2621-0738
http://orcid.org/0000-0003-2621-0738
http://orcid.org/0000-0003-2621-0738
http://orcid.org/0000-0003-2621-0738
http://orcid.org/0000-0003-2621-0738
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41465-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41465-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41465-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41465-6&domain=pdf
mailto:dimer@illinois.edu


diagonalization35 on one of the models treated here. Whether or not
such a ground state is gapped depends on the flatness of the band and
interaction strength. In the flat-band limit, the ferromagnetic ground
state is always gapped whereas for a dispersive band, the interactions
must exceed a critical value for a gap to obtain. These results raise the
possibility of a gapless topological semi-metallic state with non-trivial
temperature corrections to the Hall conductance36. Generally, We
argue thatwhen the interactions dominate, theQSHmust giveway to a
ferromagnetic QAH state at T =0 at 1/4-filling. Since this is a generic
conclusion on the most general models proven to undergird the QSH
effect, we analyze the experiments19,32 in this context. Ourmodel yields
a quarter-filled QAH effect which coexists with a QSH effect at half-
filling as is seen experimentally, in thepresence of aflat lower band and
intermediate interaction.

A brief survey of interacting topological systems is in order as our
key result hinges on the interplaybetween the two.Most studies on the
KM-Hubbard37–40 and the BHZ-Hubbard41–44 models focused on the
half-filled system and found a transition from a QSH insulator to a
topologically trivial anti-ferromagnetic Mott insulator as the interac-
tion strengthU increases. In addition, formodelsmore relevant to flat-
band twisted bilayer graphene, refs. 45,46 have provided a strong-
coupling analysis and a density-matrix-renormalization group study47

has found that the gapless state at half-filling in the spinless (and hence
Mottless) Bisritzer–MacDonald (BM) model48 yields a quantum
anomalous Hall state in the presence of Coulomb interactions. In an
extensive49 exact diagonalization study on an 8-band BM model, U(4)
ferromagnets were observed always with the onset of a gap. Quantum
Monte Carlo50,51 on the spinful model reveals a series of insulating
states at half-filling. In the mean-field context, models focused on
layered graphene systems have addressed the origin of quantum Hall
ferromagnetism in the interacting BM model45,52,53 while others have
argued that a topological Mott insulators (TMI) emerges at half-filling
in the presence of on-site and nearest neighbor interactions in the
tight-binding model (with only nearest-neighbor hopping) on a hon-
eycomb lattice54. However, the latter proposal has not been sub-
stantiated by subsequent numerical studies55–58 that have found half-
filling to be a trivial Mott insulator when interactions are sufficiently
large. Interactions also lie at the heart of fractional topological
insulators4,10,59–61 built from fractional Chern insulators62–66 which
resemble the fractional quantum Hall effect but with no net magnetic
field. Such phases appear at a fractional filling in a flat-band Δ0≫W0

(where Δ0 is the non-interacting topological gap and W0 is the band-
width) and require nearest-neighbor interactions. A recent study on
the strongly interacting spinful Haldane model67 demonstrates that a
Chern Mott insulator originates at quarter-filling with Chern number
C = ± 1. This physics arises as a general consequence of an interplay
between Mottness and topology.

Motivated by refs. 19,32,67, we explore the general phenomena
that emerge from the interplay between Mottness and the QSH effect
in the context of the KM and BHZ models. To demonstrate that the
quarter-filled state is a TMI with a strongly correlated QSH effect, we
numerically solve both the KM-Hubbard and BHZ-Hubbard Hamilto-
nians using determinantal quantum Monte Carlo (DQMC) as well as
dynamical cluster approximation (DCA) and construct an analytically
solvable Hamiltonian for a general interacting QSH system and obtain
consistent results for sufficiently large interactions.

Results
Hubbard interaction
The DQMC simulation results for the generalized
KM–Hofstadter–Hubbard (KM-HH) model (see “Methods”) on a hon-
eycomb lattice at ψ = 0.81 and t0=t =0:3 are shown in Fig. 1. For this
choice of parameters, the non-interacting lower band is rather flat with
bandwidth W0− ≈0.28 and the topological gap is Δ0 ≈ 1.62, the upper
bandwidth is W0+ ≈ 4.37, where the subscript 0 indicates non-

interacting. This mimics the flat-bands in moiré TMD experiments.
The tunability of bandwidths in the KMmodel (unlike the bands in the
BHZmodel which are always dispersiveW0+ =W0− ≥Δ0) makes the KM
model ideal for studying both flat-band and dispersive physics.

A key quantity that helps discern the topology in the presenceof a
probe magnetic field is the charge compressibility,

χ =βχc =
β
N

X
i,j

hninji � hniihnji
h i

, ð1Þ

where the sublattice and spin summations are implied in ni. Regardless
of density, the inverse slope of the leading straight-line incompressible
valley that extends to the zero-field limit67 provides the Chern number.
As a probe, this field does not alter our claim of a QSH phase at zero
field. In the non-interacting case (Fig. 1a) atβ = 7, there is a shortmiddle
vertical straight line at low fields which indicates a Chern number
C0 = 0 at 〈n〉 = 2. This state bifurcates into two lines or equivalently two
Landau levels (LLs) at higher magnetic flux. This crossing pair of zero-
mode LLs is a reliable fingerprint for the QSH effects observed in
experiments11. Note the asymmetry around 〈n〉 = 2 arises entirely
because the lower band is flatwhile the upper band is dispersive. In this
regime, the lines with finite slopes all represent the standard integer
quantum Hall states.

The second quantity we calculate is the spin susceptibility defined
as

χs =
X
r

SðrÞ � Nm2
z =

1
N

X
i,r

Szi S
z
i+ r

� �� Szi
� �

Szi+ r
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, ð2Þ

where mz =
P

ihSzi i=N is the magnetization per spin. The non-
interacting spin susceptibility is related to the compressibility by
χs = χ/(4β) as shown in Fig. 1b with reverse color scale. Fig. 1c shows the
magnetization. Even though the Zeeman field is absent, a non-zero
Peierls flux can magnetize the system since the spin-up and -down
electron bands have different Chern numbers. The non-interacting
results at lower temperatures can be found in the Supplement. What
we alert the reader to is the absence of any topologically non-trivial
states at 〈n〉 = 1.

In the presence of interactions U = 3t (already strongly correlated
for the lower band), the new feature and hence prediction is the
emergence of a topologically non-trivial state at 〈n〉 = 1. In Fig. 1d, the
inverse slope of the trace extending to 〈n〉 = 1 is ± 1 and thus gives the
Chern number. The absence of the right-moving counterpart signifies
a QAH effect rather than a QSH effect. At 〈n〉 = 2, the standard QSH
effect remains. Consequently, we have a system inwhichboth theQAH
and QSH effects obtain simply by changing the filling. For 〈n〉 > 2, the
physics is weakly interacting as U <W0+. The bright peak in the spin
susceptibility in Fig. 1e indicates a possible tendency for ferro-
magnetism at 〈n〉 = 1. This is supported by the asymmetry in the dotted
lines that cross at zero field and 〈n〉 = 1 in the magnetization in Fig. 1f.
Such asymmetry signifies that an infinitesimal field would lead to a
polarization of the spins and hence ferromagnetism.

We then further increase the interaction strength but have to raise
the temperature to β = 3 due to the Fermion sign problem in DQMC
(see Supplement). In the final rowof Fig. 1 for the compressibilitywhen
U = 12t, which far exceedsW0− +W0+ +Δ0 ≈ 6, the non-interacting QSH
Landau fan vanishes for 〈n〉 = 2 turning into a trivial Mott insulator and
most strikingly, a new LL emerges corresponding to the mirror image
of the QAH state that terminates at 〈n〉 = 1. The presence of both
Landau components completes the high-temperature QSH features at
quarter filling. The magnetization (Fig. 1i) shows a more dramatic
change than does the compressibility; namely it vanishes at 〈n〉 = 2 as a
result of the anti-ferromagnetic Mott insulator. Further, the magneti-
zation splits into peaks on either side of 〈n〉 = 1 that continues to be
asymmetrical and hence is consistent with a tendency for spontaneous
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Ising ferromagnetism despite the presence of both LLs. This physics in
Fig. 1d–f is only present in the flat-band limit when U is much larger
than the bandwidth but comparable to the topological gap. Conse-
quently, our theoretical work here is consistent with the sudden onset
of the QAH state. Since the temperature for Fig. 1g–i is higher than the
previous row, their features are softer.

To confirm the tendency for ferromagnetism, it is important to
compute the temperature dependence of the spin susceptibility.
Shown in Fig. 2a is the inverse spin susceptibility as the temperature is
lowered with zero external magnetic flux. Displayed clearly is a pos-
sible divergence of the susceptibility (1/χs→0) consistent with order-
ing. With extrapolation, we find that it supports a finite-temperature
transition to ferromagnetism. Note that this does not violate the
Mermin–Wagner theorem which forbids the spontaneous breaking of
continuous symmetries at finite temperature in low-dimensional
(d ≤ 2) systems with short-range interactions. In the KM-Hubbard
model with spin-orbit coupling, the system no longer has the full SU(2)
symmetry but only conserves Ŝ

z
. Then it is the Ising symmetry that is

spontaneously broken in this transition and thus allowed at a finite
temperature. As this is an interaction-driven effect, we expect an
enhancement of the susceptibility asU increases. This is also borne out

in Fig. 2b. Together these figures justify our claim of interaction-driven
ferromagnetism as the temperature is lowered. A ferromagnetic QAH
state will stabilize at zero temperature even though QSH features
could be present at high temperatures when U is sufficiently large
(Fig. 1g–i). We also observe a similar high-temperature phenomenon in
the dispersive case ψ =0.5 (see Supplement).

To show the generality of the 1/4-filled topological state, we
consider the BHZ-Hofstadter-Hubbard (BHZ-HH) model (see “Meth-
ods”) on a square lattice. Note in this model, both bands are dispersive
and have the same bandwidth. Without loss of generality, we set
M/t = 1, then W0− =W0+ =Δ0 = 2t (t = 1 as the energy scale). The non-
interacting 1/2-filled system is a QSH insulator with Cs = 2. It is the spin
Chern number that describes a QSH insulator. To measure this quan-
tity, we use a spin-dependent time-reversal-invariant (TRI) magnetic
field inspired by cold-atom experiments68,69, namely ϕi,j→ σϕi,j. The
compressibility measured in this way we refer to as TRI compressi-
bility. The minus sign coupled to spin-down electrons changes the
corresponding Chern number CTRI

# = � C#. Thus, the “TRI" Chern
number measured in the TRI compressibility CTRI =CTRI

" +CTRI
# =C" �

C# =Cs corresponds to the spin Chern number in the BHZ-HH model.
This method overcomes the breakdown of the simple additivity

Fig. 1 | Compressibility, spin susceptibility and magnetization of the flat-band
generalized KM-HH model. DQMC results for the flat-band generalized KM-HH
model (t0 =0:3,ψ=0:81) atU =0,β = 7/t (a–c),U = 3t, β = 7/t (d–f) andU = 12t, β = 3/t
(g–i). In each row, the compressibility, spin susceptibility and magnetization are

presented in order from left to right as a function of magnetic flux and electron
density. The dashed green lines in panels f and i serve as a guide to the eye for the
crossing pairs of Landau levels in the QSH effect.
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formula for Cs when the spin channels are mixed and k is no longer a
good quantum number in the presence of interactions. Through this
quantity, we can read the spin Chern number from the inverse slope of
the TRI compressibility (see the Supplement for the non-interacting
examples).

The simulation results for the BHZ-HHmodels atU = 8t, β = 4/t are
presented in Fig. 3. In Fig. 3a, two (red) straight lines appear from the
zero-field 1/4 − and 3/4 − filled system, whose inverse slope indicates
that the corresponding zero-field 1/4 − and3/4 − filledBHZ-HHsystems
present QSH feature with Cs = 1 while the 1/2− filled system becomes a
topologically trivial Mott insulator with Cs =0. This physics becomes
much clearer by studying the standard charge compressibility in
Fig. 3b which reveals identical features at 〈n〉 = 1 and 〈n〉 = 3 of left and
right moving LLs indicative of the QSH effect. Also, the spin suscept-
ibility exhibits a peak both at 〈n〉 = 1 and 〈n〉 = 3. The simultaneous
appearance of compressibility minima and spin-susceptibility maxima
are key features of this Mottness-driven QSH effect, in contrast to its
non-interacting counterpart. The magnetization in Fig. 3d is also
asymmetrical indicating a possible tendency towards ferromagnetism
at 〈n〉 = 1 and 〈n〉 = 3. We return to this in a later section.

To corroborate our findings, we conducted a finite-size analysis
(see Supplement) and confirm that the same spin Chern number sur-
vives in system sizes as large as Nsite = 12 × 12 with insignificant finite-
size effects and hence our results are valid in the thermodynamic limit.
We conclude then that the DQMC exhibits the QSH effect at high
temperatures at 1/4-filling when U is sufficiently large.

Exactly solvable model for interacting quantum spin Hall
insulators
The natural question arises: why is 1/4-filling the new topologically
relevant filling and can it be understood in a simple way? The answer is

yes. For a system with 2 atoms per unit cell, there should be
interaction-induced insulating states at any integer filling up to 4
charges in each unit cell. The first such state should be at 1/4-filling.
This physics arises naturally from a momentum-space formulation of
the interactions which will result in 4-poles of the Green function, each
corresponding to the four insulating states possible.

We now introduce the Hatsugai–Kohmoto (HK) interaction70–72

into a general QSH Hamiltonian,

H =
X
k,σ

ðε+,k,σ � μÞn+,k,σ + ðε�,k,σ � μÞn�,k,σ

� �
+U

X
k

ðn+,k,"n+,k,# +n�,k,"n�,k,#Þ:
ð3Þ

Without loss of generality, we use the dispersions from the BHZmodel
(see Methods) settingM = 1 as an example. This interaction introduces
Mottness by tethering double occupancy to k-space rather than the
usual real space as in the well-known Hubbardmodel. As we will show,
this model yields physics for strong interactions consistent with the
Hubbard model. The reason for this consilience72 is that both models
break the underlying Z2 (distinct from the classification scheme for
topological insulators) symmetry of the non-interacting Fermi
surface73. As the interaction commutes with the kinetic term, the
original non-interactingwave function is untouched andmomentum k
remains a good quantum number. Therefore, itmakes sense to extract
the Chern number from an integration over the Brillouin zone. The
interacting Green function can be written down analytically67,71 as

G ±,k,σðωÞ=
1� hn±,k�σi

ω+μ� ε±,k,σ
+

hn±,k�σi
ω+μ� ðε±,k,σ +UÞ : ð4Þ

Fig. 2 | Temperature evolution and U-dependence of the spin susceptibility.
Inverse spin susceptibility 1/χs at quarter-filling (〈n〉 = 1) of the interacting flat-band
generalized KM-HH model. a contains the temperature evolution of 1/χs at U/t = 3

with extrapolation to zero. b shows 1/χs as a function of interaction strength at a
fixed inverse temperature β = 3/t.

Fig. 3 | DQMC simulations of the BHZ-HHmodel. DQMC results for the TRI compressibility (a), compressibility (b), spin susceptibility (c), and magnetization (d) of the
BHZ-HH models at U/t = 8, β = 4/t. The dashed green lines in (d) serves as a guide for the crossing Landau levels signaling the QSH effect.
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The Green function immediately reveals the effect of the correlations.
The non-interacting lower and upper bandswhichweredegenerate for
spin-up and spin-down electrons split into singly and doubly occupied
sub-bands as a result of Mottness. In the following, we use the
abbreviation LSB and LDB for lower singly and doubly occupied sub-
bands respectively, and likewise USB and UDB for the upper bands.
The energy of the LSB and USB remains at the non-interacting value,
while the LDB and UDB move up by a value equal to U. For a large
enough U, the quarter-filled system emerges as an insulator with a
filled LSB. This physics falls out naturally from the HK model because
of the 4-pole structure of the Green function.

Since the interaction mixes the spin channels, leading to a huge
degeneracy (d =2Nc ) in the ground state (Nc is the number of unit cells),
we need to average over all degenerate ground states74 to rigorously
calculate the spin Chern number: �Cs = �C" � �C#. For each spin, the
contribution is

�Cσ =
1
d

Xd
Ω= 1

1
2π

Z
d2kf xy,σ Ωh jnk,σ Ωj i, ð5Þ

where fxy,σ is the normal Berry curvature defined with Bloch wave
function75 because k remains a good quantum number in the HK
model, and (1/2π)∫d2kfxy,σ =C0σ. When U =0, 〈Ω∣nk,σ∣Ω〉 = 1 below the
chemical potential. When U is finite, 〈Ω∣nk,σ∣Ω〉 can be 0 or 1. We can
conduct the average first for Eq. (5). When U is large enough to fully
separate the singly and doubly occupied bands,
ð1=dÞPd

Ω= 1hΩjnk,σ jΩi= hnk,σi= hnσi= 1=2. Then Eq. (5) becomes

�Cσ = hnσi
1
2π

Z
d2kf xy,σ = hnσiC0σ =

C0σ

2
: ð6Þ

Thus, the spin Chern number Cs =C0s/2 (we will drop the average
bar symbol in the following text.). This result demonstrates that each
momentum state is equivalently occupied by half spin-up and half
spin-down electrons on average. Similarly, the LDB has the same Cs,
while the USB and UDB have the opposite Cs. In short, the strongly
correlated quarter-filled system becomes a Mott insulator with a spin
Chern number Cs =C0s/2 should the interaction exceed the bandwidth.

To visualize how this phase emerges,weplot the band structure in
Fig. 4 for varying U. WithM = 1, the bandwidth for the lower and upper
BHZ bands is W0+(−) = 2 and Δ0 = 2 is the topological gap. The non-
interacting lower band has C0s = 2, while the upper band carries the
opposite spin Chern number. We separate the non-interacting lower
and upper bands into LSB (red-unmeshed), LDB (red-meshed), USB
(green-unmeshed) andUDB (green-meshed). As derived above, the red
and green sub-bands have the spin Chern number Cs = 1 and − 1
respectively. Turning on the interaction causes the doubly occupied

sub-bands to increase in energy while the singly occupied sub-bands
remain unchanged. For small interactions W0− >U >0 (Fig. 4a), the
band structure only slightly departs from the non-interacting case. As
U increases to W0+ +W0− +Δ0 ≥U ≥W− (Fig. 4b), the same-color sub-
bands fully separate, leading to a gap opening at quarter-filling. Then
both the 1/4- and 3/4-filled systems become a TMI with a spin Chern
number Cs = 1, while the 1/2-filled case becomes a conductor. Upon
further increasing U to U >W0+ +W0− +Δ0 (Fig. 4c), the 1/2-filled state
becomes a topologically trivial Mott insulator. All the while, the QSH
Mott insulator at 1/4- and 3/4-fillings persists with a gap equal to Δ. For
a different M, the intermediate panel b may change, while panel c is
always valid for a large enough U. This indicates that generally in the
presence of strong interactions, the system becomes a QSH Mott
insulator at 1/4- and 3/4-filling with spin Chern number Cs =C0s/2 and a
trivial Mott insulator at 1/2-filling.

As we compute in the Supplement, the spin susceptibility for the
HKmodel diverges at T = 0 indicating that the HKmodel is unstable to
ferromagnetic order in this limit. Note that this conclusion applies to a
general QSH Hamiltonian (not only to the BHZ model) with HK inter-
actions. This result is consistent with the divergence of the spin-
susceptibility of the flat-band KM-Hubbard models. Ultimately this
means that the 1/2-filled QSH effect would give rise to a 1/4-filled QAH
effect at T = 0.

To summarize, this simple model offers a way of understanding
why 1/4-filling is special in the Hubbard model. Note the agreement
with the Hubbard simulations is non-trivial because momentum mix-
ing is not present in HKmodel but is in theHubbardmodel. Hence, the
agreement demonstrates that it is the ultimate 4-pole structure of the
underlying single-particle Green function that dictates the physics. As
we have shownpreviously72,76, theHKmodel represents a fixed point in
which no short-range repulsions are relevant not even Hubbard
interactions. Hence, the HK model is the fixed point for Mott physics.
Possible ferromagnetism at T =0 would eventually turn the QSH effect
into the QAH effect. Hence, as a result of interactions, the QAH effect
appears as the symmetry-broken phase of the QSH effect much the
way antiferromagnetism is the low-temperature symmetry-broken
phase of a Mott insulator. Equal drivers of this spontaneous symmetry
breaking are consistencywith the LSM theoremand the restriction that
the Chern number must be an integer. As is evident at 1/4-filling, the
QAH always dominates as the symmetry-broken ground state. This is
the primary conclusion of this work.

In a previous exact diagonalization study77 on a strict flat band
model with Hubbard interactions and spin-orbit interaction, it was
noticed that ferromagnetism emerged at 1/4-filling. This result can be
viewed as a special case of HK physics because in the strict flat-band
limit of the model studied, any value of U will necessarily prohibit
double occupancy thereby producing a gapped state. The HK result is

Fig. 4 | Band structure for BHZ-HK model in Eq. (3) withM = 1. Different phases
emerge asU increases: a 1/2-filledQSH insulator forW0− >U >0 (U =0.5),b 1/4-filled
TMI and 1/2-filled metal for W0− +W0+ +Δ0 ≥U ≥W0− (U = 3), and c 1/4-filled QSH
Mott insulator and 1/2-filled topologically trivial Mott insulator for

U >W0− +W0+ +Δ0 (U = 7). The red (or green) color represents Cs = 1 (or −1). The
unmeshed (meshed) band consists of only singly (doubly) occupied states. It is the
splitting of these bands by the interaction that gives rise to the Mott-derived
topological physics.

Article https://doi.org/10.1038/s41467-023-41465-6

Nature Communications |         (2023) 14:5999 5



more general than this result as the gap persists even when the bands
disperse.

Gap opening
In the previous sections, we have shown that both simulations on the
Hubbard model and analytical calculations on the HK model indicate
the emergence of non-trivial topology at 1/4-filling driven by strong
correlations. In the non-interacting case, the topology appears with a
bulk gap. In the strongly correlated case, however, this is not neces-
sarily true.While a gap opens in the HKmodel as long asU exceeds the
total bandwidth, the precise condition for opening a gap in the Hub-
bard model is much more subtle because of the dynamical mixing
between the bands. In the Hubbard case, the interaction strength
needs to exceed a critical value (Utopo

c ≫W0�) to induce the topology at
1/4-filling and a separate critical value (Ugap

c ) to open a gap. In general,
we find Utopo

c <Ugap
c .

From the dip of the high-temperature compressibility computed
by DQMC, we can tell roughly when the non-trivial topology appears
and hence we are able to extract Utopo

c . However, to access the gap
information, one has to explore much lower temperatures. This can
not be done by DQMC as we are restricted by the Fermion sign pro-
blem and finite-size effects (see Supplement for details). To address
this problem, we resort to DCA78–81. We computed the value of the gap
defined as

Δðhni= 1Þ=μðhni= 1:01Þ � μðhni=0:99Þ, ð7Þ

in the vicinity of the quarter-filled state in the generalizedKM-Hubbard
model using DCA on a 2 × 2 × 2 cluster at low temperature β = 20/t. To
make contact with previous work on flat-band systems, we define the
ratio r =Δ0/W0− and study the evolution of the gap as a function of the
complex hopping phase, ψ in the generalized KM model (fixing
t0 =0:3). The results are summarized in Fig. 5a. We only plot the data
when Δ(〈n〉 = 1) ≳0.2 because Δ(〈n〉 = 1) by definition remains a small
value even when the state is metallic and obtain the Ugap

c by
extrapolation to zero gap. In all cases, Δ(〈n〉 = 1) is significantly smaller
than Δ0 even when U >W0− +W0+ +Δ0 ( ≈ 6). As the band becomes
more dispersive (ψ decreases, or r decreases), Δ(〈n〉 = 1) reduces and
Ugap

c grows as shown in Fig. 5a (Δ0 = 2 for all cases). Now we consider
the relation between Ugap

c and Utopo
c . Take ψ =0.63 as an example

(Δ0 = 2,W0− = 1). Already at U = 2t, the corresponding KM-HH model
shows QAH topology at β = 8 in Fig. 5b, while Ugap

c ≈ 3:25. The DQMC
compressibility at zero field is shown in Fig. 5c at various U <Ugap

c . It
exhibits that a dip at 〈n〉 = 1 starts to develop (and therefore the
topological magnetic response) at a smaller U before the gap actually
opens (see Supplement for a benchmark between DCA and DQMC).
This supports a topologicalMott semimetal (TMSM). In Fig. 5d, we find
that for the semi-metallic state, the inverse spin susceptibility 1/χs
decreases slowly with temperature and is unlikely to reach 0 at finite
temperatures, while for the insulating state, the 1/χs drops much
sharper with temperature so that its extrapolation supports a finite-
temperature transition. We conclude that while the Chern numbers
remain the same in the TMSM and insulating QAH phases, the TMSM
phase lacks a gap and ferromagnetism as well.

Fig. 5 | Gap opening and non-trivial topology at quarter-filling of the general-
ized KM-HH model. a Estimated gap of the generalized KM-Hubbard model at
quarter-filling as a function of the interaction strength U and the hopping phase ψ.
These results are obtained fromDCA simulations at a temperatureof β = 20/t.bThe
DQMC compressibility for the KM-HH model at U = 2t, β = 8 around quarter-filling.

cThe zero-field DQMCcompressibility for the KM-Hubbardmodel at variousU and
β = 8 as a function of the density. d The inverse temperature-dependent spin sus-
ceptibility from DQMC for KM-Hubbardmodel atU = 2t and 5t. b–d fix ψ =0.63. All
DQMC simulations are done on a 6 × 6 × 2 cluster while the DCA simulations are on
a 2 × 2 × 2 cluster.
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In Fig. 5a, at any finite value of r > 1, Umust exceed a critical value
Ugap

c for the gap to form. In general, Ugap
c increases as r decreases.

When r = 1 (ψ = 0.5), we find the gap barely opens for U < 12 (Δ(〈n〉 =
1,U = 12) = 0.2). This situation is directly applicable to the BHZ-
Hubbard model because in the topologically relevant region
( − 2 <M < 2), r ≤ 1. AtM = 1 (which means r = 1), Δ(〈n〉 = 1,U = 12) = 0.22.
However, we already observe the emergence of non-trivial topology at
1/4- and 3/4-filling in Fig. 3 at U = 8 and even U = 6 (see Supplement).
Thus, such phases with non-trivial topology in actuality are semi-
metals. Similar to the KM-Hubbard model, the spin susceptibility for
these semi-metallic states only shows a soft peak and their tempera-
ture evolution does not support a finite-temperature transition
(see Supplement). In such a system, the Hall conductance will have
finite temperature corrections36 and hence deviate from the value
dictated by the Chern number. This observation is in contrast with the
recent exact diagonalization study on the BHZ-Hubbard model (with
system size up to 3 × 4) which observes gap opening and ferromag-
netic order for U > 4. As we show in the Supplement, the finite size
effects are sizeable for the cluster size used in this study.

Experimental realization
While the interactions in ultracold atoms in optical traps82 can be
adjusted to mimic the physics here, the most obvious synergy is with
the moiré TMD experiments18,19,32 discussed previously. Our DQMC
simulation result in Fig. 1 for the flat-band KM-HH model is consistent
with this experiment in the existence of QAH and QSH at 1/4- and 1/2-
filling, respectively.

However, we cannotmake direct contact with the observation of
valley coherence32 within a single-layer KM model in which spin-
valley locking obtains. Note relaxing the spin-valley locking con-
straint of the KM model by reversing the spins in one of the bands
relative to the other, as indicated in the experiment32 (see Supple-
ment), would lead to a contradiction with a non-zero Chern number
per spin in the band insulator limit. That is, the moiré band structure
of AB stacked MoTe2/WSe2 bilayer can not be captured by a strict
four-band model such as the KM model. The remedy is to construct
an eight-bandmodel (details in Supplement) consisting of two copies
of the KM model, one for each layer with an effective voltage dif-
ference between the layers. For completeness, we recomputed the
compressibility for the bilayer flat-band KM-HH model at an inter-
mediateU = 1.5t. Clearly shown in Fig. 6a is theQAHat 〈n〉 = 1, theQSH
at 〈n〉 = 2 and 〈n〉 = 4. Besides, there is also an emergent QAH state at
〈n〉 = 3. This prediction has been confirmed in a recent experiment on
a moiré TMD material83.

The accompanyingmagnetization in Fig. 6b is also consistentwith
these assignments. Within the eight-band model, spin polarization
requires layer coherence because the interaction does not commute
with the interlayer hopping and since the same spin is assigned to
different valleys in each layer, layer coherencenecessarily entails valley
coherence. Hence, a simple two-layer extension of our results is suf-
ficient to account for the QAH effect in TMD moiré systems. This
reasoning motivates first-principle calculations to determine how the
8-band model should be tailored to apply to specific moiré materials.

Discussion
Interactions play a non-trivial role in topology in twodistinctways. First,
they lead to a TMSM/TMI with a high-temperature QSH effect char-
acterized by a spin Chern number of Cs= 1 at quarter filling in the
interacting BHZ and KM models. We use the term “Mott" because it is
the interactions that lead to a lifting-up of the doubly occupied sector
thereby exposing the topologyof the 1/4-filledband. The resultantCs= 1
poses a problem as this number must be even for a non-degenerate
ground state84 with time-reversal symmetry. The resolution of this
dilemma lies in thedivergenceof the spin susceptibility in theHKmodel
at zero temperature and in the Hubbard model at finite temperature.
Both of these indicate a possible spontaneous ferromagnetic phase at
T =0. The onset of ferromagnetism results with a unit Chern number
indicative of the QAH effect and would offer a route around the LSM
restriction33,34 that a unique featureless gapped ground state is impos-
sible with an odd number of fermions per unit cell. Consequently, our
results point to a fundamental reason why the QSH effect at high
temperaturesmust resort to theQAHeffect as temperature decreases if
a gap opens. Namely, while at high temperatures, a paramagnetic
symmetry-unbroken state obtains, for the ground state to be unique,
the symmetry must be spontaneously broken. We refer to this onset of
the symmetry-broken state as a consequence of topologicalMottness85,
in direct analogy with the traditional Mott state which has an anti-
ferromagnetic ground state. Therefore, we argue that the 1/4-filled state
is a TMI or TMSM. In analogy with the traditional Mott insulator with an
antiferromagnetic ground state, a TMI exhibits the QSH phase which
turns into the symmetry-broken QAH at low temperature as illustrated
in Table 1. A TMI is qualitatively distinct from the fractional topological
insulators4,10,59–61 driven by at least nearest-neighbor interactions. The
fractional topological insulator usually consists of two decoupled frac-
tional Chern insulators with opposite spins. However, in the TMI, spin-
up and -down electrons are correlated to form the inseparable singly
occupied states giving rise to the high-temperature QSH feature and a
QAHground state. Second, we showed that in theflat-band limit, a high-

Fig. 6 | Compressibility andmagnetization of the bilayer KM-HHmodel.DQMC
results for the bilayer KM-HH model at U = 1.5t, β = 12/t with an interlayer hopping
t⊥ =0.3t and voltage difference between the two layers of V =0.4t. a, b show the

compressibility andmagnetization, respectively, as a function ofmagnetic flux and
electron density.
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temperature QAH state exists also at 1/4-filling with an intermediate U.
In the double-layer extension of this model, the QAH state exhibits
valley coherence as is seen experimentally in moiré TMD materials32.

Methods
The model
All QSH models are based on Hamiltonians of the form,

HQSH =
X
k

ΦyðkÞ
hQAHðkÞ 0

0 h*
QAHð�kÞ

 !
ΦðkÞ, ð8Þ

where Φy = fcyO1 ,"c
y
O2,",c

y
O1 ,#c

y
O2,#g is a four-component spinor, where

O1/2 stands for different orbitals or sub-lattices, respectively. Eq. (8)
means that the spin-up and spin-down electrons are described by a
QAHHamiltonian hQAH(k) = ha(k)τa (τa is the Pauli matrix for orbital/
sublattice space) and its TR conjugate counterpart h*

QAHð�kÞ with
opposite chirality. As a result, the system is TR invariant and the
half-filled case can be a topologically trivial and non-trivial
insulator, categorized by a Z2 invariant or the spin Chern number
Cs if Ŝz is conserved. As a consequence, any ferromagnetism here
will be of the Ising type rather than U(4) as in the BM model49,53. To
introduce Hubbard on-site interactions, we need to resort to a real-
space representation of the QSHmodel. For concreteness, consider
the generalized KM model18 in the honeycomb lattice under an
external magnetic field, namely the KM-Hubbard-Hofstadter (KM-
HH) model:

H =
X
ijσ

ti,j expðiϕi,jÞcyiσc
y
jσ � μ

X
i,σ

niσ

+ λν
X
i2A,σ

niσ �
X
i2B,σ

niσ

 !
+U

X
i

ni" � 1
2

� �
ni# �

1
2

� �
,

ð9Þ

where ti,j contains the nearest-neighbor hopping t = 1 (as the energy
scale) and next-nearest-neighbor hopping t0e± iψσ as the spin-orbit
coupling with ± iψ following the convention in the Haldane model17. If
we set ψ =0.5 (in the unit of π), the hopping term reduces to the
original KM model1,2. λν is the sub-lattice potential difference. For
simplicity, we fix λν =0 for this study. Non-trivial topology arises as
long as t0 ≠0, ψ ≠0, 1. The phase factor expðiϕi,jÞ which arises from the
standard Peierls substitution contains the effect of the external
magnetic field, which is introduced tomeasure themagnetic response
of the incompressible states at high temperature to determine the
topology. Here ϕi,j = ð2π=Φ0Þ

R rj
ri
A � dl, whereΦ0 = e/h is the magnetic

flux quantum, the vector potential A= ðxŷ� yx̂ÞB=2 (symmetric
gauge), and the integration is along a straight-line path.

The other model we study is the BHZ-Hofstadter-Hubbard (BHZ-
HH) model:

H = t
X
i,σ

expðiϕi,i+ x̂Þcyi,σ
τz � iστx

2
cyi+ x̂,σ

�

+ expðiϕi,i+ ŷÞcyi,σ
τz � iτy

2
ci+ ŷ,σ +h:c:

	
� μ

X
i,σ

ni,σ

+M
X
i,σ

cyi,στzci,σ +U
X
iα

niα" � 1
2

� �
niα# � 1

2

� �
,

ð10Þ

where t = 1 (energy scale), τa is the Paulimatrix in the orbital basis andα
is the orbital index. Non-trivial topology arises as long as ∣M∣ < 2.

At zero field, a general QSH Hamiltonian can be diagonalized into

HQSH =
X
k,σ

ðε+,k,σ � μÞn+,k,σ + ðε�,k,σ � μÞn�,k,σ

� �
, ð11Þ

where μ is the chemical potential and

ε±,k,σ =h0,σðkÞ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
x,σðkÞ+h2

y,σðkÞ+h2
z,σðkÞ

q
ð12Þ

represents the upper ( + ) and lower ( − ) bands for each spin. In the
BHZ3 model,

h0,σðkÞ=0, hx,σðkÞ= σt sinðkxÞ,
hy,σðkÞ= t sinðkyÞ, hz,σðkÞ=M + t cosðkxÞ+ t cosðkyÞ,

ð13Þ

The spin-up and -down electrons have the same dispersion but
different wave functions with opposite chirality. For 2 >M > 0 (or − 2
<M <0), the half-filled system is a QSH insulator3 with C0s = 2 (or − 2)
related to the spin Hall conductance3,9.

Numerical simulations
We use the DQMC method86–88 to simulate the KM-HH and BHZ-HH
models on anNsite = 6 × 6 × 2 cluster (two sublattices or orbitals per unit
cell) with modified periodic boundary conditions89. A single-valued
wave function requires the flux quantization condition Φ/Φ0 = nf/Nc

(with nf an integer). We also use DCA to calculate the charge gap at low
temperatures on a Nsite = 2 × 2 × 2 cluster of the KM-MM model. The
DCA represents the infinite lattice in the thermodynamic limit by afinite
cluster embedded in a self-consistent dynamical mean field. It has a
muchmilder finite-size effect and Fermion sign problem. The technical
details of these two methods are provided in the Supplement.

Data availability
The DQMC and DCA data generated in this study have been deposited
in the Zenodo under the accession code https://doi.org/10.5281/
zenodo.8275156.

Code availability
The DQMC code used for this project can be obtained at https://doi.
org/10.5281/zenodo.8275145. The DCA code for this study can be
obtained at https://doi.org/10.5281/zenodo.8275154.
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