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Dislocation interactions during plastic
relaxation of epitaxial colloidal crystals

Ilya Svetlizky 1,4 , Seongsoo Kim1,4, David A. Weitz 1,2,3 & Frans Spaepen1

The severe difficulty to resolve simultaneously both the macroscopic defor-
mation process and the dislocation dynamics on the atomic scale limits our
understanding of crystal plasticity. Here we use colloidal crystals, imaged on
the single particle level by high-speed three-dimensional (3D) confocal
microscopy, and resolve in real-time both the relaxation of the epitaxial misfit
strain and the accompanying evolution of dislocations. We show how dis-
location interactions give rise to the formation of complex dislocation net-
works in 3D and to unexpectedly sharp plastic relaxation. The sharp relaxation
is facilitated by attractive interactions that promote the formation of new
dislocations that are more efficient in mediating strain. Dislocation networks
form fragmented structures, as dislocation growth is blocked by either
attractive interactions, which result in the formation of sessile dislocation
junctions, or by repulsion fromperpendicular segments. The strength of these
blocking mechanisms decreases with the thickness of the crystal film. These
results reveal the critical role of dislocation interactions in plastic deformation
of thin films and can be readily generalized from the colloidal to the
atomic scale.

Atoms in crystalline materials are arranged in a perfect periodic
order. Plastic deformation, which requires breaking this order, is
mediated by nucleation and motion of topological line defects in
the crystalline structure called dislocations1. Due to the complex-
ity of dislocation interactions, the collective behavior of these
defects remains one of the principal challenges of materials and
statistical physics2. The wide range of time and length scales makes
numerical modeling of dislocation dynamics computationally
demanding3,4. Of particular value, therefore, are fundamental
experiments on simple systems in which all the elements (stress,
strain and dislocation configurations) can be closely controlled
and observed.

Here we focus on the mechanisms by which dislocations are
formed in thin films. It has been observed that nucleation and growth
of dislocations relaxes the elastic strain induced by the lattice-
mismatched substrate, if the crystals are grown above a critical
thickness5–7. The early stages of the relaxation process are well

understood5,8,9, as dislocations are well separated and their interac-
tions can be ignored. During the later stages of relaxation, dislocation
interactions play a crucial role; however, determining the interaction
mechanism presents a significant challenge, with proposed mechan-
isms giving contradictory predictions9–14. Our ability to identify the
appropriatemechanism is limitedby thedifficulty to image in real-time
both the relaxation of strain and the full 3D structure of the dislocation
networks in atomic crystals.

Greater insight into thin film dislocation dynamics is also tech-
nologically important15,16: On the one hand, dislocations have detri-
mental effects such as decreasing electrical conductivity17,
photoconductivity17, ferroelectricity18, thermoelectricity19, and photo-
nic band-gap20, while on the other hand, they have been used to
advantage to control the functionality of thin films, enabling
enhancement of superconductivity21,22, switching of electrical
resistance23, and fabrication of ordered nanostructures24 and nanos-
cale ferromagnetic elements25.
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Here we use thin colloidal crystals to determine the interplay
between dislocation interactions and plastic relaxation. The advantage
of colloidal crystals lies in the size of the particles, ~ 1μm. On the one
hand, the particles are large enough so that they can be visualized by
optical microscopy and on the other hand, the particles are small
enough so that their thermal motion gives rise to a non-zero elastic
crystal stiffness26. This advantage has been exploited extensively to
study dislocations in two-dimensional lattices27–31. In three-
dimensional (3D) crystals, however, the topology of dislocations fun-
damentallymodifies the nature of their interactions. Here, we use high
speed confocal microscopy to image 3D colloidal crystals in real-time
and on the single-particle level. Crystals are strained by growing them
on mismatched templates32–35, in direct analogy with epitaxial atomic
thin films. We resolve the relaxation process by direct measurements
of the elastic strains and reconstruction of the 3D dislocation net-
works. The combination of the two reveals how pairwise dislocation
interactions can, on the one hand, enhance the relaxation process and
give rise to unexpectedly sharp plastic relaxation, and on the other
hand, hinder dislocation motion and lead to complex dislocation
networks. These results are key to our fundamental understanding of
dislocation interactions in thin films and can readily be mapped to the
atomic scale, given the topological nature of dislocations.

Results
We disperse silica particles with a diameter 2R = 1.55μm in an index-
matched fluid with Fluorescein-NaOH dye and control the Debye
screening length of the particle solution by addingNaCl. Thin colloidal
crystals are grown over an area of 1 cm2 to a height of h = 55μmat 5μm
per hour, by sedimentation of the particles on either flat or templated
substrates. We visualize in three dimensions five well separated
regions of volume 200 × 200× 60μm3 every 7−15min, using a
spinning-disk confocal microscope. Particle positions are then
obtained by processing the confocal images. Further details are dis-
cussed in the Methods section.

As a reference lattice for crystal growth on a template, we first
grow one on a flat substrate. The two simplest crystalline structures

that can be formed by stacking closed packed hexagonal layers are
face-centered cubic (fcc), with ABCABC stacking (Fig. 1a), and hex-
agonal close-packed (hcp), with ABAB stacking. Colloidal hard-sphere
crystals, however, are expected to form random stacking (rhcp), as the
free energy difference between the fcc and hcp structures is small36,
and indeed rhcp structures have been observed when crystal nuclea-
tion from the liquid is homogeneous37,38. However, when crystals are
nucleated on a flat substrate, scattering experiments37 and
simulations39 have shown that they grow predominantly with a fcc
structure, as observed here (Fig. 1b, green). The occasional hcp
stacking (Fig. 1b, orange) form stacking faults in the fcc structure.
These confocal images account for the nature of this behavior: the
sample is composed of multiple fcc grains, which occur because
nucleation takes place at multiple positions on the substrate simulta-
neously. The grains have a columnar shape and grow by stacking of
hexagonal layers, as demonstrated in Fig. 1b by two snapshots in time
of a growing crystal, where the grain boundaries are marked by the
gray particles (see also Supplementary Movie 1).

Due to the particle buoyant weight, the increase of pressure along
the thickness of the crystal results in its increasing compression, as
demonstrated by the profiles of the volume-per-particle v and the
particle-particle distance in a plane parallel to the substrate d0

k in
Supplementary Fig. 1. Interestingly, we find that the crystal compres-
sion is isotropic so that the unit cell preserves its cubic shape (Meth-
ods). Therefore, the decrease of vwith h is reflected by the decrease of
d0
k , averaged over the thickness of the crystal, shown in Fig. 1d (top) by

the blue symbols.
To impose strain, we grow crystals on templates with a square

pattern33,40 and spacing dt = 1.69(5)μm, which is larger than the mea-
sured d0

k ðhÞ, as marked by a dashed line in Fig. 1d (top). The templates
constrain the first layer of particles and dictate growth of a single
crystal along the [001] fcc direction in which particles follow the
A0B0A0B0 stacking [Fig. 1a (bottom)]. During the early stages of growth,
the in-plane particle-particle distance, d∥, follows the template d∥ = dt,
as seen in Fig. 1d (top) and Supplementary Fig. 1. This also implies that,
in contrast to unconstrained crystals, the compression with h is not
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Fig. 1 | Plastic relaxation and definition of strain measure. a Particle stacking of
{111} and {001} fcc planes. b Snapshots of a crystal growing on a flat substrate
(unconstrained) show growth of columnar grains along the [111] direction. The
crystal height and the direction of gravity are denoted by h and g, respectively.
Grains are predominantly fcc (green) with hcp stacking faults (orange). Grain
boundaries are marked by gray particles that are not identified with a crystalline
structure. c Snapshots of a crystal growing ona [001] template. Ath = 25μm(c, left)
the crystal is defect free. By the time the crystal reaches h = 40μm (c, right) hcp
stacking faults have formed. d, top Evolution of d0

k and d∥, particle-particle

distances in a plane parallel to the substrate, averaged over the crystal thickness,
for crystals grown on a flat substrate and on a template, respectively (see panel a).
The onset of relaxation is marked by a sharp decrease of d∥ as h reaches a critical
thickness hc ≈ 26μm. d, bottom Total (εtot) and elastic (εe) strains in constrained
crystals, as defined in the main text. For h < hc imposed strains are accommodated
elastically, εtot = εe, whereas for h > hc, relaxation is mediated by plastic strain, εp.
The shadows denote the variation over five distinct observation regions of a
growing crystal. Here, the ionic strength I = 2 mM and template spacing
dt = 1.69(5) μm.
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isotropic but is accommodated by contraction of the unit cell just in
the direction parallel to gravity. As crystals reach a critical height
hc ≈ 26μm, which marks the onset of instability, d∥ begins to relax to
the values measured for the unconstrained crystals grown on a flat
substrate d0

k [Fig. 1d (top) and Supplementary Fig. 1]. The perfect fcc
structure we find for h < hc [Fig. 1c (left)] is no longer stable; the
relaxation process is accompanied by formation of multiple hcp
stacking faults [Fig. 1c (right) and Supplementary Movie 2].

We define the strain of constrained crystals, by using the uncon-
strained crystal as the reference frame, in analogywith thedefinitionof
the deviatoric strain. The total strains imposed by the templates in the
[100] and [010] directions, which are equal, are given by εtot = ðdt �
d0
k Þ=d0

k and increase with h, as shown by the blue symbols in Fig. 1d
(bottom). Importantly, during crystal growth, the imposed strains
result from contraction of the reference spacing d0

k with h, and do not
involvemechanical stretching of the template spacing dt. Similarly, the
elastic in-plane strains are given by the difference between the particle
distance in the constrained and unconstrained crystals, εe = ðdk �
d0
k Þ=d0

k and reveal two regimes of deformation. Whereas for h < hc,
elastic strains account entirely for the imposed strains, εe = εtot, as
crystals growabovehc, εe is relaxed, as shownby the orange symbols in
Fig. 1d (bottom). This relaxation, and any subsequent increase of εt
with h, is accommodated by plastic deformation of the crystal,
εp = εtot − εe.

We can address the relaxation process systematically by varying
the imposed lattice mismatch. We take advantage of the nearly-hard
sphere nature of our suspensions and decrease the electrostatic
repulsion between the charged silica particles by adding NaCl and
increasing the ionic strength, I. We find that, for the range 2 < I < 8mM,
despite the relative softness of the inter-particle potentials, crystals are
well described by the hard-sphere equation of state, with effective
particle diameters 1.6 < 2Reff < 1.63μm [Supplementary Fig. 2]. There-
fore, we increase the mismatch with the template, dt = 1.69μm, by
increasing I and decreasing the effective size of the particles. Crystals
with ahigher values of I andhighermismatch reachhigher εe values and
begin to relax at lower values of hc, as can be seen by comparing the
green (I = 4mM) andorange (I = 2mM) examples in Fig. 2a. To decrease
the lattice mismatch we grow crystals on templates with a smaller
spacing, dt = 1.63μm. In this case, crystals reach even lower εe values
and begin the relaxation process at even higher values of hc, as shown
by the purple example in Fig. 2a. These three examples demonstrate
that thinner crystals are stronger: critical elastic strains, εce, that mark
the onset of instability, are higher in thinner crystals. This observation
is systematically addressed in Fig. 2b, where the results of multiple
experiments are compiled and values of εceðhcÞ are plotted. Remark-
ably, thin colloidal crystals can be strained elastically as much as 2%.

What is the underlying mechanism for relaxation? Plastic defor-
mation in crystals ismediated by dislocations. To examine this process
in detail we extract dislocation lines and their Burgers vectors, b, from
the measured particle positions41. We identify four Shockley partial
dislocations, one on each of the four {111} planes, with the Burgers
vectors of the type b= 1

6 h112i1, as illustrated in a diagram in Fig. 3a,
where, for simplicity, only two out of the four planes are presented.
Shockley dislocations are nucleated within the bulk of the crystal by
forming closed dislocation loops (green lines) that bound hcp stacking
faults (red particles), as shown in Fig. 3b (middle). The dislocation
loops expand and reach the top and bottom surfaces of the crystal.
Whereas the top surface is free and allows dislocations to escape from
the crystal, the bottom surface is stiff and repels dislocations. Dis-
location lines, therefore, have a typical shape: a long segment of edge
character, parallel to and slightly above the template, called a misfit
dislocation, which bends and forms screw-like segments (threads) that
extend across the crystal thickness (Fig. 3a). As the relaxation process
proceeds, the length of the misfit dislocations grows by glide of the
dislocation threads [Fig. 3b (bottom)].

Remarkably, we find that (attractive) interactions between dis-
locations play a significant role in the relaxation process; two Shockley
dislocations on separate {111} planes combine along the intersection
line of the planes and form an (inverted) Lomer-Cottrell dislocation1

with the Burgers vector 1
6 ½112�+ 1

6 ½11�2� ! 1
3 ½110�. The formation of

Lomer-Cottrell dislocations is a two-step process: First, a Shockley
dislocation is formed [Fig. 3c (top)], whereupon a second dislocation
loop emerges in the vicinity of the first [Fig. 3c (middle)] and then
expands and combines into a Lomer-Cottrell dislocation [red line in
Fig. 3c (bottom)] in a zipping-like process. Although Lomer-Cottrell
dislocations are immobile and are not allowed to glide on either of the
{111} planes, they can extend by the motion of the Shockley threads.
Lomer-Cottrell dislocations play an important role in strain-hardening
of metals1, and their formation in colloidal crystals have not been
documented before. We show next that their ability to efficiently
release misfit strain has major implications for the relaxation process.

We define a network of misfit dislocations by excluding the
thread part of dislocations, which extends across the crystal height,
and take into account only the misfit part of dislocations, which
extends parallel to the interface, as defined in Fig. 3a. These net-
works consist of two perpendicular sets of parallel lines along the
two principal directions of the template, [110] and ½1�10�, as shown in
Fig. 4a, where the network is projected along the thickness of the
crystal. The dislocation networks consist of both Shockley and
Lomer-Cottrell dislocations, although after initial rapid growth of
the networks, the Lomer-Cottrell type dominates (Supplementary
Fig. 3). The growth of the network occurs by nucleation of new

Fig. 2 | Measuring and modeling plastic relaxation in colloidal crystals.
a Evolution of the elastic strains εe in growing crystals with differentmismatchwith
the template. When crystals reach a critical thickness hc and elastic strain εce, which
mark the onset of instability, sharp relaxation of εe takes place.Modeling, basedon
Eq. (2), of relaxation by Shockley (dashed line) and Lomer-Cottrell (solid line)
dislocations, captures the critical and residual strains, respectively. b Critical

boundary εceðhcÞ compiled from experiments with different mismatch levels and
predicted by the model; thinner crystals can sustain significantly larger elastic
strains. a,b Legends indicate ionic strength, I (mM), and template spacing, dt. Error
bars denote the variation over five distinct observation regions of a growing
crystal. The orange example corresponds to the experiment analyzed in Fig. 1.
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dislocations and extension of existing ones, as can be seen by
comparing the left and right panels in Fig. 4a.

Motion of a single dislocation results in a displacement b of par-
ticles across the slip plane. The average plastic strain associatedwithN
dislocations in a volume V, each spanning a slipped area S, is given by
εij =

1
2V

�1PN
k ðbk

i S
k
j +b

k
j S

k
i Þ1. In particular, the misfit strains in the two

principal directions of the template, [110] and ½1�10�, which are equal in
our experiments, aremediated by two sets of parallel dislocations that
grow along the ½1�10� and [110] directions, respectively (Fig. 4a). The

plastic strain, which relaxes the elastic misfit strain, therefore, can be
written as

εp =
X

γ =S,LC

bγ
kL

γ=A ð1Þ

Here, the sum over γ refers to Shockley (S) and Lomer-Cottrell (LC)
dislocations and bS

k =a=
ffiffiffi
3

p
and bLC

k =2a=
ffiffiffi
3

p
are the in-plane compo-

nents of their Burgers vectors, where a is the fcc lattice constant. Lγ is

Fig. 4 | Plastic relaxation by growth of dislocation networks. a Snapshots of a
growingmisfit dislocation network, obtained by excluding dislocation threads, are
plotted for different values of h, marked in (b). Colors correspond to different
types of dislocations specified in the legend. b Plastic strain profiles εp(h) obtained
by either using Eq. (1) (top) or by a direct measurement εp = εtot − εe (bottom).

c When predictions of Eq. (1) are plotted against the measured εp, all profiles
collapse to a single line with a slope of one. b, c Legends indicate ionic strength, I
(mM), and template spacing,dt. The shadowsdenote the variationoverfivedistinct
observation regions of a growing crystal.
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½1�10� direction, bend, and thread across the thickness of the sample. The two
Shockley dislocations along [110] direction are omitted for clarity. b–e Time series
ordered from top to bottom.Onlyhcp particles stacking faults anddislocations are
presented.b Shockleydislocations (green),marking theboundaries of the stacking
faults, nucleate by forming closed dislocation loops, and expand by glide of the
thread segments. c A Lomer-Cottrell (LC) segment (red), 1

3 ½110�, is formed by

nucleation of a 1
6 ½11�2� loop in the vicinity of a pre-existing 1

6 ½112� misfit segment.
Elongation of LC segments takes place by the glide of the Shockley threads. See
definitions in (a).d Shockley thread segments of a LC dislocation react to form two
Hirth thread segments (blue). As Hirth dislocations are immobile, the expansion of
the Lomer-Cottrell segment is blocked. e Glide of the threads is blocked by
repulsion from perpendicular misfit segments (middle) as suggested by the
bending of the two threads. As the strain accumulates, crossing is observed (bot-
tom). The apparent discontinuity of the segments at the crossing points (bottom)
is due to a failure of the dislocation detection algorithm.
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the total length of all themisfit segments in an areaA, so that Lγ/A is the
areal density of each dislocation type.

Colloidal crystals provide a unique opportunity to examine
directly the classical prediction of Eq. (1), as they allow direct mea-
surement of strains and visualization of dislocations. We obtain εp(h)
profiles for the three typical experiments considered in Fig. 2a by
either a directmeasurement εp = εtot − εe [Fig. 4b (bottom)] or by using
Eq. (1) and summing over L [Fig. 4b (top)]. When the predictions of Eq.
(1) are plottedwith respect to themeasured εp, all profiles collapse to a
single curve with a slope of one. This excellent agreement confirms
that the plastic strains are mediated entirely by the growth of the
network of misfit dislocations.

Although Eq. (1) establishes the connection between the length of
the misfit network and εp, modeling the development of these net-
works poses significant challenges. To gain insight into this process we
address the relaxation mediated by the Shockley and by the Lomer-
Cottrell dislocations separately. The total elastic energy per unit area,
for each type of dislocations, is approximated, following the classical
misfit theory for isotropic linear elastic materials5, by the sum

Uγ =
Z h

0
Eγ
eldz + L

γ=A
Z Z

Eγ
Ldxdz ð2Þ

where, again, γ refers to either S or LC. Here, Eγ
el ∼μðεtot � bγ

kL
γ=AÞ2 is

the bulk elastic energy density, with μ the shear modulus. The energy
density Eγ

L is associated with the energetic cost of introducing dis-
locations, where we ignore interactions among them, and integrated
over xz plane, perpendicular to the dislocation line (Methods).

The misfit theory is adapted here to model relaxation in colloidal
crystals: We include in the model the height-dependence of εtot(z) and
μ(z) due to the change of the osmotic pressure with z 40, which results
from themass densitymismatch between the particles and the solvent
(Methods).We also account for the stiff substrate42,43 by including in Eγ

L
the finite distance of dislocations and their repulsion from the bottom

interface13 (Supplementary Figs. 4 and 5).We expect, however, that our
calculations provide a slight over estimate of Eγ

L, as particles are free to
move slightly inside the wells of the template, so that the idealized
no-slip boundary conditions we assume here are not fully satisfied.
To account for that, we introduce an adjustable parameter α, so that
Eγ
L ! αEγ

L (Methods).
The two terms in Eq. (2) are affected by Lγ in opposite ways; thus,

equilibrium values of Lγ/A, and therefore εe, are determined by a
minimization of the energy functional ∂Uγ/∂Lγ = 0. The resulting εe(h)
calculated for Shockley (γ = S) dislocations agree with the onset of
relaxation for α = 0.8, as shown by the dashed lines in Fig. 2a and b.
Remarkably, for the sameα, εe(h) calculated for Lomer-Cottrell (γ = LC)
dislocations describes the low residual values of εe. This analysis
reveals the nature of the instability: the onset of relaxation is set by the
high εe required to nucleate and grow Shockley dislocations, whereas
the sharp relaxation to the low εe values is facilitated by the pair-wise
interactions which allow formation of much more effective Lomer-
Cottrell dislocations.

We nowaddress the structure of the dislocation network.We start
by defining the areal density of dislocations, L/A, where, for simplicity,
we do not distinguish between the two types of dislocations, and take
the total dislocation length to be L = LS + LLC. Crystals grown on tem-
plates with a highermismatch are associated with higher values of L/A.
Notably, our measurements demonstrate that the values of L/A do not
provide a unique definition of the network, as demonstrated in Fig. 5b
by examples I and II; although both networks have similar densities
(Fig. 5a), they show a very different structure. Whereas thicker crystals
with a lower lattice mismatch (I) are characterized by well ordered
arrays of long dislocation segments, thinner crystals with higher lattice
mismatch (II) show a very fragmented network that consist of short
segments.

To quantify the different structures of the dislocation networks,
we consider two length scales. The average spacing between disloca-
tions is defined by Λ = (L/A)−1, as illustrated in Fig. 5b (left). It can be

Fig. 5 | Images and measures of misfit dislocation networks. a Evolution of the
areal density of dislocations L/A = 1/Λ during growth of crystals with different
degrees of lattice mismatch. b Three examples of dislocation networks marked in
(a) and (c). The average dislocation spacing Λ = (L/A)−1 and segment length l are
illustrated by double arrows in examples I and II, respectively. Examples of Hirth
sessile threads (blue) and blocking by perpendicular segments are indicated by
blue and green arrows, respectively. Note that the apparent discontinuity of the
segments at the crossing points in examples I and III is due to a failure of the

dislocation detection algorithm. c Evolution of l/Λ with h. See legend in (a).
a–c Examples I and II demonstrate networks with distinct structure, despite an
identical values of L/A. In contrast, examples I and III show crystals of the same
thickness. Their networks are similar: both are characterized by l/Λ ≈ 6, despite a
significant difference in areal dislocation density. The time evolution of the net-
works is shown inSupplementaryMovies 3 and4.The shadows in (a) and (c) denote
the variation over five distinct observation regions of a growing crystal.
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seen simply that this applies to an ordered array of infinitely long
parallel dislocations. The average length of dislocation segments is
defined by l = L/(Ns), where Ns is the number of dislocation segments
obtained by counting the average number of dislocation end-points
[see illustration in Fig. 5b (middle)]. To characterize dislocation net-
works, we suggest a non-dimensional order parameter, l/Λ. Frag-
mented dislocations networks (example II) are characterized by low
values of the order parameter, l/Λ ~ 1, whereas dislocation networks
composedof ordered long arrays (example I) are characterizedbyhigh
values, l/Λ > 1. Interestingly, we find that l/Λ increases with h; a frag-
mented structure evolves into a rather ordered structure of long seg-
ments (Fig. 5c). This observation is demonstrated by examples II and III
in Fig. 5b that show snapshots of the network in a growing crystal with
a large lattice mismatch. Remarkably, the structure of dislocation
networks in crystals grown to the same h, but with a different lattice
mismatch, is similar; dislocation networks in examples I and III are
characterized by a similar value of l/Λ, despite a significant difference
in L/A.

We find two types of dislocation interactions that are critical to
the evolution of l/Λ. Growth of Lomer-Cottrell segments is often
blocked by the formation of Hirth sessile junctions1. The two Shockley
threads, 1

6 ½112� and 1
6 ½11�2�, at one end of a Lomer-Cottrell segment

[Fig. 3d (top)], are converted into twoHirth threads, 13 ½100� and 1
3 ½0�10�,

respectively, by reacting with a third Shockley dislocation, 1
6 ½1�1�2�,

which is nucleated near dislocation vertex at the bottom [Fig. 3d
(middle)] and glides towards the top free surface of the crystal [Fig. 3d
(bottom)]. The Lomer-Cottrell segment is blocked and is no longer
able to expand by the glide of the two threads, as Hirth dislocations are
immobile. Multiple segments blocked by the Hirth dislocation threads
can be clearly identified by the blue v-shaped end points in networks
with a fragmented structure, as indicated by a blue arrow in example II
in Fig. 5b. Alternatively, our measurements show that expansion of
dislocations can also be blocked by interaction with perpendicular
misfit segments, as we demonstrate in the middle panel of Fig. 3e; two
Shockley threads of a Lomer-Cottrell dislocation are repelled by a
perpendicular segment, as suggested by the evident upward bending
of the two threads. These measurements provide the first direct 3D
visualization of their blocking mechanism, and confirm previous the-
oretical analysis9,12,13. An example of this blocking mechanism is high-
lighted by a green arrow in example II in Fig. 5b.

Interestingly, dislocations can overcome repulsion by perpendi-
cular segments, as shownby thebottompanel in Fig. 3e, and alsounzip
the formed Hirth dislocation threads (Supplementary Movie 4). The
measured increase of l/Λ with h (Fig. 5c) implies, therefore, that the
strength of both blocking mechanisms should decrease with increas-
ing thickness. Whereas the analysis of Hirth junctions in thin films has
not been considered, previous theoretical studies9,12,13 indeed predict
that blocking by perpendicular segments is less effective in thicker
crystals.

Discussion
We have demonstrated the role of dislocation interactions in the
plastic relaxation of strained colloidal crystals. Our analysis shows that
these interaction mechanisms can be readily transferred to atomic
systems, despite some of the unique properties of colloidal crystals,
such as the relatively simple hard-sphere interparticle interactions and
height-dependent osmotic pressure (see Modeling strain relaxation
section in the Methods). These interaction mechanisms are particu-
larly relevant to systems that satisfy several conditions: First, plastic
strain should be mediated by Shockley partial rather than perfect
dislocations. Dissociation of perfect into partial dislocations1 in hard-
sphere colloidal crystals33,34,44–46 is energetically favorable due to van-
ishing stacking fault energy36. Partial dislocations, however, are not
unique to colloidal crystals and are common to low-stacking fault
metallic and semiconductor films47. Second, we have considered here

tensile misfit strain, whereas we expect different relaxation mechan-
isms if the substrate imposes compression. Finally, our analysis builds
on the equilibrium theoretical framework, suggesting that lattice
resistance to dislocation nucleation and glide plays a secondary role
and does not inhibit dislocation kinetics. Although in some atomic
systems the lattice resistance is strong and can result in a metastable
film growth well above the critical height, our results should apply
when this kinetic barrier to dislocation motion is lowered by elevating
the film’s temperature.

The comprehensive description of the relaxation process we
provide here not only highlights the fundamental connection between
dislocation interactions and the relaxation process, but also has
practical implications. For example, accounting for the Shockley to
Lomer-Cottrell transition that results in lower-than-expected residual
strain should help improve the design of epitaxial semiconductor
layers, as strain directly affects their band-gap. Furthermore, inde-
pendent control of the spacing and length of the dislocation segments
by misfit strain and film thickness can be utilized for defect engi-
neering: longer segments are beneficial when dislocations are used as
an easy path for the lateral transport of charges or dopants; the for-
mation of fragmented networks with a high density of dislocation
threads canbe helpful surface seeds for the growthof novelmicro- and
nanostructures17,24. Finally, dislocations also play an important role in
colloidal self-assembly48. As assembly of colloidal crystals is a primary
route for creating photonic band-gap materials20, the demonstrated
control of dislocations could potentially be used to add different
functionalities49, such as creating optical propagation channels.

Methods
Sample preparation, crystal growth and imaging
We use silica particles (Micromod, Sicastar) with a diameter
2R = 1.55μmdispersed in amixture of 64/36 (% by volume) of dimethyl
sulfoxide (DMSO) andwater thatmatches the indexof refractionof the
particles (n = 1.43). The gravitational height is lg = kBT/Δρgvp = 0.23μm,
where vp is the particle volume and Δρ is the difference between the
particle and fluid densities. We add to the fluid 0.66 − 1mM
Fluorescein-NaOH dye, to allow fluorescence imaging and 0 − 5 mM
NaCl to further decrease the Debye screening length. We avoid using
higher concentrations of NaCl, as the particles begin to aggregate.
Importantly, to obtain reproducible results, the particles are washed
into the fluid mixture for several consecutive cycles of centrifugation
and exchange of the supernatant. The concentration of ions in the
solution is characterized by the ionic strength, I, defined by
I = 1=2

P
ciz

2
i , where the sum includes both anions and cations, ci is the

molar concentration, and zi is the charge number. For Fluorescein-
NaOH, assuming full dissociation, I = 3cFluo, and for NaCl, I = cNaCl,
which gives 2 < I < 8mM for the concentrations we use.

Crystals are grown by sedimentation of the particles onto #1.5
coverslips with a 5 mm × 5 mm square pattern of ~ 500 nm deep
wells with 1.63(5) μm or 1.69(5) μm spacing, fabricated by photo-
lithography and reactive ion etching. These templated coverslips
are glued to a 316 stainless steel cylindrical sample cell, 10 mm in
diameter and 7 mm in height. To allow slower sedimentation, typi-
cally of ~ 5 crystalline layers per hour, we double the cell height by
sample extension made of polyethylene. We find no evidence for
rate-dependence of the relaxation process if the crystal growth rate
is doubled. Furthermore, no dislocation nucleation is observed if
the final height of the grown crystals is kept slightly below the cri-
tical value. In fact, if dislocations are induced in crystals below the
critical height, for example, by increasing the laser power of the
confocal, they quickly disappear once the laser power is reduced.
We also note that due to the large thickness of the fluid, a tem-
perature difference of ~ 1 °C between the objective and the
sample cell is sufficient to generate slow convection currents in
the fluid, which, over the course of the experiment, perturb the
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sedimentation of the particles and the growth of the crystals. We
find that by heating the sample cell by ~ 1 °C, these currents are
prevented.

Particles are imaged with a Yokogawa CSU-W1 spinning-disk
confocal scanner with 25 μm size pinhole and Zyla 4.2 sCMOS cam-
era, set up to 60ms exposure. The confocal module is attached to an
inverted Leica microscope body (DMi8) equipped with 63 × /1.3
Glycerol objective lens, providing a field of view of 200 μm× 200μm
with negligible distortions. To avoid deterioration of the image
quality during the time of the crystal growth (~10 h), we substitute
Type-G immersion liquid (n = 1.45) with a Silicone-based fluid, Gelest
Alt-143 (n = 1.445). The objective lens ismounted on a piezo objective
scanner (PI, P-725), which allows us to image a 65 μm thick volume
with 0.22μm steps in less than 60 sec. We find that using high laser
intensities can locally destroy the colloidal crystal. Furthermore,
frequent acquisition even with mild laser intensities can facilitate
formation of dislocations. We, therefore,minimize the laser intensity
and find that limiting our imaging to every 7-15 minutes per field-of-
view prevents these artifacts.

Comparing sedimentation of constrained and unconstrained
crystals
We compare here the growth process of crystals that are constrained
by the templates with unconstrained crystals that are grown on flat
substrates. We calculate the volume per particle (Voronoi volume, v)
for all particles that are classified as either fcc or hcp50 and obtain the
profiles of v(z) by averaging over the crystalline layers. Here z is the
coordinate along the gravity axis, where z =0 denotes the substrate.
v(z) increases with z as the crystal-fluid interface is approached,
reflecting the decrease of osmotic pressure due to the decreasing
weight of the particles, as demonstrated for constrained (orange) and
unconstrained (blue) crystals in Supplementary Fig. 1a.

Although constrained and unconstrained crystals show identical
v(z) profiles, the corresponding profiles of the in-plane particle-parti-
cle distance, d∥(z), are different. The d∥(z) profilesmeasured during the
growth of unconstrained crystals are an increasing function of z and
reflect the profiles of v(z) [Supplementary Fig. 1(b, blue)]. In fact, we
find that unconstrained crystals are compressed isotropically and the
unit cell has a cubic shape, as the measured d∥ profiles are related to
the v(z) profiles by dkðzÞ= ð

ffiffiffi
2

p
vðzÞÞ1=3. Compression in the direction

perpendicular to the gravity axis is not intuitive and reflects the
behavior of fluids and not single crystals. This compression requires
squeezing particles from the upper to the lower layers of the crystal.
While this exchange of particles is impossible in perfectly ordered
crystals, it can be accomplished through the grain boundaries or for-
mation and annihilation of stacking faults. Non-trivial dynamics of the
staking faults during the sedimentationprocess are indeedobserved in
Supplementary Movie 1. We will provide a detailed analysis of this
process in a future publication.

In contrast, constrained crystals are not compressed isotropically.
Below the critical height, h < hc, d∥(z) follows closely the lattice spacing
imposed by the template d∥(z) = dt, as demonstrated for h = 22μm by
the orange symbols in Supplementary Fig. 1b. Compression of the
crystals, due to the weight of the particles, is accommodated only by
the contraction of the unit cell in direction parallel to gravity. As the
crystals grow above hc, d∥(z) relaxes within the bulk of the crystal by
roughly 3%, approaching the profile of the unconstrained crystal, as
shown by an example for h = 40μm in Supplementary Fig. 1b. Impor-
tantly, relaxation of d∥(z) leaves no signature in the profile of v(z), and
the tetragonal unit cell, therefore, reverts to the cubic shapemeasured
for unconstrained crystals.

To quantify the relaxation process, we average the d∥(z) profiles
over the crystal thickness. These averages, for both constrained and
unconstrained crystals, are plotted for increasing crystal height in
Fig. 1d of the main text.

Effects of electrostatic repulsion on sedimentation profiles
Silica suspensions are stabilized by electrostatic repulsion between the
particles, resulting from accumulated charge on the particle surfaces.
The screening length is controlled by the amount of ions added to the
fluid, which is quantified by the ionic strength of the solvent, I. The
ionic strength affects the profiles of v(z); the volume per-particle is
smaller for higher values of I, as shown by three examples with dif-
ferent values of I in Supplementary Fig. 2. The functional form of the
v(z) profiles, however, is not affected by the changes in I.

It is instructive to compare our measurements with a model for
fully hard-sphere crystals. In general, the profiles of v(z), or equiva-
lently, profiles of the volume fraction, ϕ(z/lg), are obtained by solving

dΠðzÞ
dz

= � kBT
vp

ϕ
lg
, ð3Þ

if the density dependence of the osmotic pressure Π(ϕ) is known. For
dispersions of hard-sphere colloidal particles, the equation-of-state is

ΠðϕÞ= kBT
vp

ϕZ ðϕÞ, ð4Þ

where Z(ϕ) is the compressibility factor given in ref. 51. Interestingly,
we find that, despite the softness of the particle-particle potential, the
hard-sphere model accurately describes the measured profiles
v(z) = vpϕ−1(z), if effective particle volumes vp are used, as shown by
the dashed and solid black lines in Supplementary Fig. 2. The effective
particle diameters 2Reff that correspond to the inferred values of vp
(legend in Supplementary Fig. 2) are 2% − 5% larger than the particle
diameter, 2R = 1.55μm. We find that, for the different values of I, the
surface-to-surface particle separation distance, 2Reff − 2R, is between
40 nm to 80 nm, which is more than ten times larger than the
estimated Debye screening length. In this work we exploit this nearly-
hard-sphere behavior of our suspensions to control the strains
imposed on the crystals.

Dislocation-substrate separation distance
Close examination of the 3D structure of dislocations presented in
Fig. 3 of the main text and Supplementary Fig. 4a reveals a slight
separation distance between the misfit dislocation segments and the
templated substrate. To characterize this observation we measure the
total length of misfit segments, which includes both Shockley and
Lomer-Cottrell typedislocations, in thin slices of volume, definedby an
area A and width dz =0.5μm. The dislocation volumetric density,
L/Adz, is plotted in the inset of Supplementary Fig. 5b as a function of z,
coordinate along the crystal thickness [see coordinate system in Sup-
plementary Fig. 5a]. Similar profiles are generated for different values
of h, from which we obtain the average separation distance between
the substrate and dislocation segments, δ, as plotted in themain panel
of Supplementary Fig. 5b. Interestingly, δ does not vary significantly
during crystal growth. Considering the forces acting on the misfit
dislocations13, the balance between the repulsion from the substrate
and the downward Peach-Koehler forces, that originate from themisfit
strain, implies that δ should be an increasing function of h. This
equilibrium condition, however, is not satisfied in our experiments as
the majority of dislocations (~80%) are of the Lomer-Cottrell type
(Supplementary Fig. 3); Lomer-Cottrell dislocations are sesile and can
not adapt their z position after their formation. We find, however, that
δ varies between the different experiments and indeed increases with
decreasing level ofmismatch as summarized in Supplementary Fig. 5c,
where the measured δ are plotted versus the critical thickness, hc.

Modeling strain relaxation
We consider strain relaxation in a thin film of an isotropic linear elastic
material characterized by a shear modulus μ and a Poisson ratio ν. As
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the lateral dimensions of the film are much larger than its height and
the length of dislocation segments, we ignore any lateral edge effects.
The total elastic energy (per unit area) is approximated5,6 by the sumof
the bulk elastic energy and the energetic cost associated with intro-
ducing a network of non-interacting dislocations U =Uel +UL:

U =
Z h

0
Eeldz +2

L
A

Z Z
S
ELdxdz ð5Þ

Here, L/A is the total length of dislocations per area, Eel and EL are the
corresponding energy densities, and the factor of 2 accounts for the
two perpendicular arrays of dislocations, which, for simplicity, was
omitted in the main text. The first term in Eq. (5) can be calculated by
decomposing the bulk elastic strain εe = εtot− εp into two parts: (1) εtot
is the imposedmisfit strain, which results from the difference between
the film and substrate lattice-spacing and (2) εp = b∥L/A is the strain
relaxed by dislocations, where b∥ is in-plane component of the Burgers
vector. In this case, Eel = χμðεtot � bkL=AÞ2, where the numerical factor
χdepends on the choice of the loading conditions, aswill be addressed
below. The second term in Eq. (5) is obtained by integrating EL over an
area S, perpendicular to the dislocation line, with outer and inner radii
h and rc, respectively [see Supplementary Fig. 5a]. The latter, known as
the dislocation core radius, is used to regularize the mathematical
singularity along the dislocation line and is taken as rc = b/β, with β
often considered to be of order unity46.

In the simplest form of the classical thin film theory, the film and
the substrate are assumed to have identical elastic moduli. In this case,
dislocations are expected to form at the interface separating the film
and the substrate, and the total energy is

U = χμðεtot � bkL=AÞ2h+2
L
A

μb2

4πð1� νÞ log
h
rc

� �
ð6Þ

where the second term is the energy (per area) of an edge dislocation.
The elastic strain of the film is obtained by energy minimization ∂U/
∂(L/A) = 0:

εe = εtot � bkL=A=
b2

=bk
4πð1� νÞχ

logðh=rcÞ
h

ð7Þ

The critical height hc is determined by setting L/A =0, and the increase
of h above hc results in the decrease of εe. Equation (7) demonstrates
that Lomer-Cottrell dislocations b = a/3[1, 1, 0] are more efficient than
Shockley dislocations b = a/6[1, 1, 2] in relaxing strain: the residual
elastic strain εe(h) relaxedby LCdislocations is lower, as b2

=bjj =a
ffiffiffi
2

p
=3

and b2
=bjj =a

ffiffiffi
2

p
=2 for LC and S, respectively.

We adapt the classical thinfilm theory to address the relaxation of
colloidal samples by including in the model the height-dependence40

of the osmotic pressure and particle density (Supplementary Fig. 2).
The misfit strain is defined by εtot = ðdt � d0

k Þ=d0
k , the difference

between the undeformed crystal lattice-spacing and template spacing
d0
k and dt, respectively. The height-dependence of εtot(z) is attributed

to d0
k ðzÞ. We take d0

k to be the in-plane nearest neighbor distance
d0
k ðzÞ= ð

ffiffiffi
2

p
vðzÞÞ1=3, where v is the volume per particle. The shear

modulus is given by μðzÞ= 3ð1�2νÞ
2ð1 + νÞ KðzÞ, where the bulk modulus profile

K(ϕ) = −ϕ−1∂Π/∂ϕ−1 is obtained from theϕ(z) solution to Eq. (3) and Eq.
(4). The calculated μ(z) profile is used to evaluate the integrals in Eq.
(5). Here we neglect the height-dependence of ν and take ν =0.2426.

We further account in our model for the infinite stiffness of the
substrate. To obtain EL, we consider only interactions between dis-
locations and the template; interactions between dislocations and the
top free surface anddislocation-dislocation interactions are neglected.
The solution for an edge dislocation at a distance δ [Supplementary
Fig. 5a] above an interface of perfectly bonded two semi-infinite
materials is given in42,43. Here we assume no-slip boundary conditions

at the template and consider the limit of infinite elastic contrast
between the twomaterials. The Airy-stress function, given explicitly by
the solution, is numerically differentiated to obtain the two-
dimensional stress tensor σij(x, z). We find that the strains inferred
from this solution agree well with the strain fields measured in the
vicinity of the Shockley and Lomer-Cottrell dislocation segments
(Supplementary Fig. 4). ELðx,z;δ,μ,νÞ is evaluated according to
EL =

1
2Σσijεij for x, z∈ S [Supplementary Fig. 5(a)]. EL, therefore,

accounts for both the self-energies of dislocations and their interac-
tions with their images. We expect, however, that our calculations
provide a slight overestimate of EL, as particles are free to move
slightly inside the wells of the template so that the idealized no-slip
boundary conditionswe assumehereare not fully satisfied. To account
for that, we introduce an adjustable parameter α, so that EL ! αEL.

Our measurements also show that crystals grown on templates
and the reference crystals grown on flat substrates show very similar
profiles of v(z) [Supplementary Fig. 1]. This suggests that the defor-
mation process takes place with the condition Σiεii = 0. This constraint
is important when energy densities Eel and EL are calculated and
whenever strains are transformed to stresses and vice versa. For
example, for bi-axial elastic strain we obtain χ = 6, which is in contrast
with the classical plane stress (σzz =0) theory in which
χ = 2(1 + ν)/(1 − ν).

Finally, εp is obtained by a variation of the energy functional (Eq.
(5)), ∂U/∂(L/A) = 0:

εp =
Z h

0
μðzÞdz

 !�1 Z h

0
μðzÞεtotðzÞdz �

α
χbk

Z Z
S
ELðx,z; δ,μðzÞ,νÞdxdz

 !

ð8Þ
whereas the elastic strain is defined by εe =

R h
0 εtotdz � εp.

We arenow inaposition to compare the relaxationmodelwith the
measured strains. We use 2Reff = 1.63μm and dt = 1.69μm to calculate
the profiles of μ(z) and εtot(z), and find that for the range of values used
in the experiment thedifferences are insignificant. The functional form
of δ(h) is obtained by linear regression of the measured values of δ, as
shown by a solid black line in Supplementary Fig. 5c. The only two
adjustable parameters are α and β. We find that the relaxation model
for Shockley dislocations accurately describes our measurements for
α = 0.8 and β = 1, as shown by a black dashed line in Supplementary
Fig. 5d. Importantly, for the same values of α and β, the model for
Lomer-Cottrell dislocations describes well the residual strains, as
shown in Fig. 1a of the main text. The choice of β = 1 is consistent with
the strain analysis in Supplementary Fig. 4d and with ref. 52.

The agreement between the model and the measured strains
supports the idea that the sharp relaxation results from the formation
of the more effective Lomer-Cottrell dislocations. We expect that this
result is readily transferred to atomic systems, as a qualitatively similar
scenario is suggested by Eq. (7).

Data availability
The data is available on request.
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