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Reviving product states in the disordered
Heisenberg chain

Henrik Wilming 1 , Tobias J. Osborne 1, Kevin S. C. Decker 2 &
Christoph Karrasch2

When a generic quantum system is prepared in a simple initial condition, it
typically equilibrates toward a state that can be described by a thermal
ensemble. A known exception is localized systems that are non-ergodic and do
not thermalize; however, local observables are still believed to become sta-
tionary. Here we demonstrate that this general picture is incomplete by con-
structing product states that feature periodic high-fidelity revivals of the full
wavefunction and local observables that oscillate indefinitely. The system
neither equilibrates nor thermalizes. This is analogous to the phenomenon of
weak ergodicity breaking due to many-body scars and challenges aspects of
the current phenomenology of many-body localization, such as the logarith-
mic growth of the entanglement entropy. To support our claim, we combine
analytic arguments with large-scale tensor network numerics for the dis-
ordered Heisenberg chain. Our results hold for arbitrarily long times in chains
of 160 sites up to machine precision.

When a large, closed, interacting quantum many-body system is
initialized in a simple initial condition, it typically approaches a
state that is stationary when only observed with coarse-grained
(e.g., local) observables—the system equilibrates1,2. In addition,
the stationary state of the coarse-grained observables is often
well-described by statistical (e.g., canonical) ensembles—the sys-
tem thermalizes2–5. While thermalization is a generic phenomenon
and aids the theoretical description, it is not inevitable. One of
the most intensely debated exceptions is that of many-body
localization (MBL), which is realized in interacting quantum
models with a sufficiently strong disorder potential6–9. Systems
exhibiting MBL provide generic examples of non-ergodic systems
that fail to thermalize due to a memory of the local initial con-
ditions, yet they are still equilibrating10,11. Other key features of
MBL phases include an unbounded growth of the entanglement
during quantum quenches12–14 and peculiar transport
properties15–17. There are now a variety of experimental realiza-
tions exhibiting signatures of MBL, including cold atoms18,19 and
photonic systems20.

The existence ofMBL as a stablephase ofmatter has recently been
questioned, and it has been suggested that thermalization actually

eventually occurs21–25. However, it is fair to say that a conclusive picture
has not yet emerged26–31. A key obstacle is that many studies are based
on an exact diagonalization of small systems and might thus not be
representative of the behavior in the thermodynamic limit32,33.
Approaching the problem from the perspective of quantum ava-
lanches has been a major recent direction34–42.

Another exception to the rule of equilibration and thermali-
zation was recently discovered: In so-called many-body scarred
systems, there exists a relatively small set of initial product states
that may show indefinite revivals of the full many-body wave-
function. When the system is initialized in such an initial state, all
physical observables (including local ones) show periodic oscil-
lations, and the system neither thermalizes nor equilibrates43–50.
The revivals of the wavefunction are connected to the existence
of a small set of high-energy eigenstates that exhibit atypically
low entanglement, dubbed “quantum (many-body) scars”. Con-
versely, if all energy eigenstates are sufficiently entangled, then
initial product states generically equilibrate51–53.

In fact, MBL systems also exhibit quantum many-body scar-
ring, and they do so in a most dramatic way: Not just a few, but all
high-energy eigenstates have atypically low entanglement since
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the entanglement entropy features an area law54–59 instead of a
volume law. (This is the generic situation in interacting
systems60–68).

To summarize, many-body scarred systems host a few slightly
entangled eigenstates, and these can be sufficient for a complete
breakdown of equilibration in certain initial product states.
Conversely, all energy eigenstates in MBL systems are low-
entangled. This leads to a natural question: Can MBL systems
also host initial product states that show high-fidelity revivals of
the wavefunction with corresponding local observables that
oscillate indefinitely?

If the answer to this question is “yes”, then—contrary to current
belief—MBL systems do not generally equilibrate from product states
andhencealsodonot thermalize.Moreover, a further hallmark feature
of MBL, namely the slow (logarithmic) but unbounded growth of the
entanglement entropy, would be violated for these particular initial
conditions.

It is, however, unclear how to approach this problem and
how to find such initial conditions for a given MBL Hamiltonian.
In particular, there are two key difficulties to be overcome: (1) The
product state might have to be fine-tuned to the details of the
Hamiltonian, such as the disorder configuration. However, the set
of product states is a continuum, so we cannot simply search
through all of them. Furthermore, we cannot exploit algebraic
structures (such as symmetries) to guide us; (2) Even given a
candidate’s initial state, how could we make sure that it does not
equilibrate? In principle, the revival could happen at arbitrary
long times, which cannot be accessed analytically or numerically
(even for MBL systems).

In this work, we overcome these difficulties and demonstrate that
one can find initial product states featuring high-fidelity revivals and
local observables that oscillate indefinitely. We combine analytical
arguments with state-of-the-art tensor network calculations. Impor-
tantly, our approach works for arbitrarily long times, and we can treat
systems of up to 160 sites with machine precision.

Results
We focus on the paradigmatic disordered spin-1/2 Heisenberg model
on L lattice sites,

Ĥ = �
XL�1

j = 1

Sj � Sj + 1 +
XL
j = 1

hjŜ
ðzÞ
j , ð1Þ

where Sj = ðŜ
ðxÞ
j ,Ŝ

ðyÞ
j ,Ŝ

ðzÞ
j Þ

>
is the vector of spin-1/2 angular momentum

operators at site j. The local magnetic fields hj∈ [−W,W] are sampled
independently from a uniform distribution;W is the disorder strength.
Exact diagonalization of small systems predicts a crossover from an
ergodic to anMBLphase aroundW ~ 3.533. In themain part of this work,
we set W = 8.

First, we show that if we can find two eigenstates whose super-
position is well approximated by a product state, then one can con-
struct a local observable that oscillates indefinitely with an amplitude
that is lower-bounded by a certified amplitude Acert. (“Results: Locally
oscillating product states”).

Second, we use large-scale tensor network numerics to construct
such eigenstates for the disordered Heisenberg chain (“Results:
Numerical construction”). We present data for systems of up to
L = 160 sites and, up to machine precision, provide a rigorous certifi-
cate for the indefinite oscillations of a local observable (“Results: Main
results”).

Lastly, we present theoretical arguments suggesting that large
systems may, in fact, host a finite density of locally oscillating excita-
tions (“Results: Multiple localized dynamical oscillations”).

Our results are illustrated in Fig. 1. To keep the discussion concise,
we delegate most technical details to the “Methods” section and
the Supplementary Information.

Locally oscillating product states
Let us consider two eigenstates E1

�� �
and E2

�� �
. Their time-evolved equal

superposition

ΨðtÞ±
�� �

=
1ffiffiffi
2

p e�iE1t E1

�� �
± e�iE2t E2

�� �� � ð2Þ

shows perfect revivals at even multiples of the period τ =π/(E1 − E2).
Now suppose there is a product state

Φð0Þ ±
�� �

= ϕð1Þ
±

���
E
� � � � � ϕðLÞ

±

���
E

ð3Þ

that approximates Ψ± ð0Þ
�� �

in the sense that its overlap fulfills
F2

± = j Ψð0Þ ± jΦð0Þ±
� �j2 ≥ 1� ϵ with ϵ small. This implicitly defines the

local quantum states jϕðkÞ
± i. The simple but key observation of our

approach is that the time-evolved state ΦðtÞ±
�� �

= expð�iĤtÞ Φð0Þ±
�� �

will necessarily also show high-fidelity revivals:

Φð0Þ± jΦð2kτÞ±
� ��� ��2 ≥ 1� 4ϵ ð4Þ

for any integer k. Moreover, let j = argmink jhϕðkÞ
+ jϕðkÞ

� ij. Then the
observable

Â=1�
���ϕð jÞ

+

ED
ϕð jÞ

+

����
���ϕð jÞ

�
ED

ϕð jÞ
�
���

� 	
� 1 ð5Þ

is supported on a single site, and its time-dependent expectation value
in the state Φ+ ðtÞ

�� �
oscillates with period τ:

Φ+ Âð2kτÞ
���

���Φ+

D E
� Φ+ Âðð2k + 1ÞτÞ

���
���Φ+

D E���
���≥Acert: ð6Þ

Fig. 1 | Indefinitely oscillating spins. Top: The disordered Heisenberg chain
(L = 20) is initialized in a deformed domain wall product state that has an overlap
>0.994 with a superposition of two energy eigenstates. Middle: Under the unitary
time evolution, the local spins remain almost uncorrelated and start to oscillate in
the region around the domain wall interface. The solid line shows the expectation
value of the Pauli-X observable h2Ŝxj i at the center spin in the superposed energy
eigenstates. The dynamics of the actual product state is within the associated
shaded regions due to its large overlap with the superposition of eigenstates. The
bluedotted line indicates the certifiedamplitude, whichprovides a lowerbound for
the magnitude of the oscillations in the infinite-time limit. Bottom: Overlay of dif-
ferent snapshots in time of the expectation values of the local spin operators
around the domainwall interface, visualized as arrowswithin their respective Bloch
spheres.
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for any integer k. ^AðtÞ refers to the Heisenberg picture. The certified
amplitude Acert. is given by

Acert: = maxf1� f 2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f 2Þϵ

q
,0g, ð7Þ

where f 2 = minj jhϕðjÞ
+ jϕðjÞ

� ij2 measures the minimal local overlap
between jΦð0Þ+ i and jΦð0Þ�i (assuming that each jϕðjÞ

± i is normalized).
A detailed proof can be found in “Methods: Certified amplitudes”.

Numerical construction
As a next step, we demonstrate how to find pairs of energy eigenstates
whose equal superpositions are well approximated by product states.
It is reasonable to hypothesize that such states must have a low
entanglementwith respect to any bipartition. Thereforeweperformed
a structured search on small systems using exact diagonalization and
targeting energy eigenstates whose sublattice entanglement entropy
(ABABAB. . . -bipartition) is small; see SupplementaryMaterial for more
details. Targeting small sublattice entanglement is a heuristic choice
motivated by the following considerations: (1) Product states have
vanishing sublattice entanglement entropy and therefore any state
sufficiently close to a product state should have small sublattice
entanglement and (2) even generic translationally invariant matrix-
product states (MPS)69,70, which are commonly considered to be low-
entangled, have extensive sublattice entanglement entropies71.
Therefore small sublattice entanglement heuristically indicates an
amount of entanglement that is small even compared to MPS. Our
preliminary analysis showed that pairs of energy eigenstates whose
equal superpositions are well approximated by product states exist
and that one class of them comes in the form of deformed domain
walls (see Fig. 1). This knowledge then allows us to devise an efficient
tensor-network based algorithm to study large systems, which we now
briefly explain (further details may be found in “Methods: Details of
our numerical method”).

At sufficiently strong disorder, the eigenstates of Ĥ feature an
area-law entanglement and may be represented faithfully as MPS57,
whose explicit representation can be determined using the DMRG-X
algorithm72. The algorithm starts with a “seed” state m1

�� �� � � � � mL

�� �
,

where jmji 2 fj "i,j #ig denote the eigenstates of Ŝ
ðzÞ
j . These seeds are

the eigenstates of Ĥ in the limit of W→∞. DMRG-X then iteratively
determines an (approximate) eigenstate at finite W that is, in a sense,
closest to the initial seed. Themain numerical control parameter is the
so-called bond dimension χ, which we choose so that high-energy
eigenstates are obtained up to machine precision.

In our case, we find the energy eigenstates E : k
�� �

associated with
seeds in domain-wall form

dw : k
�� �

= #
�� �� � � � � #

�� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ktimes

� "
�� �� � � � � "

�� �
:

ð8Þ

We then form the superposition of the energy eigenstates resulting
from neighboring domain walls,

ΨðkÞ
±

���
E
=

1ffiffiffi
2

p E : k
�� �

± E : k + 1
�� �� �

, ð9Þ

and finally construct their product-state approximation jΦðkÞ
± i. This

allows us to calculate the certified amplitude Acert. of Eq. (7). All of
these operations can be implemented efficiently and accurately in the
MPS representation (see “Methods: Details of our numerical method”
for further details). We stress that at this point, it is not clear why the
states jΨðkÞ

± i should be close to product states apart from the fact that
we found revolving product states with a similar structure in our small-
scale exact-diagonalization numerics (see Supplementary Material).
Our main results in the next section show that for domain-wall seeds,
closeness to a product state is indeed a generic case for sufficiently
strong disorder. This, in turn, immediately implies the non-
equilibrating behavior for the associated product states.

Main results
In Fig. 2, our aggregated numerical data for the certified amplitude at
varying system sizes up to L = 160 and at a disorder strengthW = 8with
100 disorder realizations per system size is depicted (the corre-
sponding fidelities are discussed in Supplementary Note 1). We find
median certified amplitudes of the order of 0.7, essentially indepen-
dent of the system size, with decreasing fluctuations as L increases.
Moreover, the maximum certified amplitudes for domain-wall states
with interface in themiddle half of the system (sites k = L/4 to k = 3L/4)
slowly increasewith system size, with all sampled realizations reaching
Acert. > 0.91 forL = 160. The restriction to stateswith the interface in the
middle half of the system excludes states that can be interpreted as
being close to single-particle excitations (see below and Supplemen-
tary Note 2). We emphasize that the certified amplitude provides a
lower bound to the magnitude of the oscillations of Â and that there
may exist local operators which oscillate with even higher amplitude.

In a nutshell, Fig. 2 conclusively demonstrates the (generic)
existence of initial product states that host high-fidelity revivals

Fig. 2 | Certified amplitudes. Left: Median (light blue) and maximum (light green)
of the certified amplitudes that provide a lower bound for the infinite-time oscil-
lations of a local spin observable in a product state corresponding to a deformed
domain (the median and maximum are taken w.r.t. the different positions of the
domain wall; the maximum is restricted to domain walls with an interface in the
middle half of the system, i.e., sites L/4 to 3L/4).Wepresent aggregateddata for 100
disorder realizations per system size with disorder strength W = 8 (each point

corresponds to one disorder realization). Dark points with error bars show the
mean and standard deviation of the associated values. We also plot the median
rescaled energy variances σ2/E2 of the eigenstates determined using the DMRG-X
algorithm (light red dots) together with their mean and associated variance (dark
red). Right: Certified amplitudes (blue) as well as the rescaled energy variances of
the two associated eigenstates (red) for all deformed domain walls and a single
disorder realization.
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and the existence of local, indefinitely oscillating observables in a
system of up to 160 sites. The overall shape of these product
states is in the form of two domain walls separated by a spin
pointing roughly in ±x-direction at their interface. Moving away
from the interface, the spins still point away from their original
±z-directions but with decreasing components in the x–y plane.
This is visualized in Fig. 1. As a side remark, we mention that the
Hamiltonian Ĥ may also be interpreted as a Hamiltonian of
interacting fermions by a Jordan-Wigner transformation. How-
ever, in this picture, the parity super-selection rule forbids our
reviving product states since they correspond to superpositions
of states with different fermion-number parity.

The fact that we find oscillating deformed domain walls is parti-
cularly interesting sinceprevious results indicate that thebaredomain-
wall states dw : k

�� �
approach a steady state with a smeared-out inter-

face, a process known as domain-wall melting73. An interface spin
pointing away from the z-axis therefore protects against this
mechanism.

Since the DMRG-X algorithm outputs the energy eigenstates
E : k
�� �

as MPS, we can compute the expectation values hΨðkÞ
± j ^BðtÞjΨðkÞ

± i
of any local operator B̂ exactly for arbitrary times t (see “Methods:
Details of our numerical method”). This, in turn, allows us to quanti-
tatively estimate the finite-time expectation value hΦðkÞ

± j ^BðtÞjΦðkÞ
± i for

any local B̂, which is useful since the certified amplitude only provides
a lower bound for the oscillations of the specific local observable Â (yet
at infinite times). In Fig. 1, we visualize this for Ŝ

ðxÞ
, which is not strictly

identical with the observable Â.
Besides the deformed domain-wall states, there exists a second

set of reviving product states that exhibit local oscillations. However,
these can be interpreted as a single-particle phenomenon arising from
Anderson localization and exist irrespective of the strength of the term
Ŝ
ðzÞ
j Ŝ

ðzÞ
j + 1, see Supplementary Note 2.
In Supplementary Note 3, we further provide numerical data for

the certified amplitude and various disorder strength in the range
W =0.5 toW = 8. One can identify a crossover from an ergodic system
to a localized system.

Multiple localized dynamical oscillations
Our numerical data clearlydemonstrates thatproduct stateswith high-
fidelity revivals and locally oscillating observables exist for the dis-
ordered Heisenberg model at sufficiently strong disorder. However,
our approach only yields states with single dynamical excitations. We
now explain our construction qualitatively from a different point of
view and argue for the existence of product states with a finite density
of such dynamical excitations.

Since the product states m1

�� �� � � � � mL

�� �
and the energy eigen-

states jEji both provide an orthonormal basis of the Hilbert space,
there exists a unitary mapping Û between the two. The mapping is

believed to be quasi-local9,55,59,74, which implies that it maps local
operators to operators whose support is still localized in space with
potentially (sub-)exponential tails. As a simplified model for this
situation, we may think of Û as a local quantum circuit of finite depth
and composed of gates that only couple nearest neighbors. At the
same time, theHamiltonian Ĥ, and therefore also the unitary Û, has the
states #

�� �� � � � � #
�� �

and "
�� �� � � � � "

�� �
as eigenstates. In the bulk of a

large region of spins, all pointing upward or downward, Û must
therefore act like the identity. Quasi-locality immediately implies that
E : k
�� �

= Û dw : k
�� �

only contains a localized, static excitation around
the domain-wall interface, see Fig. 3. The superposition jΨðkÞ

± i, which
shows perfect revivals, must hence support an operator localized
around k whose expectation value oscillates in time, i.e., a dynamical,
localized excitation.

This discussion suggests that in a large system, we may construct
multiple domain walls separated by dynamical, localized excitations as
long as the size of each domainwall is sufficiently large. A finite density
of local dynamical excitations should hence, in principle, be possible.
However, each such excitation doubles the number of energy eigen-
states that need to be superposed, and the cost of simulating such
situations scales exponentially with the number of excitations. In
Supplementary Fig. 3, we provide proof-of-principle numerics in a
system of size L = 80 with up to three excitations, supporting the
general argument described above; see Supplementary Note 4 for
more details.

Discussion
Anderson’s discovery that a random potential can have strong effects
on the transport properties of a free quantum particle was amilestone
in condensed matter physics. In the last decade, the fate of Anderson
localization in the presence of two-body interactions has received
significant attention, and it is believed that generic non-ergodic—so-
called many-body localized—systems exist. A key feature of these
systems is that simple initial states do not thermalize while local
observables still equilibrate. (Some comments on the recent con-
troversy about the existence of the MBL phase can be found in the
introduction).

In this work, we provided analytical and numerical arguments that
this picture is not correct and that one can construct simple product
states that show a complete absence of both thermalization and
equilibration. The full many-body wavefunction exhibits high-fidelity
revivals, and local spin operators oscillate with large amplitudes. We
demonstrated this for the prototypical disordered Heisenberg chain
via large-scale tensor network numerics for systems of up to L = 160
sites. Our results hold for arbitrary long times up tomachine precision.

We also argued that multiple such localized dynamical exci-
tations exist in large systems, giving rise to a picture reminiscent
of “Hilbert-space fragmentation” in systems with quantum many-

+ =

a)

Single dynamical excitation 

Dynamic Exc.

Stat. Exc.

b)

c)

Multiple dynamical excitations

Dynamic Exc. Dynamic Exc. Dynamic Exc.

d)

Fig. 3 | Qualitative picture for dynamical excitations. a Twoneighboring domain
walls superpose to a domain wall separated by a spin pointing in ±x-direction. b At
sufficiently strong disorder, the unitary transformation Û that maps eigenstates of
Ŝ
ðzÞ
j to energy eigenstates is (quasi-)local and leaves the stateswith all spins pointing

up or down invariant. Acting on a domain wall, it therefore yields an energy

eigenstate with localized static excitation. c Acting on the two superposed,
neighboring domain walls, the unitary Û yields a localized dynamical excitation
with perfect revivals. d If several sufficiently large domain walls are separated by
spins pointing in ±x-directions, acting with Û yields a finite density of localized,
dynamical excitations.
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body scars arising from kinematic constraints (see ref. 75 and
references therein). Similar results have been found for systems
showing so-called “Stark many-body localization”, which are
translationally invariant systems reproducing much of the MBL
phenomenology76–79. In this case, local oscillating observables can
be proven to exist80 using the concept of dynamical symmetries81.
In contrast to these disorder-free systems, in our case, all of these
features depend on the precise disorder realization. Therefore we
do not expect a clean, emergent algebraic structure associated
with the subspace spanned by states with multiple excitations,
but we also cannot rule out such a structure. We therefore leave a
detailed investigation for future work.

Basic MBL phenomenology has been successfully demon-
strated experimentally using ultra-cold Fermions in optical
lattices18 and trapped ions19. Due to the efficient nature of our
algorithm, it is, in principle, possible to calculate the non-
equilibrating product states on the fly given a (quasi-)random
disorder realization, even for relatively large system sizes. Since
the preparation of deformed domain walls only requires precise
single-site addressing for a few of the spins (with the remaining
spins being in large blocks of all up and all down), it should
therefore be possible to observe the resulting revivals in present-
day or near-future experiments.

Our results were made possible by developing a method to sys-
tematically find fine-tuned initial product states. So far, no general and
efficient method exists to find product states that resist equilibration
and thermalization in general interacting many-body systems. Devis-
ing such an approach to studymodels that are currently believed to be
thermalizing is a fruitful future direction.

Methods
Certified amplitudes
Wederive Eq. (4) and showhow to determine the local spin observable
Â that oscillates with the certified amplitude given in Eq. (7). We make
use of the general relation

j ΨjΦh ij2 = 1� D½Ψ̂,Φ̂�2 ð10Þ

between thefidelity and the trace distanceD for twopure states,where
we use the notation Ψ̂= Ψj i Ψh j. The trace distance fulfills the triangle
inequality:

j Φ + ð0ÞjΦ + ðt2kÞ
� �j2
≥ 1� ðD½Φ̂+ ð0Þ,Ψ̂ + ð0Þ�+D½Φ̂+ ðt2kÞ,Ψ̂ + ð0Þ�Þ

2
,

ð11Þ

where tn = nτ. Employing Ψ̂+ ðt2kÞ= Ψ̂+ ð0Þ as well as the fact that the
trace distance is invariant under unitary transformations and hence
under time-translation, we get
D½Φ̂ + ð0Þ,Ψ̂+ ð0Þ�=D½Φ̂+ ðt2kÞ,Ψ̂+ ð0Þ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F2

+

q
. This yields

j Φ + ð0ÞjΦ + ðt2kÞ
� �j2 ≥ 1� 4ð1� F2

+ Þ≥ 1� 4ϵ, ð12Þ

where we used the assumption F2
+ ≥ 1� ϵ.

We now turn to the operator Â and its certified amplitude. Let
j = argmink jhϕðkÞ

+ jϕðkÞ
� ij be the site where the local overlap between

Φ�
�� �

and Φ +

�� �
is minimized so that f = jhϕðjÞ

+ jϕðjÞ
� ij. We then define Â as

Â=1� � � � �
���ϕðjÞ

+

ED
ϕðjÞ

+

����
���ϕðjÞ

�
ED

ϕðjÞ
�
���

� 	
� � � � � 1 ð13Þ

Theoperator-normof Â is givenby k Â k =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

q
. For anyobservable

X̂ and any two density matrices ρ̂ and σ̂ it holds that

jTr½X̂ ρ̂� � Tr½X̂ σ̂�j≤ k X̂ k D½ρ̂,σ̂�: ð14Þ

Using Ψ̂�ð0Þ= Ψ̂+ ðt2k + 1Þ, we therefore find

jTr½ÂΦ̂+ ðt2k + 1Þ� � Tr½ÂΨ̂�ð0Þ�j
≤ k Â k D½Φ̂+ ðt2k + 1Þ,Ψ̂+ ðt2k + 1Þ�

ð15Þ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f 2Þð1� F2

+ Þ
q

ð16Þ

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f 2Þϵ

q
, ð17Þ

where we used F2
± ≥ 1� ϵ. Similarly,

jTr½ÂΦ̂�ð0Þ� � Tr½ÂΨ̂�ð0Þ�j≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f 2Þϵ

q
: ð18Þ

The triangle inequality then yields

jTr½ÂΦ̂+ ðt2k + 1Þ� � Tr½ÂΦ̂�ð0Þ�j≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f 2Þϵ

q
, ð19Þ

and a similar calculation shows

jTr½ÂΦ̂+ ðt2kÞ� � Tr½ÂΦ̂+ ð0Þ�j≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f 2Þϵ

q
: ð20Þ

Since f = jhϕðjÞ
+ jϕðjÞ

� ij, we further have

Tr½ÂΦ̂ + ð0Þ�= 1� f 2, Tr½ÂΦ̂�ð0Þ�= f 2 � 1: ð21Þ

In total, we find

Tr½ÂΦ̂+ ðt2kÞ� � Tr ÂΦ̂+ ðt2m+ 1Þ
h i

=Tr ÂΦ̂ + ð0Þ
h i

+Tr ÂðΦ̂+ ðt2kÞ � Φ̂+ ð0ÞÞ
h i

� Tr ÂΦ̂�ð0Þ
h i

+Tr ÂðΦ̂�ð0Þ � Φ̂+ ðt2m+ 1ÞÞ
h

≥ ð1� f 2Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f 2Þϵ

q
� ð f 2 � 1Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f 2Þϵ

q

= 2ð1� f 2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f 2Þϵ

q
Þ

ð22Þ

for any k,m 2 N.

Details of our numerical method
We use a custom implementation of the DMRG-X algorithm, which
takes into account theU(1)-symmetryof Ĥ (theHamiltoniancommutes
with the total magnetization in z-direction). The ensuing time evolu-
tion of a state which is not an eigenstate of the total magnetization is
computed exactly; see below.

The DMRG-X algorithm provides one way to find MPS repre-
sentations of excited eigenstates in disordered systems. It starts with
an initial MPS called the “seed” (which in our case is a product state on
the basis of Ŝ

ðzÞ
j ) and iteratively updates each tensor of the MPS by

sweeping through the chain. This is analogous to a ground state cal-
culation, but insteadofminimizing the energy in each update step, one
picks the eigenstate of the local Hamiltonian that maximizes the
overlap with the previousMPS. The bond dimension is increased every
20 sweeps (see Fig. 4); we use values χ = 2, 4, 8, 16, 24, 32 for our main
data. The algorithm terminates once the rescaled energy variance σ2/E2

has fallen to at least 10−12 (E and σ are the bare energy and standard
deviation of energy, respectively). As indicated in Fig. 2, we often even
find rescaled energy variances below 10−14. In Table 1, we show how
often it is not possible to reach convergence with a maximum bond
dimension of χ = 32 in all the calculations resulting in our main result
Fig. 2. One should note that for a system of size L = 10, any state can be
encoded with a bond dimension χ = 32; however the absolute energy
variance σ2 can reach machine precision, while the rescaled σ2/E2 can
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still be larger than 10−12 if E is smaller thanunity. Table 1 contains 6 such
states (L = 10, χ = 32).

Due to numerical rounding errors, the energy variance σ2 may be
negative when the calculation has converged to machine precision,
even though variances are always positive semi-definite. In such cases,
one observes final fluctuations with the same magnitude but differing
signs, clearly signaling that the result shouldbe interpreted as zero; see
Fig. 4 for examples.

As shown in Supplementary Note 5, a pure state with energy
variance σ2 behaves as an eigenstate for time scales at least of the order
of 1/σ. Hence, the small threshold for the rescaled energy variance of
10−12 that we use guarantees on its own that all our conclusions remain
valid for a time, at least of the order of 106 (in the chosen units). In
Fig. 5, we nevertheless also provide a comparison of the DMRG-X
deformed domain-wall states with the closest eigenstates obtained
from exact diagonalization for system sizes up to L = 14, showing
excellent agreement in terms of fidelity.

Finding the product-state approximation. We now explain how to
find a product-state approximation to a superposition Ψ± ð0Þ

�� �
.

Denote by ρ̂ðjÞ
± the reduced density matrix at site j in the state Ψ± ð0Þ

�� �
.

As with any spin-1/2 density matrix, it may be written as

ρ̂ðjÞ
± =

1
2
1+ rðjÞ± � Sj, ð23Þ

where rðjÞ± is the vector that collects the expectation values of the local
Pauli operators,

rðjÞ± = 2

Ψ± ð0Þ
� ��ŜðxÞj Ψ± ð0Þ

�� �

Ψ± ð0Þ
� ��ŜðyÞj Ψ± ð0Þ

�� �

Ψ± ð0Þ
� ��ŜðzÞj Ψ± ð0Þ

�� �

0
BBB@

1
CCCA: ð24Þ

The reduced densitymatrix is pure if and only if rð jÞ± = jjrð jÞ± jj= 1, and the
product state that best approximates each local Pauli expectation
value can be obtained by simply normalizing rð jÞ± to r̂ð jÞ± = rð jÞ± =rð jÞ± .
Hence, our product-state approximation is given by
Φ̂ð0Þ± =�jjϕð jÞ

± ihϕð jÞ
± j with

ϕðjÞ
±

���
E

ϕðjÞ
±

D ���= 1
2
1+ r̂ðjÞ± � Sj : ð25Þ

In order to construct to corresponding MPS, we solve the eigenvalue
problem of 1

21+ r̂ðjÞ± � Sj and construct a product state via the local
eigenstates associated with the largest eigenvalue.

Long-timesimulation usingMPS representations of eigenstates. Let
us consider anMPS defined via local tensors A½j�σj at site j (with σj =↑,↓
in our case). The expectation value of an observable Ô supported at

Table 1 | Convergence of the DMRG-X algorithm

L Total number of
states

χ = 8 χ = 16 χ = 24 χ = 32

10 900 51 11 6 6

20 1900 391 43 22 16

40 3900 767 86 42 31

80 7900 1421 131 68 53

160 15,900 1999 198 97 71

For each system size, the table lists the number of initial states (seeds) that have not reached a
rescaled energy variance below 10−12 at a bond dimension χ.

Fig. 4 | Convergence of the DMRG-X algorithm. Rescaled energy variance σ2/E2

along theDMRG-X sweeps forfiveDMRG-X runs (different initial seeds anddisorder
realizations) randomly chosen from the full dataset used for Fig. 2. The different

panels correspond to system-sizes L = 20, 40, 80, 160 as indicated. The lines show
the absolute value ∣σ2/E2∣; missing dots correspond to negative signs (see the main
text for details). After each 20 sweeps, the bond dimension χ is increased.
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lattice site m is then given by

ψ
� ��Ô ψ

�� �
=
Tr½ðQm�1

j = 1 T ½j�
1 ÞT ½m�

O ðQL
l =m+ 1 T

½l�
1 Þ�

Tr½QL
j = 1 T

½ j�
1 �

, ð26Þ

where the local transfer operator T ½j�
O is defined for any observable Ô

supported at site j as

T ½j�
O =

X
σ j1

,σj2

A½j�σ j1Oσ j1
σ j2

ðA½j�σj2 Þ*: ð27Þ

We now discuss how to compute a local time-dependent expec-
tation value of a state

ΨðtÞ
�� �

=
Xr
i= 1

αie
�iEit Ei

�� �
ð28Þ

in the case where the energy eigenstates Ei

�� �
are given as MPS with

matrices A
½j�σj

i and a bond dimension χ. The state ΨðtÞ
�� �

can be
expressed as an MPS with bond dimension rχ by setting

B½j�σj =�iA
½j�σj

i j ≠m ð29Þ

B½m�σm ðtÞ=�iαie
�iEitA½m�σm

i : ð30Þ

From now on, let T ½j�
O denote the local transfer operators associated

with the tensors B½j�σj . Then the time-dependent expectation value
takes the form

ΨðtÞ� ��Ô ΨðtÞ
�� �

=
Tr½T leftT

½m�
O ðtÞT right�

Tr½T leftT
½m�
1 ðtÞT right�

, ð31Þ

where T left =
Qm�1

j = 1 T ½j� and T right =
QL

l =m+ 1 T
½l�. Importantly, these left

and right transfer operators are independent of t and canbe computed
once and for all so that all time dependence is contained in the local
transfer operator T[m](t). Therefore, it is possible to compute local,
time-dependent expectation values at arbitrary times, even for large
systems. We used this technique to calculate the expectation values
in Fig. 1.

Preliminary exact-diagonalization numerics
We performed preliminary small-scale exact-diagonalization numerics
targeting small sublattice entanglement, which allowed us to identify
domain walls as promising seeds to construct non-equilibrating pro-
duct states. This procedure consisted of the following steps for sys-
tems of sizes L = 8, 10, 12:
1. Sample a disorder realization.
2. Compute all energy eigenstates via exact diagonalization.
3. For each energy eigenstate jEji, compute the second Rényi

entropy S2(Ej) of the reduced densitymatrix associatedwith every
second lattice site (sublattice entanglement).

4. Sort the energy eigenstates according to their sublattice entan-
glement so that S2(Ej) ≤ S2(Ek) if j ≤ k.

5. For the m eigenstates with the smallest sublattice entanglement
and all pairs (Ej, Ek) with j, k = 1,…,m and j < k, construct product-
state approximations

���Φðj,kÞ
±

E
≈
���Ψðj,kÞ

±

E
:=

1ffiffiffi
2

p
���Ej

E
±
���Ek

E� 	
ð32Þ

and compute the minimum fidelity F ði,jÞ = min± jhΦðj,kÞ
± jΨðj,kÞ

± ij, the
magnetization profile of jΦðj,kÞ

± i (local expectation values of the Pauli

Fig. 5 | Comparison with exact diagonalization. For each system-size
L∈ {8, 10, 12, 14}, we sampled 100 disorder realizations and computed all L non-
trivial deformed domain-wall states per disorder realization using DMRG-X in the
same way as for our main results (the algorithm terminates once σ2/E2 has fallen to
at least 10−12). Given such a state ΨMPS

�� �
, we then obtained the closest eigenstate (in

terms of overlap) via exact diagonalization ΨED

�� �
and computed the deviation of

the overlap from unity δ := 1� j ΨMPSjΨED

� �j. The individual data points δi for the
various states are shown as light dots. The orange line corresponds to the log-
average: let μ and s denote the mean and standard deviation of logðδiÞ. Then the
orange line is given by expðμÞ and the size of the upper error bar by
expðμ+ sÞ � expðμÞ. We plot the log-average because the sample mean is strongly
biased by the comparably few data points with δi ~ 10

−10, whereas the bulk of the
data points lies significantly below 10−12 for every system size.

Fig. 6 | Preliminary numerics. Exemplary data for a single disorder realizationwith
W = 8 and a systemof L = 10 spins fromour preliminary numerics. Left: Fidelities F(i, j)

of the first 40 trial states sorted in non-increasing order and their associated cer-
tified amplitudes. Right: Magnetization profile in terms of the expectation value of

the Pauli-X, Z operators of each lattice site for the third trial state according to the
order on the left. The state has fidelity F(i, j) = 0.998, certified amplitude Acert. = 0.88
and clearly corresponds to a deformed domain wall.
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operators), as well as the associated certified amplitudes. Typically, we
chosem = 20.
6. Plot fidelities and certified amplitudes and manually inspect the

magnetization profile for those states jΦðj,kÞ
± i with large fidelities

and large certified amplitudes. Exemplary data is shown in
Fig. 6.The outcome of these numerics was a consistent finding of
deformed domain walls with large certified amplitudes, which led
to the formulation of the DMRG-X-based algorithm directly
targeting deformed domain walls.

Data availability
All our rawdata, aswell as the code generating the rawdata and the data
plots, have been deposited in the Zenododatabase at https://doi.org/10.
5281/zenodo.7144832 and https://doi.org/10.5281/zenodo.824501882,83.

Code availability
All the code generating the raw data and the data plots from the raw
data have been deposited in the Zenodo database at https://doi.org/10.
5281/zenodo.7144832 and https://doi.org/10.5281/zenodo.824501882,83.
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