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SiGra: single-cell spatial elucidation through
an image-augmented graph transformer

Ziyang Tang 1, Zuotian Li 2,3, Tieying Hou4, Tonglin Zhang5, Baijian Yang 1 ,
Jing Su 2 & Qianqian Song 6,7

Recent advances in high-throughput molecular imaging have pushed spatial
transcriptomics technologies to subcellular resolution, which surpasses the
limitations of both single-cell RNA-seq and array-based spatial profiling. The
multichannel immunohistochemistry images in such data provide rich infor-
mation on the cell types, functions, and morphologies of cellular compart-
ments. In this work, we developed a method, single-cell spatial elucidation
through image-augmented Graph transformer (SiGra), to leverage such ima-
ging information for revealing spatial domains and enhancing substantially
sparse and noisy transcriptomics data. SiGra applies hybrid graph transfor-
mers over a single-cell spatial graph. SiGra outperforms state-of-the-art
methods on both single-cell and spot-level spatial transcriptomics data from
complex tissues. The inclusion of immunohistochemistry images improves the
model performance by 37% (95% CI: 27–50%). SiGra improves the character-
ization of intratumor heterogeneity and intercellular communication and
recovers the knownmicroscopic anatomy. Overall, SiGra effectively integrates
different spatial modality data to gain deep insights into spatial cellular
ecosystems.

Recent advances in spatial molecular imaging have allowed for the
examination of the spatial landscapes and transcriptional profiles of
complex tissues at subcellular resolution1–3. The interrogation of the
spatial locations and gene expression of individual cells within a tissue
aid in understanding the spatial heterogeneity of cell-to-cell commu-
nication and cell interactions with the surrounding environment,
which are crucial for understanding disease pathology. Current com-
mercially available technologies for single-cell spatial profiling, such as
the NanoString CosMx™ Spatial Molecular Imager (SMI)4 and the Viz-
gen MERSCOPE/MERFISH platforms5,6, are capable of accurately cap-
turing the locations of targeted transcripts, cell locations, and cell
boundaries, accompanied by multichannel immunohistochemistry
(IHC) images. For example, NanoString CosMx™ is capable of simul-
taneously assayingup to 1000genes4 and 100 k to600 k cells per slide,

dramatically exceeding current single-cell omics technologies. There-
fore, emerging single-cell spatial transcriptomics (SCST) commercial
platforms are revolutionizing current spatial biology research, pro-
mising to spatially and functionally reveal complex architectures
within tissues and furthering our insights into the mechanisms
underlying disease at unprecedented resolution7–9.

The emerging SCST multimodal data provide new opportunities
for accurately identifying spatial domains, which is crucial for reveal-
ing and functionally annotating the cellular anatomy of complex tis-
sues. Existing methods for deciphering spatial cell clusters, such as
Seurat10 and the Louvain clustering-based Scanpy11method, still rely on
clustering methods for nonspatial single-cell RNA-seq data and only
take gene expression data as input. Other methods have been devel-
oped to include spatial information to improve the identification of
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spatial regions. For example, stLearn12 leverages the gene expression
of neighbouring spots and tissue image features to identify spatially
distributed clusters. BayesSpace13 enables spatial clustering through a
Bayesian statistical method with joint analyses of the gene expression
matrix and spatial neighbourhood information. SpaGCN14 identifies
spatial regions using a graph convolutional network, with the spatial
graph constructed from gene expression and histology information.
Although thesemethods show their capability in spatial clustering, the
power of different modalities within single-molecule spatial imaging
profiles has not been fully unleashed to achieve desirable
performance.

In addition to domain recognition, the enhancement of spatial
gene expression data also presents a significant challenge. Although
great progress has beenmade in spatial technologies, major problems
such as missing values, data sparsity, low coverage, and noise2,15

encountered in spatial transcriptomics profiles impede the effective
testing and elucidation of biological insights. Meanwhile,multichannel
spatial images in single-cell spatial data consist of high-resolution,
high-content features detected in the tissue, such as cell types, func-
tions, and morphologies of cellular compartments, as well as the
spatial distributions of cells. Incorporating such imaging features into
transcriptomics data processing will help address the challenges of
missing values and data noise. Moreover, as the spatial relations
between an individual cell and its neighbouring cells can be naturally
represented with a spatial adjacency graph, graph-based artificial
intelligence is promising for spatial data modelling. Notably, graph-
based models enhanced with attention mechanisms16, such as the
graph attention network (GAT) and graph convolutional transformer
models17,18, have demonstrated remarkable advancements and yielded
significantly improved outcomes.

In this study, we developed the SiGra method, i.e., single-cell
spatial elucidation through an image-augmented graph transformer,
to decipher spatial domains and enhance spatial signals simulta-
neously. SiGra can utilize multimodalities, including multichannel
images of cells and their niches, address technological limitations and
achieve augmented spatial profiles. SiGra accurately recovers missing
information in spatial gene expression, uncovers cellular dynamics,
and reveals the spatial architecture of cellular heterogeneity within
tissues. Through extensive and quantitative benchmarking with
existing methods onmultiple datasets, including both single-cell level
and spot-level spatial data generated by different platforms, SiGra
demonstrates superior performance in terms of spatial domain iden-
tification, latent embedding, and data denoising. Overall, SiGra will
contribute to uncovering the complex spatial architecture within
heterogeneous tissues and facilitate the acquisition of biological
insights. SiGra is open-source software and is available at https://
github.com/QSong-github/SiGra, with detailed tutorials demonstrat-
ing its applications to different spatial transcriptomics platforms. The
web interface of the SiGra Viewer (http://sigra.sulab.io) enables users
to explore the enhanced data in uniformmanifold approximation and
projection (UMAP) figures and spatial domains.

Results
Overview of the SiGra method
The SiGramethod includes (1) the graph representation of the original
spatial transcriptomics data (Fig. 1a) and (2) the hybrid graph trans-
former model to elucidate the spatial patterns and enhance the raw
gene expression data (Fig. 1b).

The state-of-the-art SCST data consist of: (1) multichannel images
of biomarkers for cell types (e.g., pancytokeratin or PanCK staining for
tumour cells, CD3 for T cells, and CD45 for leucocytes) and cell com-
partments (e.g., DAPI staining for cell nuclei and CD298 staining for
cell membranes). For each staining channel, a high-content greyscale
image is assembled from a series of field-of-view (FOV) images; (2) the
vendor-provided cell segmentation results such as the coordinates of

cell centroids and the hull of cell boundaries; and (3) the cell-level
summarization of gene expression according to the coordinates of
each detected transcript and the cell boundary identified from cell
segmentation.

In SiGra, the single-cell spatial graph is constructed based on the
spatial centroids of detected cells, with each node representing a cell
and each edge representing two neighbouring cells (Euclidian distance
shorter than 14–16μm). Each node/cell within the spatial graph is
accompanied by multimodal data (images and gene expression)
extracted from the original spatial profiles. Specifically, for each cell,
an image of 21.6μmby 21.6μm centred at the cell centroid is cropped
from each immunohistochemistry (IHC) image. For example, as
NanoString CosMx data consist of five channels (DAPI, PanCK, CD45,
CD3, and CD298), each cell is associated with five single-cell images. In
thisway, SiGra achieves the graphical representationof spatial profiles,
i.e., the single-cell spatial graph with each located cell’s multichannel
images and gene expression.

The SiGra model comprises three graph transformer-based
encoder-decoders (imaging, transcriptomics, and hybrid) with an
attention mechanism (Fig. 1b) to incorporate the single-cell multi-
modal data for simultaneous data enhancement and spatial domain
recognition. Regarding the imaging encoder-decoder, with a cell i
represented by node vi, an array of single-cell IHC images Mi is
converted to a vector xi and projected to the latent space as zM,i

through multihead graph transformer layers (Supplementary Fig. 1a,
Methods). This latent imaging feature zM,i then is used to reconstruct
the gene expression profile ĝM,i of cell i. For the transcriptomics
encoder-decoder, the same architecture is used for the latent
representation (zg,i) and the reconstruction (ĝg,i) of the original
expression g i in cell i. For the hybrid encoder-decoder, the latent
imaging features zM,i and the latent expression features zg,i are
concatenated and projected as a hybrid feature zh,i, which is used to
reconstruct the gene expression ĝh,i of cell i. Imaging and gene
expression features of neighbouring cells, represented as neighbour
nodes vj 2 N vi

� �
in the spatial graph, are also used as the input for

graph transformers so that the spatial cellular information is aggre-
gated into the model.

SiGra learns the reconstructed gene expression via a self-
supervised loss that combines the mean square error (MSE) from
gene embedding LM,i, image embedding Lg,i and combined
embedding Lh,i, with the loss function L=

PN
i = 1λ1LM,i + λ2Lg,i + Lh,i,

where the hyperparameters λ1,λ2 ≥0, and N is the total cell number.
After training, SiGra outputs thehybrid reconstruction ĝ = ĝh,i

� �
as the

final enhanced expression profile. The latent representation, z = zh,i
� �

,
of the original SCST data is used for spatial data clustering.

With the introduced multihead attention mechanism in graph
transformer layers, SiGra adaptively updates the contributions of
neighbouring cells fvjg to cell vi by aggregating and propagating the
extracted image features and the gene expression features from
neighbours, eventually updating the latent representation of cells and
the final reconstructed gene expression profiles. Through evaluation
and benchmarking with current available methods, SiGra demon-
strates exceptional performance on multiple spatial transcriptomics
datasets from different platforms, especially on single-cell spatial
profiling. Moreover, the enhanced spatial transcriptomics data by
SiGra facilitate insights into cellular communications and underlying
biological discoveries.

SiGra accurately identifies spatial domains in the single-cell
spatial profiles of NanoString CosMx SMI
To evaluate the performance of SiGra in deciphering spatial domains,
we compare it with five state-of-the-art clustering methods developed
specifically for spatial transcriptomics: Seurat v410, Scanpy11, stLearn12,
SpaGCN14, and BayesSpace13. For comparisons, we use the SCST data-
set of Lung-9-1 generated by NanoString CosMx SMI. This dataset
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consists of 20 FOVs from lung cancer tumour tissue4, with 982 genes
and 83,621 cells that cover eight major cell types, including lympho-
cytes, neutrophils, mast cells, endothelial cells, fibroblasts, epithelial
cells, myeloid cells, and tumours. Details of these experimental data
are provided in the Data Availability section. The identified spatial
clusters of each method are annotated based on the matched overlap
of spatial clusters and ground truthmanually annotated in the original
study4.

As described in the Methods, cell types are first identified and
then organized into spatial domains. With the spatially heterogeneous
cell types identified by different methods, the spatial organization of
the 20 FOVs is shown in Fig. 2a. Specifically, SiGra detects the spatial
distributions of different cell types that agree well with the original
study, i.e., ground truth, with an overall adjusted Rand index (ARI) of
0.55, which is higher than that of Seurat (ARI = 0.37) and BayesSpace
(ARI = 0.23). Seurat and BayesSpace significantly mislabelled more
cells than SiGra across the 20 FOVs.Meanwhile, the other twomethods
show much lower accuracy (ARIs: 0.25 for Scanpy, 0.22 for SpaGCN,
and 0.34 for stLearn). Of note, the addition of multichannel images
(ARI = 0.59) improves the performance by 47.5% compared with using
gene expression only as input (median ARI = 0.40). These results

demonstrate that multimodal spatial information contributes to the
superior performance of SiGra.

Figure 2b shows the ARI scores of all 20 FOVs. Notably, SiGra is
shown to identify the most accurate spatial clusters of different cell
types (median ARI = 0.59). Its performance is especially better than
that of stLearn (median ARI = 0.22) and Scanpy (mean ARI = 0.25).
Comparedwith SpaGCN (meanARI = 0.27), Seurat (median ARI = 0.38)
and BayesSpace (mean ARI = 0.32), SiGra has relatively better perfor-
mance with identified clusters more consistent with manual annota-
tions. These comparison results demonstrate that SiGra improves the
identification of spatial clusters compared with existing methods for
single-cell spatial profiles.

The spatial clustering results are further scrutinized at the indi-
vidual FOV level (Fig. 2c). Of note, SiGra shows consistency between its
identified cellular identities and the ground truth, with the continuous
tumour region infiltrated with scattered immune cell clusters. In con-
trast, BayesSpace and Seurat misidentify the cellular anatomies as
either amixture of fragmental cell regions (FOV-1) or as highly blended
cell types (FOV-2). For FOV-1, BayesSpace misidentifies the neutrophil
as lymphocytes;meanwhile, it incorrectly identifies some tumour cells
as myeloid cells or neutrophils. Seurat fails to disentangle epithelial

Fig. 1 | Schematic overview of the SiGra method. a Graphical representation of
the spatial transcriptomics profiles. Each cell on the constructed spatial graph is
accompanied by its multichannel images and gene expression. b SiGra comprises

three graph transformer encoder-decoders (imaging, transcriptomics, and hybrid)
with an attention mechanism to incorporate the single-cell multimodal data for
simultaneous data enhancement and spatial domain recognition.
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cells from tumour cells. In FOV-2, BayesSpace misidentifies fibroblasts
as a mixture of myeloid cells and lymphocytes, while Seurat mixes
neutrophils with tumour cells without clear dissection of spatial het-
erogeneity. These results indicate that the comparedmethods lack the
capability of deciphering major spatial regions in SCST data.

The performance of the spatial domains identified by summariz-
ing the detected spatially heterogeneous cell identities is shown in
Supplementary Fig. 5. The tumour slice is pathologically annotated as
the tumour region (green), the desmoplasia region (red), and the
adjacent normal region (orange). SiGra achieves an ARI of 0.60, better
than other methods, including BayesSpace (ARI = 0.25), SpaGCN
(ARI = 0.10), Seurat (ARI = 0.10), stLearn (ARI = 0.10), and Scanpy
(ARI = 0.17). These results show that SiGra identifies reliable spatial
domains based on its accurately identified cell identities in SCST data.

SiGra enhances gene expression patterns that distinguish
intratumoral spatial heterogeneity
SiGra enhances the spatial gene expression data and improves down-
stream analysis for unveiling biological relevance. Herein, we perform
UMAP on raw data and enhanced data (Fig. 3a and Supplementary

Fig. 1b). Apparently, the enhanced data reveal better data topology
with different cell types better separated in the UMAP results. More-
over, the enhanced cell type-specific gene markers show prevalently
consistent expression in their corresponding cell types (Fig. 3b). For
example, the enhanced fibroblast marker gene DCN19 demonstrates
uniform high expression in fibroblasts and low expression in other cell
types. In contrast, in raw data, DCN presents sporadic expression in
fibroblasts but is highly expressed in other nonfibroblasts. Thus, SiGra
not only denoises false-positive expressions (e.g., DCN expression in
nonfibroblasts) and extreme values but also imputes missing values
(e.g., missing values of DCN expression in fibroblasts). Meanwhile,
SiGra-enhanced data exhibit topological expression of cell type-
specific markers (Fig. 3c). For example, after enhancement, CD6820

and MGP21 show elevated expression in myeloid- and endothelial cell-
enriched regions, respectively. The tumour-specific genes EPCAM22,
SOX423, and KRT724 show strong and uniform enrichment in tumour
regions, while these genes are not captured in the raw data of some
tumour cells (Fig. 3d). In addition, the enhanced SCST data are also
more comparable to the bulk RNA-seq data than the raw SCST data
(Supplementary Fig. 2a and Supplementary Note 1). These results
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the nontumor cell population. b Violin plots of the raw expression and the
enhanced expression of marker genes in different cell populations (endothelial:
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and the enhanced expression of marker genes (CD68, MGP, DCN, KRT7). d Spatial
visualization of the raw expression and the enhanced expression of tumour-related
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demonstrate the capability of SiGra to improve gene expression data
for better spatial cellular characterization.

To further prove that the data enhanced by SiGra are useful for
downstream analysis, we collect a combined list of candidate ligand‒
receptor (L-R) pairs from the International Union of Pharmacology
(IUPHAR)25, Connectome26, FANTOM526, HPRD27, the Human Plasma
Membrane Receptome (HPMR)28, and theDatabase of Ligand‒Receptor
Partners (DLRP)29, which encompass 815 ligands, 780 receptors, and
3,398 reliable L-R interaction pairs. Among them, genes of 660 L-R pairs
are included in this NanoString CosMx dataset. Across the 660 total L-R
interactions, 55 L-R pairs of enhanced data and 42 L-R pairs of raw data
were significantly associated (false discovery rate (FDR) <0.05), with 28
L-R pairs shared between enhanced and raw data (Fig. 3e). Further
interrogation indicated that those raw-specific L-R pairs were more
likely to be false positives, whichmay result from the original data noise
and the low data quality (Supplementary Fig. 2b and Supplementary
Note 1). These L-R-associated pairs in the enhanced data have great
biological relevance and facilitate the mining of cellular communica-
tions. Specifically, we further reveal the adjacencies between different
cell types (Fig. 3f, Methods) as well as the cell‒cell communications
considering both the neighbouring cell weights and the L-R commu-
nication strength (Fig. 3g). Tumour-associated fibroblasts play a central
role in the tumour microenvironment and are not only adjacent to
tumour cells and lymphocytes (Fig. 3f) but also demonstrate strong
communication with them (Fig. 3g). In contrast, lymphocytes and
myeloid cells are close to each other but have less communication.
Collectively, this evidence demonstrates that the enhanced data con-
tribute to downstream analysis and are crucial for revealing cellular
interactions, which otherwise would be hidden due to data sparsity.

SiGra enhances the single-cell spatial data of Vizgen MERSCOPE
SiGra is further evaluated on the other SCST dataset of mouse livers
compiled by Vizgen MERSCOPE, which consists of 347 genes and
395,215 cells. In this dataset, SiGra reveals different spatial cell clusters
(Supplementary Fig. 2c). For better visualization, we focused on the
four major cell clusters (Fig. 4a). Cluster 1 (C-1) and cluster 2 (C-2) are
located adjacent to the central and portal veins, respectively, while
cluster 3 (C-3) and cluster 4 (C-4) are located at blood vessels.
Importantly, the enhanced data by SiGra reveal histologically mean-
ingful liver-specific gene expression patterns in different regions
(Fig. 4b). For example, SiGra remarkably enhances hepatocyte hall-
mark genes Cyp2c3830 and Axin231, which are predominantly expressed
near blood vessels. The endothelial cell markers Cd3432 (Fig. 4b) and
Vwf33 (Supplementary Fig. 2d) were also clearly present in the central
veins, portal veins, and sinusoids. The rawdata, in contrast, shownoisy
expression of these genes in the nonrelevant anatomic regions. For
example, Cd34 and Vwf show scattered false signals in the nonblood-
vessel regions and missing expression in smaller veins, especially
sinusoids. Thus, essential cellular anatomical structures in the liver
tissue, such as central veins, portal veins, and sinusoids, can be clearly
identified by the enhanced expressions of Cd34, Vwf, and Axin2, but
not the noisy raw data, which are further confirmed by the UMAP plots
(Fig. 4c). From the boxplots of the expression of these hallmark genes
(Fig. 4d), both C-1 and C-2 are suggested to be hepatocytes (high
Cyp2c38 and Axin2 expression), C-2 is enriched with periportal hepa-
tocytes (higher Axin2 expression), C-4 contains mainly endothelial
cells (high Cd34 and Vwf expression), and C-3 is likely to be hepatic
stellate cells. Notably, the enhanced cell-type specific genes are only
enriched in their restricted regions but not in irrelevant regions, sug-
gesting that SiGra does not introduce noticeable artefacts in the
enhanced data. Further comparison between enhanced data with bulk
RNA-seq shows the improved spatial data quality by SiGra (Supple-
mentary Fig. 2e and Supplementary Note 1).

In addition, more differentially expressed genes (DEGs) were
identified from the enhanced data than from the rawdata (Fig. 4e). For

example, the enhanced data recovered 59, 42, and 35DEGs for C-1, C-2,
and C-3, respectively, while the raw data only identified 12, 13, and 12
DEGs, respectively. The identified DEGs in the enhanced data also
showed a higher average log2-fold change (logFC; C-1: 0.8; C-2: 0.89; C-
3: 0.79) than the raw data. The large overlaps between the DEGs
revealed by the enhanced spatial data and the single-cell RNA-seq data
further verify the improved data quality after enhancement (Supple-
mentary Fig. 2f and Supplementary Note 1). Moreover, the enhanced
data reveal meaningful and associated L-R pairs. As shown in Fig. 4f,
among the 64 L-R pairs identified in this dataset, 13 L-R pairs in the
enhanced data and 12 L-R pairs in the raw data were significantly
associated (FDR <0.05), with 9 of these L-R pairs shared between the
enhanced and raw data. Further investigation revealed that the
enhanced-specific L-R pairs also presented strong associations in the
bulk RNA-seq data of mouse livers34 (Wnt2-Fzd4: 0.581; Pkm-Cd44:
0.885; Col1a2-Itga2b: 0.641; Dll1-Notch2: 0.798). However, the raw-
specific L-R pairs have no associations in the bulk data, indicating that
those raw-specific L-R pairs are more likely to be false positives. These
results demonstrate that SiGra facilitates the recovery of liver-specific
genes and L-R interactions, which enables better characterization of
the spatial architecture of mouse liver tissue.

SiGra improves the identification of known layers in brain
tissues
To show that SiGra not only outperforms existing methods in single-
cell spatial data but also in spot-based spatial transcriptomics data,
here we analyse the 10x Visium datasets from the human dorsolateral
prefrontal cortex (DLPFC). These datasets consist of 12 tissue slices of
human brains, covering up to six neuronal layers and white matter
manually annotated by the original study. To evaluate the bench-
marking performance, the identified spatial clusters are annotated
based on the matched overlap of spatial clusters and ground truth.
Figure 5a shows the ARI scores for all 12 tissue slices (Supplementary
Figs. 3 and 4), on which SiGra (median ARI: 0.57) outperforms Scanpy
(median ARI: 0.28), Seurat (median ARI: 0.29), stLearn (median ARI:
0.39), SpaGCN (medianARI: 0.40), andBayesSpace (medianARI: 0.44).

We further examined the DLPFC anatomical structures identified
by different methods. For tissue slice 151,507 (Fig. 5b), SiGra reveals
more accurate spatial regions than the other methods. Seurat identi-
fies Layer 4 scattered in the regions of Layers 3 and 5 without clear
boundaries. Scanpy, stLearn, and BayesSpace are not able to distin-
guish the anatomical shape of Layer 4. Figure 5c shows the other tissue
slice 151,676 with spatial regions identified by different methods. Only
SiGradeciphers the layer boundaries clearly, reachinggoodagreement
with manual annotations (ARI = 0.62), while other methods can only
achieve ARIs of less than 0.4. Specifically, stLearn intermingles Layer 2
with Layer 3, with additional mixtures of Layer 4 and white matter.
BayesSpace mixes Layer 4 with Layer 5 and misidentifies some white
matter as Layer 2, which leads to its poor performance. Interestingly,
although stLearn also utilizes histology information from the haema-
toxylin and eosin (H&E) images to capture morphological features, its
performance is substantially worse than that of SiGra, suggesting that
SiGra incorporatesmultimodal spatial features in amore effectiveway.
In addition, based on the latent embeddings of slice 151676 obtained
by different methods (Fig. 5d), SiGra presents much clearer separa-
tions of different anatomical layers, while Scanpy and SpaGCN only
discern white matter, failing to distinguish other neuronal layers. All
these benchmarking results show that SiGra is able to better identify
subtle spatial domains than other methods in spot-based spatial
transcriptomics data.

SiGra improves spatial gene expression for better structural
characterization
To further validate that SiGra enhances spatial gene expression, we
detected the DEGs of each domain in slice 151676. Compared with
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Fig. 4 | SiGra enhances the single-cell spatial data of Vizgen MERSCOPE.
a Spatial visualization of the cell clusters in the single-cell spatial data from mouse
liver tissue. b Spatial visualization of the raw expression and the enhanced
expression of liver-related genes (Cyp2c38, Axin2, Cd34). c UMAP visualization of
the raw expression and the enhanced expression of liver-related genes (Cyp2c38,
Axin2, Cd34). d Boxplots of the raw expression and the enhanced expression of
liver-specific genes in different cell clusters (C1: 63,300; C2: 44,173; C3: 39,823; C4:

29,170; Other: 190,645). In the boxplot, the centreline, box limits and whiskers
denote the median, upper and lower quartiles, and 1.5× interquartile range,
respectively. eComparisons of the number of differentially expressed genes (DEGs)
in cell clusters. The labelled number is the average logFC for that cell cluster.
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specific L-R pairs, respectively. Source data are provided as a Source Data file.
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the number of DEGs detected in raw data, SiGra detects more DEGs
specific to individual regions (Supplementary Data 1). For example,
with 232 DEGs of Layer 1 detected in raw data, 595 DEGs are found
specific to Layer 1 from enhanced data. Moreover, for each of the
neuronal layers, region-specific marker genes can be better identi-
fied after SiGra data enhancement (Fig. 6a). For example, MYH1135

presents enriched expression in Layer 1 (logFC = 2.96). C1QL236 and
CUX236 are overexpressed in Layer 2 and Layer 3, with logFC values of
1.74 and 1.44, respectively. SYT237 and FEZF238 are enriched in Layer 4
(logFC = 1.31) and Layer 5 (logFC = 1.42). PAQR639 shows dominantly
enriched expression (logFC = 2.9) in the white matter area. In con-
trast, these marker genes do not show clear expression patterns in
raw data, indicating the limits that raw data face in distinguishing
spatial domain boundaries. Violin plots further show the expression
of marker genes in raw data and enhanced data (Fig. 6b). Such
enhanced gene expression patterns are also observed in other
DLPFC slices, for example, slice 151507 (Fig. 6c and Supplementary
Data 2), whereRELN40 (logFC = 3.24) andADCYAP141 (logFC=2.81), i.e.,
markers of Layer 1 and Layer 2 present remarkable enhancement, in
contrast to their sporadic expressions in raw data. In addition, we
examined the layer-enriched gene markers identified in the
enhanced data, which showed high consistency with those of the
original study42 (Supplementary Note 2 and Supplementary Data 3).
These results demonstrate the capability of SiGra to reduce noise

and improve gene expression patterns in spot-based spatial tran-
scriptomics data.

Discussion
Spatial biology technology has rapidly evolved into the single-cell era2.
Commercially available in situ hybridization platforms such as Nano-
String CosMx SMI and Vizgen MERSCOPE have enabled spatial gene
expression profiling at subcellular resolution (50 nm) for 500–1000
targeted genes. Experimental in situ sequencing technologies such as
ExSeq43 expand SCST to the whole transcriptome. Spot-array spatial
transcriptomics technologies such as Stereo-seq44 and Seq-Scope45 are
also reaching subcellular resolution (500 nm–600nm). However, in all
these technologies, the resulting SCST data are limited by the low total
transcriptions per cell, noisy data, and substantial zeros, which raises
challenges in effective downstream analysis15. To accurately reveal
spatial and cellular anatomic structures and to enhance noisy gene
expression data, we developed the SiGra method, a graph artificial
intelligence model, to incorporate multimodal data, including multi-
channel IHC images, spatial adjacency cell graphs, and gene expres-
sion. The use of graph transformers over a spatially adjacent cell graph
aswell as the imaging-transcriptomics hybrid architecture allows SiGra
to effectively leverage the rich information from the high-content IHC
images as well as the spatial distribution. In SiGra, the multimodal
information from images and original transcriptomics are summarized
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at the single-cell level, with the information from neighbouring cells
selectively captured by the attention mechanism. With these technical
advances, the SiGra model outperforms existing methods and sig-
nificantly improves downstream data analysis.

SiGra is designed to utilize multimodalities, including multi-
channel images of cells and their niches, to address technological
limitations and achieve augmented spatial profiles. Designed as a
general-purpose tool for spatial transcriptomics data enhancement
and spatial pattern profiling, SiGra can be directly used not only for
SCST but also for spot-based spatial transcriptomics data. SiGra
demonstrates superior performance on three different platforms, in
both healthy and diseased tissues, and across different species, which
provides a general solution for existing spatial transcriptomics data
analysis pipelines. Notably, SiGra can identify spatial domains at dif-
ferent resolutions, depending on the data types and the applications.
For the spot-level spatial data that have a low spatial resolution and
consist of mixed cells/cell types in each spot, SiGra directly and
accurately identifies the spatial structures (Fig. 5), such as the anato-
mical layers in the brain cortex on DLPFC slices, by clustering the
latently represented spots. For the SCST with significantly high reso-
lution, SiGra identifies spatial regions at the cellular level (Fig. 2).
Meanwhile, on such high-resolution SCST data, SiGra is also able to
reveal the regional anatomic spatial structures by further summarizing
the Leiden clustering results with a dimensional moving window
approach (Supplementary Fig. 5 and Supplementary Note 3). The

effects of autofluorescence on SiGra are also examined in Supple-
mentary Fig. 6 and Supplementary Note 4.

In addition to its superior performance and technical advantages,
SiGra can be further improved in the future. First, as newer spatial
omics technologies46 continue evolving and new data modalities
continue to emerge, SiGra can be improved by incorporating new
omics data types, new image types, 3-D spatial information, etc., to
extend data exploration. The hybrid architecture allows SiGra to adapt
additional spatial information and incorporate multiomics data. As an
advanced deep learning model, SiGra also faces the limitations of the
black-box nature of artificial intelligence47–49. This can be ameliorated
through downstream analysis, such as cell‒cell interaction analysis.
Further development of SiGra will enhance the model interpretability
that can address some of the problems and provide insights into the
underlying mechanism in tissue ecosystems. As the capacity and effi-
ciency of experimental technologies continue to improve, SiGra is
anticipated to facilitate biological discoveries and insights into com-
plex tissues and diseases.

Methods
Data preprocessing and graph representation
Spatial transcriptomics data generated by different platforms,
including the NanoString CosMxTM SMI lung cancer dataset (Lung-9-
1)4, Vizgen MERSCOPE mouse liver dataset L1R1 released in January
202215, and 10x Visium datasets from the human dorsolateral
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prefrontal cortex (DLPFC)42, are preprocessed and represented in
uniform format (Fig. 1) for SiGra. The original spatial profiles are
converted to single-cell (or spot) images, single-cell (or spot) expres-
sion, and a spatial graph of adjacent cells (or spots), which serve as the
input for SiGra.

Regarding theNanoString Lung-9-1 dataset, the composite images
of the DAPI, PanCK, CD45, and CD3 channels from 20 FOVs, the cell
centre coordinates (from the cell metadata file), and the single-cell
gene expression file of 960 genes are used. For each cell, four 120-by-
120 pixel (21.6μm-by-21.6μm) images with the cell at the centre are
cropped from the images. Edges in the spatial adjacency graph are
constructed if the cell-to-cell distance (Euclidian distance) ≤ 80 pixels
(14.4μm). NanoString’s annotations of cell types are obtained from
their provided Giotto object. Regarding the Vizgen L1R1 dataset, ima-
ges of the DAPI staining and the three IHC boundary staining, the
single-cell expression data of 347 genes, and the cell centre coordi-
nates areused. The images in themiddleof the z-packs (z3) areused, as
recommended by Vizgen. These images are cropped into single-cell
200-by-200 pixel (21.6μm -by-21.6μm) images. Edges in the spatial
adjacency graph are constructed if the cell-to-cell distance ≤ 150 pixels
(16.2μm). Regarding the 10x Visium DLPFC dataset, the high-
resolution H&E images as well as the .h5 files (“filtered_feature_-
bc_matrix.h5”) are used as input. For each spot, three spot-specific
images (for the RGB channels) are extracted, with 50-by-50 pixel
(38.7μm-by-38.7μm) images. The cut-off distance for generating the
spatial graphbetween spots is 150pixels (116μm). The top 3000highly
variable genes were identified using the Seurat standard pipeline10 and
used for analysis. For all datasets, the raw counts of gene expression
were normalized by multiplying by 10,000, followed by log-
transformation. The parameters of the size of single-cell images and
the cut-off of cell-to-cell distance for constructing the spatial graph are
determined empirically depending on the cellular anatomy of the tis-
sue. In the spatial adjacency graph, most cells have 5–6
neighbouring cells.

In this way, the final graph representation of the original single-
cell or spot spatial transcriptomics data is a spatial graph G= V ,Eð Þ,
with vi 2 V representing the i th cell with i= 1, � � � ,n representing the
total N cells, eij 2 E representing the spatial proximity between two
cells vi and vj, and A as the adjacency matrix of the graph. Each cell vi
on the spatial graph is accompanied by multichannel images
M i = Mi,c

� �
, with c= 1, � � � ,C representing each imaging channel, and

gene expression g i = gi,k

� �
, with k = 1, � � � ,K representing genes.

The SiGra model
SiGra is a hybrid multimodal graph transformer framework with three
transcriptomics reconstruction modules: the imaging-based encoder-
decoder, the transcriptomics-based encoder-decoder, and the hybrid
encoder-decoder.
1. Imaging-based encoder-decoder. For a cell vi, the multichannel

images M i are transformed to a vector
xi � vec Mi,1

� �
, � � � ,vec Mi,c

� �� �T . An encoder with a series of
multihead graph transformer layers is used to project the imaging
vector to the latent space as zM,i and then reconstruct the gene
expression profile of this cell vi as ĝM,i. The images M j from
neighbouring cell vj 2 N vi

� �
are alsoused as the input, whereN �ð Þ

represents the neighbours in the graph G.
2. Transcriptomics-based encoder-decoder. The original gene

expression profile g i for cell vi, with g j for adjacent cells vj 2
N vi
� �

also as the input, is projected to the latent space as zg,i,
which is then used to reconstruct the gene expression of cell vi
as ĝg,i.

3. Hybrid encoder-decoder. The latent representation of the
imaging and transcriptomics features are catenated as ½zM,i,zg,i�,
further projected to hybrid latent feature zh,i, and then used to
reconstruct the gene expression for cell vi as ĝh,i through graph

transformer layers. The latent features zM,j and zg,j from
neighbouring cells fvjg are also used by the graph transformers.

Graph transformer convolutional layer. Multihead graph
transformer50 layers with an attention mechanism (Supplementary
Fig. 1) are the main components of the SiGra model. Briefly, for a cell
vi, the propagation of the graph transformer from the l layer to the

l + 1 layer is defined as h l + 1ð Þ
i =ReLUðW lð Þ

1 h
lð Þ
i +

P
vj2N við Þαi,jV

lð Þ
j Þ, where

the rectified linear unit (ReLU51) is used as the nonlinear gated
activation function. The attention module is defined as

αi,j = softmax
� �

Q lð Þ
i ,K lð Þ

j

	
P

u2N ið Þ

�
Q lð Þ

i ,K lð Þ
u

	 �, where:
query : QðlÞ

i =W ðlÞ
Q hðlÞ

i +bðlÞ
Q ð1Þ

key : K ðlÞ
j =W ðlÞ

K hðlÞ
j + bðlÞ

K ð2Þ

value : V ðlÞ
j =W ðlÞ

V hðlÞ
j +bðlÞ

V ð3Þ

and Q,Kh i � exp
�
QTK=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðh lð Þ

i Þ
q �

. The multihead attention values,
whose notation is omitted for simplicity, are concatenated.

Loss function. SiGra learns the reconstructed gene expression via a
self-supervised loss of combined MSE from gene embedding, image
embedding and combined embedding, with the loss function

L=
XN
i = 1

λ1LM,i + λ2Lg,i + Lh,i ð4Þ

where LM,i =
1
N

PN
i= 1 g i � ĝM,i

�� ��
2, Lg,i =

1
N

PN
i = 1 g i � ĝg,i

��� ���
2
,

Lh,i =
1
N

PN
i= 1 g i � ĝh,i

�� ��
2. In this work, the optimal parameters of λ1 and

λ2 were determined through grid-based hyperparameter fine turning.
For single-cell spatial transcriptomics data, the optimal parameters are
λ1 = 0.1 and λ2 = 0.1. For 10x Visium data, the optimal parameters are
λ1 = 1 and λ2 = 1. Details are provided in Supplementary Fig. 7a and
Supplementary Note 5.

The other hyperparameters of SiGra include two graph transfor-
mer layers for the imaging and the transcriptomics encoders (with
dimensions of 512 and 30 for the 1st and the 2nd layers, respectively),
one graph transformer layer for the hybrid encoder (based on gene
embeddings and image embeddings fromthe transcriptomics encoder
and from the imaging encoder), and two graph transformer layers for
imaging, transcriptomics, and hybrid decoders (where the dimension
of the first layer is 512, and the dimensionof the second layer is same as
that of the corresponding transcriptomics data). These hyperpara-
meters were determined by grid search (Supplementary Fig. 7b and
Supplementary Note 5). After training, SiGra outputs the hybrid
reconstruction ĝ = ĝh,i

� �
as the final enhanced expression profile. The

latent representation, z = zh,i
� �

, of the original SCST data is used for
spatial data clustering with the Leiden algorithm52 from the SCANPY
package11.

Spatial domain detection
For the spot-level spatial data that have a low spatial resolution and
consist ofmixed cells/cell types in each spot, SiGra directly detects the
spatial domains by clustering the latent-represented spots using Lei-
den. For single-cell spatial data, SiGra first identifies the cell types for
each individual cell by clustering the latent representation using Lei-
den and then reveals spatial domains via a dimensional moving win-
dow agglomeration approach53. Specifically, the spatially distributed
cells are summarizedby a circularwindowof diameter d sliding in both
the x and y directions across thewhole imagewith a given stride length
s. At each stop Ci,j with the coordinate ðxi,yjÞ, a vector ci,j � ½q1, . . . ,qt �
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representing the proportions of the SiGra-identified clusters (t) cov-
ered by the sliding window is calculated. All the stops fCi:jg are recur-
sively merged to k groups a1, . . . ,ak

� �
by hierarchical clustering

according to the cluster proportion vectors fci:jg. These agglomerated
groups are defined as spatial domains. The window radius d used in
Supplementary Fig. 5 is 100μm, which is consistent with the 10x Vis-
ium spatial resolution, with a stride s of 10μm. For fair comparisons,
the same moving window agglomeration approach is used in bench-
marking methods (Supplementary Fig. 5). The ground truth of the
anatomic spatial domains for the DLPFC slices and lung cancer slices
was obtained from the original study7 and the certified pathologist at
Indiana University Health (T.H.).

Benchmarking methods and comparison measurement
To evaluate the performance of SiGra, we compare it with five existing
methods: Seurat v410, Scanpy11, stLearn12, SpaGCN14, and BayesSpace13.
Seurat andScanpy are implementedbasedon their provided vignettes.
Briefly, for data preprocessing, 3000 highly variable genes were
selected for log normalization, and the top 30 principal components
(PCs) were calculated for spatial data clustering. BayesSpace is
implemented based on their package vignette. Specifically, the input is
the top 15 PCs of the log-normalized expression of the top 2000HVGs.
The nrep parameter is set to 50,000, and the gamma parameter is set
to 3. For stLearn, based on its tutorial, the stLearn.SME.SME_norma-
lized() function is performed on raw counts with parameters use_data
= “raw” and weights = “physical_distance”. The top 30 PCs of the SME
normalized matrix are then used for spatial data clustering and
visualization. SpaGCN is applied according to its recommended para-
meters in the package vignette. That is, the top 15 PCs of the log-
normalized expression of the top 3000 spatial variable genes are used
for spatial data clustering. Two hundred epochs are used for identi-
fying and refining spatial domains. The resolution parameter is selec-
ted to ensure that the number of clusters is equal to the ground truth.

Moreover, we comprehensively compared SiGra with MUSE54 and
STAGATE55 based on simulation data, SCST data, and 10x Visium data.
Additional ablation studies were also performed to investigate the
contributions of different components in the SiGra model. Details of
benchmarking and ablation studies are provided in Supplementary
Figs. 8, 9, and Supplementary Note 6.

To evaluate the performanceof eachmethod, weuse the adjusted
Rand index (ARI) to assess the agreement between the identified
spatial clusters and the manual annotation. Suppose Ŷ = ŷi

� �n

i = 1
represents the spatial clusters and Y = yi

� �n
i= 1 represents the ground

truth of n cells divided into k clusters. Then,
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where l and s denote the k clusters, nl =
Pn

i I ŷi = l
� �

, ns =
Pn

i I yi = s
� �

,
nls =

Pn
i,j I ŷi = l

� �
I yi = s
� �

, and I x = yð Þ= 1 when x = y, else I x = yð Þ=0. The
ARI ranges from 0 to 1 for increasing match between the identified
clusters with ground truth.

Identifying differentially expressed genes and adjacent cell
communications
To identify the differentially expressed genes (DEGs), the Wilcoxon
test from the Scanpy package11 was used. DEGs of each spatial region
were selected with a 5% FDR threshold (Benjamin-Hochberg adjust-
ment) and a log2-fold change greater than 1 (logFC > 1).

To reveal the neighbours of each cell type, we aggregate its
neighbouring cells by cell type and divide the average number to
reveal its weighted neighbours. Theseweightedneighbours are further
used to characterize the adjacent cell communications. Specifically,
the interaction strength of each L-R pair is calculated by multiplying
their association score and their average expression. Then, we aggre-
gate the interaction strength of each L-R pair by cell type to be the
communication strength of two cell types. The neighbouringweight of
two cell types is further multiplied by the communication strength of
these two cell types for the final adjacent cell communications. In this
way, the higher the value of the adjacent communications, the stron-
ger the interaction between two neighbouring cell types.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single-cell spatial dataset of NanoString CosMx SMI contains 20
FOVs, which is profiled by the CosMx SMI on Formalin-Fixed Paraffin-
Embedded (FFPE) samples of the non-small-cell lung cancer (NSCLC)
tissue4. The dataset (Lung-9-1) and other lung cancer slices are available
from https://nanostring.com/products/cosmx-spatial-molecular-imager/
nsclc-ffpe-dataset/. We used the Vizgen MERFISH Mouse Liver Map
dataset that contains a MERFISH measurement of a 347 gene panel.
Sample L1R1 (liver 1, replicate 1) was used and downloaded from https://
info.vizgen.com/mouse-liver-data?submissionGuid=da03b470-e111-
425a-b6d2-16d34342f4fe, which includes the list of detected transcripts,
gene counts per cell matrix, additional spatial cell metadata, cell
boundarypolygons, andDAPI images. Thehumandorsolateral prefrontal
cortex (DLPFC) 10x Genomics Visium datasets consists of 12 samples42.
Each of the samples is manually annotated with up to six cortical layers
andwhitematter. Transcriptomicsdata andhematoxylin andeosin (H&E)
images of corresponding tissue sections are downloaded from http://
research.libd.org/spatialLIBD/. Source data are provided with this paper.

Code availability
SiGra is provided as a Python package available at https://github.com/
QSong-github/SiGra56, with detailed tutorials for general applicability
on different SCST platforms. The web interface (SiGra Viewer) is
available at http://sigra.sulab.io and enables users to explore the
enhanced data in UMAP figures and spatial domains.
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