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Propagationpathways of Indo-Pacific rainfall
extremes are modulated by Pacific sea sur-
face temperatures

Felix M. Strnad 1 , Jakob Schlör1, Ruth Geen 2, Niklas Boers 3,4,5 &
Bedartha Goswami 1

Intraseasonal variation of rainfall extremes within boreal summer in the Indo-
Pacific region is driven by the Boreal Summer Intraseasonal Oscillation
(BSISO), a quasi-periodic north-eastward movement of convective precipita-
tion from the Indian Ocean to the Western Pacific. Predicting the spatio-
temporal location of the BSISO is essential for subseasonal prediction of
rainfall extremes but still remains a major challenge due to insufficient
understanding of its propagation pathway. Here, using unsupervised machine
learning, we characterize how rainfall extremes travel within the region and
reveal three distinct propagation modes: north-eastward, eastward-blocked,
and quasi-stationary. We show that Pacific sea surface temperatures modulate
BSISO propagation—with El Niño-like (La Niña-like) conditions favoring quasi-
stationary (eastward-blocked) modes—by changing the background moist
static energy via local overturning circulations. Finally, we demonstrate the
potential for early warning of rainfall extremes in the region up to four weeks
in advance.

The Indo-Asia Pacific region and its population of around 2.5 billion
people receive most of its annual rainfall during the monsoon season
from June throughSeptember (JJAS)1. Adefining featureof the region is
the intraseasonal variation of heavy precipitation and convergent wind
circulation2, which occurs periodically on time scales of around 40
days during boreal summer3. Precipitation peaks and troughs are
known as “active” and “break” periods4, the active phase being often
marked by widespread extreme rainfall events (EREs)5. The intrasea-
sonal timings of active and break periods can leave long-lasting
impacts on crop yields and harvest, and suddenly occurring EREs often
wreak havoc on rural and urban infrastructures6.

The Boreal Summer Intraseasonal Oscillation (BSISO) exerts a
substantial influence on precipitation dynamics over the oceans and
landmasses of the Indo-Pacific domain and constitutes amajor source
of rainfall variability and the occurrence of EREs on intraseasonal time

scales3. Active phases of the BSISO are initiated in the Indian Ocean
triggering a forced Kelvin wave response to the east of the convective
anomaly. As the eastward propagating convective system reaches the
Maritime Continent, the convection weakens, andmoist Rossby waves
are emanated, which then move north-westwards toward India. This
results in a northwest-southeast tilted band of heavy rainfall that ran-
ges from southern Pakistan in the northwest end to the Philippine Sea
and Guam in the southeast. This rainfall band then slowly propagates
northward and eastward, finally dissipating over the western Pacific
around two weeks later.

Various theories have been put forth to elucidate the BSISO’s
propagation mechanism. The traditional view suggests that the
initiation produces easterly wind flows associated with a slowly east-
ward propagating convective Kelvin wave7,8. The northward propaga-
tion is explained via the vertical shear mechanism, which posits that
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the background seasonal mean vertical wind shear interacts with
upwardmoving air parcels in the BSISO convective center and, due to
the meridional gradient of their vertical velocities, generates cyclonic
vorticity and boundary layer convergence to the north of the BSISO
cloud band7,9. More recently, however, observed fluctuations in sea
surface temperatures (SSTs) that appear coherently with BSISO
convection10 have received enhanced attention, emphasizing the role
of air-sea interaction. The idea is that the energy source for the pro-
pagation is provided by wind-induced surface heat exchange11

through the feedback processes of the uprising air associated with
convection12. Based on this mechanism, another compelling explana-
tion has been put forth to account for the northeastward propagation,
known as the moisture mode theory13–15. It extends the eastward pro-
pagation concept of the Madden-Julian Oscillation (MJO)16, which is
mainly observed during boreal winter, to the boreal summer season.
Following the initiation of anomalous convection over the tropical
Indian Ocean, moistening to the east and drying to the west of the
anomalous convection, a typical characteristic of bothMJO and BSISO,
drive its eastward propagation. It has been explained as a result of the
advection of the MJO moisture anomalies by background zonal
winds14, the advection of background moisture by the anomalous
flow17, or the combination of both components15. Further studies
emphasized the role of the meridional advection caused by the
anomalous zonal advection18 and the coupling between MJO convec-
tion and the mean monsoon flow19 to explain the northward propa-
gation. The theory is supported by empirical evidence derived from
observational data17,20 and has been recently bolstered by advance-
ments in theoretical understanding which incorporate both MJO and
BSISO characteristics into a unified framework21.

Most observational studies concur with the theories and taken
together, the combined movement of the eastward and northward
propagation characterizes the “canonical” BSISO propagation2: A
dominant low-frequency mode (30–60 days)22 in the form of a deep
convection zone carrying heavy rainfall emerges in the equatorial
Indian Ocean and moves simultaneously eastward and northward,
forming a northwest-southeast tilted convection band which, after
transgressing the Maritime Continent barrier, progresses further to
the Pacific Ocean2,3,23,24 (exemplified in Figs. S11 and S12). However, not
every anomalous convective activity in the Indian Ocean that is asso-
ciated with the BSISO follows the canonical propagation pathway.
Several studies have reported anomalous convective activity that fails
to propagate north-eastward and remains stationary in the equatorial
Indian Ocean25,26. One possible factor modulating the BSISO propaga-
tion could be the sea surface temperature (SST) variability associated
with the El Niño Southern Oscillation (ENSO), as it is known to affect
the rainfall dynamics during the South Asian summer monsoon sea-
son,mainly through inducing changes in theWalker circulation27,28. But
empirical evidence to show clearly that the ENSO influences BSISO
propagation is still lacking and the interactions of the Pacific SSTs with
the north-eastward propagating convective BSISO system remain
poorly understood to date.

Here, we investigate the spatial patterns associated with the
propagation of Indo-Asia Pacific rainfall extremes and show that they
are clearly linked to different phases of the BSISO. We further address
the influence of the SST background state by analyzing the occurrence
of synchronous EREs over large spatial areas in the Indo-Pacific
domain. We use the fact that the BSISO is a large-scale convective
system; thus, BSISO-driven EREs are likely to emerge as spatiotempo-
rally organized weather systems connected via long-range
teleconnections29. We develop a simple heuristic to identify regions
of synchronous BSISO-driven EREs by using the framework of climate
networks derived fromobservational rainfall event data30. Ourmethod
identifies statistically robust geographical regions that tend to have
similar active and break phase timings. BSISO propagation can thus be
investigated as the progression of EREs from one region to the next.

Based on these propagation pathways, we cluster them by using an
unsupervised spatial clustering method and discover three distinct
propagationmodes of the BSISO. We further find that the background
state in the tropical Pacific does affect BSISO propagation but not its
initiation in the equatorial Indian Ocean.

While BSISO’s impact on annual monsoonal rainfall has been
analyzed thoroughly3,31–33, the propagation pathways of rainfall
extremes linked to the BSISO and the potential influence of the SST
background state have received less attention. Previous studies have
shown that propagation patterns of convective anomalies during the
May-June period exhibit distinct variations compared to those
observed from August to October12 and that ENSO can affect BSISO
intensity34 and propagation over theMaritime Continent. In particular,
it was found that the premoistening in the Western Pacific, primarily
modulated by ENSO, is influencing the eastward propagation35. El
Niño-like (LaNiña-like) conditions suppress (enhance) the propagation
over theMaritime Continent36. BSISO activity in the East Asian-western
North Pacific region was shown to be influenced by ENSO37 and the
variability in the northward propagation of the BSISO has been related
to different cloud hydrometeors38. Also, the east-, north- and north-
eastward propagation of BSISO-related convection has been investi-
gated, based on predefined propagation directions18 or on the basis of
convective anomalies in the equatorial Indian Ocean39. However, these
studies do not report any influence of the background SST state on the
propagation, and the causes for varying propagation pathways remain
unresolved. A mechanistic understanding of the propagation diversity
is still lacking, limiting the forecast skill of the BSISO40 and the ability of
numerical models to describe correctly the north-eastward propaga-
tion over the Indo-Pacificdomain3,41. Ourwork offers a newperspective
on BSISO diversity with implications for improving climate model
simulations and shows the potential to develop early-warning signals
of EREs along the propagation pathway on subseasonal time scales in a
prediction period of more than four weeks in advance.

Results
Fingerprint of the BSISO on the spatial organization of EREs
In order to explore the BSISO propagation pathway in boreal summer
from June through September (JJAS), we first detect its signature in
regions with similar active and break phase timings. We thus identify
geographical regions where EREs (defined locally as days with rainfall
sums above the 90th percentile of wet days) occur synchronously
(within up to 10 days) on average over the boreal summer JJAS data
period, and whose average ERE timings are distinct from the rest of the
study area. The regions identified correspond to “communities” of a
climate network constructed by estimating event synchronization29,42–44

from extreme rainfall event data of the Indo-Asia Pacific domain (illu-
strated schematically in Fig. 1 and explained in detail in “Methods”). As
our community detection model is inherently probabilistic, we repeat
the community detection stepmultiple times and use the distribution of
different community detection outputs (Fig. 1c, d) to quantify the
membership likelihood of spatial locations of belonging to a particular
community (Fig. 1e). The low variances in the shape of the communities
(Fig. S4) confirm that the communities are stable manifestations of
spatial patterns associated with synchronous EREs.

The community detection reveals six geographical regions,
labeled here as the equatorial Indian Ocean (EIO), Bay of Bengal (BoB),
Maritime Continent (MC), South Asia (SA), West Pacific (WP), and
North India-China (NIC) (Fig. 2a). EIO consists solely of the equatorial
and northern Indian Ocean, whereas the BoB region connects India
with the Maritime Continent via the Bay of Bengal. The V-shaped form
of the BoB regionhas been reported inmodeling studies of the BSISO7.
SA is a northwest-southeast tilted region connecting the South East
Asian Monsoon domain with central India also reported in previous
BSISO studies8,24,39. WP is located in the North-Western Pacific north of
theMaritimeContinent and reveals a long south-north shape along the
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coastline of East Asia including the island of Japan. NIC is solely over
land, including the Himalayan Mountains, the Tibetan Plateau, the
Ganges Delta, and the Chinese mainland. The regions of synchroniza-
tion show long spatial extension, e.g., the SA spans over approximately
9000 km from South Pakistan in the west to the West equatorial
Pacific in the east. The community structure indicates stable syn-
chronization patterns of EREs in both west-east as well as south-north
directions.

Propagation of EREs. During boreal summer, EREs propagate along
the sequence of the regions EIO→BoB→MC→ SA→WP, i.e. from
southwest to north-east, in approximately 25 days (Fig. 2b). Such a
propagation pathway has also been reported in previous studies12. We

find that EREs which occur in EIO are particularly likely to take place in
BoB +4 days later (Fig. 2c). In the sameway, we see that EREs in BoB are
likely to arrive at MC at +4 days later (Fig. 2d), from MC to SA with
around +6 days (Fig. 2e) and from SA to WP at approximately
+6–11 days later (Fig. 2f). EREs within NIC do not show any significant
lagged correlation to the other regions, most likely because it is pri-
marily over land, unlike the other regions. The propagation sequence
of EREs along the identified regions is uncovered by using “days of
maximum synchronization” within EIO (using the community-specific
ERE index, explained in “Methods”), denoted as day 0, and counting
the number of EREs in all communities during these and the following
30 days. The maximum time delay between EREs of different com-
munities is estimatedby lead-lag correlation analysis. This propagation

Fig. 1 | Identification of communities of synchronous Extreme Rainfall Events.
a The dataset comprises a collection of N spatially distributed (depicted as gray
circles) rainfall time series (only every 5th location shown).bTheprecipitation time
series are transformed into extreme event series, estimated locally by days that
exceed the 90th percentile of all wet days. The network is constructed by point-to-
point comparison using the event synchronization technique29,42–44, which quanti-
fies the degree of synchronizationbetween all pairs of single event series (ei, ej) (see
“Methods”, Eq. (2)). c The network is represented by its N ×N adjacency matrix
A, where Aij= 1 if the synchronization between locations i and j is statistically sig-
nificant (denoted by blackdots inA).dCommunities are identified as blocks inAby
reordering rows and columns using a probabilistic community detection algorithm

based on the Stochastic Block Model (SBM, see “Methods”). e The network nodes
within these blocks correspond to the spatial locations. f The membership like-
lihood describes the probability of a point belonging to a respective community
estimated by the overlap of the 100 independent runs. One exemplary community
is displayed (other communities: Fig. S4). Hatched regions indicate areas without a
sufficiently large number of extreme rainfall events (EREs), and, thus, are excluded
from the analysis. g The community-specific synchronous rainfall index (SRI(t))
counts the number of synchronously occurring EREs per day within a community
(see “Methods”, Eq. (4)). The time series shown is for illustrative purposes only. The
blue stars indicate the local maxima above the 90th percentile of the SRI(t) index,
referred to as days of maximum synchronization.

Article https://doi.org/10.1038/s41467-023-41400-9

Nature Communications |         (2023) 14:5708 3



scheme can also be observed for specific events (see Supplementary
Note 5, Fig. S11, S12).

BSISO modulates the ERE occurrences. We find that, except for the
NIC, in all regions synchronous EREs are significantly more likely to
occur in some particular phases of the BSISO (Fig. 3). We estimate the
dependencies between phases of the BSISO (as defined in23) and the
regions of synchronous EREs (Fig. 2a) using a conditional dependence
test interpreted as the conditional probability of synchronous rainfall
events subject to (i) phase (ii) active (inactive) BSISOdays. Aswedefine
days of high synchronization within a community as the top 10% of the
community-specific synchronous ERE index, by definition at most 10%
of days in JJAS are days of maximum synchronization (dashed lines in
Fig. 3). The corresponding null model for a day being a day of high
synchronization (P(EREs = 1)) is therefore by construction 10%. For the
NIC region, the likelihood of ERES for certain BSISO phases is not
considerably different from the null model (Fig. 3f). Therefore, here-
after, we ignore the NIC region and focus on the other five regions (see
Supplementary Note 14 for a discussion on the NIC). While an active
BSISO increases the likelihood in the communities substantially,
inactive days are distributed close to the null model (Fig. 3a–e). The
influence of the propagating BSISO on the BoB region (Fig. 3b)also
helps to explain the occurrence of the asymmetric V-shaped form
(Fig. 2a) resulting from the decreasing zonal wind speed north- and
southward of the equator. We observe that the regions that are pre-
dominantly oceanic (Fig. 3a–e) show a substantially increased like-
lihood for certain BSISO phases. The effect of the Maritime Continent
barrier is reflected in the comparably lower likelihood for the MC
region (Fig. 3c) but it still shows an increased likelihood for BSISO

phase 4 and 5. The dependency of the occurrence of EREs and the
BSISO can also be shown by a correlation analysis of the community-
specific synchronous ERE indices to the BSISO index (Fig. S18), as well
as by a linear regression test (see Supplementary Note 7). We also
observe the BSISO characteristic 30-60 day oscillation2,3,22 in all the
community-specific synchronous ERE indices (Fig. S7). The commu-
nitiesMCandWP resemble the 10–20dayoscillation (Fig. S7c, e)which
has been reported in that region45.

Modes of BSISO propagation determined by Pacific SST back-
ground state
The preceding subsection has demonstrated that the BSISO plays a
crucial role in shaping the spatial distribution of extreme rainfalls and
provides insights into potential propagation pathways (Fig. 2b).
However, the signal from the BSISO in the Equatorial Indian Ocean
towards the Western Pacific weakens over time (Fig. 2c–f). Therefore,
we investigate potential drivers of this diversity in propagation. Since
BSISO propagation is clearly accompanied by the ERE progression and
the occurrence of regions of highly synchronous rainfalls (Fig. 2), we
consider the days ofmaximum synchronization in the EIO region to be
potential BSISO initiation time points. We create for each individual
time point two Hovmöller diagrams of outgoing longwave radiation
(OLR) anomalies in the zonal andmeridional direction to capture both
the east- and northward propagation characteristics of the BSISO. The
composited Hovmöller diagrams for the initiation time points show
discernible patterns of eastward propagation through the Maritime
Continent and simultaneous northwardpropagation, but nevertheless,
the clarity of the propagation pattern diminishes approximately
5–10 days post initiation, indicating a degree of variability within the

Fig. 2 | Communities of synchronous extreme rainfall events in the Indo-Pacific
domain andpropagation characteristics.The communities are determined using
a probabilistic community detection algorithm and overlaps of 100 independent
runs. a Six regions of synchronous extreme rainfall events (EREs). These are labeled
according to their spatial mean position, i.e. equatorial Indian Ocean (EIO), Bay of
Bengal (BoB), Maritime Continent (MC), South Asia (SA), Western Pacific (WP), and
North India-China (NIC). Hatched areas indicate regions with too little

precipitation, which are excluded from the analysis. b Temporal evolution of EREs
using the most synchronous days within EIO, normalized by the number of grid
points per community as day 0. c–f Lead-lag correlation analysis between pairs of
the synchronous EREs belonging to the communities shown in (a). The time shifts
of maximum correlation are denoted by vertical red lines and the respective days
are displayed.
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propagation pathways (Fig. S8). We thus use the single diagrams for
each initiation point in time as input samples to a K-means clustering
algorithm (see “Methods”). We obtain three clusters with different
propagation features, even though all events initiated in EIO show
similar enhanced convection at day 0:

• Canonical propagation This propagation cluster consists of 49
distinct Hovmöller diagrams. The convective system reveals a
propagation speed in eastward direction of approximately 5.4
m/s (Fig. 4a), and in the northward direction of approx. 1.7 m/s
(Fig. 4b). The phase speed in eastward direction is similar to the
speed of the related Madden-Julian Oscillation (MJO)
propagation26. The rainfall anomalies travel from the Indian
Ocean towards the Western Pacific, passing the Maritime
Continent barrier (Fig. 4a). The transition over the Maritime
continent coincides with the temporary decrease of the
convection anomalies at around day 10. The east-and northward
propagation pattern resembles characteristics described in
previous studies46. The anomalous wet phase is followed by an
anomalously dry phase. The Canonical propagation mode
occurs approximately twice as frequently as each non-
canonical propagation mode18. We confirm that the bipolar
pattern between enhanced convection in EIO and dry anomalies
at the South Asian mainland and the Western Pacific (Fig. 4a) is
characteristic in the eastward propagation25.

• Eastward Blocked propagation This cluster of 28 samples
shows a similarly fast northward propagation of 1.4 m/s and a
suppressed eastward propagationwith a speed of 4m/s (Fig. 4c)
that does not transgress theMaritime Continent barrier (dashed
lines in Fig. 4c). Thus, its progression is “eastward blocked”.
Similar to the Canonical cluster, it progresses to latitudes north
of 20° N (Fig. 4b), however, its wet phase is not directly followed
by an anomalously dry phase.

• Quasi-stationary propagation This mode, consisting of
27 samples, shows a slow propagation that is, however, confined
to the Indian Ocean from 50° E to 90° E (Fig. 4e), and a slightly
poleward propagation (Fig. 4f) from day −5 to day 10. Further, it
is even characterized by anomalously dry conditions in zonal
and latitudinal directions besides the enhanced rainfalls in EIO
(Fig. 4e, f). Note that keeping the classical definition of the BSISO
in mind, these quasi-stationary events should not be called
BSISO events as the BSISO is defined by the north-eastward
propagation. However, there is literature discussing cases of
non-propagating EREs that are still associative with the large-
scale modes of variability25.

Modulation by SST background state. We explore how the Pacific
SSTbackground is connected to the BSISOpropagation. Figure. 5a, c, e
shows the background SST anomalies that are associated with the
three BSISOmodes. The Canonical propagation mode corresponds to
conditions without anomalous SSTs in the Pacific (Fig. 5a). A La Niña-
like condition, expressed by anomalous cooling in the central Pacific
(Fig. 5c), is likely to occur together with the Eastward Blocked Propa-
gation. An El Niño-like condition represented by anomalously warm
SSTs in the PacificOcean (Fig. 5e) likely occurs togetherwith theQuasi-
stationary Propagation. We confirm this connection to ENSO using a
conditional dependence test (Fig. S32) showing that the likelihood of a
specific BSISO propagation pathway is substantially increased by the
respective ENSO state, i.e. Normal conditions favor the Canonical
propagation, whereas La Niña- (El Niño-) like conditions favor the
Eastward Blocked (Quasi-stationary) mode.

We observe that the column-integrated moist static energy (MSE)
is in phase or even leading the spatial distribution of BSISO rainfall
anomalies (see Fig. S37) which aligns with themoisturemode theory17,

Fig. 3 | Likelihood of synchronous events for active/inactive Boreal Summer
Intraseasonal Oscillation phases. The likelihood of the occurrence of synchro-
nous events (P(EREs)) is analyzed for active (blue) and inactive (red)Boreal Summer
IntraseasonalOscillation (BSISO) phases (as defined here23) in the regions of Fig. 2a:
a equatorial Indian Ocean, b Bay of Bengal, c Maritime Continent, d South Asia,

eWestern Pacific, and fNorth India-China. The dashed line illustrates the likelihood
of synchronous events estimated from a null model for synchronous events being
randomly selected (i.e. by construction 0.1 as the top 10% of all days are defined as
days of maximum synchronization using the community-specific synchronous
rainfall extremes index, see “Methods”).
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which asserts that meridional and zonal gradients in background MSE
enable the propagation of a convective mode such as the BSISO (see
Introduction). The Canonical mode (Fig. 5b) exhibits an eastwardMSE
gradient between the IOand theWesternPacific, crossing theMaritime
Continent along with a poleward gradient between the east IO and
South East Asia enabling the north-eastward propagation21. We
observe changes in the background MSE gradient for the Eastward
Blocked and the Quasi-stationary mode The Eastward Blocked mode
displays a different pattern, characterized by the sign reversal of the
zonal gradient around 140° E between theMaritime Continent and the
Western Pacific (Fig. 5d),while the polewardgradient persists. Thus for
this condition, only a northward propagation is encountered after the

propagation reaches the Maritime Continent. The Quasi-stationary
mode, however, exhibits neither a poleward gradient nor an eastward
gradient (Fig. 5f) and thus remains trapped in the Indian Ocean. This
observation is consistent with observations on the MJO propagation
diversity as well25.

Interaction of ENSO with BSISO via changes in the overturning
circulation. Changes in the local zonal (i.e. theWalker) andmeridional
(i.e. the Hadley) overturning circulation (see “Methods”) help to
understand the changes in background moisture driving the interac-
tion of the BSISO with ENSO. The Pacific Ocean does not show a sub-
stantial anomalous zonal wind flow for the Canonical mode (Fig. 6a).

Fig. 4 | Clustering results of the the different Boreal Summer Intraseasonal
Oscillation propagation pathways. Single Outgoing Longwave Radiation (OLR)
Hovmöller diagrams for propagation pathways initiated in the Equatorial Indian
Ocean (EIO) community are clustered. The first row shows the propagation for the
Canonicalmode, the second row the Eastward Blockedmode, and the third row the
Quasi-stationary mode. Three different clusters are detected, labeled as Canonical,
Eastward Blocked and Quasi-stationary. The first column (a, c, e) shows the com-
posited Hovmöller diagrams in the zonal direction (averaged between [5°S, 5°N]),

and the second column (b, d, f) in the meridional direction (averaged between
[70°E, 80°E]). All anomalies are computed with respect to the JJAS seasonality. Day
0 describes the days of maximum synchronization within the EIO community
(Fig. 2a). The dashed lines mark the area of the Maritime Continent barrier roughly
estimated to be from 110° E to 130° E and the black arrows visualize the estimated
propagation direction and velocity of the convective system for the
propagating modes.
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The enhanced local zonal overturning circulation in the equatorial
Indian Ocean (Fig. 6b) is a consequence of the enhanced convection
through the BSISO.

The Eastward Blocked mode reveals an enhanced zonal over-
turning circulation with the ascending (descending) branch over the
Maritime Continent (Fig. 6e, f). The induced anomalous Walker cell
over the Pacific Ocean with clockwise circulating air masses connects
the circulation in the Indian Ocean with the circulation in the Pacific
Ocean. The observed circulation pattern for the Eastward Blocked
mode (Fig. 6e) deviates from the conventional La Niña conditions in
JJAS (Fig. S34i), featuring a westward displacement of the Walker cell
with the updraft of air masses dominated by the BSISO-associated
convection (similar to the Canonical mode conditions).

We find two opposing zonal circulations for the Quasi-stationary
mode (Fig. 6i). The vertical profile near the Maritime Continent exhi-
bits a descending branch (Fig. 6j) that serves as a barrier, separating
the anomalous clockwise zonal circulation in the Indian Ocean from
the counterclockwise circulationwhich is also usually prevalent during
El Niño events in the Pacific (Fig. S34j). These descending airmasses, in
opposition to the convective ascending air masses associated with the
BSISO, conceivably suppress the BSISO-associated convection
explaining the absence of a zonal MSE gradient (Fig. 5f).

We also observe a strongly enhanced Hadley circulation in the
Central IndianOcean for all three propagationmodes (Fig. 6c, g, j) that
are the result of the convective anomalies in the EIO. This anomalous
overturning circulation pattern in the Indian Ocean is primarily driven
by the arising convective anomalies of the BSISO47. However, the

meridional circulation exhibits strong spatial variations between the
different propagation modes (Fig. 6d, h, i), over the Maritime Con-
tinent and the Western Pacific. The Eastward Blocked propagation
mode shows an elongated convergence corridor over the Western
Pacific until the dateline (Fig. 6h) with an opposing circulation to the
circulation in the Indian Ocean. The Quasi-stationary mode reveals a
bipolar pattern in the region of the Maritime Continent and anom-
alously ascending air around the equator (Fig. 6l).

Propagation mechanism. Taking together the above results, we pro-
pose the following mechanism for the three BSISO propagation
modes, schematically visualized in Fig. 7. Differences in the ENSO state
in the tropical Pacific induce changes in the background MSE condi-
tions over the Maritime Continent via modulation of the local Walker
circulation. In all threemodes intensified convection is observed in the
equatorial Indian Ocean. For the Canonical mode (Fig. 7a) the MSE
background condition has a zonal gradient over the Maritime Con-
tinent (Fig. 5a) which is induced by the Walker circulation. For the
Eastward Blocked mode (Fig. 7b) the La Niña-like conditions trigger
enhanced convection over the Maritime Continent (Fig. S35b) and
anomalously wet conditions. The ascending air at the Maritime Con-
tinent provides an explanation for the eastward blocking (Fig. 4d)
at around 120° N since the incoming winds from the Pacific
Ocean oppose the eastward propagation of the BSISO convective
system. We suggest that this potentially contributes to the observed
two opposing MSE gradients preventing the propagation in zonal
direction (Fig. 5d). The northward MSE gradient component remains

Fig. 5 | Sea surface temperature and moist static energy background state of
the three different Boreal Summer Intraseasonal Oscillation propagation
modes. Background states for sea surface temperature (SST) (a, c, e) and moist
static energy (MSE) (b,d, f) for theCanonical (1st row), EastwardBlocked (2nd row),
and Quasi-stationary propagation modes (3rd row). Composited anomalies of

background column-integrated MSE and SST conditions are shown for days aver-
aged 25–30 days before day 0 (as defined by the days of maximum synchroniza-
tion), relative to the JJAS climatology. Stipples indicate significance at the 95%
confidence level using Student’s t-test. The dashed lines indicate the region of the
Maritime Continent barrier (110° E to 130° E, compare Fig. 4c, e).
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unaffected48. Contrary, for the Quasi-stationary mode (Fig. 7c) the El
Niño-like conditions induce a suppression of convection through the
reduced low-level winds over the tropical Pacific leading to anom-
alously dry conditions over the Maritime Continent. The zonal MSE
gradient is therefore already greatly reduced east of the Maritime
Continent and the convective system remains over the initiation
region in the Equatorial Indian Ocean49,50.

Characteristics of the BSISO propagation diversity
Differences in the propagation modes are reflected in differences in
terms of the Kelvin- and Rossby wave responses to the anomalous
convection in the Equatorial Indian Ocean.

Eastward propagation. The Canonical and Eastward Blocked modes
resemble a characteristic Kelvin wave signature15,26,51. The observed
strong easterlies over the Bay of Bengal to the convection center in
EIO, expressed by enhanced negative OLR anomalies (Fig. 8a), are
previously reported as Kelvin wave responses51,52 enabling the east-
ward propagation of the convective cell. Also, the characteristic
moistening preceding the eastward-moving convection center is
encountered (Fig. S37)51. The patterns of the wind fields for the
Canonical mode and the Eastward Blocked mode (Fig. 8a, c) are very
similar to each other, explaining the similar eastward propagation
velocity. The Quasi-stationary propagation mode does not show
the characteristic Kelvin wave signature (Fig. 8e) explaining the

quasi-stationary propagation characteristics. We suggest that the
descending dry air at the Maritime Continent leads to winds that are
opposite to the convective uprising moist air (Fig. 8e). Hence, the
Kelvin wave response to the anomalous convection in the EIO fails, so
that the deep convection center remains stationary in EIO and vanishes
after some days (Fig. 4e).

Poleward propagation. We observe the characteristic zonally Rossby
wave pattern in the low-level winds7,8,15,17,19 initiated at the Maritime
Continent at ~120° E most clearly for the Canonical mode in Fig. 8b.
The meridional wind anomalies reveal a westward drift in northeast-
southwest tilted bands. The westward oriented waves occur
10–20 days after initiation consistent with the propagation of EREs
(compare Fig. 2b). According to previous literature7,15,19, the anomalous
BSISO circulation near the equator exhibits modified Gill-type
responses53 with a stronger amplitude to the north than to the south
of the equator. These are associated with the slanted northwest-
southeast BSISO rainfall anomalies near the equator and suppressed
convection north of 10circN that we also observe in Fig. 8a, c. Therefore,
easterly anomalous winds due to the Rossbywave response (Fig. 8b, e)
to BSISO-associated convection generate a meridional dipole-like MSE
tendency pattern that drives the northward propagation over the
Indian subcontinent at ~70∘E (Fig. 8a) in a way as it was already shown
in7. The Rossby wave pattern for the Eastward Blocked mode (Fig. 8d)
is less clearly visible compared to the Canonical mode but starts

Fig. 6 | Mass stream function anomalies of overturning circulation for Boreal
Summer Intraseasonal Oscillation propagation modes. For the days 0–5 after
initiation in the equatorial IndianOcean (EIO), the overturning circulation structure
is analyzed. The first column (a, e, i) shows the composited zonal circulation,
meridionally averaged from 0° S to 10° N, the second column (b, f, j) the zonally
dependent circulation �Ψu averaged between 400 hPa and 600 hPa. The color
shading denotes the mass stream function in zonal direction. Red (blue) indicates
irrotational lower-level easterlies (westerlies) and upper-level westerlies (east-
erlies). The third column (c, g, k) displays the zonally averaged (between 70∘E-80∘E)
meridional circulation in the Central Indian Ocean. The fourth column (d, h, I)

depicts the meridionally dependent circulation �Ψv averaged between 400 hPa and
600 hPa. The color shading denotes the mass stream function in the meridional
direction. Here, red (blue) indicates irrotational lower-level northerlies (south-
erlies) and upper-level southerlies (northerlies). The wind fields in the zonal
(meridional) circulation plots are estimated using the meridionally (zonally) aver-
aged u (v) components, measured in m/s, and the vertical velocity w in the hor-
izontal direction, measured in hPa/s. For visual clarity, only every 3rd wind arrow is
plotted. Stipples denote anomalies that are significant at a 95% confidence level
using Student’s t-test.

Article https://doi.org/10.1038/s41467-023-41400-9

Nature Communications |         (2023) 14:5708 8



occurring at around 10–15 days after initiation in the EIO. The char-
acteristic Rossby wave pattern does not exist in the Quasi-stationary
mode (Fig. 8f) which can be explained by the absence of the eastward
traveling Kelvin wave and a meridional background MSE gradient.

Potential for early-warning signals for EREs
The different BSISO propagationmodes have a direct consequence on
whether or not a given location in the Indo-Pacific region domain
experiences anEREona givenday once a convective anomaly has been
initiated in the EIO. For normal conditions without substantial SST
anomalies in the tropical Pacific, convective anomalies in the EIO are
likely to follow the canonical north-eastward propagation (Fig. 9a and
Fig. S13).

For La Niña-like conditions the propagation is trapped in the
region of the Maritime continent, and the heavy rainfall remains in
India and the South Asian subcontinent for a longer time span (Fig. 9b,
and Fig. S14). We further observe that the convective anomalies are
more likely to propagate towards higher latitudes in northern India
upon the Himalayan foothills (Fig. 9b). If El Niño-like SST conditions
coincide with a BSISO initiation in the EIO, our results show that India,
the Maritime Continent, and the South Asian mainland are likely to
only experience very few convective anomalies (Fig. 9c and Fig. S15).
Most of the anomalous convection happens in the central andWestern
Pacific likely induced by the shifted Walker circulation.

These three propagation modes also translate to propagation of
EREs via the identified communities (Fig. 2a), presented in Fig. S16.
Using these different propagation modes, it is therefore justified to
explore the possibility of early-warning signals (EWS) for EREs that are
driven by the BSISO at a time horizon ofmultiple weeks.We sketch the
potential for EWS for the Canonical mode: We estimate the days of
maximum synchronization in all regions and calculate the fraction of
events that are subsequent todays ofmaximumsynchronization in EIO
within a range of three days. In BoB 66% of the days of maximum
synchronization occur 4–6 days after days of maximum synchroniza-
tion in EIO. Subsequently, in the MC region 59% of the days of max-
imum synchronization are observed 6-9 days later than in the EIO.
Similarly, 61% of the events in the SA community events (within 15-18
days and39%of the events inWP (within 21–24days) are subsequent to
days of maximum synchronization in EIO. Even this simple approach
shows the potential for large-scale spatially resolved ERE predictions
up to 25 days in advance which is also the target range of the sub-
seasonal to seasonal (S2S) prediction project54.

Discussion
The aim of this article has been to reveal the specific BSISO propaga-
tion pathways and to improve the mechanistic understanding of the
BSISO so that a future potential early-warning system for EREs during
boreal summer may be established. We uncovered three dynamically
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Fig. 7 | Proposed mechanism for El Niño Southern Oscillation modulation of
Boreal Summer Intraseasonal Oscillation propagation modes. Our proposed
mechanism for the three Boreal Summer Intraseasonal Oscillation (BSISO) propa-
gationmodes is represented schematically, showing theCanonical propagation (a),
the Eastward Blocked mode (b) and the Quasi-stationary mode (c). The increasing
(decreasing) gradient of the background moist static energy (MSE) state is visua-
lized in blue (red) boxes in zonal and meridional direction. The respective ENSO

condition and its influenceon theMSEbackground state is visualized in the tropical
Pacific. The dashed ovals indicate the communities identified (Fig. 2a) and the
number denote their propagation in time. Small arrows denote the direction of the
background MSE gradients. Big arrows in blue and red indicate the enhanced
(suppressed) convection. The rainy clouds (sun) represent anomalously wet (dry)
conditions over the Maritime Continent.
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resolved propagation modes of the BSISO that show different spatial
manifestations and are strongly influenced by the SST background
state of the tropical PacificOcean.We argued that understanding these
three modes has important implications for the predictability of the
occurrence of EREs in the Indo-Pacific region.

We demonstrated that the BSISO is a dominant driver of the
spatiotemporal organization of EREs during the boreal summer in the
Indo-Pacific region. To uncover the BSISO propagation, we introduced
a new approach that combines climate networks based on a non-linear
event synchronization measure with a probabilistic network commu-
nity detection algorithm. Our approach identified macroscale struc-
tures of spatially coherent patterns of EREs, involving long-range
teleconnections between regions from different parts of the Indo-
Pacific domain. The results of our community detection approach are
independent of the chosen dataset (see Supplementary Note 8.1) and

remain robust also when using alternative community detection
implementations, for instance using the Parallel Louvain Method
(PLM) implemented in the NetworkIT packages55 (see Supplementary
Note 8.2). Using a posterior likelihood estimation conditioned on the
BSISO index, our representation of spatial BSISO locations revealed a
skewed distribution over multiple BSISO phases from the classical
definition23,24. This confirms the relationship between active and break
cycles of monsoon precipitation and the particular phases of the
BSISO3. Our analysis also provided for the first time a detailed under-
standing of the spatiotemporal organization of the BSISO-driven
rainfall extremes that emerge directly from the data. In this sense, our
results present an alternative, impact-focused definition of the BSISO
based on ERE data which remains still consistent with the classical
definition in terms of atmospheric anomalies. The BSISO is char-
acterized by two modes (10–20 days and 30–60 days) (e.g.2). Follow-

Fig. 8 | Kelvin andRossbywavepatterns after initiation in the equatorial Indian
Ocean. Different atmospheric conditions as a response to initiation in the equa-
torial Indian Ocean (EIO) (day 0) are shown for the Canonical (1st row), Eastward
Blocked (2nd row), and Quasi-stationary case (3rd row). The first column (a, c, e)
shows the Kelvin wave pattern by contour lines of outgoing longwave radiation
(OLR) and composited wind fields at 850 hPa plotted as arrows averaged for days

2–5 after initiation. Only the statistically significant contour lines and wind field
anomaly arrows at 95% confidence level and for visual clarity only every third arrow
are shown. The second column (b, d, f) shows the corresponding Rossby wave
pattern by Hovmöller diagrams of low-level meridional V-winds at 850 hPa. The
meridional average is applied for the range of [11°N, 16°N]. Day 0 denotes the
initiation in the EIO.
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up studies could investigate the influence of these modes on the
occurrence and propagation of rainfall extremes.

We identified three distinct propagation modes of BSISO-driven
EREs: the canonical northeastward propagating mode; the Eastward-
blocked mode with continuous propagation only in the northward
direction while eastward propagation ceases at the Maritime Con-
tinent; and the Quasi-stationary mode. Although the small observa-
tional sample size limits the level of statistical significance, our results
are robust to randomly chosen initial configurations of the K-means
algorithm and subsets of the input data. Note that a recent study
reported three different modes of BSISO propagation as well39,
including the “canonical BSISO” propagation mode, and an “Eastward
Expansion” mode, which shares some similarities to the Eastward
Blocked mode identified in our work. However, the study did not
report any modulation of the propagation modes by the background
SST state. We contend that the discrepancy may be due to differences
in the input to their clustering algorithm, which considered data from
May–October and used local minima of an Indian Ocean box-averaged
intraseasonal OLR time series to create pentad mean maps of OLR
anomalies. Our study focused on the core monsoon season (JJAS)
and hence looked at a situation in which the Walker circulation is
more shifted to the Western Pacific56. In addition, we identified
the initialization of BSISO events via regions of highly synchronous
EREs ensuring spatially and temporally coherent patterns; and more-
over accounted explicitly for zonal and meridional propagation char-
acteristics by using separate Hovmöller diagrams in both these
directions.

We reported a plausiblemechanism that determines the different
propagation modes. Our results provide a new perspective on how
ENSO background state interacts with the BSISO on intraseasonal time
scales. While the BSISO is known to be marginally correlated with
ENSO3, we showed that the ENSO state strongly influences the BSISO
propagation, leading to local variability in rainfall36,57. We demon-
strated how the coupling of ENSO to the BSISO-driven ERE propaga-
tion is mediated by the anomalously dry (moist) backgroundmoisture
and the cooling (warming) near theMaritime Continent during El Niño
(La Niña)-like conditions. We further showed how the interplay
between the ENSO-related overturning circulation and the BSISO
propagation inhibits the east- and northward propagation of
EREs under El Niño-like conditions. This is in agreement with ISM
failures observed during El Niño events28,58. Conversely, La Niña-like
conditions in the tropical Pacific are found to favor the Eastward
Blocked mode, such that EREs move only northward and bring
extended periods of strong rainfall to the South Asian and Indian
mainland as well as to the Maritime Continent. This result further ties
in with the longer active spells observed in La Niña years over Indian
and South Asianmainland58,59. For El Niño conditions the convection is
suppressed, whereas for La Niña conditions the anomalouswarming at
the Maritime Continent leads to opposing winds that prevent the
propagation beyond the Maritime Continent. Consequently, the Mar-
itime Continent experiences a weakening (enhancement) of the rain-
falls for El Niño (La Niña) conditions corroborating results of ref. 36.
Our results thus imply a pronounced role of the Maritime Continent
region for the BSISO propagation: The overturning circulation condi-
tions at the Maritime continent are the key to deciding on the most
probable propagation type. Our findings, therefore, offer a new per-
spective on its barrier effect upon existing theories based on the
complex topography60, the high land-sea thermal contrast61, and the
diurnal convection over land62.

The proposed mechanism of BSISO diversity may provide a fra-
mework for understanding why models fail to simulate the BSISO
propagation over the Indo-Pacific domain realistically3,40,41, and thus
could offer a new validation scheme for GCM development. In addi-
tion, we outlined the potential formedium-range forecasts of EREs and
for developing a risk assessment for floods in the South Asian Mon-
soon domain and along the coast of South East Asia63,64, on the scale of
more than 4weeks in advance. In comparison, current forecastmodels
of the European Centre for Medium-Range Weather Forecasts
(ECMWF) are predicting at a forecast lead time of around 14 days65.
Although the discussed Early-Warning Signals approach is simplistic,
the prediction skill could likely be substantially increased and a
location-specific early-warning indicator could be developed by using
tools from pattern recognition tasks in machine learning in a similar
way as it has been proposed in a recent perspectives paper66. However,
it should be noted that even though our study identifies the SST
variability as a main driving force of the diverse propagation patterns,
there are further factors determining the propagation patterns, for
example, seasonal differences in the air-sea interaction12, that need to
be considered for an early-warning system.

Methods
Data
Weusedaily precipitation sums for the timeperiodof 1979–2020 from
the Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.2
dataset that merges gauge, satellite, and reanalysis data provided in a
resolution of 0. 1° × 0.1°30. We used this dataset as it covers a longer
time range than other available multi-satellite precipitation products
to assure statistical robustness and it has been shown to represent high
rainfall quantiles well on both global scales67 and locally over India68,69

and South East Asia70,71. We restrict our analysis to the tropical Indian
Ocean and the South and East Asian Monsoon domain including the
Western Pacific (55° E–140° E, 20° S–50° N). We use next-neighbor

Fig. 9 | Evolution of anomalous rainfall for the three propagation modes.
Regions with the highest rainfall intensity for days after maximum synchronization
in the equatorial IndianOcean (EIO) community are shown for the Canonical mode
(a), the Eastward Blocked mode (b), and the Quasi-stationary mode (c). Outgoing
longwave radiation (OLR) anomalies are computed according to the JJAS clima-
tology. For every day, the statistically significant mean anomalous OLR above the
95th percentile is shown in its respective color of the day. Day0denotes the days of
maximum synchronization in the EIO community.
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interpolation to map the data to a grid of spatially approximately
uniformly distributed points employing the Fekete algorithm72. The
distance between two points corresponds to the spatial distance
between two points at the equator of a Gaussian 1° grid, resulting in a
total of ≈4700 grid points. We linearly detrend the precipitation time
series. The event time series is constructed from ‘wet days’ only,
defined as days with rainfall of at least 1 mm/day. ERE days for a single
location are defined as those days where the daily precipitation sum
exceeds the 90th percentile of all wet days at that location.

To assess the robustness of our analysis to the choice of dataset,
we conducted a comparative investigation using the Tropical Rainfall
Measuring Mission (TRMM) dataset73. The TRMM dataset was applied
to the identical spatial region, interpolated to the equivalent Fekete
grid resolution employed for the MSWEP dataset. Our analysis
revealed both qualitative and quantitative similarities in the patterns
obtained from the TRMM dataset, corroborating our findings derived
from the MSWEP dataset (see Figs. S20 and S21).

Further observational datasets used in this study are daily top net
thermal radiation, translating to Outgoing Longwave Radiation (OLR),
latent heat flux, sea surface temperature, and multi-pressure level
variables on 50–1000 hPa of (u, v)-wind fields, vertical velocity w, and
specific humidity q and temperature T taken from the ERA5 Global
Reanalysis dataset74. The datasets are interpolated to 2.5° × 2.5° grid.
The NINO3.4 index75 was estimated using SST anomaly fields from the
ERA5 dataset.

The column-integrated moist static energy (MSE) is a crucial fac-
tor in investigating the north-eastward propagation of the BSISO with
respect to the moisture mode theory3,14,21. It is defined as the sum of
sensible heat, latent heat, and potential energy asMSE =CpT + Lvq + gz,
where T is temperature, z geopotential height, q specific humidity, Cp

the specific heat of air at constant pressure, g the gravitational accel-
eration, and Lv latent heat of vaporization.

The daily resolved BSISO index by ref. 23 is taken from https://
iprc.soest.hawaii.edu/users/kazuyosh/Bimodal_ISO.html(Last Acces-
sed: 10th May 2023). The index is calculated by Principal Component
Analysis of OLR for days fromMay until October. The first two leading
principal components (PCs) are used to define the state of the BSISO

by the amplitude A=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PC2

1 + PC
2
2

q
, where A ≥ 1 (A < 1) is regarded as

active (inactive)76. The two-dimensional space spanned by PC1 and PC2

is subdivided into eight equally sized sections that denote the phase of
the BSISO. The chosenBSISO index23 was shown to capture both north-
and eastward propagation in a coherent way and is well suited for
tracking the BSISO-associated convection77. There are further BSISO
indices available (e.g.24,78,79) but differences in our results remainminor
(see Fig. S17 for a comparison).

Event synchronization-based climate networks
We apply a climate network approach, derived from complex network
science. It offers a valuable extension to traditional methods by uti-
lizing the toolset of complex network analysis80 such as node degree
analysis81 betweenness centrality82, and network curvature83, to pro-
vide insights into climatic patterns and their interconnections. These
network-based metrics provide a non-linear time series analysis of the
underlying climate system, allowing conclusions to be drawn thatmay
not be readily accessible through conventional approaches.

Assume a spatiotemporal dataset X ϵRN×T, where N denotes the
number of datapoints and T is the number of points in time. The
climate network G is defined as G = ðV ,EÞ where each geographical
position of the dataset xi(t) ϵ X corresponds to a node n ϵV and E is the
set of edges. Network edges eij ϵ E encode strong statistical depen-
dencies between pairs of time series xi(t) and xj(t).

To assess the degree of synchronization between pairs of time
series, we use the Event Synchronization algorithm42. The number of
temporally coinciding events is counted between pairs of event

sequences femi g
si
m= 1 and fenj gsjn= 1

, where si (sj) are the total number of
events at location i ( j), and emi (enj ) describes the timing of an event in i
( j). The delaybetween anevent emi in i and anevent enj in j is denoted as
dm,n
ij = emi � enj . Defining the set Dijðemi ,enj Þ as the set that contains all

four neighboring events of emi ,e
n
j ,

Dm,n
i,j = dm,m�1

i,i ,dm,m+ 1
i,i ,dn,n�1

j,j ,dn,n+ 1
j,j ,2τmax

n o
, ð1Þ

the dynamical delay, τm,n
i,j , is defined as half of theminimal waiting time

of subsequent events in both time series around event emi and enj and
not larger than a predefined maximal value τmax (Fig. 1b),

τm,n
ij =

1
2

min
8d2Dm,n

ij

d: ð2Þ

It encodes a small deviation between the occurrences, allowing
for a time delay between two events. The parameter τmax separates
time scales of ERE synchronization and is set to a maximum delay of
τmax = 10 days to ensure both the high- and low-frequency modes of
the intraseasonal oscillations are captured. The event synchronization
strength Ri,j between locations i and j is the sum of all synchronous
time points between all pairs of event sequences femi g

si
m= 1 and fenj gsjn = 1

,

Ri,j =
Xsi
m= 1

Xsj
n= 1

Sm,n
i,j where Sm,n

i,j =
1 0<dm,n

ij < τm,n
i,j ,

0 otherwise :

(
ð3Þ

Blocks of consecutive events are counted as one event, placed on
the point in time of the first event to avoid the dynamical delay τm,n

i,j
resulting in a value of 1/2, leading to a case where two sequentially
occurring events would not be recognized as synchronous.

The adjacency A (Fig. 1c) of a network characterizes the inter-
connections and linkages between nodes, delineating the network’s
underlying topology. It is a mathematical representation of these
connections and captures the presence or absence of links between
nodes expressed as aN ×Nmatrix, whereAi,j = 1 indicates that events at
location i are statistically significantly followed by events at location j.
We estimate the statistical significance using a null-model test. Our null
hypothesis is that an observed Ri,j value occurs from a pair of purely
random event sequences with the same number of events si, sj as in the
observed sequences. To encode the null hypothesis, we construct
surrogate event sequences e0i,e

0
j with si, sj randomly uniformly dis-

tributed events. Event series ei is considered to be significantly syn-
chronous to ej if their corresponding Ri,j value is higher than the 95
percentile of Ri0 ,j0 values obtained using 2000 pairs of surrogate event
sequences e0i,e

0
j . Significant Ri,j values imply that we place an edge from

node ni to nj and set Ai,j = 1.
As the number of comparisons becomes very high even for

moderately large datasets (in our case 108 comparisons), there is a non-
negligible chance to consider singular pairs of time series as statisti-
cally significant, even though their significance is just by coincidence84.
To avoid such spurious links, we assume that synchronous time series
are supposed to be caused by physical mechanisms and thus show
spatially coherent patterns29. For each spatial location, we rewire its
network links randomly 2000 times. We use a Gaussian kernel density
estimator (KDE) with the bandwidth selected according to Scott’s Rule
of Thumb to compute the spatial link distribution of every random
sample. A link is only found significant if its regional link distribution
(also obtained by a Gaussian KDE) is above the 99.9 percentile.

Estimating communities within climate networks
Determining macroscale regions of synchronously occurring EREs
translates to identifying communitieswithin thenetwork, i.e. groupsof
nodes in the network that have a much higher number of edges within
themselves than to nodes of the rest of the network. To identify
communities, we thus need to reorder the rows of the adjacency
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matrixA such that a clear block structure is obtained (Fig. 1d) which is,
in principle a NP-hard problem. The problem of identifying commu-
nities has been extensively studied in complex network science and
many possible solutions have been proposed85,86. In our work, we use
the Stochastic Block Model (SBM), which essentially formulates a
‘block-structure’ model of the adjacency matrix in which the edges
attached to any given node are determined by two probabilities: a
within-block edge probability, and an across-block probability. Thus, a
SBMwith k blocks would be described by kðk + 1Þ

2 probabilities. Typically,
the probabilities are then estimated using Bayesian inference techni-
ques. In particular, we use the SBM implementation in the network
package graph_tool87,88, as it offers several advantages in terms of
speed and efficient data handling. We refer the readers to87 and88 for a
more detailed explanation of the SBM implementation, but would like
to note here that the optimization is guided by the Minimum
Description Length (MDL) principle, which favors simpler network
structures with equal explanatory power, i.e. it uses the principle of
Occam’s Razor at its core. The SBM implementation in87 can thus also
fit a hierarchy of SBM’s to the observed data and provide a most likely
‘optimal’ number of communities based on parsimony.

The SBM implementation uses Markov Chain Monte Carlo
(MCMC) methods to estimate the posterior likelihoods of model
parameters and hence, the inference algorithm is stochastic, meaning
that it may produce (slightly) different results at each run87. We thus
usemultiple runs of themodel to estimate the uncertainties associated
with in assigning nodes to specific communities. In particular, we use a
simple heuristic to estimate the posterior likelihood that a geo-
graphical location belongs to a particular climate network community:
the percent of total runs that a node belongs to a given community is
its ‘community membership.’

Here, we run the SBM algorithm 100 times on the event
synchronization-based climate network, with the constraint that it can
have at most 10 communities (as we are interested in large spatial
scales). Most of the runs identify 6 communities (with very few
exceptionsof 5 and7 communities)with similar spatial shapes (Fig. 1d).
Subsequently, by examining the overlap among all 100 SBM runs, we
estimate the community membership (Fig. S4).

Community-specific synchronous ERE index
We introduce the community-specific synchronous ERE index, deno-
ted as SRI(t), to assess for a community its degree of synchronization
over time. The index is computed for a particular set of locations A,
describing one communitywithin the network. For each time step t, we
count the number of EREs that occur in all event series ek:

SRIAðtÞ=
X
k2A

ekðtÞ: ð4Þ

This counting process enables us to quantify the frequency of
synchronously occurring EREs within this community A per day. To
further pinpoint the points in time of exceptionally strong synchro-
nization, we identify the local maxima in the time series SRIA that are
above the 90th percentile and define these as the “days of maximum
synchronization” (blue stars in Fig. 1g).

Estimation of conditional probabilities
The probability for the occurrence of synchronous rainfall days
within a cluster (denoted as s = 1) under a condition a is calculated as
follows: Assume the set of days with exceptionally synchronous
events being S and the set of days that fulfill the condition a being A.
Then Pðs = 1jaÞ= Pðs = 1,aÞ

PðaÞ = jjS\Ajj
jjAjj describes the conditional probability

for synchronous events under condition a. Here, ∣∣⋅∣∣ denotes set car-
dinality and S∩A the intersection of S and A. Accordingly, the condi-
tional probability for a second condition b with a set of days B is

computed as:

Pðs = 1ja,bÞ= Pðs = 1,aÞ
Pða,bÞ =

jjS \ A \ Bjj
jjA \ Bjj : ð5Þ

A corresponding null model is estimated by counting the days of
maximumsynchronization ∣∣S∣∣dividedby the total number of days (i.e.
in our case ≤0.1). Hence, the upper limit for the null model is
Pnullmodel(s = 1) = 0.1.

Clustering of propagation times
The BSISO propagation events we define as a day of maximum syn-
chronization within the region EIO (Fig. 2a and see “Methods”) and are
denoted as day 0. Consecutive dates by less than 20 days are removed.
In total 110 events are considered. We choose the propagation time
range to be 5 days before and 30 days after the initiation day 0. The
propagation of different synchronous extreme rainfall events is
investigated by a K-means cluster analysis89. To account for the east-
ward as well as the northward propagation, propagation patterns are
analyzed by Hovmöller diagrams of the OLR anomalies along a zonal
band averaged between 0∘S and 10∘N and a meridional band averaged
between 70° E and 80° E. OLR is like precipitation an indicator for deep
convective activity, but, compared to precipitation, OLR exhibits a
considerably smoother pattern, and it offers the advantage of direct
measurement without requiring an inverse algorithm (which can
introduce errors) as in the case of precipitation90. To ignore daily
variations and to make the macroscale propagation patterns better
distinguishable, we apply a 2D-smoothing Gaussian filter on the Hov-
möller diagrams with 5 Pixels as the width of the filter. We use the
silhouette coefficient method to determine the optimal number of
groups and find that the samples can be best fitted into 3 distinct
clusters. The silhouette coefficient indicates how similar a member is
to its own cluster. We use it properly to remove outliers that have a
silhouette coefficient lower than 0.05 from the cluster analysis. This
further reduces the number of input samples by 13 events to 97 events
in total.

Local overturning circulation analysis
In order to assess the relative contributions of the mass fluxes in the
troposphere to the pair of meridional and zonal overturning circula-
tions we use the method by56,91–93. A Helmholtz decomposition is
applied to the global wind field V = (u, v), to separate the divergent
component from the rotational component as V=Vdiv +Vrot. The
meridional (zonal) component of the divergent windVdiv = ðudiv,vdivÞ is
associated with the north-south (east-west) oriented circulations,
commonly known as the Hadley (Walker) cell. The longitudinally
dependent meridional circulation is calculated as the mass stream
function Ψv as a vertical integration over the pressure levels:

Ψvðλ,ϕ,p, tÞ=
2πR
g

cosðϕÞ
Z p

0
dp0vdivðλ,ϕ,p0, tÞ, ð6Þ

whereR denotes Earth’s radius, g the gravitational constant,ϕ latitude,
λ longitude, p pressure level and t time. The zonal mass stream func-
tion Ψu is analogously computed as:

Ψuðλ,ϕ,p, tÞ=
2πR
g

Z p

0
dp0udivðλ,ϕ,p0, tÞ, ð7Þ

In our analysis, we use a simplified representation of Ψu and Ψv by
averaging between 400 and 600 hPa.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper or the Supplementary Materials. Precipitation data were
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taken from the MSWEP dataset (https://www.gloh2o.org/mswep)30.
Datasets for the composite analysis from1979 till datewere taken from
Copernicus Climate Change Service (C3S) (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=
overview)94. Plots were generated using the Cartopy library95.

Code availability
The code for generating and analyzing the networks is made publicly
available under ref. 96. The code for reproducing the analysis of the
network communities and the spatial clustering described in this
paper is publicly available under ref. 97.
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