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Quantifying the causal impact of biological
risk factors on healthcare costs

Jiwoo Lee 1,2,3,4, Sakari Jukarainen2, Antti Karvanen2, Padraig Dixon5,
Neil M. Davies 6,7,8,9, George Davey Smith 9, Pradeep Natarajan 1,3,4,10 &
Andrea Ganna 1,2,11

Understanding the causal impact that clinical risk factors have on healthcare-
related costs is critical to evaluate healthcare interventions. Here, we used a
genetically-informed design, Mendelian Randomization (MR), to infer the
causal impact of 15 risk factors on annual total healthcare costs. We calculated
healthcare costs for 373,160 participants from the FinnGen Study and repli-
cated our results in 323,774 individuals from the United Kingdom and Neth-
erlands. Robust causal effects were observed for waist circumference (WC),
adult body mass index, and systolic blood pressure, in which a standard
deviation increase corresponded to 22.78% [95% CI: 18.75-26.95], 13.64%
[10.26-17.12], and 13.08% [8.84-17.48] increased healthcare costs, respectively.
A lack of causal effects was observed for certain clinically relevant biomarkers,
such as albumin, C-reactive protein, and vitamin D. Our results indicated that
increasedWC is amajor contributor to annual total healthcare costs andmore
attention may be given to WC screening, surveillance, and mitigation.

Healthcare costs continue to rise worldwide, and in 2018, global
healthcare spending reached $8.3 trillion, or 10% of the global gross
domestic product1. While healthcare costs continue to rise, morbidity is
rising, so better understanding of healthcare costs and cost efficiency is
critical1. Accurate measurement of healthcare costs caused by different
risk factors and health outcomes is important to prioritize public health
promotion and prevention programs2. Moreover, healthcare costs can
act as a proxy of disease burden when investigating the effects of risk
factors. Thus, epidemiology, public health, and policy stakeholders are
very interested in the analysis of healthcare costs3.

Several studies have quantified the healthcare costs associated
with different risk factors4,5. For example, Bolnick et al.4 calculated the
correlation between United States healthcare spending and 84 mod-
ifiable risk factors from the Global Burden of Disease study, and

Goetzel et al.5 calculated the correlation between healthcare costs and
10 modifiable risk factors including blood glucose, obesity, stress,
depression, and physical inactivity. However, there are several limita-
tions with such studies. First, associations between risk factors and
healthcare burden are based on observational data and suffer from
challenges such as confounding and reverse causation. Second, most
studies do not estimate the direct association between risk factors and
healthcare costs, but first estimate the impact of risk factors on dif-
ferent diseases and subsequently link each disease to estimated
healthcare costs4,6,7. Thus, the impact of risk factors on healthcare
costs that are not directly captured by diseases (e.g., medications)
were not considered. Third, while modifiable risk factors such as
smoking and alcohol consumption have been studied8, little is known
about the impact on healthcare costs of commonly measured
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biomarkers, which are generally the direct targets of pharmacological
interventions.

An alternative source of evidence to assess the effects of diseases
andbiomarkers onhealthcare costs isMendelianRandomization (MR),
which addresses some of the previous limitations. MR is amethod that
uses genetic variants as instrumental variables to estimate causal
relationships between exposures and outcomes and can address the
issues of confounding and reverse causation9. MR is particularly
powerful for estimating the effects of biological risk factors with a
strong genetic bases, such as clinical biomarkers and biometrics,
including body mass index and blood pressure.

Previous studies have used MR to identify the causal effects of
adiposity10, body mass index11,12, and common health conditions13.
However, these studies were either based in the UK Biobank (e.g.,
limited to relatively healthy individuals between 40 and 69 years old)
or did not have complete coverage of healthcare costs associated with
medication andprimary care costs. No studies to date have usedMR to
comprehensively link a diverse set of biological risk factors to
healthcare costs. In this study, we used a large prospective study from
Finland, the FinnGen Study, with genetic information available for
373,160 individuals linked to several national healthcare registries
covering primary, secondary, and medication costs. Because of the
high-quality, long follow-up, and detailed healthcare costs available in
these registries, we were able to obtain an accurate and comprehen-
sive estimate of annual healthcare expenditure. We further assessed
the generalizability and robustness of our findings by accounting for
selection bias and by leveraging additional healthcare cost data from
323,774 individuals from the United Kingdom and Netherlands.

In this study, we (1) evaluated the causal impact of 15 risk factors,
with strong genetic bases, on annual total healthcare costs, (2) iden-
tified whether the effects vary by service type, age, and sex, and (3)
quantified the mediating of effects of major diseases. We show that
elevated waist circumference, adult body mass index, and systolic
blood pressure are major causal contributors to healthcare costs
within a causal inference framework.

Results
In this study (Fig. 1), we estimated the causal impact of 15 risk factors
with strong genetic bases (Supplementary Table 1) on annual total
healthcare costs.

Distribution of healthcare costs
We included 373,160 FinnGen participants (data freeze 8) followed-
up to a maximum of 22 years. The average age at baseline (i.e., date
of DNA sample collection) was 54 years old and 56% of the study
cohort was female. The mean and median annual total healthcare
cost was €2,706 and €1,313, respectively (Fig. 2). Primary care (mean
= €169, median = €109) and medication (mean = €518, median =
€202) costs were lower than secondary care (mean = €2019, median
= €852) costs. Mean (females = €2244, males = €3303) and median
(females = €1245, males = €1433) costs were similar in male and
females but males (SD = €15545) had greater variability than females
(SD = €4445). Individuals over the age of 60 (mean = €3406, median
= €1800) had greater healthcare costs than individuals between the
age of 30 and 60 (mean = €1851, median = €891) and individuals
under the age of 30 (mean = €1484, median = €621). GWAS per-
formed on log-transformed annual total healthcare costs identified
several genome-wide significant SNPs (Supplementary Table 2 and
Supplementary Figs. 1, 2).

Causal impact of risk factors on total healthcare costs
We estimated the causal impact of risk factors on healthcare costs
using MR. All risk factors had strong genetic instruments (e.g.,
F-statistic > 50) obtained from genome-wide association studies of at
least 173,082 individuals. We detected significant effects of six risk
factors on costs (i.e., waist circumference, adult body mass index,
systolic blood pressure, triglycerides, cystatin C, and HDL cholesterol)
at the Bonferroni-corrected significance level (P < 3.33 × 10−3) (Fig. 3).
We performed sensitivity analyses using five different robust MR
approaches (Supplementary Table 3) and identified three risk factors
that consistently affected total annual healthcare costs across at least
three of the sensitivity analyses: waist circumference (WC), adult body
mass index (BMI), and systolic blood pressure (SBP). One standard
deviation (SD) increase in WC increased the annual total healthcare
costs by 22.78% (95%CI: [18.75, 26.95], P = 1.90 × 10−33); one SD increase
in adult BMI increased the annual total healthcare costs by 13.64% (95%
CI: [10.26, 17.12], P = 1.06 × 10−16); and one SD increase in SBP increased
the annual total healthcare costs by 13.08% (95% CI: [8.84, 17.48],
P = 2.80 × 10−10). Using MR methods robust to pleiotropy, we found
similar effects forWC (17.19–22.78%), adult BMI (8.21–13.64%), and SBP
(13.08%–32.36) (Supplementary Table 3).
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Fig. 1 | Graphical abstract. a Example of how genetic variants associated with BMI
and randomly assigned at birth can be used to infer the causal impact of BMI on
healthcare costs (e.g., by modifying risk for cardiovascular disease and statin
medication). b Assumptions underlying MR. 1: Genetic instruments must be
robustly associated with the exposure (risk factor), 2: there must be no

confounders of the genetic instruments-outcome association, and 3: Genetic
instruments must not influence the outcome except through the exposure.
cNational healthcare registries linkwith the FinnGenStudy to estimate annual total
healthcare costs. d STROBE flow diagram for study cohort, in which 373,160 indi-
viduals were included.
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Several biomarkers did not have a significant (e.g., Bonferroni-
corrected significance level of P < 3.33×10−3) impact on annual total
healthcare costs (e.g., alanine aminotransferase, P = 4.58×10−2; gly-
cated hemoglobin, P = 6.44×10−3; C-reactive protein, P = 1.64×10−2; LDL
cholesterol, P = 1.86×10−1; lipoprotein(a), P = 2.20×10−1; creatinine,
P = 6.39×10−1; vitamin D, P = 4.75×10−1; albumin, P = 3.73×10−1; glucose,
P = 1.50×10−1), indicating that genetically-increased levels of these

biomarkers do not result in a significant downstream impact on
healthcare costs. LDL cholesterol (1.79%, 95% CI: [–0.85, 4.50],
P = 1.86×10−1) had a null effect on healthcare costs, despite the strong
genetic instruments for LDL cholesterol. We performed sensitivity
analyses using genetic instruments for triglycerides, HDL cholesterol,
and LDL cholesterol that were adjusted for statin usage and observed
similar results (Supplementary Table 3).
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Fig. 2 | Distribution of healthcare costs in 373,160 FinnGen participants.
a Annual total healthcare cost in euros. b Annual healthcare costs in euros for
primary care, secondary care, andmedication costs. cAnnual total healthcare costs

in euros for females andmales.dAnnual total healthcarecosts for individuals under
30 years old, between 30 and 60 years old, and over 60 years old. X-axis is on a
log10-transformed scale.
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Fig. 3 | Mendelian randomization on 15 biological risk factors on annual total
healthcare costs for 373,160 FinnGen participants using the two-sample,
inverse variance weighted approach. HDL cholesterol (P= 7.23 × 10−8), cystatin C
(P=2.35 × 10–3), triglycerides (P= 1.24 × 10–5), systolic blood pressure (P= 2.80 × 10-10),
body mass index (P= 1.06 × 10–16), and waist circumference (P= 1.90 × 10–33) had a
significant, causal effect on annual total healthcare costs. Two-sided p values were
calculated from the effect estimates and standard errors of the Mendelian

Randomization model and adjusted for multiple hypothesis testing. Bars indicate
95% confidence interval. Black bars and the * symbol indicate biological risk factors
that are statistically significant at the Bonferroni-corrected significance level
(P< 3.33 × 10–3). The # symbol indicates biological risk factors that were significant
across at least three of theMR approaches used in sensitivity analyses. SD is standard
deviation. Source data are provided as a Source Data file.
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Impact of risk factors on total healthcare costs
To quantify the amount of annual total healthcare costs associated
withWC, adult BMI, and SBP in absolute euro costs (instead of percent
changes), we assumed a median annual total healthcare cost of
€1312.53 (Table 1). One SD increase inWC, adult BMI, and SBP resulted
in increases of €298.99, €179.03 and €171.68 of annual total healthcare
costs, respectively. Using clinically interpretable units, we estimated
€202.13 annual increase per additional 10 cm of WC; €178.51 per 5 kg/
m^2 of adult BMI; and €84.00 increase per 10mmHg of SBP. In addi-
tion to assuming a median annual total healthcare cost, we estimated
the absolute euro costs at varying baseline healthcare costs for WC
(Supplementary Fig. 3).

Impact of risk factors on total healthcare costs by service type,
sex, and age
We quantified the impact of six risk factors with significant effects on
annual total healthcare costs by repeating the analyses by each service
type (i.e., primary care, secondary care, medication), sex, and age
(Fig. 4). SBP (medication vs. secondary care costs, P = 5.75×10−9 for
difference in effect size) and triglycerides (medication vs. secondary
care costs P = 1.09×10−4) had larger effects on medication costs than
secondary (orprimary) care costs. Sucheffects reflected relative rather
than absolute increases. For example, a one SD increase in SBP caused
a large relative difference in annual medication costs than secondary
care costs (34.18%) increase (95% CI: [27.16, 41.59]) vs 8.17% increase
(95% CI: [3.10, 13.49], respectively). However, the estimated absolute
euro changes were similar (i.e., medication costs of €69.04 vs. sec-
ondary care costs of €69.61). Interestingly, a genetically-predicted SD
increase in LDL cholesterol did not change primary or secondary care
costs, but increased medication costs (8.07%) increase (95% CI: [3.54,
12.80], P = 3.8×10-4). Nevertheless, the prior result of the null effect of
LDL cholesterol on annual total healthcare costs can be explained by
the relatively lower magnitude of contribution of medication costs
than secondary care costs.

We found little evidence that the relative impact of the risk factors
on healthcare costs differ between females and males. Similarly, we
found few differences between individuals younger than 30 years old,
between 30 and 60 years old, and older than 60 years old. The only
exception was a modest difference in the relative impact of SBP on
healthcare costs between individuals aged 30 to 60 years old (7.79%,
95% CI: [2.12, 13.77]) compared to individuals older than 60 years old
(18.38%, 95% CI: [13.71, 23.23]) for SBP (P = 3.20×10−3).

Factors mediating the impact of risk factors on total health-
care costs
For the three risk factors with the largest percent change on healthcare
costs (WC, adult BMI, SBP), we used MVMR to understand how much
of their impact on healthcare costs can be explained by increased risk
for major diseases associated with high healthcare costs (Supple-
mentary Table 7). We considered the top five noncommunicable dis-
eases from the Global Burden of Disease study:14 back pain, chronic
ischemic heart disease, type 2 diabetes, chronic obstructive pulmon-
ary disease, and stroke. For SBP, we additionally studied blood pres-
sure medications as a mediator, which was not immune from collider
bias but provided context for indirect effects of SBP on health-
care costs.

After accounting for the genetic effects mediated by the five
noncommunicable diseases, we found that type 2 diabetes and blood
pressure medications modestly mediated the effects of adult BMI and
SBP on annual total healthcare costs, respectively. Adjusting for type 2
diabetes slightly attenuated the effect of adult BMI on healthcare costs
from 13.64% [95% CI: 10.26, 17.12] to 10.18% [95% CI: 4.88, 15.76].
Adjusting for blood pressuremedications attenuated the effect of SBP
on healthcare costs from 13.08% [95% CI: 8.84, 17.48] to 4.06% [95%CI:
–2.45, 10.47]. Interestingly, even after adjusting for the top five non-
communicable diseases, WC effects on healthcare costs remained
similar suggesting thatWCaffects healthcare costs broadly beyond the
increased risk of the top five major diseases.

Replication analysis for generalizability and robustness of
healthcare costs findings
We conducted several analyses to evaluate the robustness of our
findings. First, we perform similar MR analysis in UK Biobank
(N = 307,048) and we estimated a £96.90 (€115.32) increase per SD of
WC; a £94.59 (€112.57) increase per SD of adult BMI; and a £24.36
(€28.99) increaseper SD of SBP. In clinical units, we estimated a £77.40
(€92.11) increase per 10 cm of WC; a £102.82 (€122.36) increase per
5 kg/m^2 of adult BMI; and a £11.77 (€14.01) increase per 10mmHg of
SBP. Similarly, in the Netherlands Twin Register (N = 16,726), we esti-
mated a €182.52 increase per SD of WC; a €264.85 increase per SD of
adult BMI; and a €10.07 increase per SD of SBP. In clinical units, we
estimated a €129.91 increase per 10 cm of WC; a €261.44 increase per
5 kg/m^2 of adult BMI; and a €87.69 increase per 10mmHg of SBP.
Results from these other sources are therefore in the range of our
estimates, despite the different healthcare systems, data sources (e.g.,
different cost categories captured), and population structures (Fig. 5,
Supplementary Table 4).

Second, we compared the genetic association with annual
healthcare costs in FinnGen with those publicly available from the
United Kingdom and Netherlands (Supplementary Table 5). We
observed that the genetic correlationwas significant between between
Finland, the United Kingdom, and Netherlands. Comparing secondary
care costs, Finland and the United Kingdom had a genetic correlation
of 0.804 (SE =0.05492, P = 1.61×10−48). Comparing primary care costs,
Finland and the Netherlands had a genetic correlation of 0.7694
(SE =0.3387, P = 2.31×10−2). For the Netherlands total, secondary care,
and medication costs, heritability was too low to calculate genetic
correlation.

Third, we calculated the PGS for healthcare costs in FinnGen using
weights from the United Kingdom (UK) and Netherlands (NL). In
general, there was a large and significant association between Finnish
healthcare costs and UK- and NL-based PGS, suggesting that cross-
country analyses of healthcare costs may be valuable (Supplementary
Figure 4). A 1 SD increase in the UK-based PGS for secondary care costs
was associated with an increase in €128 per year (95% CI: [97, 160],
P = 2.09×10−15) or 9.29%per year (95%CI: [8.74, 9.84],P = 6.70×10−293). A
1 SD increase in the NL-based PGS for total healthcare costs was
associated with an increase of €15 per year (95% CI: [−19, 50],

Table 1 | Monetary impact of threemain biological risk factors
for 343,160 FinnGen participants as estimated from Mende-
lian Randomization

Exposure Percent change in
cost per unit
change in
exposure

Confidence
Interval

Estimated abso-
lute change
in euros

Waist
circumference

22.78 per 1 SD [18.75, 26.95] €298.99
per 1 SD

15.40 per 10cm [12.90, 17.90] €202.13
per 10 cm

Body mass index 13.64 per 1 SD [10.26, 17.12] €179.03
per 1 SD

13.58 per 5 kg/m^2 [10.34, 16.84] €178.51 per
5 kg/m^2

Systolic blood
pressure

13.08 per 1 SD [8.84, 17.48] €171.68
per 1 SD

6.38 per 10 mmHg [4.39, 8.37] €84.00 per
10 mmHg

Estimates for absolute euro costs are based on the median healthcare costs and may vary
assuming different baseline healthcare costs. SD is standard deviation.
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Fig. 5 | Mendelian Randomization results for total healthcare costs for three
main biological risk factors in a replication analysis including data from the
United Kingdom (N = 307,048), Netherlands (N = 16,726), Finland (N = 373,160)
and re-weighting the FinnGen cohort to reflect the entire Finnish population.

Estimates for absolute euro costs are based on the median healthcare costs and
may vary assuming different baseline healthcare costs. SD is standard deviation.
Points indicate beta effect size estimates and bars indicate 95% confidence interval.
Source data are provided as a Source Data file.
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Fig. 4 | Mendelian Randomization results for healthcare costs for six biological
risk factors in FinnGen (N=373,160).Mendelian Randomization on six biological
risk factors for 373,160 FinnGenparticipants using the two-sample, inverse variance
weighted approach stratified by (a) service type, (b) sex, and (c) age. There was a
significant difference between the medication costs associated with triglycerides
compared to primary care costs (P = 1.09×10-4) and secondary care costs
(P = 6.84×10-4). There was a significant difference between the medication costs
associated with systolic blood pressure compared to primary care costs
(P = 5.75×10-9) and secondary care costs (P = 2.29×10-9). There was a significant dif-
ference between the medication costs associated with waist circumference

compared to primary care costs (P = 6.81×10−3). Therewas a significant difference in
the total healthcare costs associated with systolic blood pressure for individuals
older than 60 years old and individuals between 30 and 60 years old (P = 3.21×10−3).
Two-sided p-values were calculated from the effect estimates and standard errors
of the Mendelian Randomization model and adjusted for multiple hypothesis
testing. Bars indicate 95% confidence interval. The *sign indicates significant dif-
ferences between different levels of the stratification variable within the risk factor
at the Bonferroni-corrected significance level (P < 8.33×10−3). SD is standard
deviation. Source data are provided as a Source Data file.
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P = 3.83×10−1) or 2.84%per year (95%CI: [2.46, 3.21], P = 1.66×10−50). The
lower increase observed for NL-based PGS is expected given the PGS
was derived on a smaller sample size. Overall, despite lack of genome-
wide significant signals in UK biobank and the Netherlands Twin Reg-
ister, we could derive a PGS for healthcare costs with a significant
effect in FinnGen suggesting consistency in genetic associations for
healthcare costs across multiple countries.

Finally, FinnGen is not fully representative of the general Finnish
population and enriched with individuals that have been in contact
with the healthcare system due recruitment being predominantly
based in hospital-based settings. Toevaluate the generalizability of our
results to the entire Finnish population, we used inverse probability
weighting with weights calculated by comparing five health and
sociodemographic characteristics (i.e., age, gender, education, occu-
pation, and region of birth) between FinnGen participants and the full
Finnish population (Supplementary Fig. 5, Supplementary Table6).We
found a high correlation between the effect sizes from the GWAS of
healthcare costs and theweighted linear regression (R2 = 0.76).We also
found similar results for the MR analysis, in which one SD increase in
WC increased healthcare costs by 22.64% (95% CI: [16.84, 28.72],
P = 1.53×10−16), one SD increase in adult BMI increased healthcare costs
by 12.42% (95% CI: [6.96, 18.16], P = 4.06×10−6), and one SD increase in
SBP increased healthcare costs by 12.56% (95% CI: [6.66, 18.80],
P = 1.67×10−5).

Discussion
We linked genetic information to detailed healthcare costs covering
primary, secondary, and medication costs for 373,160 participants in
FinnGen followed-up to a maximum of 22 years. This allowed us to
evaluate the association between the genetic underpinnings of 15
clinically relevant risk factors and annual total healthcare costs. Gen-
erally, making causal inferences about the effects of these risk factors
is challenging because of confounding, reverse causation, and the
unfeasibility of randomized controlled trials. We address these lim-
itations using a genetically-informed causal inference design. Under
the assumptions of Mendelian Randomization, we estimated the cau-
sal effects of these risk factors on total healthcare costs. Our approach
was conservative, and we chose risk factors that have strong genetic
bases and high heritability. However, we did not consider important
modifiable risk factors such as smoking and alcohol consumption
because using MR with such risk factors represents additional
challenges.

The risk factorwith the largest quantitative impacts on healthcare
costs wereWC, followed by adult BMI and SBP. An increase of 10 cm in
WC results in 15.40% increase in annual healthcare costs, which, in
Finland, corresponds to approximately €202.13. The effect of WC,
unlikely BMI, was not attenuated when considering the potential
mediating effect of five major diseases. Previous studies have sug-
gested that WC may be more informative than adult BMI for certain
health outcomes, as WC may better reflect the accumulation of intra-
abdominal fat compared with BMI15. TheMR study of Hazewinkel et al.
in the UK Biobank found that an adverse fat distribution rather than
the level of BMI may drive the relationship between BMI and higher
rates of hospital admission16.

Previous studies have used conventional approaches other than
MR to quantify the effects of WC, adult BMI, and SBP on healthcare
costs. Hojgaard et al17. used data from a Danish prospective cohort
study and found that women with increased WC (> = 80 cm) incurred
$261 more in annual healthcare costs than women with normal WC
( < 80 cm) whilemen with increasedWC incurred $420more in annual
healthcare costs than men with normal WC. Pendergast et al18. used
data from an American and German prospective cohort study and
found that individuals with higher WC have 16–18% (€300–€400) and
20–30% ($1900–$2400) higher healthcare costs compared to indivi-
duals with lower WC. Kirkland et al.19 used data from a nationally

representative database from the United States and found that indi-
viduals with hypertension had $1920 higher annual healthcare costs
than individuals without hypertension.

Importantly, we found that the impact several biomarkers (e.g.,
alanine aminotransferase, glycated hemoglobin, C-reactive protein,
LDL cholesterol, lipoprotein(a), creatinine, vitamin D, albumin, and
glucose) have on healthcare costs was modest and not significant at
the Bonferroni-corrected significance level. It has been argued the MR
is more valuable to reject causal claims when the genetic instrument is
sufficiently strong20, as in our case.

There may be two main reasons why we did not find significant
effects for these biomarkers. First, elevated biomarkers can be con-
sequences of underlying disease processes, for example, by reflecting
inflammation, as in the case of C-reactive protein. Moreover, their
levels can simply capture (un)healthy behaviors. For example,
numerous trials have shownno benefits for Vitamin-D supplements on
reducing risk for several diseases, such as cardiovascular diseases,
despite supporting evidence from observational studies21,22, but not
from MR-based studies23–25. Second, the effect of risk factors on
healthcare costs reflects current clinical practice. If a risk factor is
routinely measured and those with high levels of the risk factor are
correctly targeted by preventive interventions, the increased health-
care costs associated with the preventive interventions should be
counterbalanced by the reduced healthcare costs associated with the
prevented disease burden. Such is the case of LDL cholesterol—if LDL
cholesterol was sufficiently treated in the population, LDL cholesterol
would have less of an impact on healthcare costs, and we found a
strong effect of LDL cholesterol on medication costs, but not primary
and secondary care costs. Indeed, Harrison et al. observed a null
impact of total serum cholesterol on other social and economic out-
comes in the UK Biobank26. Similarly, while glycated hemoglobin is a
known marker for type 1 and 2 diabetes, proper management may
result in a lower impact of glycated hemoglobin on healthcare costs as
compared to a theoretical scenario where patients with high glycated
hemoglobin were untreated. Triangulation27 with other evidence
sources, such as randomized controlled trials,may better establish the
mechanism through whichmedical services reduce specific categories
of healthcare costs (e.g., whether preventative interventions indeed
lower healthcare costs associated with downstream morbidity).

Our studyhas limitations. First, thepower andprecisionof ourMR
analysis was limited by the availability of SNPs associated with the risk
factors. Particularly, in our MVMR analysis, some mediators, such as
stroke, had a small number of variants that likely affected statistical
power. As more powerful GWAS are performed, MR may gain the
statistical power to more accurately quantify causal effects. Second,
our MR analysis was limited to linear instrumental variable estimates.
The validity of the causal claims relies on the assumption that we are
estimating the local average treatment effect (e.g., the average effect
of a risk factor on healthcare costs for individuals whose exposurewas
affected by the value of the genetic instrumental variables)28. The lin-
ear instrumental variable estimates will be in the same direction as the
causal effect for each individual in the population as long as the
exposure-outcome relationship is monotonic. Thus, ourMR analysis is
valid in estimating the local average treatment effect of a risk factor on
healthcare costs in our cohort rather than any non-linear effects
between exposure and outcome for any single individual.

Third, MR uses the genetic variation assigned at conception (e.g.,
genetically determined risk factors), and therefore estimates the life-
time effects of risk factors on healthcare costs, rather than acute or
temporary effects. For example, an intervention that reduces WC in
older ages may not result in reductions in healthcare costs consistent
with our estimates. Likewise, MR does not necessarily comply with the
“stable unit treatment value” assumption of causal inference, as there
may be different mechanisms of hypothetically manipulating an
exposure. For example, an individual may have well-controlled SBP
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because they were born with a favorable genotype or because they are
taking blood pressure medications, and the impact of these differ-
ences influences on SBP may differ. Fourth, healthcare systems
worldwide vary. Finland, which has a public healthcare system, is ideal
for the analysis of healthcare costs, as healthcare services are uni-
formly priced, and is similar to other European countries with public
healthcare systems. On the other hand, countries that rely more
heavily on private healthcare and insurance, such as the United States,
may offer healthcare services at different costs depending on insur-
ance plans and other factors, making the analysis of healthcare costs
difficult. Moreover, our results are based on individuals of European
ancestry, and genetic effects might vary across ancestry groups. Fifth,
while we comprehensively capture most healthcare costs in our cost
estimates through using registry-based data, there are certain cost
categories that are not captured by national healthcare registries (e.g.,
private occupational healthcare, institutional care for elderly and dis-
abled individuals outside of a hospital setting, eyeglasses and other
medical devices, and healthcare-related transportation costs such as
ambulances and reimbursed taxis). As such, our cost estimates are
representative of primary outpatient, secondary and tertiary inpatient
and outpatient hospital visits, and medication costs.

Our approach might inform the cost-effectiveness of common
healthcare screening procedures based on biomarkers measurement.
More in general, linking genetics to healthcare costs opens different
research venues. For example, evaluation of the costs associated with
specific genetic variants that mimic drug targets may inform drug
development and commercialization. Implementation of genetic
screening either in the form of polygenic score or single variants,
would require health-economic assessment29–31. Future large-scale
genetic studies will be powered to provide a comprehensive assess-
ment on the impact of genetics on healthcare costs and facilitate the
implementation of such proposed genomic medicine approaches.

In conclusion, our results not only indicate that elevatedWC, BMI
and SBP are major causal contributors to healthcare costs, but could
also quantify their impact on healthcare costs within a causal inference
framework. This has implications for the cost-effectiveness of inter-
ventions and policies that influence these biomarkers. Several other
biomarkers routinely measured in clinical setting are unlikely to
directly impact on healthcare costs, either because they are not causal
to healthcare cost, or because they are already well managed in the
clinic.

Methods
Study cohort
This study utilized data from the FinnGen Study, which is an ongoing
prospective cohort study aiming to recruit 520,000 individuals by
combining population-based legacy cohorts, disease-based cohorts,
and volunteers recruited by biobanks32. The average age at baseline
(i.e., date of DNA sample collection) is 54 years old and 56% of the
study cohort is female. Participants are linked to national health
registries that provide rich longitudinal information. Such registries
include the Register of Primary Health Care Visits (AvoHILMO) which
captures outpatient visits, the Care Register for Health Care (HILMO)
which captures hospital visits, and the Medication Reimbursement
Register (Kela). Individual-level genotypes and register data from
FinnGen participants can be accessed by approved researchers via the
Fin-genious portal (https://site.fingenious.fi/en/) hosted by the Finnish
Biobank Cooperative FinBB (https://finbb.fi/en/). Data release to FinBB
is timed to the bi-annual public release of FG summary results which
occurs twelvemonths after FG consortiummembers can start working
with the data.

Given that the study participants in FinnGen may differ from the
entire Finnish population due to its hospital-based recruitment (e.g.,
individuals in FinnGen are typically sicker and have higher disease
prevalence), we adjusted the study cohort in FinnGen to the entire

Finnish population using inverse probability weights in a subsequent
sensitivity analysis. We used the calibration weighting method, which
uses the marginal proportions of variables to adjust the sample
weights to satisfy the population margins. We used the following five
health and sociodemographic characteristics: age, gender, education,
occupation, and region of birth.

Participants in FinnGen provided informed consent for biobank
research on basis of the Finnish Biobank Act. The Coordinating Ethics
Committee of the Hospital District of Helsinki and Uusimaa (HUS)
approved the FinnGen study protocol (number HUS/990/2017). The
FinnGen study is approved by the THL (approval number THL/2031/
6.02.00/2017, amendments THL/1101/5.05.00/2017, THL/341/6.02.00/
2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019 and THL/1721/
5.05.00/2019), the Digital and Population Data Service Agency
(VRK43431/2017-3, VRK/6909/2018-3 andVRK/4415/2019-3), the Social
Insurance Institution (KELA) (KELA 58/522/2017, KELA 131/522/2018,
KELA 70/522/2019 and KELA 98/522/2019) and Statistics Finland (TK-
53-1041-17).

Estimation of healthcare costs
(1) AvoHILMO and (2) HILMO are registries maintained by the Finnish
Institute for Health and Welfare (THL) for (1) primary outpatient and
(2) secondary and tertiary inpatient and outpatient hospital visits,
respectively. The Finnish Institute for Health and Welfare publishes
average unit cost estimates for different types of healthcare services
(e.g., outpatient visits, inpatient episodes). The Social Insurance Insti-
tution (SII, also known as Kela), the Finnish government agency in
charge of national social security programs, maintains a registry of all
reimbursed prescription medication purchases in Finland. The Avo-
HILMOregistrywas started in 2011, theHILMO registry in 1998, and the
medication purchases registry in 1998. All AvoHILMO, HILMO, and
medication costs capture total costs regardless of the payer. We did
not capture costs related to private occupational healthcare, institu-
tional care for elderly and disabled individuals outside of a hospital
setting, eyeglasses and other medical devices, and healthcare-related
transportation costs such as ambulances and reimbursed taxis. Going
forward, we referred to any AvoHILMO costs as “primary care costs”,
HILMO costs as “secondary care costs”, and Kela costs as “medica-
tion costs”.

We used the unit cost estimates published by the Finnish Institute
for Health and Welfare to obtain costs associated to each medical
encounter33. Primary care costs were linked to eachmedical encounter
by profession (e.g., physician, nurse), service type (e.g., primary
healthcare, mental health), and contact type (e.g., visit, phone call).
Secondary care costs were linked based on service (e.g., emergency
room visit, outpatient visit, inpatient visit), specialty (e.g., cardiology,
neurology), and hospital (e.g., university, central, other) types. Medi-
cation costs were linked using theNordic Article Number (VNR), which
is an identifier that exactly captures the type of medicinal product
(e.g., manufacturer, dosage) purchased. We used the yearly average
costs for each VNR code across Finnish pharmacies to link the costs.
Primary care costs prior to 2011 were excluded, and secondary care
and medications costs prior to 1998 were excluded to reflect the start
dates of each registry. Individuals with secondary care or medication
records, but without primary care records, were assumed to be indi-
viduals using private primary healthcare services. There were 294
(0.08%) such individuals in FinnGen, and they were assigned the
medianprimary care cost of€71.62. For all cost categories, we examine
costs in 2017 euro values such that the same service contributes
similarly to costs whether it occurred for example in 2010 or 2017.
Other missing values were assigned zero values (i.e., individuals with
primary and secondary care records, but without medication records,
were assigned a zero value for medication costs). To adjust for fluc-
tuating healthcare costs by different years, each unique set of identi-
fiers was assigned to the standardized healthcare costs in 2017.
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We estimated the annual total healthcare costs, primary care,
secondary care, and medication costs adjusted by the total follow-up
time that individuals were observed in each registry. The start of
follow-up was defined as 2011 for AvoHILMO and 1998 for HILMO and
Kela. The end of follow-up (EOF) was defined as date of death, date of
emigration, or the end-of-registry date (October 11, 2021). The annual
total healthcare costs for each individual are estimated as:

Annual total healthcare costs =
Total primary care costs

Total person� years f rom2011to EOF

+
Total secondary care costs

Total person� years f rom1998to EOF

+
Total medication costs

Total person� years f rom1998to EOF

ð1Þ

As healthcare costs were highly right-skewed in this sample, a
log(X + 1) transformation was implemented before modeling. Log
transformation is frequently applied to normalize right-skewed
healthcare costs, although certain limitations remain (e.g., handling
zero cost estimates and requiring anadjustment such as log(X + 1))34–37.
Log transformation was also used to make effect estimates more
interpretable as effect estimates calculated from log-transformed
outcomes yields percent changes (e.g., one standard deviation
increase in the dependent variable yields a certain percent change in
the outcome). Percent changes, rather than raw euro values, may be
more interpretable as different countries utilize different currency
systems, have different magnitudes of healthcare expenditure, etc.
Annual total healthcare costs were the main outcome studied. In sen-
sitivity analyses, we examined healthcare costs stratified by: (1) service
type (e.g., primary care, secondary care, andmedication costs), (2) sex,
and (3) age at the end of follow-up (individuals under 30 years old,
individuals between 30 and 60 years old, and individual over 60
years old).

Genome-wide association study
The primary outcome was log-transformed annual total healthcare
costs, and our secondary outcomes included (1) log-transformed pri-
mary care, secondary care, and medication costs, (2) log-transformed
annual total healthcare costs for females and males, and (3) log-
transformed annual total healthcare costs for individuals under 30
years old, individuals between 30 and 60 years old, and individuals
over 60 years old. We performed genome-wide association studies
(GWAS) of healthcare costs to identify genetic variants associatedwith
healthcare costs using REGENIE, which is a method for fitting a whole-
genome regression model38. Briefly, REGENIE uses a two-step process
that fits awhole-genome regressionmodel and performs single-variant
association testing. We used the default model with the following
covariates: birth year, birth year squared, sex, 10 principal compo-
nents, and batch covariates. SNPs were filtered using MAF >0.001 and
INFO >0.8.

Mendelian Randomization
We performed MR, which is a method that uses genetic variants as
instrumental variables to estimate the effect of specific exposures on
healthcare costs9. The exposures included 15 biological risk factors
basedon the following criteria: (1) has strong genetic instruments (e.g.,
F-statistic > 50) and (2) of clinical interest and relevance (e.g., can be
measured through available laboratory tests). We used summary sta-
tistics from the GWAS of healthcare costs conducted in FinnGen for
the outcomes and non-overlapping summary statistics from the MRC
IEUOpenGWASDatabase for the exposures (Supplementary Table 1)39.
Some summary statistics were back-transformed from standardized to
raw units on the original scale (e.g., adult body mass index, HDL cho-
lesterol, LDL cholesterol, triglycerides, systolic blood pressure, and
waist circumference).

To evaluate the causal effect of the 15 risk factors on healthcare
costs, we performed two-sampleMR,which utilizes summary statistics
from GWAS of exposures and outcomes in non-overlapping cohorts40.
MR relies on several assumptions: (1) genetic instruments must be
robustly associated with the exposure, (2) there must be no con-
founders of the genetic instruments-cost associations, and (3) genetic
instruments must not influence costs except through the exposure of
interest9. We performed two-sample MR using the TwoSampleMR
package version 0.5.6 in R version 4.139,41.

We performed LD clumping with a window of 10000 kilobases
and an R2 cutoff of 0.002 and utilized theMR Egger, weightedmedian,
inverse variance weighted, simple mode, and weighted mode meth-
ods. The inverse variance weightedmethod estimates the causal effect
based on a ratio of association estimates from a univariable regression
of the outcome on the genetic variant and the exposure on the genetic
variant, averaging each ratio estimate with inverse variance weights.
The MR Egger method uses a similar method, with the inclusion of an
intercept term. The simple mode, weighted mode, and weighted
median methods rely on similar approaches, with different weights.
Several methods were used in combination due to differing advan-
tages and disadvantages. For example, the MR Egger method, is more
robust to pleiotropy (e.g., one variant affecting multiple phenotypes),
yet suffers from lack of power, while the inverse variance weighted
method retains more statistical power.

Multivariable Mendelian randomization
Multivariable MR (MVMR) uses genetic variants for two or more expo-
sures to simultaneously estimate the causal effect of each exposure on
the outcome, controlling for the effect of the other included exposures.
MVMR can therefore use genetic variants for several risk factors to
estimate independent and direct effects of these risk factors, as well as
estimating mediation42. MVMR requires the same assumptions as uni-
variate MR, but the genetic instruments must be associated with the set
of exposures rather than the single exposures, but it is not necessary for
each genetic instrument to be associated with every exposure42.

We performed MVMR to identify mediators of the exposures on
healthcare costs, in which the mediators were the top five non-
communicable diseases from the Global Burden of Disease:14 back
pain, chronic ischemic heart disease, type 2 diabetes, chronic
obstructive pulmonary disease, and stroke. Summary statistics for
mediators were obtained from the UK Biobank (Supplementary
Table 1). For example, we estimated the simultaneous effects of
chronic ischemic heart disease and waist circumference on healthcare
costs by including two exposures in our model, which were identified
using genetic variants associated with each exposure. This allowed us
to obtain the direct effect of waist circumference on healthcare costs
by adjusting out the indirect effect of chronic ischemic heart disease
on healthcare costs.

Replication analyses in the United Kingdom and Netherlands
Weperformed validation analyses in theUKBiobank10 (N=307,048) and
Netherlands Twin Register43 (N= 16,726) to evaluate the generalizability
and robustness of our results to different healthcare systems in different
countries. For the UK Biobank, annual total healthcare costs were used
as the primary outcome, inwhich poundswere converted to euros using
the average exchange rate in 2021 of 1 EUR=0.8403 GBP, and in-house
GWAS protocols for quality control were used44. Briefly, the following
exclusion criteria were applied: (1) individuals withmismatches between
their biological sex and self-reported gender, (2) individuals with sex
chromosome aneuploidy, and (3) related individuals of white European
British ancestry45. Theanalysiswas restricted toautosomal variantsusing
a graded filtering process to account for imputation quality at different
allele frequency ranges so that rarer genetic variants were required to
have a higher imputation INFO score. Linear mixed models were
implemented using BOLT-LMM and controlled for age, sex, and the first
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40 principal components46. For the Netherlands Twin Register, we used
published GWAS summary statistics43.

We repeatedour analyses to estimate the annualmonetary impact
per capita associated with each risk factor. We applied two-sampleMR
using largely the same summary statistics for risk factors and summary
statistics from the UK Biobank10 and Netherlands Twin Register43 for
healthcare costs. For the risk factor summary statistics that included
individuals from the UK Biobank, we used separate summary statistics
to ensure non-overlapping summary statistics between exposures and
outcomes (Supplementary Table 1). We also calculated the genetic
correlation between the three sets of summary statistics (e.g., GWAS
on healthcare costs in Finland, United Kingdom, and Netherlands) to
evaluate the consistency of associations across different healthcare
systemsusing linkage disequilibrium score regression (LDSC), a tool to
estimate genetic correlation and heritability47. Briefly, after filtering
(e.g., INFO>0.9 and minor allele frequency (MAF) > 0.01), LDSC with
default parameters and Hapmap3 SNPs in the 1000 Genomes Project
European reference panel was used47.

We also constructed polygenic scores (PGS) of healthcare costs
from the UK Biobank and Netherlands Twin Register and estimated
their associations with healthcare costs in FinnGen. Using the GWAS
summary statistics from the UK Biobank and Netherlands Twin Reg-
ister to construct PGS in the FinnGen cohort provided an additional
approach on top of genetic correlation to understand if genetic signals
in one study could replicate in the other studies, despite difference in
the healthcare costs definitions across countries. We first used PRS-
CS48 to calculate weights of association and PLINK249 to calculate
scores. Briefly, PRS-CS is a polygenic prediction method that uses
Bayesian regression and infers posterior SNP effect sizes under con-
tinuous shrinkage priors using only GWAS summary statistics and an
external linkage disequilibrium reference panel48. The 1000 Genomes
reference panel was used to output weights using standard PRS-CS
parameters. Only HapMap3 variants were included. PLINK2 was used
to calculate the PGS, which were then standardized across the entire
FinnGen cohort with a mean of 0 and a standard deviation of 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are made available from the FinnGen Study with research pro-
posals approved by institutional review board and the FinnGen Scien-
tific Committee. All individual-level data from the FinnGen Study is
under controlled access due to the sensitive nature of health informa-
tion data and can be requested from the Finnish Biobank Cooperative
FinBB (https://site.fingenious.fi/en/). Other health register data can be
requested fromtheFinnishDataAuthority Findata (https://findata.fi/en/
permits/). All Finnish biobanks can provide access for studies under the
scope of the Finnish Biobank Act, broadly using biobank samples or
data to promote health, understanding disease mechanism, or devel-
oping interventions used in healthcare. Supporting genome-wide
association data supporting the findings of this study are publicly
available on request from the UK Biobank (https://www.ukbiobank.ac.
uk/) and theNetherlandsTwinRegister (https://www.nimhgenetics.org/
download-tool/NTR). All source data are provided with this paper. All
data supporting the findings of the study are available in the article, in
the Supplementary Information, or from the corresponding author
upon request. Source data are provided with this paper.

Code availability
All code is available via Github: https://github.com/
jiwooleebroadinstitute/healthcare_cost_finngen (https://doi.org/10.
5281/zenodo.8184260).
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