
Article https://doi.org/10.1038/s41467-023-41392-6

Local flux coordination and global gene
expression regulation inmetabolicmodeling

Gaoyang Li1,2, Li Liu3, Wei Du 1 & Huansheng Cao 3

Genome-scale metabolic networks (GSMs) are fundamental systems biology
representations of a cell’s entire set of stoichiometrically balanced reactions.
However, such static GSMs do not incorporate the functional organization of
metabolic genes and their dynamic regulation (e.g., operons and regulons).
Specifically, there are numerous topologically coupled local reactions through
which fluxes are coordinated; the global growth state often dynamically reg-
ulates many gene expression of metabolic reactions via global transcription
factor regulators. Here, we develop aGSM reconstructionmethod, Decrem, by
integrating locally coupled reactions and global transcriptional regulation of
metabolism by cell state. Decrem produces predictions of flux and growth
rates, which are highly correlated with those experimentally measured in both
wild-type and mutants of three model microorganisms Escherichia coli, Sac-
charomyces cerevisiae, and Bacillus subtilis under various conditions. More
importantly, Decrem can also explain the observed growth rates by capturing
the experimentally measured flux changes between wild-types and mutants.
Overall, by identifying and incorporating locally organized and regulated
functional modules into GSMs, Decrem achieves accurate predictions of
phenotypes and has broad applications in bioengineering, synthetic biology,
and microbial pathology.

Cellular life maintains itself and replicates through the entire set of
biochemical reactions in genome-scale metabolic networks (GSMs)
operating in awell-coordinatedmanner1–3. Such a resilience is achieved
through complex coordination on a systems scale, mainly determined
by local and global regulation4,5. First, the microbial flux state appears
to evolve towardoptimality under onegrowth condition and aminimal
adjustment between (environmental or genetic) conditions6; conse-
quently, local metabolite levels are stable in the face of environmental
or genetic perturbations5–11 due to quick compensation from local
reactions. This suggests that local rerouting of fluxes inGSMs operates
efficiently, which plays a crucial role in metabolite homeostasis in
maintaining global optima under one condition or across conditions6.
Such quick compensations come as a result of the evolution of

metabolic networks, in which reactions and metabolites preferably
attach to high-efficiency biochemical reaction chains in an organism,
e.g., pathways or biological processes, according to the principles of
network growth and preferential attachment12–14. This mode of net-
work organization leads to a topologically local coupling formetabolic
flux rerouting. For example, in the TCA (tricarboxylic acid) cycle, the
reaction chain D-isocitrate --> a-ketoglutarate -->… --> malate
(Km=0.029μMandKcat= 106.4 for IDH3 (Isocitrate dehydrogenase)) is
preferred as the primary branch for oxidation of acetyl-CoA over the
low-efficiency reaction chain D-isocitrate --> succinate (Km= 8μM and
Kcat = 28.5 for AceA (Isocitrate lyase)). Recent discoveries in both net-
work properties and enzyme parameters, e.g., Km and Kcat, support
such network organization15,16. Some reactions are more closely
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interconnected with high kinetic capabilities than others and form
“small world” structures in GSMs17–19, particularly in central
metabolism20. Therefore, those topologically coupled reactions con-
stitute the biochemical properties-derived local metabolic auto-
regulation and flux coordination in GSMs. The local metabolic
coordination-guided regulation is manifested in three aspects. First,
the changes due to local internal perturbations (gene deletions) are
quickly compensated by neighboring reactions5. Second, functionally
related genes are organized as operons coregulated in
microorganisms21–25. Third, failure to recognize the coupled reactions
leads to poor performance in perturbation effect estimation by steady-
state linear flux optimization, e.g., flux balance analysis (FBA).

Besides local fast-acting flux adjustment, global metabolic
homeostasis is achieved through transcriptional regulation9,26–30,
which accounts for the majority (about 70%) of the changes in gene
expression between growth conditions29. The gene expression profiles
areprimarily regulatedby the global growth state via the sequestration
or release of transcription factors (TFs) with the variation in the con-
centration of growth indicator metabolites28,29, as shown in the activ-
ities of over 200 TFs showing strong correlations with few cognate
metabolites following the transition from starvation to growth in E.
coli9. For example, cyclic AMP, fructose-1,6-bisphosphate, and
fructose-1-phosphate bind to TFs (e.g., Crp and Cra) and thereby
mediatemostof the specific transcriptional regulation.However, there
is a low correlation between biochemical reaction rate and its enzyme
expression level. For example, in central metabolism, only a few
enzymes change proportionally to flux changes in the reactions in the
tricarboxylic acid cycle (TCA Cycle)4. Consequently, the triangular
regulatory relationship of metabolites->TFs->transcription cannot
sufficiently reflect the reaction flux variation4,31–33, and this insuffi-
ciency has hampered the integration of transcriptional regulation with
the current stoichiometric matrix-based GSM models4,31. Few studies
attempting to integrate the kinetic parameters are Michaelis-Menten
equation-based genome-scale multi-omics data fitting34,35, but do not
consider the global transcriptional regulation of metabolism. In prac-
tice, it is challenging and expensive to obtain complete enzyme kinetic
parameters (i.e., Km and Kcat) from paired metabolomics and pro-
teomics data to build a reaction kinetics-constrained metabolic flux
prediction model in GSMs.

In this work, we present a GSM model, Decrem, to quantitatively
characterize the local topological cooperation regulation and the
global transcriptional regulation. For this purpose, we integrate local
flux coordination and transcriptional regulation of global growth state-
mediated key metabolic reactions into Decrem to approximate flux
distribution (Fig. 1). We first derive a decoupled Decrem model by
analyzing the cooperated topological profiles of GSMs and incorpor-
ating them into the canonical FBA by representing the synchronously
coordinated (coregulated) and closely coupled reactions with a group
of independent sparse bases (reactions) according to a stoichiometric
matrix decomposition. We test Decrem in three model organisms: E.
coli, S. cerevisiae, and B. subtilis. The flux distributions predicted using
Decrem are highly consistent with experimentally measured fluxes in
multiple strains (wildtype and mutants). Then, the growth state-
regulated fundamental enzyme kinetics are identified to create kinetic
Decrem to model the global dynamic transcriptional regulation of
metabolic networks in response to environmental perturbations.
Unlike the previous kinetic models, which often focus each essential
metabolite/flux on its corresponding enzyme kinetics, we focus our
attention on the enzymes directly regulated by growth state (biomass
composition) because they represent the more significant transcrip-
tional regulation than the other reactions. A specific advantage of the
kinetic Decrem model is that only several growth state-related meta-
bolites suffice to achieve transcriptional regulation and thus reduce
the requirements for necessary kinetic parameters and paired multi-
omics data. The accurate growth rates predicted by the kineticDecrem

model in E. coli genome-scale knockout strains revealed that intracel-
lular perturbations are mainly ‘buffered’ by highly coupled reactions,
which reveals the coordination between crucial precursors of central
metabolism and cell growth. Overall, we recognize metabolic regula-
tion as the local topological coordination and global growth-related
key transcriptional regulation, which demonstrates that Decrem can
integrate metabolic regulation into current GSM models.

Results
Reconstruction of GSMs with topologically decoupled reactions
Through comprehensive multi-omics data analysis, we find that the
transcriptional data of metabolic genes have no significant correlation
with the corresponding 13C isotope fluxes in E. coli central metabolism
(Fig. 2a). In contrast, a high correlation is observed between the fluxes
of local topologically coupled neighboring reactions, e.g., the element
reactions of conventional pathways in centralmetabolism: the average
correlation coefficient r is 0.913, 0.975, and 0.794 for the reactions in
glycolysis, PPP (pentose phosphate pathway) and TCA (tricarboxylic
acid) cycle, respectively, as opposed to 0.505, 0.267, and 0.421 for
each uncoupled reaction set (t-test, p = 2.33E−9, 3.06E−43, and 2.25E
−4, respectively; Fig. 2b), as well as the metabolic gene expression of
those local neighboring reactions (Fig. 2c). These correlations suggest
potential coordinated regulation of locally coupled neighboring
reactions. Here, we develop a topologically decoupled linear repre-
sentation of the metabolic network to characterize the coactivated
regulation of topologically highly coupled reactions with three steps.
First, substructures composed of tightly connected local reactions in
the metabolic network are identified from its bipartite graph repre-
sentation (Supplementary Fig. 1)36, with a topological coupling metric
as the number of simple cycles between two reaction nodes in the
bipartite graph. Specifically, the identified coupled reaction subnet-
work included 927 of the 2382 reactions in the E. coli model iAF1260
(Supplementary Data 1). In central metabolism, such as glycolysis, PPP,
TCA cycle, amino acid, and glycerophospholipid pathways, the reac-
tions especially the reversible reactions (70%, 141 of 201) primarily
consist of coupled reactions. In contrast, tRNA, membrane lipid bio-
synthesis, membrane transport pathways, and the biomass reaction
primarily consist of uncoupled linear reaction chains (Fig. 2d). The Km

values (0.023mM) of identified coupled reactions are smaller (by
56.5%) than those (0.036mM) in the uncoupled reaction chains (Wil-
coxon test, p = 5.74E−4; Fig. 2e). Together, the high correlation of gene
expression andfluxes among local topologically coupled reactions, the
biochemical proximity, and high substrate affinity of enzyme catalysis
suggest that these coupled reactions prefer to locally cooperate andbe
co-regulated to quickly respond to environmental perturbations,
especially in central metabolism, before reaching out to more distant
reactions. Next, we decompose the highly coupled reaction sub-
structures into their linear representations with minimal independent
reaction components, using sparse linear basis (SLB) vectors of null
space of their corresponding stoichiometry matrix. Each SLB consists
of the least number of coupled reactions to form an indivisible inde-
pendent flux (see Methods). Like elementary flux modes (EFMs)37,
metabolic fluxes could be decomposed as the weighted linear com-
bination of the identified SLBs10. However, unlike the almost infinite
number of EFMs for large GSMs, there is a unique number of SLBs to
define themutually independent components for the densely coupled
reactions38. We validate the coordinated activation of reactions within
the SLBs through gene expression in 24 knockout strains of E. coli38.
Indeed, the correlations (mean r = 0.447) of gene levels among the
element reactions from the same SLBs are higher than those (mean r =
0.28) from different SLBs in central metabolism (t-test, p = 2.05E−33;
Fig. 2f). This suggests that the reactions from the same SLBs tended to
be coactivated, but the reactions in different SLBs are more indepen-
dent than those from the same SLBs. To explore the local coregulation
of SLBs, we enrich the constituent genes of SLBs into all the TFs of E.
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coli and find a significant enrichment TF set for SLBs (Fig. 2g). Most of
the enriched TFs are part of the general DNA-binding transcriptional
regulators, such as SoxS and NrdR. These regulations are often
determined by cellmetabolic state (superoxide or nitric oxide andATP
concentration).

In the last step, we reconstruct a GSMmodel, Decrem, bymerging
the element reactions of each SLB into a linear basis reaction (LBR)
with reallocated stoichiometric coefficients (seeMethods). To explore
the variable range of fluxes in Decrem against the original GSMs, flux
variability analysis (FVA) is conducted in E. coli and S. cerevisiae. The
results confirm the preservation of solution space (Supplementary
Fig. 2)39. Ourmodel reassigns the flux ranges, which vary with different
pathways, and makes the distribution of flux variability in central
metabolism more consistent with the experimental 13C flux distribu-
tion, whichmay reduce the uncertainty of original GSMs, and serves as
our working model for subsequent functional analyses.

Benchmark the metabolic fluxes prediction in response to
environmental perturbation in vivo/vitro
We first apply Decrem for metabolic flux prediction with an FBA
strategy (see Methods), in comparison with three other methods

which are carried on the canonical GSMs: FBA, pFBA (parsimonious
FBA), and RELATCH40–42 in model organisms of E. coli (iAF1260 and
iML1515), S. cerevisiae (iMM904), and B. subtilis (iYO844). These four
models contain 766, 1104, 558, and 332 LBRs in the corresponding
decoupled Decrem models, respectively (Supplementary Data 1).

We calculate themetabolic fluxdistribution in the canonical E. coli
iAF1260 model under MOPS medium supplemented with glucose or
xylose and under aerobic or anaerobic respiration43 (Supplementary
Note 1), with nutrients as the sole constraints onGSMs (Supplementary
Data 2). The predictions using Decrem have higher correlations with
the experimentally measured 13C-MFA (metabolic flux analysis) fluxes
(Supplementary Data 3) than the predictions by three other methods
on the original GSMs under all four conditions, in all three metrics
(Fig. 3a, c, d). Meanwhile, Decrem flux predictions have the smallest
MSE (maximum upper bound of flux being 1000mM/gDW/hr), and
most of the activated reactions (with nonzero flux) agree well with the
experimental 13C-MFA fluxes (Fig. 3c, d). Here, we provide an example
of the superior performance of Decrem in the TCA cycle. The Decrem
predictions are consistent with the experimentally measured 13C-MFA
fluxes (Supplementary Fig. 3), whereas four activated reactions are
predicted as inactive (zero fluxes) by FBA. Given the multiple versions
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of available E. coli GSMs with different numbers of reactions and dis-
tinct completeness, we test the generality of Decrem on six E. coli K-12
BW25113 knockout mutant strains with the newest E. coli iMF1515
model11 (Supplementary Data 2 and Data 3), and find a consistent
higher correlation (higher activated reaction numbers and lower MSE)
of Decrem than all three other methods (Fig. 3b–d), which indicates
the properties of local reaction coordination can effectively improve
the flux prediction of current GSMs.

Decrem also outperforms the other three methods in flux pre-
diction in S. cerevisiae and B. subtilis44,45 (Fig. 3a, c, d; Supplementary
Note 1, Supplementary Data 1–3). Particularly, Decrem FBA, pFBA, and
RELATCH tested with conventional complex eukaryote S. cerevisiae
model produce r to be0.696, 0.3, 0.284, and0.3, respectively, inwhich
reactions are often strongly coupled based on cellular compartments.
To validate thefluxdistribution in themitochondrial compartment, we
build a reference flux distribution for the S. cerevisiae iMM904 model
using the wildtype 13C-MFA fluxes (Supplementary Note 1), and then
compared the reference fluxes with the predicted reaction fluxes of
mitochondrial reactions from Decrem and original GSMs. The result-
ing number of co-occurring nonzero fluxes are 76 and 50, and the
Spearman correlation coefficients are 0.674 and 0.462, respectively.

We notice the specific nonzero flux reactions by Decrem are related to
oxidative phosphorylation and transportation, such as proline oxidase
NAD (Supplementary Data 2). To further explore whether Decrem can
predict the flux range varying across the diverse perturbation, FVA is
carried out on Decrem, the original E. coli iML1515, and S. cerevisiae
iMM904, respectively. We find a higher Jaccard index metric between
the Decrem predictions and 13C-MFA-estimated 95% confidence inter-
vals across various mutant strains, compared with predictions using
the original GSMs (Fig. 3e and Supplementary Fig. 4; Supplementary
Data 3–4; Supplementary Note 1). This improved prediction indicates
that Decrem reassigns the distribution of flux variability, which may
reduce the uncertainty of original GSMs.

Decrem accurately identifies the mutant fluctuation in Yeast
knockout strains
We first evaluate Decrem in predicting fluxes in response to genetic
perturbation (single-gene deletions) in two GSMs of S. cerevisiae,
iDN750 (1059 metabolites and 1266 reactions) and iMM904 (1226
metabolites and 1577 reactions). Thirty-eight mutants with
experimental 13C-MFA fluxes, growth rates, nutrient uptake properties,
and several extracellular exchange fluxes46 are used (Supplementary
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Note 2; Supplementary Data 4). Compared to four other methods,
pFBA, FBA, RELATCH, and REPPS47. The Decrem flux predictions show
the highest correlations with the experimentally measured fluxes in
almost all mutant strains for both GSMs (Fig. 4a and Supplementary
Data 5). Specifically, the average Spearman and Pearson correlation
coefficients (r) determinedbyDecrem for iDN750 are0.72 and0.763 in
the 38 mutant strains, compared to 0.615 and 0.733, 0.607 and 0.681,

0.556 and0.707, 0.462 and0.595 for pFBA, FBA, RELATCH, andREPPS,
respectively (one-way ANOVA, p = 5.52E−20 and 4.21E−07). For the
complete Yeast iMM904, the mean Spearman and Pearson’s correla-
tion coefficients are 0.782 and0.936, 0.765 and0.747, 0.656 and0.915,
0.75 and0.925, 0.645 and0.841 for Decrem, pFBA, FBA, RELATCH, and
REPPS, respectively, which are significantly different (one-way ANOVA;
p = 4.35E−06 and 8.26E−06, respectively). The differential accuracy of
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flux predictions between the iDN750 and iMM904 models shows that
Decrem performed better than other methods, particularly on meta-
bolic models that are incomplete (e.g., iDN750 vs. iMM904) (Fig. 4a).
Further analysis revealed that such differences exist because a large
proportion (47%, 146 of 311) of the reactions in iMM904 (vs. iDN750)
are highly coupled reactions, compared to an average of 35% (558 of
1577) for iDN750 (Fisher’s exact test, (k = 146,m = 558, n = 311, N = 1577
for hypergeometric distribution) p = 5.427e−04); this increased reac-
tion couplingmay optimize the solution space of themetabolicmodel
and change the optimal reaction paths in iMM904. In addition, we
explore the prediction difference of mutant strains across specific
pathways by MSE for all the methods used and find that Decrem pre-
sents a significantly smaller MSE than other methods (Fig.4b and
Supplementary Fig. 5), especially for mutants in central metabolism,
which contain many coupled reactions, e.g., FUM1, MDH1, and PDA1
mutants in TCA cycle and pyruvate metabolism, respectively.

We then apply Decrem and pDecrem (Decrem model with parsi-
monious FBA optimizer, see Methods) to estimate the growth rate in
the 38 mutant strains of S. cerevisiae using the iMM904model. PCA of
the predicted fluxes among the mutant strains from all six methods
shows that the top two principal components (PCs) can explain more
than 99% of the variance of all predicted fluxes. However, the two top
PCs predicted by Decrem are each highly correlated (r > 0.7) with
experimentally measured growth rates. At the same time, the other
methods have, at most, one PC that merely shows moderate correla-
tion (r ~ 0.5) (The PCs correlation r >0.8 from 13C MFA fluxes; Sup-
plementary Data 5). Furthermore, a PCA regression reveals that
Decrem prediction has the best flux variance to explain the observed
growth rates, showing the highest coefficient of determination (R2):
0.9 (Decrem) and 0.9 (pDecrem) vs. 0.74, 0.731, 0.731, 0.841, 0.9, and
0.9 for the other methods (Supplementary Fig. 6). Importantly,
Decrem can both correctly identify and explain the six mutations with
significant growth effects reducing growth rate to <0.5 h−1: ALD6,
FUM1, PDA1, RPE1, MDH1, and ZWF1 (Fig. 4c), whereas the other
methods can only identify some of them. Strikingly, Decrem-predicted
flux distribution through the specific pathways correctly explains the
significant fluxes rewiring in these ‘exceptional’ mutants as experi-
mentally observed46,48; none of the other fourmethods captured these
flux responses with the original GSMs (Fig. 4d–f). Specifically, Decrem
fluxes accurately classify the two groups of redox metabolic fluxes:
NADP+/NADPH-related mutants: (ZWF1, RPE1, and ALD6), and NAD+-
related mutants in TCA: (FUM1, PDA1, and MDH1)43 (Fig. 4d). Interest-
ingly, Decrem also distinguishes the ZWF mutant from the ALD6 and
RPE1 mutants, as having increased mitochondrial fluxes (Fig. 4d),
precisely as experimentally observed46,48. That is, the exceptionally
high fluxes of the mitochondrial transport pathway and TCA pathway
in the ZWF1 strain agree with the experimental observation that
NADPH and NADP+-dependent mitochondrial malic enzyme flux is
significantly increased (Fig. 4g)46. The other methods identified only
the mutations with large growth effects, leading to a high incorrect
rate. In comparison, Decremdemonstrates high accuracy and low false
positive rates in assessing the growth rate and well approximates the
real metabolic fluxes in the mutants.

Integrating global transcriptional regulation-derived key reac-
tion kinetics into Decrem
Cellular metabolism is rather dynamic but transcriptional regulation is
insufficient to explain flux change4,35, which presents a major obstacle
to themulti-omics integration ofmetabolism.Wepresent here that the
biomass/growth rate, rather than regulator metabolites, plays a
dominant role in the activity for most of gene expression in central
metabolism. This insight provides a practical strategy to quantify the
cooperation relationship between the biomass/growth state-regulated
metabolic genes and their kinetic flux.

For this purpose, we first investigate the correlation between
potential regulator metabolites obtained in this study through an
extensive literature and database survey49,50 and metabolic gene
expression in centralmetabolismon amulti-omics dataset of 24 single-
gene knockout strains of E. coli49. They include the expression of 85
metabolic genes in centralmetabolism, the concentrations of over 100
metabolites and 51 13C-MFA fluxes for each strain49. In total, 45 selected
regulator metabolites (and biomass constituents) are classified into
two groups according to their concentrations: the biomass-
constituent group (BG) and the precursor or regulator metabolite
group (PG) (Fig. 5a and Supplementary Data 6). Most BG metabolites
have a high positive correlation with the genes in PPP and pyruvate
metabolism and have the negative correlation with some genes of the
TCA cycle. At the same time, the PG only presents a few coregulated
metabolites, e.g., G6P, F6P, and AMP et al. (Fig. 5a). This difference
suggests the dominant role of biomass/growth rate in transcriptional
regulation. To validate the observation, we obtained experimental
metabolite and gene expression data by growing E. coli BW25113 on
MOPSminimalmediumon a time series. Indeed, a similar correlation is
observed (Supplementary Data 6 and Supplementary Fig. 7).

We then develop a linear transcriptional regulationmechanism to
explain the observed correlation (see Methods) and validate this
mechanism by conducting a partial least squares regression (PLSR) to
quantitatively fit the linear global regulation of the observed expres-
sion profiles of the 85 genes to the concentrations of the potential
regulatory metabolites of either group (see Methods). By taking
stringent combined thresholds (total regression correlation r > 0.84
and the correlation of first PC > 0.38 according to PLSR; Supplemen-
tary Note 3), 32 of the 85 genes are identified as the regulatory targets
of the 23 BG metabolites, whereas no genes are identified as the reg-
ulatory targets of the PG metabolites (Fig. 5b and Supplementary
Fig. 8). The identified metabolite-gene regulatory pairs are verified by
the high correlations between the identified 32 globally regulated
genes and BG metabolites using canonical correlation analysis on our
experimental dataset, against the poor canonical correlation of PG
metabolites with all studied genes (all genes vs. all metabolites and all
genes vs. BG) (Fig. 5c, d and Supplementary Fig. 7b,c). We further test
the statistical significance of identified correlations between the
measured and predicted gene levels using a wide range of metabolites
selected by 10,000 random samplings from the 45 potentialmetabolic
regulators (Supplementary Note 3). A p-value of 3.1E−3 for the 23
identified growth-associated metabolites is observed against the ran-
domly selected metabolites (Fig. 5e), while the p-value is 0.48 for the

Fig. 3 | Comparison of the predictions in threemodel microorganisms by FBA,
pFBA, RELATCH, and Decrem. a Metabolic flux distribution between the experi-
mental measurements and predictions by the four methods using E. coli iAF1260
under four conditions: glucose (Gly) or xylose (Oxy) under aerobic (Aer) or anae-
robic (Ana) respiration, as well as in the S. cerevisiae iMM904model and B. subtilis
iYO844 model with glucose under aerobic respiration. r is the Pearson correlation
coefficient between the measured 13C MFA fluxes and the predicted fluxes.
b Metabolic flux distribution between the experimental measurements and pre-
dictions by the four methods in E. coli iML1515 with pgi, zwf, gnd, rpe, tkta, and tktb
genes knockout mutant strains. c Comparison of MSE among the four methods
across the 12 growth conditions. d Comparison of nonzero flux reactions among

the four methods across the 12 growth conditions. e Comparison of flux variability
range consistency between Decrem predicted and 13CMFA fluxes across 28mutant
strains (green) and the prediction by original iML1515 model (red) (n = 33 samples
for each subplot, paired two-tailed t-test, p <0.01). The correlation coefficient is
measured by the Jaccard index. The black center line denotes the median value
(50th percentile), while the green and red boxes contain the 25th to 75th percen-
tiles of the dataset. The black whiskers mark the 5th and 95th percentiles, and
values beyond these upper and lower bounds are considered outliers, markedwith
black bars. n = 31 samples are included in each box. Source data are provided as a
Source Data file.
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PG metabolites. In addition, we validate the identified 32 genes regu-
lated by global BGmetabolites using our own experimental time series
data and find high agreements (Supplementary Fig. 7 (32 genes vs.
BG)). Interestingly, these identified metabolite-gene regulatory pairs
are largely consistent with the global growth rate-regulated promoter
activation from Kochanowsk et al. (Supplementary Data 6)29,51.

The identified 32 genes are primarily located in the PPP and pyr-
uvate metabolism in KEGG pathways (Fig. 6a), which are associated
with cell growth for biosynthesis: generating NADPH and pentoses
toward nucleotide and amino acid biosynthesis52, instead of being in
energy-producing pathways (TCA and glycolysis), which agrees with

the target pathway (reactions) of global cell state regulator: cAMP-
Crp33. These results suggest that the expression of the genes in growth-
associated pathways could be represented as a linear combination of
the concentrations of biomass composition.

We then construct a transcriptional regulation-enabled linear
kineticmodel, i.e., Decrem integrated with global regulation, using the
identified global growth state-regulated metabolic reactions (genes)
based only on the concentration of corresponding biomass composi-
tion (BG) and metabolites (see Methods; Supplementary Note 3). To
that end, we concentrate on the reactions catalyzed by the 32 identi-
fied metabolic genes. These genes are coordinated and vary with their
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Source data are provided as a Source Data file.
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fluxes (Supplementary Fig. 9), which are supported bywell-established
global regulatory mechanisms, e.g., the targets of cAMP-Crp activated
phosphotransferase system (PTS)31,33 which directly coordinate amino
acid and carbohydrate uptake31. Five reactions, Hexokinase, Acetate
kinase, Pyruvate dehydrogenase, Fumarate reductase, and Alcohol
dehydrogenase, are identified as global PTS regulated. We then vali-
date whether the five reactions are correlated with each specific
growth rate using 13C-fluxes of a multi-strain dataset (including

69 strains varying from metabolic gene mutant to time series from
different studies (Supplementary Data 7) and find a significantly high
correlation of them (Fig. 6b). A specific advantage of the identified
globally regulated reactions is the ability to get rid of local regulation
influences with some dynamic enzyme activators or inhibitors. This
reduces the regulatory complexity of reaction kinetics by ignoring the
non-linear term of theMichaelis-Menten equation, as fluxes aremainly
dominated by the global growth state (this property is easy to expand
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Fig. 6 | The analysis of themetabolite-based kinetic regulationmodel of E. coli.
a A map showing regulator metabolites and the genes regulated by the biomass-
constituent metabolites in the central metabolism. The meanings of different
backgrounds and colors: red and green metabolites are each gene inhibitors and
activators; the identified 32 global growth-associated genes are in blue. The brown
background indicates the identified key regulated reactions used to build the
kinetic Decrem. b The correlation heatmap between the BP metabolites and

identified global-regulated reactions. c Predicted kinetic fluxes on the training set
(red) and the test set (purple) for three global regulatory reactions according to
metabolite-determined linear Michaelis-Menten kinetics. ACKr acetate kinase,
GLCptspp D-glucose transport via PEP:Pyr PTS (periplasm), PYK pyruvate kinase.
d The correlation heatmap between the kinetic predicted flux and 13C FMA fluxes
for identified global-regulated reactions, by the k-FIT53, k-ecoli45734, Decremkinetic
reactions, and kurata35. Source data are provided as a Source Data file.
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to other non-model organisms) (see Methods). With the biomass
composition-based linear representation of globally regulated genes,
we can reformulate globally regulated enzyme kinetics as a form only
related to metabolite concentration, which relieves the necessity of
paired multi-omics data for canonical kinetic modeling.

Next, we model and evaluate the reformulated linear kinetics by
optimizing the identified growth-associated key regulated fluxes in E.
coli central metabolism. The predicted kinetic fluxes for global regu-
lated reactions display high consistency with experimental measure-
ments through 13C isotope tracing (Fig. 6c), with r values being 0.95,
0.97, and 0.93 (r values are 0.91, 0.93, and 0.9 for the test dataset) for
the reactions of glucose transport, pyruvate kinase, and acetate kinase,
respectively (Fig. 6c, Supplementary Fig. 10, and Supplementary
Data 7). These fluxes are also utilized to assign key kinetic fluxes in
genome-scale metabolic flux prediction below (see Methods). Strik-
ingly, our linear approximate kinetics only involves several global cell
state-regulated reactions to constrain the flux distribution of Decrem,
which still achieves good performance for flux prediction with the
complex and large-scale kinetic models (Fig. 6d)34,35,53.

Growth rate estimation for E. coli genome-scale gene deletion
strains using Decrem integrated with global regulation kinetics
We apply Decrem constructed above to predict the growth rates of E.
coli genome-scale single-gene deletion mutants, using a dataset in
which the growth rates and the concentrations of over 7000 meta-
bolites have been experimentally measured54. A total of 1030 mutants
with genes involved in metabolism are selected for growth analysis
(Supplementary Note 4). We first examine the growth rates predicted
by the methods incapable of global regulation, pFBA, MOMA, and
Decrem without external flux constraints. As expected, poor results
are produced, with low correlations with experimentally measured
growth rates and r values of 0.127, 0.103, and 0.281 for pFBA, MOMA,
and Decrem, respectively (Supplementary Fig. 11).

Next, we construct the global regulated linear kinetic fluxes of five
identified reactions in central metabolism with predictions (based on
metabolite concentrations) for each of 1030 mutants to approximate
the mutant gene-specific metabolic state, e.g., the branch points of
glycolysis and PPP, the flux allocation downstream of pyruvate meta-
bolism, and the growth-associated secretion (seeMethods; Fig. 6a and
Supplementary Data 8). Using the GSMs integrated with kinetic fluxes,
the growth rates of the 1030mutants are estimated with six methods:
Decrem, pDecrem, FBA, pFBA, RELATCH, and REPPS. The results show
that all six kinetic methods have significantly improved predictions
compared to the kinetic-free methods (Fig. 7a). Among them, Decrem
and pDecrem produce the highest correlations with the empirical
growth rates (r = 0.731 and 0.743 vs. 0.421, 0.685, 0.474, and 0.509)
(Supplementary Data 8).

We then demonstrate the explanatory power of Decrem in inter-
preting the observed growth rates of mutants with corresponding
(altered) flux distributions. For that, we calculate the distribution of
pathway-specific fluxes across mutant strains, defined as the accu-
mulated flux (AF) 13C of each pathway (the accumulated sum of all
nonzero fluxes in a pathway for each mutant strain) (Supplementary
Note 4). The correlations between the AFs and growth rate for all
strains show that Decrem quantifies the largest number of growth-
related pathways that we curate from the literature compared to the
other methods. For instance, many well-known pathways for cell
growth—glutamate, nucleic acid, and most amino acid metabolic
pathways—are ‘detected’ only by Decrem with significant correlation
coefficients (Fig. 7b). Interestingly, although the globally regulated
kinetic pFBA (also pDecrem)method can predict the growth rates with
relatively high accuracy, the corresponding AFs cover only a few of the
curated growth-associated pathways. Moreover, the analyses of the
pathway-specific accumulated growth rates (AG; the accumulated sum
of growth rates of strains inwhich themutated genes are located in the

same pathway) suggest that Decrem-predicted distributions of AGs
through all metabolic pathways are highly consistent with the experi-
mentally measured AG distributions (Fig. 7c). FBA reaches similar
levels of accuracy, but the predictions by pFBA only cover AGs, which
are weakly influenced by gene knockouts and shrink the AGs to zero
for the pathways containing knockout genes with strong growth
effects (Fig. 7c). Such biases are an intrinsic property of the L1 norm-
based pFBA (and pDecrem) method54,55, despite the relatively good fit
of correlations.

We further examine the flux variance distribution in each mutant
for their changed growth rates. PCA of the fluxes predicted by Decrem
across the 1030 mutants is shown in Fig. 7d (Supplementary Note 4).
The distributions of the top two PCs indicate that the primary flux
variances come from the decoupled LBRs, compared to the uncoupled
reactions: 1.461 vs. 1.10 on average for PC1 (t-test, p = 3.04E−20); 1.56 vs.
1.07 for PC2 (t-test, p = 2.86E−25). This is consistent with the high
robustness of the central metabolism16,56 (primarily consisting of LBRs).
Furthermore, we suspect that the growth effects of deleted genes
encoding enzymes for the reactions within the SLBs would be more
pronounced than the effect of genes encoding enzymes for uncoupled
reactions. Indeed, this is confirmed by the analysis of the reaction type-
based growth rates—the complex LBRs (the number of element reac-
tions of associated linear basis vector > 1), the simple LBR (the number
of element reactions of associated linear basis vector = 1) and the
uncoupled reactions (Supplementary Note 4)—and the average growth
rates are 0.666 (most impacted), 0.773 and 0.813 (least impacted) h-1

(one-way ANOVA; p = 7.71E−28) (Fig. 7e). Finally, we examine the cause
for the observed differences among the flux variances, the number of
simple cycles, and the enzymeproperties of LBRs. Thefluxvariances are
primarily explained by the multimeric enzymes and the topologically
highly connected LBRs: LBRs are involved in a large number of simple
cycles and few element reactions (Fisher’s exact test, p = 2.34E−21 and
0.0051, respectively) (Fig. 7f). Therefore, the topological vulnerability of
these reactions will result in functional variability.

Discussion
We reconstructed a GSM model, Decrem, by identifying and incorpor-
ating local topologically decoupled reactions using SLB decomposition
and by incorporating metabolic global regulation by metabolites into
GSMs, which approximates the kinetic fluxes of cell state-regulated key
reactions to constrain the feasible region of optimal flux distribution.
Decrem effectively reduces the requirements for multi-omics data for
genome-scale metabolic kinetic models. Compared to existing meth-
ods, Decrem demonstrates superior performance in predicting meta-
bolic fluxes in threemodel organisms andgrowth rates in genome-scale
knockout strains of E. coli. Therefore, it is an effective model for accu-
rately depicting metabolic responses and exploring the self-adapting
regulation mechanism of cellular perturbation.

By applying SLB decomposition, the (coupled) element reactions
within identified SLBs display high coexpression among multiple
growth conditions, indicating coordinated activation of topologically
highly coupled reactions. Interestingly, similar approaches have been
applied in identifying the non-redundant local functional units of
metabolism, i.e., the minimal metabolic pathway or flux tope38,57. A
topological orthogonality principle has been successfully used to
design bioengineering strains with minimal interaction between
desired product-associated pathways and metabolic components
related to biomass synthesis58. In addition, several specific topological
constraint treatments, such as removing the thermodynamically
infeasible loops and decoupling two desired phenotypes, have been
applied to GSMs to improve their metabolic production in recent
studies59,60. But Decrem is the first genome-scale topologically
decoupled metabolic model for general applications, which clearly
demonstrates how the topological preference of a metabolic network
can guide the metabolic flux distribution.
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Toexploreeffectivemetabolicdynamic robustness or adaption to
internal and external perturbations, metabolic kinetic models have
attracted great attention by combining fluxomics, metabolomics, and
transcriptomics into a unified framework34,61,62. However, the con-
struction of the GSM kinetic model is obstructed by the limited
knowledge about kinetic parameters, e.g.,Km,Kcat, and the scarcity of
metabolic regulators and paired genome-scale multi-omics data34,63.
To date, the largest metabolic kinetic model, k-ecoli457 of E. coli,
contains only 457 reactions, 337 metabolites, and 295 substrate-level
regulatory interactions according to the computationally predicted
kinetic parameters34. Alternatively, by integrating the metabolite-TF
regulatory regime, Decrem integrated with global regulation kinetics
can predict growth rates and the corresponding fluxes. An advantage
of our kinetic Decrem is that it only needs experimental concentra-
tions of identified essential metabolites, which serve as the key
indicators of metabolic states and directly regulate enzyme activities
or gene expression. Although some metabolites (e.g., those in

glycolysis and the TCA cycle) have long been known to regulate
enzyme activities as detailed in biochemistry textbooks, not many
are known on the whole genome scale, even in model organisms. On
the one hand, the regulatory metabolites of specific pathways in
central metabolism prefer to frequently interact with the catalytic
enzymes by activating or inactivating the functional domains to
synchronously adjust the fluxes63,64. On the other hand, several stu-
dies have revealed that ~70% of the total variance in the promoter
activity of central metabolic genes of E. coli can be explained by
growth rate-derived global transcriptional regulation acrossmultiple
mutant strains29,65. These findings suggest a potential relationship
between the concentration of biomass-constituent metabolites and
the expression of metabolic genes in the regulons of TFs. This rela-
tionship is verified by a recent study in which the identified meta-
bolite concentrations are predicted by quantitative proteomics
data45. Overall, both the topology of metabolic networks and reg-
ulatory metabolites are utilized to identify coactivated or key
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Fig. 7 | The growth rate analysis on the genome-scale gene deletion strains.
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lation between the measured growth rates and the predicted accumulated fluxes
through the identified growth-associated pathways. c The comparison of the
predicted accumulated growth rates through the pathways where the mutants
belong, according to the six test methods. d The top two PCs revealed differences
in flux variances between the coupled reactions (cyan dots) (n = 789) and the non-
coupled reactions (purple dots) (n = 1458) predicted by Decrem according to the
1030 strains. (unpaired two-tailed t test, p = 3.04E−20 for PC1, p = 2.86E−25 for
PC2). e The comparison of growth rate distribution among topological compo-
nents where the mutants belong: the complex LBR (the number of element

reactions of corresponding sparse linear basis vector > 1) (n = 208), the simple LBR
(the number of element reactions of corresponding sparse linear basis vector = 1)
(n = 268) and the non-coupled reactions (n = 360) (one-way ANOVA test, p = 7.71E
−28). The black center line denotes the median value (50th percentile), while the
green and orange boxes contain the 25th to 75th percentiles of the dataset. The
black whiskers mark the 5th and 95th percentiles, and values beyond these upper
and lower bounds are considered outliers, marked with black bars. f The flux
variance of LBR based on the multimeric classification: the multi-subunit enzymes
(green dots) (n = 218) and single-unit enzymes (red dots) (n = 258), the number of
simple cycles and the length (the number of element reactions) of LBR (Fisher’s
Exact Test, p values = 2.34E−21 and 0.0051). Source data are provided as a Source
Data file.
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regulated reactions, which produces a minimal set of regulatory
constraints to develop the genome-scale kinetic models.

Compared to other methods tested on three model microorgan-
isms, Decrem is not only excellently performing in recovering the real
flux distributions with high accuracy in a wide range of strains but also
presents excellent predictions and explanations of the observed
growth rate. This demonstrates the strong capability of Decrem to
approximate the real intracellular state and to be used for designing
high-yield mutant strains in bioengineering and synthetic biology.
Decrem shows that there is a strong influence of metabolic network
topology in the prediction of flux distributions; this phenomenon is
found both in the reconstructed SBRs of Decrem and in the two ver-
sions of Yeast metabolic models. A possible explanation for this
observation is that the optimalfluxdistribution of ametabolic network
is strongly determined by its topology, and the rewired or perturbed
network structure will have different feasible regions. Moreover,
Decrem could be applied to elucidate important regulatory branch
points and the self-adaption of regulation mechanisms for the
knockout strains, which is helpful for accurately predicting the
potential target genes/reactions for designing bioengineering strains.

The main limitation of Decrem is that it requires a medium-scale
setmatched 13C-MFA flux pairedwithmetabolite concentration data to
construct reasonable kinetic models. However, the well-constructed
kinetic models are convenient for transfer to any other applications.
Overall, Decrem, a local topology and global regulatory network-
reinforced metabolic analysis model, can accurately predict pheno-
types and uncover the complex regulation of cell metabolism.

Methods
Topology-decoupled reconstruction of the metabolic model
The original metabolic network consists of coupled coactivated reac-
tion cycles (e.g., TCA cycle) and simple linear chain reactions (e.g.,
biosynthetic reaction chains).We developed a GSMmodel, Decrem, to
capture the contribution of the coactivated and coupled reactions
while preserving the consistency of the linear components. The
detailed framework for our model is described below (Supplemen-
tary Fig. 1).

Step 1: Identifying reaction cycle-based coupled substructures.
We first defined the bipartite graph representation of the metabolic
network as GðVm+n,EÞ, where the node set Vm+n includes both the m
metabolite nodes and n reaction nodes, and the edge set E includes all
the interactions between themetabolite and reaction nodes. And built
the similarity matrix An×n for n metabolic reactions based on the
number of topological simple cycles of G. Specifically, the element aij
of An×n, which indicates the similarity between reactions i and j in the
metabolic network, is defined as the number of simple directed cycles
passing through thepaired reaction nodes (vi,vj) inG. According to the
similaritymatrixAn ×n built above, theBestWCut clustering algorithm36

was used to identify the dense substructures (also known as network
communities) consisting of highly coupled reaction cycles. Here, the
substructures are denoted as C= Ck jk = 1 . . .K

� �
, where Ck is a subset

of reaction index set n½ �= 1, . . . ,n, k is the index of substructures Ck ,
and K is the total number of substructures. If we define Di =

P
j2½n�

aij as
the weighted out-degree of reaction node vi , i 2 ½n�, then the cluster
degree Dk for subnetwork Ck could be defined as follows:

Dk =
X
i2Ck

Di ð1Þ

The generalized weighted cut (WCut) associated with C is
obtained by minimizing WCut Cð Þ:

WCut Cð Þ=
XK
k = 1

X
k0≠k

CutðCk ,Ck0 Þ
Dk

ð2Þ

where

Cut Ck ,Ck0
� �

=
X
i2k

X
j2k0

ai,j ð3Þ

and Ck0 is the complement set of the cluster Ck.
Step 2: Reconstructing the decoupled representation of the

identified substructure using the sparse linear basis. Inspired by
the minimal metabolic pathways38, we represented the highly
coupled substructures with the SLBs of the null space of the cor-
responding stoichiometric matrix, which is biologically explained
as the minimal and indecomposable coupled components, and
satisfies the constraint of thermodynamics and mass balance of
element reactions. Unlike infinite ordinary linear basis vectors of
the null space of the stoichiometric matrix, there is a unique and
globally optimal sparsest basis group of the null space38,66. Briefly,
the orthonormal null space NCk

is initially defined by singular value
decomposition (SVD) for the stoichiometric matrix SCk

of the
subnetwork Ck. Here, additional artificial exchange reactions
are introduced in SCk

to maintain the mass balance of reactions in
the subnetwork Ck (we explain that those artificial exchange reac-
tions only are used to assist the SLB decomposition, and will be
removed in the next step; more details can be found in Supple-
mentary Note 5). Then, the column vectors of the orthonormal null
spaceNCk

are iteratively replaced by theminimal element reactions
that span the removed subspace of vectors. This process is repe-
ated until all the nonzero entries in NCk

are converged on a
minimum38. Here, we utilized the advantage of sparse regulariza-
tion of the null space NCk

to solve the minimum L1-norm of the null
space NCk

of SCk

66. The detailed process is showcased in Supple-
mentary Note 5, in which NS

Ck
is a minimal sparse basis repre-

sentation of NCk
in at most 2rk linear programming optimization

runs (where rk = lk � rank SCk

� �
, lk is the number of columns

(reactions) in SCk
). If we assume x 2 Rn and then each linear pro-

gramming problem can be formulated as follows:

min
x,vmCk

� �X
i

xi ð4Þ

s:t:SCk
:vm

Ck
=0 ð5Þ

vmCk
≤x ð6Þ

�vmCk
≤x ð7Þ

lb≤vm
Ck

≤ub ð8Þ

wT :PNm
Ck

:vm
Ck
>ζ
_

wT :PNm
Ck

:vm
Ck
<� ζ ð9Þ

where vmCk
is the SLB of the null space of SCk

at themth run, and lb and
ub are the lower and upper bound of vmCk

, respectively. The constraint
of formula (9) ensures that vmCk

is linearly independent of the previous
m� 1 SLBs, and w represents a vector of random weights. Here, we
employed uniform randomweights, and ζ is a small positive constant,
e.g., 1:0�3. PNm

Ck
is a projection matrix onto the sparse null space NSm

Ck
,

andNSm
Ck

= ½v1
Ck
,v2

Ck
, . . . ,vm�1

Ck
�. More details of this process are provided

in Supplementary Note 5.
With the NS

Ck
= ½v1Ck

,v2Ck
, . . . ,vrk

Ck
� as the assembled representation

of SLBs of SCk
, assembled as:

SIBR
Ck

=S*
Ck
:NS*

Ck
ð10Þ
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where S*
Ck

and NS*

Ck
are derived from SCk

and NS
Ck

after removing the
artificial exchange reactions, respectively, and IBR indicates the
reconstructed independent LBR.

Step 3: Establishing prediction for the decoupled Decrem
metabolic model.

We reformulated FBA to adapt to the reconstructed decoupled
metabolic network SIR by Decrem. The key objective is to determine
the flux bounds for each LBR:

max
vIR

cvIR ð11Þ

s:t: SIR:vIR =0 ð12Þ

SIR = SNC ,SIBR
C1

, . . . ,SIBR
CK

h i
= SNC ,S*

C1
NS*

C1
, . . . ,S*

CK
NS*

CK

h i
ð13Þ

vIR = vNC , vIBRC1
, . . . ,vIBR

CK

h iT ð14Þ

vIBRCk
= v1

Ck
, . . . ,vrk

Ck

h iT ð15Þ

lbNC ≤vNC ≤ubNC ð16Þ

max f lbi
Ck
,NZ Ni

Ck

� �� �
:=f N

� �
≤vi

Ck
≤ min f ubi

Ck
,NZ Ni

Ck

� �� �
:=f N

� �
ð17Þ

f N = f Ni
Ck
,NZ Ni

Ck

� �� �
ð18Þ

where c and vIR represent the objective function and optimal meta-
bolic flux of SIR, respectively. The superscript IR represents the linearly
independent reaction-derived metabolic network, and NC represents
the noncoupled reactions (which are composed of linear reaction
chains) of the original metabolic network. rk is the number of columns
of NS*

Ck
, and K is the total number of highly coupled reaction

subnetworks identified in step 1. Ni
Ck

is the i th column of NS*

Ck
, and

lbi
Ck

and ubi
Ck

are the lower andupper bounds of the reaction indicated
byNi

Ck
, respectively. vIBRCk

is the flux vector of all the LBR of subnetwork
Ck , and vi

Ck
is the i th flux of vIBRCk

. Among them, i ranges from 1 to rk ,
and k ranges from 1 to K : Then, the fluxes of reactions in the original
metabolic network (element reactions) of linear basis vectors will be
recoveredby the formulaNS*

Ck
: vIBRC1

according to theoptimal solutionof
Decrem outlined above.

The function NZ ð:Þ takes the index of nonzero elements of the
input vector, and the function f ðv,IÞ takes elements indexed by the
input indicator I from the input vector v. Therefore, f ðNi

Ck
,NZ ððNi

Ck
ÞÞ:

represents the nonzero partition coefficient of each element reaction
composed of the ith SLB of subnetwork Ck , which is indicated by the
nonzero terms of Ni

Ck
. The formula f ðlbi

Ck
,NZ ðNi

Ck
ÞÞ represents the

lower bounds of the element reactions composed of the ith SLB of the
subnetwork Ck , and f ðubi

Ck
,NZ ðNi

Ck
ÞÞ represents the upper bounds. In

summary, Decrem forces the metabolic fluxes of highly coupled
reactions to be incorporated into optimization by representing them
as independent linear basis vectors. On the basis of Decrem, we pro-
posed parsimonious Decrem (pDecrem) with parsimonious FBA opti-
mizer. More details of the model are provided in
Supplementary Note 6.

Transcription regulation mechanism
We developed a mechanistic basis model to link the kinetics of tran-
scription to metabolite regulators based on the gene regulatory

model51. From this model, we can get a linear regulation model
between the central metabolism gene activity and local regulators, as
well as the global regulators.

log Eg

� �
≈αg log Rð Þ+

XK
i= 1

βgi logðMgiÞ ð19Þ

where Eg represents the expression E of gene g, R indicates the given
growth rate,Mgi represents the ith of K metabolite regulators, and αg ,
βgi represent the corresponding coefficients. According to the bio-
mass reactions, we can represent the growth rate as follows:

R= λ
YN
j = 1

ð1 +Mbj=KmjÞθj ð20Þ

where theMbj represents the j th ofN biomassmetabolites,Kmj is a cell
state-related kinetic parameter, λ and θj are the reaction coefficients.
Following a previous study51, we approximate logð1 +Mbj=KmjÞ with
logðMbj=KmjÞ, then we take the logarithm of the above equation and
approximate it as follows:

log Rð Þ=
XN
j = 1

θj log 1 +Mbj=Kmj

� �
+ logðλÞ

≈
XN
j = 1

θj log
Mbj

Kmj

 !
+ log λð Þ

=
XN
j = 1

θj log Mbj

� �
+ c

ð21Þ

So,

log Eg

� �
≈αg

XN
j = 1

θj log Mbj

� �
+
XK
i = 1

βgi log Mgi

� �
+b ð22Þ

where Mbj indicates the biomass metabolites and Mgi represents the
TF regulating metabolites, then we got an approximate quantitative
relationship between gene expression andmetabolite concentration in
the central metabolism. Furthermore, we can identify the dominant
regulators of transcription according to the multi-omics data analysis
under multiple strains.

Gene expression estimation
Depending on the above transcription regulation mechanism, 45
candidate global and local regulatory metabolites of E. coli are col-
lected through KEGG pathway analysis and a literature survey48–50.
These candidates are then categorized into two clustersbyhierarchical
clustering analysis over the gene expression profile and their meta-
bolite concentrations across 24 mutant strains. Then, the possible
regulatory relationship between two identified metabolite groups and
the expression of 85 genes are inferred by PLSR67, which selects the
nonredundant and independent factors tomaximize the correlation of
response variables using stepwise principal component regression.
Furthermore, PLS is used to discover the fundamental quantitative
relations between two observation variable sets, and the general
underlying model of multivariate PLS is described as follows:

X=TPT + E ð23Þ

Y=UQT +F ð24Þ

where X is an n×m matrix of predictors (metabolite concentrations),
and Y is an n ×p matrix of responses (gene expression). T and U are
n× l matrices and projections of X (the X score, component or factor
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matrix) and projections of Y (the Y scores), respectively. P and Q are
m× l and p× l orthogonal loading matrices, respectively. Matrices E
and F are the error terms, assumed to be independent and identically
distributed standard normal random variables. The decomposition of
X and Y was performed to maximize the covariance between T and U.

Finally, the significant metabolite profile and corresponding
explicable gene-metabolite regulatory relationships are filtered by
setting the proper correlation threshold. The statistical test is built
based on random sampling (Supplementary Note 3). The identified
gene regulation is validated by the canonical correlation analysis68 on
our experimental data.

The metabolite concentration-derived linearized kinetic model
Step 1: The metabolic kinetic model. In this section, we derived a
complete reversible rate law for arbitrary reactant stoichiometries.
When considering the constraint of thermodynamics and metabolite
regulation63,69, we can rewrite the Michaelis–Menten kinetics for a
reversible reaction S <=> P as follows:

vð½S�, ½P�, ½A�, ½I�, ½E�Þ= ½E� k
+ ½S�=ks

m � k�½P�=kp
m

1 + ½S�=ks
m + ½P�=kp

m

Y
u

½Au�=ku
A

1 + ½Au�=ku
A�Y

v

1
1 + ½Iv�=kv

I

ð25Þ

where E½ � is the concentration of enzyme active sites, S½ � and P½ � are
the concentrations of substrates and products, ks

m and kp
m are the

affinities of the reactants for this enzyme, k + and k� are themaximal
forward and reverse catalytic rate constants, A½ � and I½ � are the con-
centrations of activators and inhibitors, and kAu

a and kIv
i are their

corresponding affinities. The positive and negative terms in the
numerator are associated with the forward and backward rates,
respectively.

We next applied themetabolic thermodynamics constraints given
by the Haldane relationship to simplify the term for the backward rate:

keq =
k + kp

m

k�ks
m

=
½P0�
½S0�

= e�ΔrG
0� =RT ð26Þ

whereΔrG
0� is the standardGibbs energy of the reaction (and does not

depend on the enzyme parameters). Using this equality with the above
rate law, we can obtain the following:

v
�½S�, ½P�, ½A�, ½I�, ½E�� = �½E�k + � ½S�=ks

m

�
1� ½P�=½S�e�ΔrG

’
�
=RT
�

1 + ½S�=ks
m + ½P�=kp

mY
u

½Au�=ku
A

1 + ½Au�=ku
A

�Y
v

1

1 + ½Iv�=kv
I

ð27Þ

Step 2: The optimal strategy of the linearized kineticmodel. In this
section, we sought the simplified Eq. (27) representation based only on
the associatedmetabolite concentrations. Firstly, we took the negative
logarithmic operation of both sides of the Eq. (27) and reorganized the
right-hand terms:

This model can be solved by collecting the corresponding kinetic
parameters, enzyme expression, and metabolite concentrations.
However, thosematcheddata are often unavailable inpractice, and the
metabolic regulators often need to be discovered. An alternative is to
approximate the optimal parameters using to the machine learning
method. Specifically, the global cell growth state-regulated enzyme
expression can be represented as the linear combination of the con-
centrations of biomass composition and TF regulators, which can be
marked as logðEg Þ≈αg

PN
j = 1 θj logðMbjÞ+

PK
i = 1βgi logðMgiÞ+b, where

Mbj indicates the biomass metabolites, Mgi represents the TF reg-
ulating metabolites in the “Transcription regulation mechanism” sec-
tion. Specifically, the global regulated gene expression can be
simplified as logðEg Þ≈αg

PN
j = 1 θj logðMbjÞ through the sectionof “Gene

expression estimation”. In addition, we reexamined the nonlinear
terms of equation (28) based on the knowledge that systemic experi-
mental analysis revealed that S½ � was ≥ ks

m for almost all of the meta-
bolites in the central metabolism of three model organisms15. Hence,
we have ks

m
S½ � ≤ 1, thenwecanget a linear kinetic formulation after several

steps of derivation (Supplementary Note 7):

log v S½ �, P½ �, A½ �, I½ �, E½ �ð Þð Þ≈αg

XN
j = 1

θj log Mbj

� �
+ log 1� P½ �= S½ �e�4rG

0� =RT
� �

+
P½ �= S½ �
keq +

X
u

ku
A

Au

	 

 !

+ constant

ð29Þ

This result can be expanded to multi-substrate/multi-product
reactions. When we neglect the infinitesimal of higher order, the
identified regulators and optimal kinetic parameters in models (29)
can be solved with linear regression. Subsequently, the optimal model
is expanded to any other application.

Step 3: The linearized kinetic optimization of Decrem. Finally, the
parameterized kinetic model is utilized to describe the growth-
associated key-regulated reactions in central metabolism. The
genome-scale flux distribution is predicted by the kinetic regulated
flux-constrained Decrem method, i.e.,

maxcvobj ð30Þ

s:t:S:v=0 ð31Þ

ð28Þ
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lbNC ≤vNC ≤ubNC ð32Þ

max f lbi
Ck
,NZ Ni

Ck

� �� �
:=f f N

� �
≤viCk

≤ min f ubi
Ck
,NZ Ni

Ck

� �� �
:=f N

� �
ð33Þ

f N = f Ni
Ck
,NZ Ni

Ck

� �� �
ð34Þ

vKFj � δ ≤ vj ≤ v
KF
j + δ ð35Þ

where vKFj is the j-th kinetic flux of them key regulation reactions, and
δ is the tolerance of kinetic fluxes. The i, k, NC, lbi

Ck
, NZ Ni

Ck

� �
can be

found in step 3 of the section “Topology-decoupled reconstruction of
themetabolicmodel”. Among them, i ranges from 1 to rk , j ranges from
1 to m, and k ranges from 1 to K :

E. coli culturing
Strain and culturing. E. coli strain BW25113wasgrown inMOPSminimal
medium (Teknova Inc, California, USA) with glucose at 2 g/L with
shaking at 120 rpm at 37 °C. Aliquots of cells were collected at four
growth states (timepoints): the beginning of the lag phase, the tran-
sition from lag to log phase, themid-log phase, and the early stationary
phase. Aliquots of cells were collected at each timepoint/growth state
for RNA-seq and metabolomic profiling. Three replicates per growth
condition and time point. No statistic methods used to predetermine
sample size, no sample size calculationwasperformed, the samplewas
choosing by the growth state of E. coli.

Transcriptomic analysis of E. coli
For RNA-seq, total RNAwas extracted using theQiagenRNeasyMini kit
(Qiagen Inc, MD, USA) following the manufacturer’s instructions and
sequenced on the Illumina Hi-seq 2500 platform. Raw reads were
quality controlled using FASTQC and trimmed using Trimmomatic
0.3970 with a quality score of 26. The read counts for each gene were
analyzed using RSEM71. These raw data are deposited onto the NCBI
Short Read Archive (SRA) database with Project accession
PRJNA910919.

Metabolomic analysis of E. coli
Frozen cells were broken on dry ice with the bead beater and kept in
liquid nitrogen between homogenization and extraction72. Specifically,
the extraction solvent was eisopropanol/acetonitrile/water at the
volume ratio 3:3:2 and cooled to −20 °Cprior to extraction. 1ml of cold
solvent per 20mg of cells was added, vortexed for 10 s, and shaken at
4 °C for 5min to extract metabolites and simultaneously precipitate
proteins. Extracts were centrifuged for 20min at −4 °C at 17,000 × g to
remove the cell debris. Centrifuged extracts were analyzed by LC-MS/
MS, with an Agilent 6495 triple quadrupole mass spectrometer (Agi-
lent Technologies). Data were acquired using the following chroma-
tographic parameters. Column: Restek corporation Rtx-5Sil MS (30m
length × 0.25mm internal diameter with 0.25 μm film made of 95%
imethyl/5%diphenylpolysiloxane). Mobile phase: Helium; Column
temperature: 50–330 °C. Flow-rate: 1 mL min-1; Injection volume:
0.5μL. Injection: 25 splitless times into a multi-baffled glass liner;
Injection temperature: 50 °C ramped to 250 °C by 12 °C s−1; Oven
temperature program: 50 °C for 1min, then ramped at 20 °C min-1 to
330 °C, held constant for 5min.

Rawdata files are preprocessed directly after data acquisition and
stored as ChromaTOF-specific.peg files, as generic.txt result files and
additionally as generic ANDI MS.cdf files. ChromaTOF vs. 2.32 is used
for data preprocessing without smoothing, 3 s peak width, baseline
subtraction just above the noise level, and automatic mass spectral
deconvolution and peak detection at signal/noise levels of 5:1

throughout the chromatogram. Apex masses are reported for use in
the BinBase algorithm. Result.txt files are exported to a data server
with absolute spectra intensities and further processed by a filtering
algorithm implemented in the metabolomics BinBase database. Raw
results data need to be normalized to reduce the impact of between-
series drifts of instrument sensitivity, caused bymachinemaintenance,
aging and tuning parameters. There are many different types of nor-
malizations in the scientific literature. We did a variant of a ‘vector
normalization’ in which we calculated the sum of all peak heights for
each sample’s identified metabolites (but not the unknowns!). We call
such peak-sums “mTIC” in analogy to the term TIC used in mass
spectrometry (for ‘total ion chromatogram’), but with the notification
“mTIC” to indicate that we only use genuine metabolites (identified
compounds) in order to avoid using potential non-biological artifacts
for the biological normalizations, such as columnbleed, plasticizers or
other contaminants. Subsequently, we determined if the mTIC avera-
ges are significantly different between treatment groups or cohorts. If
these averages are different by p <0.05, data will be normalized to the
average mTIC of each group. If averages between treatment groups or
cohorts are not different or treatment relations to groups are kept
blinded, data will be normalized to the total average mTIC. Both the
processed and raw data files are uploaded to the database Metabo-
lomics Workbench with StudyID ST002419.

Benchmarking methods
Wecompared the performanceof ourDecremwith other fivemethods
that are utilized to flux prediction and analysis: FBA, pFBA, FVA, REPPS
and RELATCH, The cobra 2.0.5 package is utilized to implement the
FBA, pFBA and FVA analysis, REPPS package is download on the
address:https://academic.oup.com/bioinformatics/article/33/6/893/
2725488?searchresult=1#supplementary-data, and the RELATCH can
be found in https://genomebiology.biomedcentral.com/articles/10.
1186/gb-2012-13-9-r78#MOESM12 (Additional File 12: Implementation
of RELATCH. RELATCH is implemented using the COBRA Toolbox for
MATLAB. (ZIP 173 KB)).

Statistics and reproducibility
In the experiments, we used the complete samples from the datasets,
without using any statistical methods to select or remove samples.
Statistical significance was evaluated using Student’s t-test or one-way
ANOVA forparametric data andWilcoxon rank-sum test or one-sided t-
test for non-parametric data. The statistical analyses were performed
using MATLAB R2020a. All the experiments can be reproduced by
using the data and code that we uploaded to the public repository.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used are publicly available. The original and reconstructed
metabolic models are available online: original metabolic models are
available at BIGG models http://bigg.ucsd.edu/models/iND750, http://
bigg.ucsd.edu/models/iMM904, http://bigg.ucsd.edu/models/
iML1515, http://bigg.ucsd.edu/models/iAF1260 and reconstructed
metabolic models of the four reconstructedmodels, iAF1260, iML1515,
iMM904, and iDN750, are available at https://github.com/lgyzngc/
Decrem-1.0/tree/master/three%20reconstructed%20models. All used
exchange reactions, nutrient uptake, experimental growth rates, 13C
fluxes and gene expression for Decrem modeling and metabolic
simulation are found in Supplementary Data files. And the LS-MS data
is sourced from https://www.ebi.ac.uk/biostudies/studies/S-BSST5?
query=S-BSST5 for genome-scale mutant strains of E. coli. The RNA-
seq data generated in this study have been deposited in the NCBI SRA
database under accession code PRJNA910919. The metabolome data
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are available atMetabolomicsWorkbenchwith StudyID ST002419, and
the LS-MS data are available in the public Zenodo repository (https://
doi.org/10.5281/zenodo.8285915)73. ALL data acquired in this study are
also available in the public Zenodo repository (https://doi.org/10.5281/
zenodo.8285915)73. Source data are provided with this paper.

Code availability
Decrem is implemented as a MATLAB R2020a package. The source
code, user tutorial and demo are available at GitHub (https://github.
com/lgyzngc/Decrem-1.0.git) and Zenodo (https://doi.org/10.5281/
zenodo.8285915)73.
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