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Single nucleus transcriptomics of ventral
midbrain identifies glial activation
associated with chronic opioid use disorder

Julong Wei1, Tova Y. Lambert 2, Aditi Valada2, Nikhil Patel3, Kellie Walker3,
Jayna Lenders3, Carl J. Schmidt4, Marina Iskhakova2, Adnan Alazizi1,
Henriette Mair-Meijers1, Deborah C. Mash5,8, Francesca Luca1,6,7,8,
Roger Pique-Regi 1,6,8, Michael J. Bannon 3,8 & Schahram Akbarian 2,8

Dynamic interactions of neurons and glia in the ventral midbrain mediate
reward and addiction behavior. We studied gene expression in 212,713 ventral
midbrain single nuclei from 95 individuals with history of opioid misuse, and
individuals without drug exposure. Chronic exposure to opioids was not
associatedwith change in proportions of glial and neuronal subtypes, however
glial transcriptomes were broadly altered, involving 9.5 − 6.2% of expressed
genes within microglia, oligodendrocytes, and astrocytes. Genes associated
with activation of the immune response including interferon, NFkB signaling,
and cell motility pathways were upregulated, contrasting with down-regulated
expression of synaptic signaling and plasticity genes in ventral midbrain non-
dopaminergic neurons. Ventral midbrain transcriptomic reprogramming in
the context of chronic opioid exposure included 325 genes that previous
genome-wide studies had linked to risk of substance use traits in the broader
population, thereby pointing to heritable risk architectures in the genomic
organization of the brain’s reward circuitry.

Ventral midbrain (VM), including the ventral tegmental area (VTA) and
substantia nigra (SN)1,2, is important for mediating habitual behaviors
and salience of cues associated with drug use, as well as withdrawal-
related anhedonia and dysphoria3,4. It has become increasingly clear in
recent years that, in addition to the well-established roles of DA and
non-DA (e.g., GABAergic) neurons, the VM’s glial and other non-
neuronal populations may play an important role for drug respon-
siveness and substance use. To mention just three representative
examples, excessive activation of VM microglia is thought to disrupt
chloride homeostasis in GABA neurons, which in turn, negatively

affects opioid and stimulant-induced dopamine release and associated
reward behaviors5. Likewise, VM astrocytes play an essential role in
drug-induced synaptic plasticity in DA neurons6, a reflection of astro-
cytic regulation of neuronal glutamine supply and glutamatergic
neurotransmission7. Finally, oligodendrogenesis in VM is essential for
morphine-mediated reward behavior, and proliferation and differ-
entiation of VM oligodendrocytes (ODCs) is regulated by the firing
activity of their surrounding dopaminergic neurons8.

However, despite these intriguing mechanistic studies in animal
models, the functional and clinical significance of VM glial populations
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in subjects diagnosed with substance use disorder remains unex-
plored. To this end, cell-specific transcriptomic profiling of VM dis-
sected from human post-mortem brain could deliver critical insights.
This task is particularly urgent for opioid use disorder (OUD), con-
sidering that opioid overdose (OD) is now the leading cause of acci-
dental deaths in the United States, with ~70,000 deaths annually
reflecting a >8-fold increase over the course of just two decades9.
However, to date, with the exception of a single study profiling RNA
from VM bulk tissue in a limited cohort of opioid users and controls10,
no knowledge exists about genome-scale dysregulation associated
with chronic opioid exposure andoverdose. Further, RNA-seqprofiling
of VM bulk tissue is insufficient to disentangle cell type-specific con-
tributions in neuropsychiatric disease11.

Of note, in recent pilot studies exploring adult postmortem
human VM single cell genomics (by 10x chromium single nuclei tran-
scriptomic profiling; Smajic and colleagues12, and others13, reported
very high recovery rates of glial and other non-neuronal nuclei in these
‘dopaminergic’ brain structures, with >95–96% of the total population
of nuclei recovered from the SN contributed by prototypical glia,
including ODCs and their precursors, astrocytes, and microglia. In
contrast, DA andGABAneurons taken together contributedonly a very
minor (< 4%) share of nuclei in this type of single nuclei RNA-seq
assay12,13. This approach thus lends itself to an in-depth characteriza-
tion of opioid-related changes in gene expression in these relatively
under-studied glial cell types in human VM.

Here, we present our findings from a transcriptomic study at
single nuclei resolution in the VM, built from two independent opioid
misuse-control cohorts (totaling 95 subjects) from different geo-
graphical areas in the U.S.We report reproducible alterations affecting
hundreds of microglia-, astrocyte- and oligodendroglia-associated
transcripts. Of note, thesewidespread, cell type-specific disruptions of
the glial VM transcriptome in individuals who died by opioid overdose
occurred in the context of completely conserved cellular composition,
with stoichiometric proportions for all neuronal and glial subtypes
indistinguishable between the disease and the control group. Our
findings point to alterations of gene expression in individualswhodied
by opioid overdose, indicative of neuroinflammation and activation of
cytokine signaling in the VM, primarily affecting microglia and astro-
cytes, with additional alterations of oligodendrocyte-specific tran-
scriptomes. More broadly, the dataset presented here will provide a
human neurogenomics resource at single cell resolution for the wider
field of drug abuse research.

Results
Chronic opioid exposure does not alter the cellular composition
of the ventral midbrain
We generated VM single nuclei RNA-seq libraries for 95 brain donors
(84M/11F), including 45 subjects with documented histories of opioid
abuse and overdose, and 50 demographically-matched, opioid-free
control subjects, collected from two geographically distinct regions
within the U.S. (greater Detroit area, Michigan and Miami, Florida)
(Fig. 1A, Table S1, Data S1). Each VM sample included both substantia
nigra and the adjacent ventral tegmental area (SN/VTA) (see Figs. S1,
S10A and Methods). Nuclei were processed in pools of 3–4 brains of
diseased mixed with control brains, using the 10X Chromium system
followed by Illumina sequencing, read alignment and processing by
10X Cellranger. Each single nucleus was matched to a specific donor
using Demuxlet, confirming a 100% match by donor by pool against
the background of all 95 donors/95 samples (1 sample/donor)
(Fig. S1A). After removal of doublets and quality-control filtering (see
Methods), we obtained a total of 212,713 transcriptionally profiled
single nuclei, each unique to a singular donor (median, 2008 nuclei/
donor). We collected 2696–21,363 (median, 8274) reads/nucleus (Data
S2) andmeasured the expression of 1383–5079 (median, 3070) genes/
nucleus. Total numbers of single nuclei/specimen, genes called/single

nucleus/specimen and read depth/nucleus/specimen showed no sig-
nificant differences between VM of individuals who died by overdose
and controls (Fig. S1B–D).

Resolving the entire collection of 212,713 nuclei by cluster analysis
in Seurat v.4.0 with 2000 highly variable genes and 50 harmony-
adjusted principal components (PC) produced in the Uniform Mani-
fold Approximation and Projection (UMAP) plot 10 principal cell types,
further confirmed by computational annotation to a reference dataset
built from 18 SN samples from an independent study14 (Fig. S1E–G) and
by marker gene expression (Fig. 1b, c). Representative examples of
gene expression uniquely defining a specific cell type include oligo-
dendrocyte transcription factors 1 & 2 (OLIG1/2) for oligodendrocyte
precursor cells (OPCs), myelin-associated oligodendrocyte basic
protein (MOBP) and myelin basic protein (MBP) for ODCs, the clas-
sical astrocytic markers Aquaporin-4 (AQP4) and glial fibrillary acidic
protein (GFAP), complement and chemokine signaling genes C3 and
CX3CR1 for microglia, and various markers specific to each of the
remaining cell types including endothelium, pericytes, ependyma
and T lymphocytes (Fig. 1b, Fig. S2A–C). Furthermore, as expected
for VM, the neuronal subpopulation split into dopaminergic (DA) and
non-dopaminergic (Non-DA) (Fig. 1b), with the former showing
expression for dopamine biosynthetic genes including dopa dec-
arboxylase and tyrosine hydroxylase (DDC, TH) and the latter
separating into a larger subgroup of gabaergic neurons defined by
expression of GABA biosynthetic enzymes glutamic acid decarbox-
ylaseGAD1, GAD2 and vesicular GABA transporter VGAT SLC32A1, and
a smaller subgroup of glutamatergic neurons expressing vesicular
glutamate transporters VGLUT1/2 (SLC17A6/7). Furthermore, in line
with previous studies with single cell resolution in rodent VTA/SN15,16,
our samples showed considerable heterogeneity for some of the
established markers for DA neuron subtyping, including ALDH1A1,
SOX6,and SLC17A6 (Fig. S2D, E).

We then asked whether opioid exposure altered the proportions
of various cell types, including of the various glial populations that
were the focus of the present study. In controls, ODC and their pre-
cursors (OPC) taken together comprised 64.3% of all VM nuclei, a
proportion that is highly consistent with an independent dataset14,
followed by astrocytes (15.0%) and microglia (13.5%). In contrast, DA
and non-DA (including GABA) neurons together accounted for 3.8% of
VM nuclei, while pericytes, endothelium, T-cells, and ependyma
together represented the remaining 3.1% of nuclei in our VM speci-
mens from control individuals (Fig. 1d). Of note, our VM specimens
from subjects who died by overdose showed very similar numbers and
proportions for each cell type compared to controls.We conclude that
chronic opioid exposure and overdose is not associated with propor-
tional shifts among the neuronal and glial constituents in the VM
(Fig. 1d). Consistent with this observation, disease and control groups
fromeachof our two collection areas,whenplotted separately into our
UMAP coordinates, showed highly similar distributions by cell
type (Fig. 1e).

Hundreds of glial transcripts show altered expression in opioid-
exposed midbrain
Of note, transcripts for each of the four G-protein coupled opioid and
opioid-related receptors, including the ‘classical 3’ OPRM1 (mu) and
OPRD1 (delta) and OPRK1 (kappa), plus OPRL1 (nociceptin), were
readily detectable among the various glial cell types in the VM, with
particularly robust expression of OPRM1 in the microglia (Fig. S3).
These findings, which are consistent with previous reports on cell-
specific expression, and functional, ligand-binding and mutant-mice
studies17,18 would suggest that opioid exposure could have direct
effects on VM glia in addition to adaptationsmediated by drug-related
neuronal signaling changes. To further explore this scenario, we
computed cell-type specific differential gene expression (DEG) by
diagnosis (history of opioid use and overdose vs. drug-free control).
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Focusing on autosomal gene expression, we first obtained a counts
matrix of 30,801 genes, presenting in 531 combinations (each com-
prised of a minimum of 30 single nuclei) defined by sample and cell
type. Importantly, the Detroit and Miami cohorts, each analyzed
separately, showed on a genome-wide scale strong positive correla-
tions for cell-type specific transcriptome differences between their
respective disease and control brains, speaking to the generalizability
of findings. Specifically, the highest z-score correlations (Miami cohort
vs. Detroit cohort) were observed for OPC (R =0.44), ODC (R =0.32),
astrocytes (R =0.30) and microglia (R =0.29) (P < 2.2−10(-16)) (Fig. S4A).
We therefore conducted DEG analysis by combining the Detroit and
Miami cohorts, using sex, genetic ancestry (genotype PCs), age, and
postmortem confounders (e.g., brain pH) as covariates. Our initial
round of covariate-corrected DEG analysis, with a log fold-change
threshold >0.25 and False-Discovery Rate (FDR) corrected P < 0.1,
identified 5239 DEGs from a total of 25,728 genes included in the DEG

analyses, with 2999 up- and 2381 down-regulated, with many of these
genes dysregulated in more than one cell type (Data S3). However, the
impact of opioid OD on the genome-wide VM transcriptome showed
striking disparities by cell-type due to the preponderance of glial-
specific alterations. Thus, 9.5% (2131/22,536) of microglia-, and
7.5–6.2% (1503/20,050 to 1462/22,536) of astrocyte- and ODC/OPC-
associated transcripts were differentially regulated in comparison to
drug-free control subjects. In sharp contrast, only 0.32% (70/21,881) of
the GABA/non-DA neuronal transcriptome, and none (0/15,041) of DA
neuron expressed transcripts, were detected as altered in individuals
whodied byOD (Data S3). Furthermore, while the largest share of DEG,
or 2131/5239 (42.5%) was contributed by the microglial population,
each of the major glial subtypes shared between 246 and 395 DEGs
with at least one additional glial subtype (Fig. 2), with shared direc-
tionality in a large majority of these DEGs (83–95%, depending on cell
type) (Fig. S4B).
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Fig. 1 | Consistent proportions ofVMcell types across specimen collection sites
and cohorts. a Experimental design andworkflow forN = 95 VMsamples, including
collection at twodifferent geographical areas, pooling of 3–4 VMspecimens, nuclei
purification by FACS, and 10x chromium snRNA-seq pipeline and genetic demul-
tiplexing yielding a total of 212,713 nuclei.bMarker gene expression for each of the
10 glial and neuronal subpopulations as indicated. DA, dopaminergic neuron; non-
DA, non-dopaminergic neurons; ODC, oligodendrocyte; OPC, oligodendrocyte
precursor cell. Color represents the ratio of average gene expression across cells in
the cell type relative to maximum in the most highly enriched cell type. c Uniform

Manifold Approximation and Projection (UMAP) plot showing the identified 10
major cell types by cluster, as indicated, for total collection of n = 212,713 nuclei.
d Box-and-whisker representation of the proportion of the 10 major cell types in
each individual (box represents the first quartile, the median, and third quartile,
while the whisker spans the 1.5x interquartile range of the first and third quartile);
split by diagnosis as indicated red, opioid-related death and blue, control. e VMcell
type composition by UMAP plot, shown for diseased and control individuals
separately for each of the two collection sites. a–e N = 95 samples, Source data are
provided as a Source Data file.
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Unbiased subclustering of glial cell types revealed at least two
subpopulations of oligodendrocyte, and of microglia nuclei, each of
which were broadly represented in the majority of the diseased and
control individuals (Fig. S5A, Data S4). For example, ODC subcluster ‘0’
was defined by elevated expression ofOPALIN and othermarker genes
that define myelin-forming ODCs, while ODC subcluster ‘1’ showed
much higher expression of S100B, RBFOX1 and various other marker
genes previously linked to mature (aged) and stressed ODC12,19

(Fig. S5A, B, Data S4). However, correlationmatrices summarizing DEG
between diseased individuals and controls across all glial and neuronal
subpopulations (Fig. S5C), in addition to subtype specific DEG analysis
and proportional counts of nuclei in diseased and control brains
(Fig. S5D), confirm that oligodendrocyte-specific transcriptional
alterations are not limited to the subpopulation of aged and stressed
nuclei while also affecting younger, myelin-forming ODC. Likewise,
correlational analyses confirmed that microglia-specific alterations in
individuals who died by overdose affect multiple types of microglia
(Fig. S5C). This included subtype ‘0’, or a large group of microglial
nuclei defined by higher expression of interleukin IL18 and heat shock
protein HSPB1, two molecules that reportedly promote neuroin-
flammation in adult human brain20–22, and higher expression of addi-
tional regulators of cytokine signaling such as SOCS6 which is thought
to affect the interaction between microglia and midbrain dopaminer-
gic neurons23 (Data S4, Fig. S5A).

Transcriptomic signatures of opioid-exposed midbrain include
glial activation and downregulation of synaptic functions in
non-dopaminergic neurons
We noted that expression of molecules broadly linked to glial activa-
tion and neuroinflammation, including STAT3, STAT5A/B and other
members of the Signal Transducer and Activator of Transcription
(STAT) transcription factor family24,25 were upregulated in various glial
populations of OD VM (Data S3). Therefore, to explore this phenom-
enon on a genome-wide scale, we next conducted cell-type specific
gene ontology (GO) over-representation analyses. Indeed, up-
regulation of immune response pathways including, for example,

interferon, NFkB signaling, and cell motility ranked top in all glial
populations of VM, including astrocytes, pericytes, microglia, and
ODC/OPC (Figs. 3, S6, S7, Data S5). In striking contrast to these types of
glial activation, top ranking GOs enriched in neuronal DEGs revealed
downregulation of functions related to synaptic connectivity including
ionotropic glutamate receptor signaling, long-term potentiation,
neurite extension and others, in conjunctionwith increased chromatin
repression by histone (H3- lysine 9) methylation (Figs. 3, S7, Data S5).
These decreases in synaptic gene expression were highly specific to
neurons and not observed in glia.

Furthermore, down-regulated expression in ODC from opioid-
exposed VM included multiple GO-defined mitotic spindle genes
(Fig. 3, Data S5), such as AURKA, FIGNL1, and KIF11. Importantly, the
function of these genes extends beyond mitosis as they maintain
expression in interphasenuclei to regulatemicrotubular structures26–28

and, in case of TMEM67, are linked to white matter tract alterations in
the human midbrain29. Therefore, altered expression of these genes
could indicate potential cytoskeletal alterations in differentiated,
postmitotic ODC from individuals who died by overdose.

Having shown widespread reprogramming of the nuclear tran-
scriptome in multiple cell populations of VM from individuals who
died by opioid overdose, with activation of immune signaling in mul-
tiple glial populations and decreased synapse related gene expression
in (non-dopaminergic) neurons, we then asked whether these obser-
vations would be broadly reproducible by gene expression profiling
fromwhole cells or even bulk tissue. To this end, we compared the VM
cell type-specific DEG between opioid users and control subjects in the
current study for each VM cell type to an earlier, smaller (N = 50)
study10 involving RNA-seq profiling of bulk VM tissue (NB: therewas no
overlap in brain donors used in the two studies). We observed positive
z-score correlations that were strongest for the astrocytic (R = 0.19),
ODC (R =0.18) and microglia (R =0.17) populations (Fig. S8). These
correlations were highly significant (p < 1.96 × 10−4). In addition, pre-
viously reported GO enrichments from bulk VM tissue analysis strik-
ingly resonated with the findings presented here, including
upregulation of NFkB signaling and inflammatory, cytokine and

400

Int
er

se
cti

on
 N

 D
EG

s

200

Microglia

ODC

OPC

Astrocyte

Pericyte

Non DA neuron

0

0 1000 2000

2131

1503

1491

1462

395

331
295

289
284

246

134
122

105
98

57
37

18 13 10 10 8 7 7 7 6

N  DEGs

95

70

Fig. 2 | Representation of differentially expressed genes (DEGs) shared across
VM cell types. (left) Counts of shared DEGs across cell types, as indicated by the
UpSet diagram. (right) Number (N) of DEGs for each cell type, from (top)microglia,

N = 2131DEGs to (bottom)non-dopaminergicneurons,N = 70DEGs.N = 95 samples,
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-41455-8

Nature Communications |         (2023) 14:5610 4



hypoxia response pathways, and were highly reminiscent of the glial
activation patterns identified in the present study. Many individual
glial transcripts significantly altered in our opioid-exposed VM speci-
mens in a cell-specificmanner replicated themost robust changes seen
in the aforementioned VM whole-tissue RNA-seq study10 (Fig. 4). For
example, among the group of immune signaling genes with increased
expression in opioid-exposed VM, up-regulated Interleukin 4 receptor
(IL4R) expression in VM bulk tissue was previously reported to be
strongly predictive of diagnostic categorization (opioid vs control)10.
According to the cell-specific results presented here, the IL4R gene is
highly expressed in microglia, consistent with a role in anti-
inflammatory reprogramming of microglia and macrophages after
brain or nerve injury30. Another top-ranking gene in the VM opioid
overdose whole-tissue RNA-seq study was MAP3K6 kinase, a gene
predominantly expressed by astrocytes and implicated in
angiogenesis31. In the current study, MAP3K6 and the relatedmolecule
MAP3K7, implicated in abnormal neurovascular regulation inOUD and
overdose brain32, were confirmed as being dysregulated specifically
within astrocytic nuclei. Furthermore, notable pathway alterations in
the OPC/ODC cell population from the diseased individuals of the
present study included CNS injury-mediated differentiation programs,
including the bZIP MAF transcription factor MAFF33 and the cell cycle
regulator Cyclin Dependent Kinase Inhibitor CDKN1A which, again,
were among the top scoring DEG in the previous VM bulk tissue-based
gene expression study (Fig. 4). Furthermore, the latter gene is robustly
induced in the ventral striatumofmorphine-exposedmice34 and in VM
of subjects diagnosed with cocaine use disorder35, implicating a
broader role for CDKN1A in addiction biology beyond opioids in the
midbrain.

We note that in both the previous VM bulk tissue RNA-seq10 and
the present VM single nuclei RNA-seq studies, neuron-specific tran-
scriptional programs for structural and functional neuronal con-
nectivity, and synaptic transmission were downregulated in the opioid
group. According to the present study, this effect is driven by tran-
scriptomic alterations in the non-dopaminergic neurons. Furthermore,
the AP-1 transcription factor and early response gene, FOSL2, pre-
viously found to be induced in rodent addiction circuitry by chronic

morphine administration36, showed increased expression in numerous
neuronal and glial cell populations of our sn-RNA-seq study, including
OPC, microglia and non-dopaminergic neurons. Similarly, FOSL2 was
among the top scoring DEGs in the bulk VM RNA-seq study (Fig. 4).

To summarize, the current study identified robust changes in VM
gene expression and associated GO pathways in individuals with a
history of opioid use andOD that are consonant with a previous report
but reveal the cell type-specific nature of these changes, which can be
characterized as broad glial activation with a prominent representa-
tion of immune signaling pathways, in conjunction with down-
regulation of glial support and neuronal signaling genes. This
transcriptomic signature observed was independent of the period of
specimen collection or geographical location of the cohorts.

Cell-specific DEGs associated with genetic risk for addiction
disorder
Next, we wanted to explore whether any cell type specific DEGs in our
opioid exposed disease cohort are associated with the genetic risk for
addiction disorder. Of note, while OUD is considered moderately
heritable, with an estimated 60% of population variability attributable
to genetic factors37,38, to date only twoor three loci have been genome-
wide reproducibly linked to opioid use and substance-associated
traits39. Of note, these loci include the cell motility regulator, SCAI (chr.
9q33.3)39, which in our study is significantly downregulated in VM
microglia from individuals who died by opioid overdose (Data S3).
However, opioid exposure is broadly associated with genetic risk for
substance use and dependence overall. Therefore, we wanted to
explore whether any gene expression alterations in our diseased
individuals, including cell type-specific dysregulation, could match a
broader list of genes linked to heritable substance use traits. To this
end, we screened PhenomeXcan40, a resource for transcriptome-wide
association studies linking genes to phenotypes by genetically pre-
dicted variation in gene expression. We focused on brain gene
expression and population-scale substance use phenotypes in Pheno-
meXcan including 40 traits related to caffeine, nicotine, alcohol, and
marijuana consumption or dependence41 (Data S6) and, for compar-
ison, a number of medical traits associated with hundreds or
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type. Biological Process GO enrichments as indicated. P-values, one-sided Fisher’s
exact test with Benjamini–Hochberg FDR correction (x12, 6 cell types and 2

directions). For additional details, see Figs. S6, S7 andData S5, including gene ratios
(Data S5, column E).N = 95 samples, Source data are provided as a Source Data file.
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thousands of significant genes in the PhenomeXcan resource. We
found no specific enrichment of our cell type-specific DEG datasets
with traits linked to any specific drug or substance use, or to a general
addiction risk score as modeled by Hatoum and colleagues42 in their
recent TWAS studies using GTEX and PsychENCODE datasets as input
(Fig. S9A, Data S7, S8). However, among the 1260 PhenomeXcan genes
linked to a substanceuse trait and expressed by at least one cell type in
the present study, 325, or 25.8%, were called as significantly altered in
our study, including 149DEGs inmicroglial nuclei, and 100–70DEGs in
astrocytes and ODCs and their precursors, respectively, and only very
minimal contributions from someof the remaining cell types including
pericytes and non-dopaminergic neurons (Fig. S9B, Data S7). This
included 17 genes called as DEG in one or more VM cell types of the
present study, and in the VM bulk tissue RNA-seq study10, with 14/17 of

genes showing the same direction of change across studies (Data S7).
Among these, NUPR1, a regulator of chromatin acetylation, showed
upregulation of expression in VM tissue10 and VM astrocytes of our
disease cohort, andwas identified as a risk gene in caffeine, alcohol and
marijuana abuse and dependence Interestingly, NUPR1, also known as
STRESS PROTEIN 8 or p8, sensitizes astrocytes to oxidative stress when
upregulated43, in effect exerting a protective effect by decreasing the
production of oxygen radicals44. Other notable SUD PhenomeXcan
genes up-regulated in VM astrocytes, and in opioid-exposed VM
tissue10 include the A2B adenosine receptor (ADORA2B), which reg-
ulates synaptogenesis and synaptic plasticity by downregulating glu-
tamate receptor 5 signaling in astrocytes45. Furthermore, the NFKB2
transcription factor, previously linked to tobacco smoking by
transcriptome-wide association, was upregulated in our study in

Fig. 4 | Differentially expressed genes in VM from opioid users: Comparison of
whole-tissue and cell-specific data. Forest plots of selected DEGs (FDR P <0.1) in
opioid overdose VM, comparing (x axis log fold change compared to control)
previous VM bulk tissue RNA-seq10 to cell-type specific profilings in the current

study. Bars represent 95%confidence interval (LFC + /−1.96 S.E.). * bold fontmarks P
value from DESeq2 (Wald test following chi-squared distribution with 1 degree of
freedom), FDR (Benjamini–Hochberg)P <0.1. See also Fig. S8.N = 95 samples (brain
donors). Source data are provided as a Source Data file.
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multiple glial subtypes including microglia, astrocytes and OPC of our
opioid-exposed VM specimens, again consistent with previous obser-
vations made in VM tissue10. Interestingly, NFKB2, a broad regulator of
the genomic response to inflammatory stimuli, is down-regulated in
the brains of rats after extinction training for cocaine self-
administration46 in a model for cocaine use disorder. Furthermore,
the Cytokine Inducible SH2 containing Protein (CISH), linked to sub-
stance use inPhenomeXcan,whichwas upregulated inmicrogliaof our
VM specimens from individuals who died by opioid overdose, and in
the VM bulk tissue RNA-seq study10, encodes a JAK/STAT pathway
signalingmolecule linked to the anti-inflammatory response in that cell
type47.

In addition to this set of 17 substance use-associated genes that
showed significant expression changes in the opioid group, we also
identify a set of 312 PhenomeX substance use-associated genes with
significant expression changes in multiple glial subtypes of opioid-
exposed VM and including several genes linked to the pharmacoge-
nomics of opiate use disorder. For example, GSG1L has been linked to
plasma methadone levels48, and the myeloid zinc finger transcription
factor MZF1 to cis-regulatory sequences driving expression of the mu-
opioid receptor 149. Another noteworthy example of a PhenomeX

substance use-linked candidate gene with altered expression in all
threemajor glial prototypes, including astrocytes, microglia and ODC/
OPC (Fig. 5) is the nuclear paraspeckles-associated long non-coding
RNA, NEAT1, which has been broadly linked to astrocytic and micro-
glial activation50,51, and has been previous reported as up-regulated in
ventral striatum of heroin abusers52. Consistent with these findings,
multiple inflammatory response- and cell activation- and migration-
associated GOs involving NEAT1, and additional PhenomeX substance
use associated glial DEGs such as ATP1B3, BARD1 and HESX1 were sig-
nificantly enriched among the glial DEGs of the present study (Fig. 5,
Data S3).

Discussion
The glial response to opioid exposure
The present study, which involved individuals with a history of opioid
use and dying of opioid overdose matched with drug-free controls,
from two independent specimen collection sites in geographically
distinct areas of the continental U.S., is one of the largest postmortem
studies in this field, profiling the transcriptome in a total of 212,713
single nuclei from the VM. Key findings included up-regulation of pro-
inflammatory cytokine and immune response pathways, NFkB

Fig. 5 | Differentially expressed genes in the VM of opioid users linked to
substance use in the general human population. Forest plots of selected DEGs
(FDR P <0.1) in opioid-exposed VM (x axis log fold change compared to control,
y-axis VM bulk tissue and single nuclei by cell-type RNA-seq) that are linked to
alcohol and caffeine consumption, and smoking in PhenomeX database. Bars

represent 95%confidence interval (LFC + /−1.96 S.E.). * bold fontmarks P value from
DESeq2 (Wald test following chi-squared distribution with 1 degree of freedom),
FDR (Benjamini–Hochberg) P <0.1. See also Data S7.N = 95 samples (brain donors).
Source data are provided as a Source Data file.
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signaling and generalized activation affecting all major glial popula-
tions including microglia, astrocytes, and ODCs and their precursors.
In contrast, transcript reprogramming in VM neurons, and specifically
in the non-dopaminergic (and thus mostly GABAergic) neuronal
population, was defined by down-regulated expression of genes
involved in synaptic plasticity andneuronal connectivity. Furthermore,
there was significant overlap in differentially expressed genes and
associated GO pathways between the current VM single nuclei RNA-
seq study, and a previous VM bulk (whole-tissue) RNA-seq study10 of a
smaller but distinct cohort of subjects, which showed a similar acti-
vation of inflammatory signaling. Thus, the current study identified
robust changes in human VM gene expression and associated GO
pathways in individuals with a history of opioid use and overdose that
are consonant with the previous report but revealed the cell type-
specific nature of these changes, which can be characterized as broad
glial activation with a prominent representation of immune signaling
pathways, in conjunction with downregulation of glial support and
neuronal signaling. It is important to emphasize that the aforemen-
tioned transcriptomic signatures were independent of the period of
specimen collection and geographical location of the cohorts.

Recent transcriptome profiling of bulk tissue from prefrontal
cortex (PFC) and nucleus accumbens (using an independent brain
collection) reported prominent upregulation of immune signaling
genes and transcriptomic signatures indicative ofmicroglial activation
and glial motility in the forebrain associated with opioid exposure and
overdose53. Moreover, a RNA-seq study in ventral striatum of mice
exposed tomorphine, conductedonFACS-sortedODCs in conjunction
with a general survey of striatal transcription at single nucleus reso-
lution, also broadly resonate with the current findings by demon-
strating drug-induced activation of stress and differentiationpathways
in all major glial prototypes, with some key genes (e.g., CDKN1A and
NFKBIA) found differentially regulated in the ODC and astrocytes of
opioid VM samples in the present study also changed in the opioid-
exposedmouse34 (Data S9). For a subset of differentially regulated glial
activation markers, including GFAP, opioid-induced up-regulation in
VM was first reported in a rat model three decades ago54.

These studies, taken together, lead to a consistent consensus
implicating glial activation with up-regulation of inflammatory and
immune signaling pathways across multiple nodes in the addiction
circuitry of the opioid exposed brain, including the VM. Therefore, it is
very interesting that drugs acting as inhibitors for the pro-
inflammatory glial response reduce morphine-induced withdrawal
effects in the rat model55, and attenuate the addictive features of
opioids, including positive reward (for example, ‘feeling high’) and
withdrawal-associated symptoms, in human volunteers diagnosed
with OUD56–58. The precise pharmaco-molecular and -cellular cascades
linking opioid addiction and dependence to glial activation remain to
be elucidated. Potential mechanisms could include drug-induced
activation of TLR4 and other Toll-like receptors which, in turn, activate
NFkB to drive transcriptional activation of cytokine and
chemokine signaling59,60. Furthermore, there is evidence for functional
interaction between opioid-receptor and NFkB signaling as discussed
in53. Given that the transcriptomic alterations in striatum of subjects
with cocaine use disorder point to an opposite effect, i.e., decreased
neuroinflammation61, interventions against the pro-inflammatory
effects of opioids could provide unique drug class-specific ther-
apeutic opportunities.

Limitations of the present study
The present study provided new insights into cell type-specific gene
expression changes in each of the major glial populations, including
OPC, ODC, astrocytes, and microglia, within the opioid-exposed VM.
However, our experimental design included pooling of up to 4 VM
specimens for 10 K nuclei target recovery for each 10x chromium gel
bed assay and, in agreement with previous single nucleus RNA-seq

work on human VM12–14, less abundant cell types such as dopaminergic
and non-dopaminergic VM neurons, as well as pericytes, T-cells, and
endothelial and ependymal cells, each comprise only a very small
fraction (0.8%–3%) of the total population of VM nuclei in the current
study. Multiple disease and control samples lacked the minimum
number of nuclei from some of these cell types in order to enter DEG
analysis by cell type (set at N ≥ 30 nuclei per cell type, see Methods),
reducing the overall power for many of these rarer VM cell popula-
tions, Data S2). Future studies that specifically enrich for cell types
such as VM dopaminergic neuron nuclei based on fluorescence acti-
vated nuclei sorting62 will be required to more fully elucidate opioid-
induced transcriptional alterations for these relatively rare VM
cell types.

All opioid users in the present study died from overdose, a com-
mon limitation given that virtually allmolecular and cellular studies on
the brains of subjects with OUD are conducted either exclusively53,63,64

or overwhelmingly32 on individuals who died by overdose. However,
the broad congruence of neuroinflammatory signatures in glial
populations of (non-overdose) animal models for OUD with the glia-
specific transcriptomic alterations reportedhere, strongly suggest that
this type of cell-specific activation of immune signaling genes is driven
by exposure to the drug and not limited to opioid users who died by
overdose. Furthermore, previous studies of SUD subjects65 have noted
that most changes in DEG examined were observed irrespective of
immediate cause of death, or perimortem drug levels, suggesting that
such changes may represent core pathophysiological changes asso-
ciated with SUD.

Neuron-specific alterations in VM from individuals who died by
opioid overdose
The present study identified 69 genes dysregulated in the non-
dopaminergic neuronal population in the opioid exposed VM (Data
S3). These included neuropsychiatric risk genes such as AUTS2 and
NCALD, which reportedly are transcriptionally dysregulated in a VM
target tissue, the ventral striatum, after cocaine and amphetamine
abuse66,67. Furthermore, the aforementioned AP-1 transcription factor
FOSL2 was up-regulated in VM non-dopaminergic neurons. We coun-
ted 9/69 (13%) of differentially regulated neuron-specific genes in VM
in our opioid group that matched to neuron-specific enhancer or
promoter sequences reportedly affected by histone hypo-acetylation
in PFC neurons from individuals who died by opioid overdose68 (Data
S10). These included genes conferring heritable risk for nicotine and
other substance dependence, such as GABBR2 encoding a GABAB

receptor, and SHC3 involved in MAP kinase and neurotrophin
signaling69,70. These findings then further support the emerging
hypothesis that opioid exposure and addiction is associated with a
coordinated transcriptional dysregulation in various neuronal and
non-neuronal subpopulations residing in specific nodes of addiction
circuitry including VM, striatum, and PFC71,72.

We predict that future studies, by constructing a neurogenomic
atlas of cell specific gene expression alterations and related changes in
epigenomic regulation, across multiple regions of opioid-exposed
brains and conducting integrative analyses combined with the emer-
ging genetic risk architecture for substance use disorders, will provide
deep insights into neuronal and glial mechanisms highly relevant to
the neurobiology and treatment of opiate addiction.

Methods
Disease and control brains were collected within two separate geo-
graphical areas of the U.S., representing the greater Detroit andMiami
metropolitan areas. The two collection sites operated independently.
Cause of death was determined by forensic pathologists following
medico-legal investigations evaluating the circumstances of death
including medical records, police reports and scene investigations,
autopsy results, and toxicological data. Inclusion in the opioid abuse
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groupwas based on a documented history of opioid abuse, toxicology
report positive for opioids, and forensic determination of opioids as
the cause of death. Individuals with an identified history of a neuro-
logical or psychiatric disorder, a debilitating chronic illness, death by
suicide, or evidence of neuropathology at autopsy, were excluded
from the study. We note that polydrug use and drug deaths involving
combinations of opioids and nonopioid psychoactive drugs are quite
common. Forensic evidence, however, supports a history of opioid use
for each diseased individual included in the present study. We note
that in both theDetroit andMiami cohorts, approximately one-quarter
of opioid users were also positive for benzodiazepines and/or other
sedatives (a common and particularly deadly drug combination).
Concurrent use of opioids and cocaine has recently emerged as a
troubling national trend, but none of the Detroit cohort, and only one-
fifth of the Miami cohort tested positive for cocaine use within several
days of death (as evidenced by detection of cocaine metabolites
including benzoylecgonine in urine).

Detroit cohort
All studies were approved by the Institutional Review Board of Wayne
State University. Human midbrain specimens were collected during
routine autopsy by the Wayne County Medical Examiner as part of the
autopsy process mandated by the laws of the State of Michigan. All
disease and control brains were de-identified specimens not requiring
consent for the purposes of the present study. Medicolegal investi-
gations were conducted by forensic pathologists. The cause and
manner of death were determined after evaluating the circumstances
of death, toxicology data, and autopsy results10,35,73. Data S1 (columns
M, N, O) list toxicology information case-by-case, including blood
levels for specific opioids and their metabolites, for ethanol and
additional common non-opioid drugs of abuse (e.g., alcohol, cocaine,
cannabinoids, anxiolytics, barbiturates). Subjects testing positive for
cocaine were excluded from the Detroit cohort of the present study. A
subset of our diseased individuals tested positive for opioids plus
benzodiazepines, as this reflects a drug class commonly co-abused
with opioids with deadly consequences74. Individuals in the control
group had no documented history of drug abuse, and tested negative
for opiates, cocaine, and other drugs of abuse or CNS medications at
time of death. Causes of death for control subjects were primarily
cardiovascular events or gunshot wounds. Exclusion criteria for either
group included a known history of neurological or psychiatric dis-
order, death by suicide, evidence of neuropathology at autopsy,
debilitating chronic illness, estimated postmortem interval (PMI)
>20 h, or biochemical evidence of poor tissue sample quality or pro-
longed perimortem agonal state (i.e., brain pH< 6.2). To reduce var-
iance unrelated to drug abuse, the two groups were matched in terms
of sex, race, age, and brain pH at the time of processing. Data S1 and
Table S1 include demographic and sample quality characteristics.
Brains were sectioned transversely at the level of the posterior edge of
the diencephalon andmid pons, to obtain a tissue block encompassing
the entire humanmidbrain75,76 (corresponding approximately to plates
51–56 of ref. 77). From this block, the VM region comprised of SN (A9)
with adjacent VTA (A10) (Fig. S10A) was processed according to the
single nuclei RNA-seq protocol described below.

Miami cohort
All studies were approved by the Institutional Review Board of Nova
Southeastern University, with next of kin consent. Study subjects were
selected from an opportunistic sample of opioid intoxication deaths
defined by circumstances of death and forensic and supplemental
toxicology data. All diseased individuals and unaffected controls were
evaluated to rule out comorbid psychopathological diagnoses. Com-
mon drugs of abuse and alcohol and positive urine screens were
confirmed by quantitative analysis of blood and brain (Data S1, col-
umnsM,N,O). Retrospective chart reviewswere conducted to confirm

history of opioid abuse, methadone or addiction treatment, drug-
related arrests or drugparaphernalia found at the scene. Supplemental
brain toxicology was done on select individuals for comparison to
blood levels at the time of death. Inclusion in the opioid group was
based on a documented history of opioid abuse, toxicology report
positive for opioids, and forensic determination of opioids as cause of
death. The detection of 6-acetyl morphine (6-AM) was taken as defi-
nitive evidence of acute heroin exposure. Drug-free control subjects,
with negative urine screens for all commondrugs andnohistory of licit
or illicit drug use prior to death, and with no known history of neu-
rological or psychiatric disease, were selected from accidental (motor
vehicle accidents or trauma) or cardiac sudden deaths. All diseased
and unaffected control individuals were selected from persons who
died suddenly without a prolonged agonal state, since agonal state
affects brain tissue quality control metrics. Care was taken for cohort
selection to match subject groups as closely as possible for non-
Hispanic Caucasian ancestry, age, sex, PMI, and brain pH (Data S1,
Table S1).

Sample processing
Sample processing for both brain cohorts, including purification of
nuclei, RNA extraction, and generation of single nuclei RNA-seq
libraries, was performed in New York. Brains were processed in pools
of N = 3–4 unique brains (donors). From each unique brain, a tissue
aliquot, containing approximately 20mgof VM from the area of the SN
(A9) and portions of the adjacent VTA (A10), was homogenized using a
douncer at least 20x in 1ml lysis buffer (0.32M sucrose, 5mM CaCl2,
3mM Mg(Ace)2, 0.1mM EDTA, 10mM Tris pH8, 0.5mM DTT, 0.1%
Triton X-100) with 400U RNase inhibitor (Takara Bio Recombinant
RNase Inhibitor, Cat. 2313) added to it. Then, an additional 4ml of lysis
buffer was added and the sample solution was dounced an additional
20x until homogenous. After douncing, each pool of 4 unique samples
was transferred to an ultracentrifuge tube (Beckman Colter Poly-
propylene Centrifuge Tubes 5/8 × 3 3/4 in., ref. 361707) and underlaid
with 9ml of sucrose buffer (1.8M sucrose, 3mM Mg(Ace)2, 0.5mM
DTT, 10mMTris-HCl pH8), then ultracentrifugedwith 24,000 rpm in a
SureSpin 630 (17mL) Rotor (106,803 x g) for 1 h at 4 °C. After cen-
trifugation, the supernatant was removed and each pellet of nuclei was
carefully resuspended in 1ml of 1% BSA with 1000U RRI added to it,
transferred to a sterile tube, and 1 µl of the nucleophilic dye, DAPI (4’,6-
Diamidino-2-Phenylindole, Dihydrochloride, Invitrogen Cat. D1306),
was added. For FACS collection, sterile tubes were coatedwith 5% BSA.
After residual BSA solution at bottom of tubes was removed, DAPI+
nuclei were sorted into the collection tubes using a BD FACSAria Cell
Sorter, with approximately 300,000 DAPI+ nuclei for each pool of 4
unique midbrain samples collected and processed using the 10x
Chromium Next GEM Single Cell 3’ v3.1 (Dual Index) Protocol
(CG000315 Rev A) according to the manufacturer’s instructions. The
Agilent 2100High Sensitivity DNABioanalyzer Kit was used as a quality
control step at Step 2.4 and end of the library preparation, also as per
10x Genomics’ guidelines. To prepare samples for sequencing, sample
concentration was determined using the KAPA Biosystems Library
Quantification Kit (ROX Low qPCRMaster Mix, Cat. KK4873). Libraries
were sequenced by the New York Genome Center using the Illumina
NovaSeq platform aimed at a sequencing depth of 50,000 read pairs
per nucleus. Libraries consisted of paired-end reads with a read length
of 100 bp.

Genotyping
Miami Cohort: Genomic (g) DNA was extracted from cerebellar tissue
using a QIAamp DNAMicro Kit, followed by SNP genotyping was done
with Illumina’s MEGA multiethnic array at Rutgers University Cell and
DNA Repository (RUCDR Infinite BiologiX).

Detroit Cohort: DNA was extracted from 25mg of tissue using
QIAamp DNA mini kit from Qiagen Cat# 51304 (Qiagen, Germantown,
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MD). Tissues were lysed manually and then processed through the
QIAcube DNA isolation protocol. For genotyping Infinium Global
Diversity Array-8 v1.0Kitmicroarrays were processed by the Advanced
Genomics Core of University of Michigan (Ann Arbor, MI, USA). Gen-
otype information was converted to vcf format using “iaap-cli gencall”
and “gtc_to_vcf.py” from Illumina.

For both cohorts imputation was performed using the TOPMed
Imputation Server version 1.5.7 (https://imputation.biodatacatalyst.
nhlbi.nih.gov) to a total of 292,140,970 genetic variants. The vcf files
from the two cohorts were then merged and filtered for high-quality
imputation and coverage for at least ten scRNAseq transcripts using
bcftools resulting in a vcf file with 8,184,813 genetic variants.

scRNA-seq raw data processing (Alignment and demultiplexing)
We processed each scRNAseq library using cellranger (V7.0) count
using the GRCh38 human reference genome and the default para-
meters except for the --include-introns option which is recom-
mended for single nuclei preparations. The resulting aligned reads
bam files were further processed with demuxlet78 together with the
genotype vcf files. Demuxlet assigns the most likely individual for
each cell barcode based on the reads overlapping genetic variants.
Based on the demuxlet assignments, we removed barcodes that were
called doublets, ambiguous, or that could not be assigned to an
individual that corresponded to the pool that was used to create the
library. Any library that did not contain at least one diseased and one
control individual was also excluded. While our quality control
pipeline had included a mitochondrial read filter to exclude any
nuclei with read rates higher than 20%, the vast majority, or 93.7% of
our FANS DAPI sorted single nuclei exhibited a mitochondrial read
fraction of <1%, and only 1.8% of nuclei showing a mitochondrial
fraction above 2% (Fig. S10B). These filtering procedures resulted in a
total of 212,713 high-quality cells with 36,601 genes across 95 indi-
viduals. A median value of 2008 cells are detected for each sample,
with a median value of 8274 reads per cell and 3070 genes per cell
(Fig. S1B–D).

To further assess the quality of our single nuclei transcriptome
dataset, we assessed by linear regression how tissue quality indicators
suchas tissue pHand PMI, as well as demographic variables such as sex
and genetic ancestry (summarizedby the first two genotype PC), affect
the number of nuclei/individual, the number of reads/nucleus, the
number of genes/nucleus, and the percentage of mitochondrial genes
in each of our single nuclei transcriptomes that had passed all quality
controls. Figure S10C shows for tissue pH a significant positive corre-
lation with the number of nuclei per individual, and the number of
reads and number of genes in each nucleus (R =0.275–0.328) and a
negative correlation with the percentage mitochondrial genes
(R = −0.267). In contrast, PMI and any of the demographic variables
showed very weak, andmostly non-significant associations with nuclei
number, or reads and genes / nucleus (Fig. S10C).”

Clustering analysis and cell type annotation
We employed the standard pipeline of Seurat R package (v4.0) to fur-
ther process our scRNA data. After merging all the libraries into one
Seurat object, we first utilized the log1pCP10K approach to normalize
data and then standardize the gene expression across cells together.
For dimensionality reduction analysis, we performed PC analysis on
2000 highly variable genes to obtain 100 PCs. To correct for batch/
libraries effects, we calculated the harmony adjusted PCs using Run-
Harmony with the parameter of group.by.vars set to library ID79. The
UMAPwas used to visualize our scRNA data using the top 50 harmony-
adjusted PCs. Prior to clustering the cells, we construct a KNN graph
based on the euclidean distance using the top 50 harmony-adjusted
PCs by running FindNeighbors. Following that, we applied the Louvain
algorithm implemented in FindClusters with 0.07 resolution to group
cells into 14 distinct clusters.

To annotate cell-type for the scRNA data, we performed DEG
analysis between the compared cluster and the remaining clusters
(grouped together) to identify cluster-specific expressed genes using
FindAllMarkers with default differential test approach Wilcoxon Rank
Sum test. For each compared pair, we only focused on the genes with
higher expression in the compared one relative to the contrast one
(only.pos in FindAllMarkers setting TRUE). To increase more signals
involved, we used the relaxed threshold values of at least 2% percent of
expressed cells for genes (min.pct) and at least 0.1 fold difference (log-
scale) between the two groups of cells (logfc.threshold).

The canonical cell-type marker genes were expected to be highly
expressed in the corresponding clusters (Figs. S1E, F, 1B): (1) ODCs
marker genes (such asMOBP,MBP, PLP1 andCNP) are highly expressed
in clusters 0, 5, 10 and 13; (2). astrocyte-marker genes (such as GFAP,
AQP4 and SLC1A2) are mainly enriched in the cluster 1; (3) microglia-
marker genes (such as C3, CSF1R, CX3CR1, LRRK1, DOCK8 and P2BY12)
are highly expressed the cluster 2 and 11; (4) OPC-marker genes
including VCAN, PDGFRA, OLIG1 andOLIG2 aremostly expressed in the
cluster 3; (5) dopaminergic neuron (DaN)-specific genes such as DDC,
SLC6A3, SLC18A2, and SLC18A2 tend to be highly expressed in the
cluster 7; (6) Non-dopaminergic (Non-DA) neuron genes including
GAD1,GAD2 and SLC17A7 gene family tend to be highly enriched in the
cluster 4; (7) pericytes-marker genes (MYO1B, NR4A2, PDGFRB and
RGS5) are highly expressed in the cluster 6; (8) While endothelial-
specific genes such as (CDH5, CLDN5, FLT1, KDR, PECAM1 and PTPRB)
are highly expressed in cluster 8; (8) We also identified some T cell
specific genes including CD96, IL7R, SKAP1 and THEMIS highly
expressed in the cluster 9; (9) For the cluster 12, consisting of very few
cells, the genes including HTR2C and TTR are highly enriched, which
are related to the function of ependymal cell.

We also inspected our dataset with an automatically generated
cell-type annotation using an independent high quality reference data
set14 collected from human SN. This reference set is comprised of
387,483 cells across 18 samples, annotated by seven major cell types,
including ODC, astrocyte, microglia, OPC, dopamine neurons (DA),
Non-DA neurons and endothelial cells14. We constructed a heatmap to
visualize in our dataset the proportion of different cell types
accounting for each cluster (Fig. S1G). We note that the above 7 major
cell types are dominant in the corresponding clusters that highly
expressed cell-type marker genes. After combining the cell type mar-
ker genes and automatic cell-type annotation, eventually we assigned
the cluster 0, 5, 10 and 13 to beODC, the cluster 1 as astrocytes, cluster
2 as microglia cells, cluster 3 as OPC, cluster 4 as Non-DA neuron,
cluster 6 as pericytes, cluster 7 as DaN, cluster 8 as endothelial cells,
cluster 9 as T-cells and cluster 12 as ependymal-cells. This cell-type
annotation was used for all downstream analyses.

Differential gene expression analysis
We generated the pseudo-bulk counts data by summing the reads for
each gene across cells that were from the same sample and cell-type.
Focusing on the autosomal genes, we obtained a counts matrix of
30,801 genes in 531 combinations of the sample and cell-types with at
least 30 nuclei (in pilot studies, we varied the minimally required
number of nuclei per cell type and sample from 20 to 100, and
determined N = 30 nuclei per sample and cell types as minimum
number to enter into the disease vs. control DEG analysis because
smaller N’s increased overall noise factor in the DEG and higher N’s
were overly restrictive by excluding larger number of subjects for
some of the rare cell types). Combinations were also eliminated if the
remainingbatches didnot include at leastone individual fromboth the
control and opioid group. This resulted in 7 cell-types considered for
the final DEG analysis. For four of these cell-types, including the 4 glial
populations that were the focus of the present study, OPC, ODC,
astrocytes and microglia, we have a large number of individuals, while
for the remaining three cell types, including non-DA and DA neurons
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and pericytes, the number of individuals is smaller and the statistical
power is more limited (Data S2). We performed DEG analysis between
opioid and control groups for each cell-type separately using RDESeq2
package80 and the following model

Gene expression~opioid+library+sex+pH+age+genotype
PC1+genotype PC2+genotype PC3
which would correct the effects arising from various experimental
batch, genetic ancestry and other covariates (sex, age and pH). Note
that DESeq2 normalizes the pseudo-bulk input (using default settings)
which implicitly will accommodate for differences in the sequencing
depth aswell as the number of cells that went to each sample/cell-type
combination. To filter out lowly expressed genes, we only considered
genes that were expressed higher than 0.5 CPM in at least 3 samples
from opioid and control (respectively) across libraries. To correct for
multiple hypothesis testing, we used the Benjamini–Hochberg
approach implemented in results function in the DESeq2 packagewith
default parameters. We defined the differentially expressed genes as
those with FDR < 10% and the fold change at least 1.189 (|
log2FC| > 0.25).

Gene Ontology (GO) enrichment analysis
Using the enrichGO function from ClusterProfiler (4.0) R package81, we
performed GO enrichment analysis for DEGs from the 6 cell types for
up-regulated and down-regulated genes separately which performs an
over-representation test using a one-sided Fisher’s exact test, and
using all tested genes inDEseq2 as background. To correct formultiple
hypothesis testing, we applied the Benjamini–Hochberg approach to
calculate the FDR across all the 12 conditions (6 cell types × 2 direc-
tions) implemented in p.adjust in R (4.1). The significantly enriched
biological process terms are defined as those terms (gene size ranging
from 5 to 500) with FDR < 10%.

Transcriptome-wide association analysis (TWAS)
To investigate whether DEGs are associated with the genetic risk var-
iants for substance use traits and disorder (SUD), we screened the
PhenomeXcan database, a resource for transcriptome-wide association
studies linking genes to phenotypes by genetically predicted variation
in gene expression40. We focused on SN gene expression and
population-scale SUD phenotypes in PhenomeXcan. We focused on a
total of 40 SUD-related traits from the following categories of traits or
diseases: addiction, alcohol, caffeine, marijuana, and smoking (Data
S6). We also analyzed a recent study on identification of addiction risk
genes that integrated two eQTL cohorts including GTEx and Psy-
chENCODEwith addiction risk42. For GTEx, the study conducted TWAS
analyses usingMetaXcan via integration of eQTL from 13 brain regions
and identified a total of 351 addiction risk factor genes (FDR < 10%). For
PsychENCODE, using frontal and temporal cortex, TWAS analysis using
S-PrediXcan identified a total of 410 addiction risk genes with
FDR < 10%42. We conducted the proportion test using prop.test in R
(4.1) to examine whether the DEGs overlapping with SUD are enriched
in some cell type or some specific trait.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Annotated single nuclei RNA-seq data generated in this study have
been deposited in the Gene Expression Omnibus (GEO) database
under accession code GSE240457. The raw data are, per NIH Genomic
Data Sharing Policy, available under restricted access in the database
for Genotypes and Phenotypes (dbGAP) under accession code
phs003260.v1.p1. Source data are provided with this paper.

Code availability
Original code and scripts used to analyze the data is available on
GitHub.https://github.com/piquelab/sc_brains.
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