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Neurofunctional underpinnings of individual
differences in visual episodic memory
performance

Léonie Geissmann 1,2 , David Coynel 1,2,
Andreas Papassotiropoulos 2,3,4,5 & Dominique J. F. de Quervain 1,2,4,5

Episodic memory, the ability to consciously recollect information and its
context, varies substantially among individuals. While prior fMRI studies have
identified certain brain regions linked to successful memory encoding at a
group level, their role in explaining individual memory differences remains
largely unexplored. Here, we analyze fMRI data of 1,498 adults participating in
a picture encoding task in a single MRI scanner. We find that individual dif-
ferences in responsivity of the hippocampus, orbitofrontal cortex, and pos-
terior cingulate cortex account for individual variability in episodic memory
performance. While these regions also emerge in our group-level analysis,
other regions, predominantly within the lateral occipital cortex, are related to
successful memory encoding but not to individual memory variation. Fur-
thermore, our network-based approach reveals a link between the responsivity
of nine functional connectivity networks and individual memory variability.
Our work provides insights into the neurofunctional correlates of individual
differences in visual episodic memory performance.

Human episodic memory (EM) refers to the conscious memory for
personally experienced events within a particular spatio-temporal
context1. It involves multiple brain systems during encoding, con-
solidation, and retrieval. The encoding phase relies on receiving
information through sensory modalities and on cognitive integration,
like content processing, attention attribution, and storage2.

Extensive functionalmagnetic resonance imaging (fMRI) research
has resulted in solid knowledge about neural activity related to suc-
cessful EM encoding2–6. Most studies used the subsequent memory
effect paradigm, in which one compares, in a voxel-wise manner on
group-level data, brain activity during encoding stimuli later remem-
bered with brain activity during encoding stimuli not later remem-
bered. As a region-localizationist approach, it allows for pinpointing
which brain regions play a role in successful memory encoding. A
meta-analysis of visual EM reported subsequent memory effects in

many regions, including the left inferior frontal cortex, bilateral fusi-
form gyrus, bilateral medial temporal lobe, bilateral premotor cortex,
bilateral occipital cortex, and bilateral posterior parietal cortex2.

While such group-based voxel-level fMRI studies provide insight
into theneurofunctional roles of brain regions commonacross a group
of individuals for a given cognitive task, they allow no inferences about
the substantial subject-to-subject variability and its association with
inter-individual differences in cognitive performance7. In other words:
It is unclear to what extent brain regions related to successful memory
encoding also show variations in activity that explain why individuals
differ in memory performance. While one could hypothesize that
people with better memory performance also show higher activity in
brain regions involved in successful encoding, previous studies
counter this hypothesis. It has been shown, for example, that subjects
with mild cognitive impairment, as compared to healthy controls,
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show significantly greater hippocampal activation in an associative
memory encoding task8. Further, it has been proposed that for a given
performance level, subjects more skilled and more efficient in dealing
with cognitive load would show less brain activation due to a higher
neural efficiency9,10.

In order to address inter-individual differences by investigating
brain–behavior correlations, typical sample sizes of individual fMRI
studies need to be scaled up substantially11. While much is known
about the associations between inter-individual differences in cogni-
tive performance and properties of brain structure12–14 and between
inter-individual variability in cognitive performance and resting-state
activity15–19, there are no large-scale studies investigating the relation-
ship between task-based functional brain profiles and inter-individual
differences in EM performance.

Even though the aforementioned group-basedmeta-analysis2 was
well-powered with 72 studies, sample sizes of the individual studies
ranged from 12 to 25 participants. To the best of our knowledge, a
substantially powered single-sample study (i.e., sample size well above
100 subjects) of subsequent memory effects with regard to EM is
lacking. Comparing the results from our large single-center study with
those of the meta-analysis serves to establish the validity and robust-
ness of our study. Additionally, such alignment helps corroborate and
strengthen the overall findings of the meta-analysis. Furthermore,
most studies using the subsequent memory effect paradigm did not
account formemorability. This phenomenon acknowledges that some
items (pictures or words) are inherently more memorable than others
due to specific features, such as semantics, esthetics, or emotional
valence20–22. The lack of accounting for item memorability may pose a
challenge to the interpretation of the previously reported subsequent
memory effects as the portion of associated neural activity con-
founded by memorability may be substantial23.

In the present study, we explored the neurofunctional basis of
inter-individual differences in EM performance by including both a
region-localizationist and a network-based approach. A distinctive
feature of the human brain is its ability to flexibly reconfigure inter-
actions within and between populations of neurons. These functional
interactions, a term used to describe the co-activity of brain regions,
indicate communication and coordination of brain activity24,25. Even in
the absence of direct structural connections, abnormal activity at one
region can cause dysfunction at other regions in a network26. Func-
tional interactions are disregarded by the conventional region-
localizationist approach, which assigns functional roles to separate
brain regions and provides only a partial account of brain function27–29.
Therefore, amore thorough understanding of the neural basis of inter-
individual differences in EM can benefit from a network-based
approach as a complement to the well-established region-localiza-
tionist voxel-based approach. We used independent component ana-
lysis (ICA) to extract the task-specific activity of functional connectivity
networks (FCNs) for our network-based analysis. As brain activity dif-
fers between tasks and between populations of individuals, using this
data-driven procedure instead of a template-based one circumvents
violating the assumption of across-task- and across-population equal-
ity in the spatial topology of FCNs30–32.

The current work relied on a large sample of healthy young adults
(n = 1498) who participated in a single-center fMRI study on memory
whereone singleMRI scannerwas used for brain imaging. The subjects
engaged in a picture encoding task inside the MRI scanner and a
subsequent free recall task outside the scanner, during which they
were instructed to describe in writing as many of the previously seen
pictures as possible. This data allowed us to address the following
questions: How does a classical group-based subsequent memory
effect analysis of our data align with the findings from the meta-
analysis on subsequentmemoryeffects2? Inwhatways do the results of
our subsequent memory effect analysis change when controlling for
memorability? What results emerge from a voxel-based

brain–behavior correlation approach exploring brain activations rela-
ted to inter-individual differences in memory performance, and how
do these findings relate to the memorability-controlled subsequent
memory effects? And finally, what results emerge from a network-
based approach investigating the neural correlates of inter-individual
differences in memory performance? Apart from advancing our basic
understanding of the neural correlates contributing to the variability in
EMperformance among individuals, the present study could provide a
foundation for future research aimed at relating individual biological
characteristics to specific neural signals of EM.

Results
Behavior
We found large variability in performance in the free recall task, in
which the subjects were asked to describe in writing as many pictures
as possible that had been presented during the encoding task. The
number of pictures freely recalled ranged from 5 to 55 (M = 30.90,
SD = 8.29). No ceiling or floor effects were detected (Fig. 1).

Subsequent memory effect: voxel-based
We first ran a classical group-based subsequent-memory effect analy-
sis. We could replicate subsequent memory effects known from the
literature2: in the left inferior frontal cortex, bilateral fusiform gyrus,
bilateral medial temporal lobe, bilateral premotor cortex, bilateral
occipital, and bilateral posterior parietal cortex. Moreover, there were
subsequent memory effects located in the precuneus, lingual gyrus,
cerebellum, thalamus, orbitofrontal cortex (OFC), ACC, and large parts
of the frontal cortex, all bilaterally (Fig. 2, Fig. S1).

In line with the meta-analysis2, we found negative subsequent
memory effects in the central opercular cortex, Heschl’s gyrus, pre-
cuneus, right frontal pole, right intracalcarine and lingual gyrus, jux-
tapositional junction, and the precentral gyrus (Fig. S2).

Memorability-controlled subsequent memory effects
Next, we conducted the subsequent memory effect analysis while
statistically controlling for memorability (see Methods). Whereas lar-
gely similar brain regions emerged, the extent of significant activations
and corresponding t-values were smaller after controlling for mem-
orability, notably in parietal, occipital, posterior cingulate, and cere-
bellar regions (Fig. 3, Fig. S3). Moreover, this analysis revealed
subsequent memory effects that emerged only when controlling them
for memorability, mainly located in the bilateral fusiform
gyrus (Fig. S4).

We also detected memorability-controlled negative subsequent
memory effects in regions similar to the classical negative subsequent
memory effects (Fig. S5). Regions that did not show any significant
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Fig. 1 | Free recall performance.The histogram illustrates free recall performance,
defined as a number of pictures freely recalled (M = 30.90, SD = 8.29, range = 5 to
55; n= 1498). Source data are provided as a Source Data file.
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negative effects when controlling for memorability were the intra-
calcarine gyrus, lingual gyrus, and precentral gyrus.

For statistical brain maps representing the positive and negative
effects of memorability on brain activation during encoding, see
Figs. S6 and S7, respectively. The brain map illustrating the group-
based positive memorability effects displays a robust activation pat-
tern in memory-related regions, similar to those identified in the
memorability-controlled subsequent memory effect analysis.

Additionally, we performed an analysis correcting the subsequent
memory effects for picture arousal, one of the components of picture
memorability. Again, we found a spatially similar activation pattern as
for the classical subsequent memory effect, which was more focalized
(i.e., including fewer voxels) and yielded lower t-values (Fig. S8).

Brain–behavior correlations: voxel-based
At the voxel level, we detected positive brain–behavior correlations
between brain responsivity to picture encoding and later EM perfor-
mance in the left precuneus/left posterior cingulate cortex (PCC),
medial OFC, superior frontal cortex (SFC), and bilaterally in the hip-
pocampal formation (two-sided p-FWE-corrected <0.05; 414 voxels;
Fig. 4). There were no negative correlations.

Reproducibility of brain–behavior correlations: voxel-based
To test the robustness of the voxel-based brain–behavior correlations
based on the picture encoding contrast, we applied a resampling
procedure (see Methods). This procedure consisted in estimating the
effect size of brain–behavior correlations for sample sizes ranging
from 26 to 1000 participants. Five thousand random samples were
selected for each sample size. This analysis demonstrated a similar
trend in effect sizes as the one reported in33: at small sample sizes, the
association (i.e., brain–behavior correlation) was not reproducible and
exhibited a lot of variability and sign changes. The effect size

converged at larger sample sizes and stabilized for sample sizes
greater than 500 participants (Fig. 5).

Comparison of voxel-based analyses
Next, we compared the memorability-corrected subsequent memory
effects with the voxel-based brain–behavior correlations. Since the
classical subsequent memory effects encompasses picture
memorability-related activations that are similar across subjects, we
used the memorability-corrected subsequent memory effects for
this comparison. All brain regions with whole-brain-corrected
brain–behavior correlations (Fig. 4) also demonstrated whole-brain-
corrected memorability-controlled subsequent memory effects
(Fig. 3). However, several memorability-controlled subsequent mem-
ory effects were located in brain regions that did not show
brain–behavior correlations. Tomap out these regionsmore precisely,
we examined the residuals of a regression analysis between the
memorability-corrected subsequent memory effect analysis and the
brain–behavior correlation analysis (Fig. S9). Regions where the
brain–behavior correlations were lower than expected based on the
memorability-corrected subsequent memory effects were mainly
found in the left and right inferior and superior lateral occipital cor-
tex (Fig. 6).

Brain–behavior correlation of subsequent memory effects
Next, we explored whether inter-individual differences in subsequent
memory effects might be related to memory performance. For this
brain–behavior correlation, we constructed a model where the brain
variable captured subsequentmemory effects (seeMethods).Whereas
this analysis did not reveal any significant positive correlations, we
observed negative correlations with EM performance in a few regions,
most prominently in the lateral occipital cortex (Fig. S10), indicating
that better performers show reduced subsequent memory effects in
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Fig. 2 | Statistical brain map of the group-based positive subsequent memory
effects. For illustrative purposes, coordinateswereplaced in left-hemispheric brain
regions: A inferior lateral occipital cortex (t = 13.96), B caudal anterior cingulate
(t = 35.28), C hippocampus (t = 17.15), D superior lateral occipital cortex/angular

gyrus (t = 28.74),EPCC (t = 32.28),F intracalcarine cortex (t = 28.85). The images are
corrected for multiple comparisons at the whole brain level (two-sided t-test, p-
FWE-corrected <0.05, t-FWE-corrected = 4.848).
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these regions as compared to lower performers. Of note, the lateral
occipital cortex showed subsequent memory effects (Fig. 3) but a lack
of brain–behavior correlations using the picture encoding con-
trast (Fig. 6).

Network-based analyses: general
Weused ICA to extract group-based FCNs in a data-drivenmanner. For
the purposeof ICAdecomposition andnetwork validation, we split our

sample into two comparably large sub-samples (see Methods). This
validation step involved comparing the solution of the ICA conducted
in subsample 1 (n = 590) with the solution of the ICA conducted in
subsample2 (n = 580). Among60 ICs (Fig. S11), between-sample spatial
voxel correlations were high (|r|max > 0.6) for 50 ICs, with a median of
r =0.856 (Table S1, Table S2, Fig. S12) and 25th and 75th quantiles at
r =0.716 and 0.915, respectively. Next, we checked for the similarity of
our task-based ICs with typical resting-state networks (RSN), as

(A)
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(F)t-value

Fig. 3 | Statistical brain map of the group-based memorability-controlled
positive subsequentmemory effects. For illustrative purposes, coordinates were
placed in left-hemispheric brain regions:A inferior lateral occipital cortex (t = 6.68),
B superior frontal gyrus (t = 13.43), C hippocampus (t = 11.40), D superior lateral

occipital cortex/angular gyrus (t = 11.53), E PCC (t = 11.78), F intracalcarine cortex
(t = 6.45). The images are corrected for multiple comparisons at the whole-brain
level (two-sided t-test, p-FWE-corrected < 0.05, t-FWE-corrected = 4.82).
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(C)

(D)t-value

Fig. 4 | Statistical brain map of brain–behavior correlations. Shown are inter-
individual correlations between brain responsivity during encoding and free recall
performance using a voxel-based approach. Coordinates were positioned at the
points of local maxima within the following brain regions: A medial OFC/frontal

pole (t = 5.61), B hippocampus left (t = 6.44), C hippocampus right (t = 5.85),D PCC
(t = 5.15). The images are corrected for multiple comparisons at the whole-brain
level (two-sided t-test, p-FWE-corrected < 0.05, t-FWE-corrected = 4.799).
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previously done34. We did so by calculating cross-correlations between
the ICs obtained from our sample and ten typical RSN, using a lenient
and amore stringent threshold (|r| > 0.1 and |r| > 0.2, respectively). The
mean number of matching RSNs per IC was Mlenient = 2.083 and
Mstringent = 1.5 (SDlenient = 1.204 and SDstringent = 0.682). RSNs with high
similarity to the ICs for which brain–behavior correlations were found
(see below) were the cerebellum network, sensorimotor network,
auditory network, and left the frontoparietal network in case of the
stringent threshold, and additionally, the default mode network when
considering the lenient threshold (Fig. S13, Fig. S14).

Brain–behavior correlations: network-based
In this network-based analysis, we tested for links between network
responsivity during encoding and memory performance. The respon-
sivity of 9 ICs was associated with the number of pictures freely
recalled (ICs 5, 6, 21, 29, 37, 42, 50, 52, 54), i.e., showed brain–behavior
correlations (Fig. 7, Fig. S15, Fig. S16). Responsivity of IC 6 demon-
strated a negative association with the number of pictures freely

recalled, while the other significant ICs showed a positive association.
Variance explained by each of these IC’s responsivity was small to
medium35, ranging from 3.5% to 5.8% (Table S3).

Characterization of IC 5: cortico-cerebellar network
For themost part, IC 5 encompasses the right cerebellum aswell as the
left fronto-opercular, fronto-caudal, and fronto-rostral parts, temporal
and parietal regions. The right cerebellum is important in cognitive
processes like error processing, response inhibition, performance
monitoring, memory, and emotional responding. Other brain regions
of this ICare involved inmemory integration, informationbinding, and
planning36–39. Given its structural connections and functional implica-
tions, the cerebellum has been suggested as an add-on to the dorsal
attention network37, suggesting a cortico-cerebellar network.

Characterization of IC 21: medial-frontoparietal network
IC 21 resembles not only the default mode network but also contains
additional clusters. Anatomically, it includes the frontal pole, anterior-
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Fig. 5 | Reproducibility of brain–behavior correlations. Distribution (boxplot
andhistogram)of brain–behavior standardized effect sizes for various sample sizes
(n = 26, 38, 55, 78, 113, 162, 234, 336, 483, 695, 1000) in the four clusters identified in
the brain–behavior correlation analysis (p-FWE-corrected < 0.05, see Fig. 4). For
every sample size, random participants were sampled 5000 times to compute the

association. Boxes denote the 25th to 75th percentile and themedian line.Whiskers
extend 1.5 times the interquartile range from the edges of the box. Abbreviations:
OFC orbitofrontal cortex, PCCposterior cingulate cortex. Source data are provided
as a Source Data file.
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medial OFC, superior frontal cortex, rostral anterior cingulate cortex
(ACC), PCC, precuneus, isthmus cingulate cortex, occipital cortices,
and angular gyrus. Among these regions’ recognized functional roles
are EM retrieval, higher-order cognition, visuo-spatial imagery, self-
processing, and memory integration31. This network overlaps with IC
37 (see below).

Characterization of IC 29: MTL network
Centered on the medial temporal lobe (MTL), IC 29 includes the
parahippocampal gyrus, hippocampus, entorhinal cortex, and amyg-
dala bilaterally. Additional brain regions are the brainstem, thalamus,
and right cerebellum. These regions share fundamental roles in
memory and emotion40–42. To a comparatively smaller extent, IC 29
includes non-neural areas.

Characterization of IC 37: posterior default mode network
IC 37 resembles the previously described posterior component of the
default mode network31, overlapping with the ventral default mode
network43, both of which have been linked to self-directed processing

and EM. One cluster prominently covers the precuneus, posterior
cingulate, intracalcarine, and lingual gyri, extending to the precentral
and postcentral gyri. A left-hemispheric cluster is situated in the
angular gyrus,middle temporal gyrus, supramarginal gyrus, and lateral
occipital cortex. A similar albeit smaller cluster appears in the right
hemisphere. IC 37 further includes parts of the left middle, superior,
and frontal cerebellum.

Characterization of IC 42: OFC network
IC42 is characterized by clusters in the medial OFC and in the bilateral
postcentral gyrus, with a remarkably compact appearance. Covered
brain regions are implicated in autobiographical memory recall,
recollection of self-relevant information, emotion regulation, imagery,
representational memory, and behavior-outcome-expectancy44,45.

Characterization of IC 50: extended left fronto-parietal network
IC 50 spans the superior frontal cortex, opercular cortex, lateral OFC,
rostral and caudal frontal cortex, opercular cortex, inferior frontal
cortex, cerebellum, precuneus, PCC, brainstem, thalamus, angular

(A)

(B)

(C)

(D)residual

Fig. 6 | Brainmaps illustrating regionswhere brain–behavior correlationswere
lower than expected based on the memorability-corrected subsequent mem-
ory effects. This figure illustrates the negative residuals (in blue) of a voxel-wise
linear model where the predictors were t-values from the memorability-corrected
subsequent memory effect analysis, and the outcomes were t-values obtained from
the brain-behavior correlation analysis (seeMethods). The figure is limited to voxels

exhibiting a significant p-FWE-corrected memorability-corrected subsequent
memory effect. A Inferior lateral occipital cortex right (residual = −5.53), B inferior
lateral occipital cortex left (residual = −4.71), C superior lateral occipital cortex right
(residual = −4.50), D superior lateral occipital cortex left (residual =−3.40). A linear
regression model was used.

IC 29

IC 37

IC 42

IC 50

IC 52

IC 54

High

Low

IC 5

IC 6

IC 21

z-value

Fig. 7 | The ICs with brain–behavior correlations. Z-values run along a spectrum
fromyellow todark green, respectively, with high to lowvalues in glass brains. These
values indicate the contribution of brain regions to the corresponding IC,

irrespective of their link to behavior. Please note: IC 6was negatively associatedwith
the numberof pictures freely recalled,while the other ICswerepositively associated.
For more detailed illustrations, please see Supplementary Material (Fig. S15).
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gyrus, thereby sharing overlap with the left fronto-parietal network.
Among the included brain regions’ functions are executive function,
affective and interoceptive processing, and memory integration31,46.
Besides coverage of brain regions, IC 50 includes ventricular parts.

Characterization of IC 52: ventral striatal-subcallosal network
IC 52 majorly covers the nucleus accumbens, caudate, and subcallosal
cortex, extending to the OFC. The nucleus accumbens and OFC share
both structural and functional connections47. The nucleus accumbens
further has structural connections to the brainstem48. Associative
appetitive and aversive learning is among the nucleus accumbens’
functional implications49,50. The locus coeruleus is the primary source
of norepinephrine and interacts with the nucleus accumbens51, with
implications in learning and memory, and with functional interactions
with key brain regions for EM, such as the hippocampus51,52, and the
amygdala53,54. The subcallosal cortex, which interacts with cortical and
subcortical regions, is functionally implicated in interoception, emo-
tion, and memory, e.g., by gating hippocampal output to other
cortices55.

Characterization of IC 54: insula-occipital-temporal network
Covering the superior lateral occipital cortex, precuneus, inferior and
middle temporal gyrus, hippocampus, subcallosal cortex, precentral
gyrus, insular cortex, brainstem, as well as ventricles, IC 54 has a
fragmented appearance and partially overlaps with each of the other
eight ICs with brain–behavior correlations (Fig. S17). Involvement of
the insula, temporal gyri, and hippocampus may have fostered this IC
to have brain–behavior correlations despite wide-ranging ventricular
coverage. The insula, implicated in various cognitive, motor, somato-
sensory, and emotional functions56, as a hub in the brain, is extensively
connected across the brain.

Characterization of IC 6: multi-modal integration network
IC 6 overlays sensory-motor and sensory-auditory areas. It includes the
anterior and posterior cingulate cortices and the posterior insula.
These brain regions, especially the posterior insula, have wide-
spanning cognitive and sensory functions and wide-ranging struc-
tural connections, including cholinergic, dopaminergic, serotonergic,
and noradrenergic systems31,57. Accordingly, we propose to label it a
multi-modal integration network. IC 6 was the only network that was
negatively associated with memory performance. It shows consider-
able overlap with memorability-controlled negative subsequent
memory effects (Figs. S5 and S18).

All whole-brain-corrected voxel-based brain–behavior correla-
tions were covered by one or more memory-related ICs (Table S4).

Our subsequent memory effect analysis, both corrected and
uncorrected for memorability, revealed robust activations in the
left and right inferior lateral occipital cortex. These regions were
not only missing in the brain–behavior correlation analysis (Fig. 6),
but they were also not included in any of the memory-related FCNs
(Fig. S19).

Discussion
The present single-center study in 1498 individuals allowed us to
unravel both the neurofunctional underpinnings of successful EM
encoding and the neurofunctional correlates of inter-individual dif-
ferences in memory performance. With regard to the former, we
replicated and extended the findings from a meta-analysis2 on the
neurofunctional underpinnings of successful memory, using the sub-
sequent memory effect paradigm. With regard to the latter, using a
brain–behavior correlation approach, we found both brain regions’
and FCNs’ responsivity to be associated with inter-individual differ-
ences in EM performance.

In line with numerous studies2, the activations of the present
subsequent memory effect analysis were located in the left inferior

frontal cortex, bilateral fusiform gyrus, bilateral MTL, bilateral pos-
terior parietal cortex, bilateral occipital cortex, and bilateral premotor
cortex. Regions not consistently reported previously included the
precuneus, lingual gyrus, cerebellum, thalamus, OFC, ACC, and large
parts of the frontal cortex. These additional findings are likely due to
the high statistical power of our large single-center sample. While
these additional findings apply to free recall of picture memory, it
remains to be determined whether they also apply to EM involving
other sensory modalities. In accordance with previous findings2, we
found negative subsequent memory effects in the superior temporal
gyrus, pre- and postcentral gyrus, precuneus, lingual gyrus, insular
gyrus, and superior frontal cortex.

This large sample size also offered the opportunity to decipher
subsequent memory effects while statistically controlling for the sys-
tematic variation in picture memorability. This analysis yielded a spa-
tially similar pattern with more focalized effects (i.e., including fewer
voxels) and with lower activations overall. This finding is in line with
the results of a study indicating that memorability confounds and
overestimates subsequent memory effects to a considerable degree23.
As an exception to this observed pattern, our analysis revealed sub-
sequentmemory effects,mainly located in the bilateral fusiformgyrus,
that emerged only when controlling them for memorability.

The voxel-based brain–behavior correlation approach revealed
that inter-individual differences in memory performance were asso-
ciated with the responsivity of voxels in the left precuneus/left PCC,
OFC, and bilaterally in the hippocampal formation. Each of these brain
regions that contributed to explaining individual differences in EM
performance was also related to memorability-controlled successful
memory encoding. In contrast, therewere several brain regions related
to memorability-controlled successful memory encoding that did not
explain inter-individual differences in EM performance, as evidenced
by the lack of correlation between brain responsivity during encoding
and free recall performance. These regions were mainly located in the
lateral occipital cortex. Importantly, the left and right inferior lateral
occipital cortex were also not part of any of the FCNs correlated with
memory performance. This area, which belongs to the visual associa-
tive cortex, has been linked to the initial encoding and subsequent
memory of visual stimuli2. Moreover, evidence from transcranial
magnetic stimulation studies supports a causal role of this region in
visual memory58,59. Thus, while the lateral occipital cortex appears to
play a role in successful visual memory encoding, inter-individual dif-
ferences in encoding-related brain activation in this region did not
contribute to memory variability in the present study.

In the network-based brain–behavior correlation analysis, we
found network responsivity during the encoding of nine FCNs to be
associated with the later free recall. The nine ICs only partly match
previously described FCNs or RSNs, in line with state-specific and task-
specific flexibility in network configuration60. Labels for this set of ICs
with brain–behavior correlations were selected based on previous lit-
erature and the ICs’ spatial representations in the brain.

Among the FCNs for which higher responsivity was associated
with improved recall is the cortico-cerebellar network (IC 5). Its brain
regions are implicated in visual working memory, emotion, visual
attention, executive functions, memory, cortico-striatal plasticity, and
the conscious representation of memory36–39. IC 21 consists of regions
in the frontal pole, OFC, superior frontal cortex, ACC, PCC, precuneus,
isthmus CC, occipital cortex, lingual gyrus, parahippocampal gyrus,
temporal gyrus, and opercular cortex. Given the overlap with the
default mode network, this network is presumably involved in
internally-oriented processing and memory. The default mode net-
work’s setup is assumed to be task-dependent and may consist of
multiple subnetworks61–63. Accordingly, IC 37, the posterior default
mode network, was also related to EM performance in our study. IC 29
consists of MTL regions, including the amygdala, hippocampus,
parahippocampal gyrus, entorhinal cortex, and brainstem, but also
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ventricular regions. The MTL is well-known for its role in memory40–42.
To thebest of our knowledge, IC 42has not been reported as anFCN so
far. It consists of the medial OFC and postcentral gyrus. The OFC is
important for outcome expectancy, representational memory, impul-
sivity, and decision making44,45, and has functional connections to the
default mode network, limbic regions, hippocampus, striatum, and
thalamus. As opposed to IC42’s compact appearance, IC 50 consists of
a large number of brain regions, that is, the superior frontal cortex,
opercular cortex, right inferior frontal cortex, left lateral OFC, oper-
cular cortex, inferior and caudal frontal cortex, cerebellum, precuneus,
PCC, brainstem, and thalamus. It overlaps with the left frontoparietal
network, which is implicated in language, executive function, inhibi-
tory control, pain, and sensory processing46. IC 52 largely covers inter-
connected ventral-striatal regions, including the nucleus accumbens,
subcallosal cortex, and brainstem. With major roles in attention and
arousal, they are implicated in learning and memory51. In contrast to
the other eight ICs, IC 54 stands out by combining gray matter and
prominent spatial characteristics indicative of noise components. The
latter include a fragmented appearance, large involvement of ven-
tricles, and ring-like stripes near the edges of the field of view64.
Involvement of the insula, temporal gyri and hippocampus may have
fostered this IC to have brain–behavior correlations despite these
noise components.

Network responsivity of IC 6 was negatively associated with
memory performance, i.e., the stronger this FCN responds to stimuli,
the fewer pictures were remembered later. IC 6 consists of extensively
connected regions, such as sensory-motor, and sensory-auditory
areas, ACC, PCC, juxtapositional cortex, and posterior insula. The
insula is important for interoception, emotions, memory, sensory
processing and integration, and attention57,65. The involvement of the
insula in IC 6 could, therefore, be seen as beneficial for memory.
However, the involvement of sensory-auditory areas could reflect
auditory processing in an environment with high-volume auditory
input (i.e., the auditory noise from the rapidly switching gradients in
the MRI environment). It is possible that processing and integrating
auditory signals may interfere with the visual memory task and con-
sequently result in lower memory performance. In accordance with its
direction of effect on memory performance, IC 6 spatially coincides
with the negative subsequent memory effects.

It is noteworthy that almost all ICs with brain–behavior correla-
tions were largely included in the brain regions whose brain activity
during encoding, on a group level, has been found to be associated
with successful recollection (i.e., memorability-corrected subsequent
memory effects). Outstanding in this regard is the cortico-cerebellar
network (IC 5) with involvement of the right cerebellar hemisphere
that was also not detected by the voxel-based brain–behavior corre-
lation approach. Since the cerebellum does not have the same
microscopic structure as the cerebral cortex66, its functional speciali-
zation may be better represented in variations in anatomical con-
nectivity rather than variations in local microstructure66,67. Indeed,
cerebellar FCNs have been shown to reconfigure during states of
cognitive tasks compared to resting conditions and to be highly flex-
ible depending on the cognitive task61, highlighting the benefit of using
FCNs based on the functional architecture present during a specific
task to best capture associationswith a relevant behavioral phenotype.

A particular feature of our study lies in the combined use of an
approach that averages brain activity across individuals and an
approach that addresses inter-individual differences.While the former,
in order to explain a shared basic mechanism, wishes to minimize
inter-individual variance by group averaging, the latter wishes to
maximize variability to describe the association between behavior and
neural underpinnings and requires large samples11. The large sample
size and the fact that all subjects were investigated in the same scanner
in our study is thereforebeneficialwith regards to statistical power and
suitability for the inter-individual approach used here. Our resampling

analysis demonstrated that even within our homogeneous sample, we
require between 500 and 1000 subjects to yield robust effects. This
finding aligns with a recent publication, which asserts that repro-
ducible brain-wide association studies require thousands of
individuals33.

In conclusion, our study identifies the key brain regions and net-
works related to individual differences in visual EM performance.
Notably, we found that certain regions, pivotal at the group level, do
not correlate with individual performance. These insights bear sig-
nificant implications for research striving to link individual neuro-
functional signals with psychological traits or with genetic, epigenetic,
or metabolomic profiles. Research of this nature would benefit from
the selection of neurofunctional signals that are related to individual
differences in memory performance rather than those that emerge
from group-level analyses.

Methods
Experimental design
Sample and study. Data presented in this paper comes from a large
single-center study aimed at uncovering neurobiological mechanisms
underlying EM and working memory by combining genetic, beha-
vioral, eye-tracking, and neuroimaging data68,69. The sample (complete
data for n = 1498; 930 females) consists of healthy young adults aged
18–35 (25th percentile = 20, 75th percentile = 24; M = 22.44, SD = 3.31).
The subjects were free of any lifetime neurological or psychiatric ill-
ness and did not take any medication at the time of the experiment
(except hormonal contraceptives). All subjects gave written informed
consent before participation in the study. The ethics committee of the
Canton of Basel, Switzerland, approved the study protocol. After a
short introduction, subjects were guided inside the MRI scanner to
perform one run (21min) of a picture encoding task, followed by a
separate working memory task, whilst fMRI data was being collected.
Then followed an unannounced free recall task outside the scanner.
Participant compensation was CHF 25 per hour of study participation.

Behavioral tasks: encoding task. Seventy-two pictures selected from
the International Affective Picture System (IAPS)70 were used for the
EM encoding task, equally distributed between neutral, negative, and
positive valence categories. Eight neutral pictures were selected from
an in-house standardized picture set in order to equate the picture set
for visual complexity and content (e.g., human presence). Examples of
pictures are as follows: erotica, sports, and appealing animals for the
positive valence; bodily injury, snake, and attack scenes for the nega-
tive valence; and finally, neutral faces, household objects, and build-
ings for the neutral condition. Additionally, intermingled in between
the IAPS pictures, 24 scrambled pictures with 24 distinct, simple geo-
metrical figures (rectangle or ellipse of different sizes and
orientations)71 were presented in such a way that a maximum of two
IAPS pictures were presented in succession. The scrambled back-
ground, on which a simple geometrical figure was presented, was
created using Adobe Photoshop CS3 (©2007 Adobe Systems Incor-
porated). This background was composed of the IAPS pictures posi-
tioned one next to another, editedwith a distortion and crystal filter in
such a way that the motives were no longer perceivable. All IAPS pic-
tures and scrambled pictures were presented in succession, following
the above-mentioned rule. There was no repetition of the scrambled
pictures with geometrical figures. The IAPS pictures were presented
for 2.5 s in a quasi-randomizedorder so that atmaximum, four pictures
of the same valence category occurred consecutively. A fixation cross
appeared on the screen for 500ms before each picture presentation.
The stimulus onset time was jittered within 3 s (1 repetition time [TR])
per valence category with regard to the scan onset. Consequently,
trials were separated by a variable intertrial period of 9to 12 s (jitter).
During the intertrial period, participants rated the IAPS pictures
according to valence (negative, neutral, or positive) and arousal (low,
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middle, or high) on a 3-point scale (self-assessment manikin) by
pressing a button with their dominant hand. For geometrical figures,
which were presented on top of the scrambled background, partici-
pants rated their form (vertical, symmetrical, or horizontal) and size
(large, medium, or small) during the intertrial period. Thus, each trial
lasted between 12 s and 15 s (Fig. S20). We included 4 additional IAPS
pictures, 2 at the beginning and 2 at the end of the task. These pictures
were used as primacy and recency pictures, respectively, as these tend
to be better remembered because of their position. Primacy and
recency pictureswere the same in all subjects andwere not considered
in thememory recall test. The software Presentation (Neurobehavioral
Systems, Inc., Berkeley, CA; https://www.neurobs.com) was used for
the presentation of the material within the scanner, using MR-
compatible LCD goggles (VisualSystem, NordicNeuroLab). Subjects
were kept uninformed about the upcoming free recall task.

Behavioral tasks: free recall task. In the free recall task, subjects were
instructed to describe in writing as many of the previously seen pic-
tures as possible. There was no time limit for completion. Due to
expected presentation order effects, primacy and recency IAPS pic-
tures were excluded from the analysis of free recall performance.
Three independent raters were responsible for the scoring: two of the
raters independently rated a picture as either recalled or not based on
the participants’ written picture description. The third rater then took
a final decision in the case of differences in scoring between raters 1
and 2. Inter-rater reliability of the two raters was >98%. The amount of
correctly recalled pictures, excluding the primacy and recency pic-
tures, was our behavioral variable of interest.

fMRI data acquisition
MRI scanning parameters. All functional and structural images were
acquired on the same Siemens Magnetom Verio 3 T whole-body MR
scanner equipped with a 12-channel head coil. Blood oxygen level-
dependent fMRIwas acquired using a single-shot echoplanar sequence
along with generalized auto-calibrating partially parallel acquisition
(GRAPPA), using the following parameters: echo time (TE) = 25ms,
field of view (FOV) = 22 cm, acquisition matrix = 80 × 80 (interpolated
to 128 × 128, voxel size = 2.75 × 2.75 × 4mm3), acceleration factor = 2.
We used an ascending interleaved sequence with a repetition time
(TR) = 3000ms (alpha = 82°),measuring 32 contiguous axial slices that
were placed along the anterior-posterior commissure plane based on a
midsagittal scout image.

A magnetization-prepared rapid acquisition gradient echo T1-
weighted image was acquired using the following parameters: TR =
2000ms, TE = 3.37ms, TI = 1000ms, flip angle = 8°, 176 slices, FOV =
256mm, voxel size = 1 mm3.

Statistical analyses
fMRI preprocessing. fMRI data was preprocessed using SPM12 (Sta-
tistical ParametricMapping,WellcomeTrustCenter forNeuroimaging;
http://www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB R2016b
(MathWorks).

Volumes were slice-time corrected to the first slice (acquired at
TR/2), realigned using the ‘register to mean’ option, and co-registered
to the anatomical image by applying a normalizedmutual information
3-D rigid-body transformation. Successful co-registration was visually
verified for each subject. Subject-to-template normalization was done
using DARTEL72, which allows registration to both cortical and sub-
cortical regions and has been shown to perform well in volume-based
alignment73. Normalization incorporated the following four steps:
(1) Structural images of each subject were segmented using the ‘New
Segment’ procedure in SPM12. (2) The resulting gray and white matter
images were used to derive a study-specific group template. The
templatewas computed froma subgroupof 1000 subjects,whichwere
part of the subjects included in the present study. (3) An affine

transformation was applied to map the group template to MNI space.
(4) Subject-to-template and template-to-MNI transformations were
combined to map the functional images to MNI space. The functional
images were smoothed with an isotropic 8mm full-width at half-
maximum (FWHM) Gaussian filter.

Normalized functional images were masked using information
from their respective T1 anatomical image as follows. At first, the three-
tissue classification probability maps of the “Segment” procedure
(graymatter, white matter, and CSF) were summed to define the brain
mask. This mask was binarized, dilated and eroded with a 3 × 3 × 3
voxels kernel using fslmaths (FSL) to fill in potential small holes. The
previously computed DARTEL flow field was used to normalize the
brain mask to MNI space at the spatial resolution of the functional
images. The resulting non-binary mask was thresholded at 50% and
applied to the normalized functional images. Consequently, the
implicit intensity-based masking threshold usually employed to com-
pute a brain mask from the functional data during the first level spe-
cification (spm_get_defaults(‘mask.thresh’), by default fixed at 0.8) was
not needed any longer and set to a lower value of 0.05.

Each participant’s anatomical image was further automatically
segmented into cortical and subcortical structures using FreeSurfer
(v. 4.5)74 Labeling of the cortical gyri was based on theDesikan–Killiany
atlas75 yielding 35 cortical and seven subcortical regions per hemi-
sphere. Segmentations of cortical and subcortical structures were
used to build a population-average probabilistic anatomical atlas
based on data from the participants used to build the study-specific
template. Individual segmented anatomical images were normalized
to the study-specific anatomical template space using the participants’
previously computed warp field and were affine-registered to the MNI
space. Nearest-neighbor interpolation was applied to preserve the
labeling of the different structures. The normalized segmentations
were finally averaged across participants to create a population-
average probabilistic atlas. Each voxel of the template could conse-
quently be assigned a probability of belonging to a given anatomical
structure. This population-average probabilistic atlas was used to
report the anatomical location of coordinates and ROIs. Percentages
per coordinate denoted the population-average probability of an
anatomical label.

Subsequentmemory effects. As in typical subsequentmemory effect
analyses, we proceeded in a standard hierarchical GLM implemented
in SPM12. First-level analyses were conducted to identify subject-
specific memory-related activations. Regressors modeling the onsets
and duration of stimulus events were convolved with a canonical
hemodynamic response function (HRF). More precisely, the model
comprised regressors for button presses modeled as stick/delta
functions, picture presentations (IAPS pictures later recalled, IAPS
pictures later not recalled, primacy and recency) modeled with an
epoch/boxcar function (duration: 2.5 s), and rating scales modeled
with an epoch/boxcar function of variable duration (depending on
when the subsequent button press occurred). Serial correlations were
removed using a first-order autoregressive model, and a high-pass fil-
ter (128 s) was applied to remove low-frequency noise. Six movement
parameters were also entered as nuisance covariates. The contrast
estimate “IAPS pictures later recalled—IAPS pictures later not recalled”
was computed for every subject and used as input for the following
group-level analyses: subsequent memory effects and brain–behavior
correlations.

The group-level analysis considered the average activation for the
“IAPS pictures later recalled—IAPS pictures later not recalled” contrast
and was implemented in MRTools’ GLM Flex Fast2 (https://habs.mgh.
harvard.edu/researchers/data-tools/glm-flex-fast2/). The model inclu-
ded age, sex, and batch effects (two MR gradient changes, one MR
software upgrade, and one of two rooms in which subjects completed
the free recall task) as additional regressors. Whole-brain two-sided
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FWE correction formultiple comparisons was applied at a threshold of
p <0.05, with a minimum cluster size of 20 voxels.

Subsequent memory effects controlled for memorability. Sub-
sequent memory effects analyses considering picture memorability
were also conducted. Picturememorability was defined as the average
free recall score of a picture; over 1739 subjects performed this free
recall task, including those from this study. First-levelmodelswere run,
including the following regressors: IAPS pictures presentation, geo-
metrical figures presentation, rating scales presentation, button
presses, and 6 movement parameters (not convolved with the HRF).
Additionally, two parametric regressors (PM) were added for the “IAPS
pictures” regressor: (1) memorability-PM: picture memorability score
of each picture; (2) subjective memory-PM: whether the picture was
remembered or not. The PM regressors are orthogonalized with
respect to the unmodulated regressor, and the second PM is ortho-
gonalized with respect to the first one. The interpretation for the
unmodulated regressor is the mean activation across trials. The
memory-PM regressor captures memory-related variability of the
BOLD response that is not explained by (a) the canonical HRF (mean
activation) and (b) variability due to memorability effects.

The group-level analyses considered the average activations for
thememory-PM andmemorability-PM regressors. Themodel included
age, sex, andbatcheffects (twoMRgradient changes, oneMR software
upgrade, and one of two rooms in which subjects completed the free
recall task) as additional regressors. Whole-brain two-sided FWE cor-
rection for multiple comparisons was applied at a threshold of
p <0.05, with a minimum cluster size of 20 voxels. The group-level
analysis regarding the memorability-PM regressors is described in the
Supplementary materials.

Subsequent memory effects controlled for arousal. Akin to the
analysis investigating subsequent memory effects controlled for
memorability, we investigated how picture arousal affects subsequent
memory. Picture arousal was defined as the average arousal score of a
picture, averaged over 1739 subjects that performed this encoding
task, including those from this study. A similar parametric modulation
analysis was setup, using the following two parametric regressors:
(1) arousal-PM: the picture arousal score of each picture; (2) subjective
memory-PM: whether the picture was remembered or not. In this
context, the memory-PM regressor captures memory-related varia-
bility of the BOLD response that is not explained by (a) the canonical
HRF (mean activation) and (b) variability due to arousal effects.

The group-level analysis considered the average activation for the
memory-PM regressor. Themodel included age, sex, and batch effects
(two MR gradient changes, one MR software upgrade, and one of two
rooms in which subjects completed the free recall task) as additional
regressors. Whole-brain two-sided FWE correction for multiple com-
parisonswas applied at a thresholdof p <0.05, with aminimumcluster
size of 20 voxels.

Brain–behavior correlations. Brain–behavior correlations were
investigated based on the following first-level contrasts: picture-
encoding activations and subsequent memory effects. To identify
picture-encoding subject-specific activations, the following first-level
analyses were conducted: the model comprised regressors for button
presses modeled as stick/delta functions, picture presentations (IAPS
pictures, scrambled pictures, primacy, and recency) modeled with an
epoch/boxcar function (duration: 2.5 s), and rating scales modeled
with an epoch/boxcar function of variable duration (depending on
when the subsequent button press occurred). Serial correlations were
removed using a first-order autoregressive model, and a high-pass fil-
ter (128 s) was applied to remove low-frequency noise. Six movement
parameters were also entered as nuisance covariates. The contrast
estimate “IAPS pictures—scrambled pictures” was computed for every

subject and used as input for the group-level brain–behavior correla-
tion analysis (the average estimated standardized beta over all trials).
This contrast yields neural activity related to picture viewing and
contains activations in brain regions typically involved in successful
memory encoding76.

The brain–behavior correlation analyses investigated the rela-
tionship between individual contrasts (“IAPS pictures—scrambled fig-
ures” or “IAPS pictures later recalled—IAPS pictures later not recalled”)
and free recall memory performance by means of linear models. The
models included age, sex, and batch effects (twoMRgradient changes,
one MR software upgrade, and one of two rooms in which subjects
completed the free recall task) as additional regressors. Whole-brain
two-sided FWE correction for multiple comparisons was applied at a
threshold of p <0.05, with a minimum cluster size of 20 voxels.

Reproducibility of brain–behavior correlations. As recently reported
in33, robust brain–behavior correlation analyses require sample sizes
much larger than in classical mass-univariate voxel-based analyses. We
seized the opportunity to investigate whether a similar pattern was
observed in our data. We extracted the mean picture-encoding acti-
vation in the 4 largest clusters that had a significant brain–behavior
correlation in the whole sample (p-FWE-corrected <0.05 and cluster
size of at least 20 voxels).We specified linearmodels to investigate the
relationship betweenmeanbrain activation andmemoryperformance,
including age, sex, and batches as covariates. The output variable of
interest for these analyses was the standardized effect size, akin to the
correlation coefficient used in33. We randomly selected participants
from the whole cohort at various sample sizes (logarithmically spaced
samples n = 26, 38, 55, 78, 113, 162, 234, 336, 483, 695, 1000). For every
sample size, participants were randomly selected 5000 times. The
distribution of effect sizes was plotted for every sample size in the 4
regions of interest. The plots were created using ggdist77.

Voxel-based approaches: comparison of the memorability-
controlled subsequent memory effects and the voxel-based
brain–behavior correlations. Strong brain–behavior correlations are
expected to occur inmemory-related regions, i.e., regions that exhibit
a strong memorability-corrected subsequent memory effect. In order
to quantify the strength of this relationship, we compared the group-
level t-values of the two analyses across thewholebrain. A linearmodel
was specified, with all voxels’ memorability-corrected subsequent
memory effect t-values as the predictor and brain–behavior correla-
tion t-values as the outcome variable. We then extracted the residuals
of the linearmodel in order to graphically illustrate regional deviations
from the generalwhole-brain pattern. Hence, we obtained one residual
value for each voxel in the whole brain. Positive residuals represent
regions where the brain–behavior correlation is as strong or stronger
than predicted based on the memorability-corrected subsequent
memory effect t-values, while negative residuals represent regions
where the brain–behavior correlation is weaker than predicted. The
corresponding brain images depict the residuals only in voxels with
significant memorability-corrected subsequent memory effects.

Network extraction and validation in two subsamples: ICA. Using
group probabilistic spatial ICA78, we first decomposed brain activity
during encoding into 60 spatially independent components (IC). This
number of ICs yielded an optimal balance between dimensionality
reduction and loss of information. ICA input data consists of all sub-
jects’ data concatenated in the time dimension (60,638 voxels × 420-
timepoints ofn subjects). Importantly, the algorithmdoes not give any
information about the task but instead separates signals into inde-
pendent spatial sources that together explain brain activity in a purely
data-driven manner.

The resulting spatial maps were thresholded using an alternative
hypothesis test based on fitting a mixture model to the distribution of
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voxel intensities within spatial maps using the default parameters
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC#MELODIC_report_
output)79.

Network extraction was done for two subsamples independently,
consisting of 590 and 580 subjects each (subsamples 1 and 2, respec-
tively). Network extraction calculations were performed on sciCORE
(http://scicore.unibas.ch/) scientific computing center at the Uni-
versity of Basel, Switzerland, on a single nodewith 128GB of RAM.Due
to characteristics inherent to FLS’s MELODICS, the job was running on
a single core. Based on these computational limitations, this analysis
did not use the full sample size. This allowed us to validate the
decomposition in subsample 1 and to proceed with replicable net-
works only. For each of both subsamples’ decompositions,
we extracted all unthresholded IC’s voxel loadings and cross-
correlated them with all IC’s voxel loadings of the other sample.
ICs with |r|max ≥0.7 were regarded as replicable. ICs with |r|max ≥0.6
and |r|max < 0.7 were visually inspected to make a judgment on their
replicability. All other ICs were treated as insufficiently replicable and
were therefore not considered for interpretation. The value | r|max

describes the maximum correlation value of an IC of subsample 1 with
any IC of subsample 2, i.e., regardless of the number of matches pas-
sing the threshold. Corresponding figures were created in the R
environment80 (v. 4.1.2) with the library ggplot2 (v. 3.4.0)81.

Network time course calculation in all subjects: dual regression.
The next step was to get subject-specific time courses for the 60 ICs
obtained from subsample 1 running dual regression in FSL v.5.0.978.
The set of spatial maps from the group-average analysis was used to
generate subject-specific versions of the spatial maps, and associated
time-series, usingdual regression82,83. First, for each subject, the group-
average set of spatial maps is regressed (as spatial regressors in a
multiple regression) into the subject’s 4D space-time dataset. This
results in a set of subject-specific time series, one per group-level
spatial map, for a final sample size of n = 1485. Thirteen subjects were
not included due to the non-availability of dual regression data at the
time point of data analysis.

Network responsivity. Network responsivity analyses were imple-
mented in R (v. 4.1.2)80. The R library dplyr was used to filter andmerge
data (v. 1.0.10)84. Functional modulation of each component for each
subject was estimated in a first-level analysis, including the following
regressors: IAPS pictures, geometrical figures, primacy and recency
pictures, stimuli rating, button press, and six movement parameters.
The task regressors were convolved with the hemodynamic function
for the voxel-based analyses. The dependent variable was each IC’s
subject-specific time course. Thedifference between IAPS pictures and
geometrical figures estimates (the average estimated standardized
beta over all trials) was used as a measure of task-related functional
responsivity of each IC85. The R library nlme (v. 3.1–153)86 was used for
the first-level analysis.

Those contrast estimates were used to examine their relationship
with inter-individual differences inmemory bymeans of linearmodels.
Each model included all subjects’ contrasts as the independent vari-
able of interest, the number of correctly recalled pictures as the
dependent variable, and the covariates sex, age, and batch effects (two
MR gradient changes, one MR software upgrade, one of two rooms in
which subjects completed the free recall task). All results were cor-
rected for multiple comparisons to reduce the burden of false posi-
tives: a Bonferroni correction was applied by dividing the statistical
threshold by the number of ICs, resulting in a threshold of p < 8.33e
−04 (0.05/60).

Network characterization. Anatomical labeling of the ICs was based
on the FreeSurfer Desikan–Killiany atlas labels described in fMRI
preprocessing.

The spatial maps calculated in FLS’s MELODIC are the projections
of the data onto the estimate of the unmixing matrix. This data, per
default, has been de-meaned in time and space and normalized by the
voxel-wise standard deviation (i.e., pre-processed by MELODIC). The
individual spatial maps result from multiple regression rather than
being correlation maps of the voxels’ time courses. The default
thresholding approach involves steps of inferential calculations. We
use the thresholds calculated by MELODIC for all IC-based analyses.
For the purpose of descriptive characterization, we applied arbitrarily
selected thresholds (i.e., z = {3,4,5}) to provide a notion of the con-
tribution of individual voxels to the IC.

Network characterization: similarity to RSNs. As done previously34,
we quantified the similarity of our task-related ICs to a set of 10 resting-
state templates, which have been robustly detected in a number of
independent studies31,87,88, available on http://www.fmrib.ox.ac.uk/
dazasezs/brainmap+rsns/ (retrieved 07/07/2016), described in. These
template RSNs circumscribe three visual networks (medial, occipital
pole, lateral visual areas; 1–3), the default mode network (DMN), a
cerebellum network (CN), the sensorimotor network (SMN), auditory
network (ADT), executive control network (ECN) and left/right fronto-
parietal networks (LFPN, RFPN). We identified the template RSNs that
had the highest spatial correlation with our task-based ICs using FSL’s
spatial cross-correlation function. We used the R library networkD3 to
create Fig. S13B and Fig. S14 (v. 0.4)89.

Network characterization: similarity to the subsequent memory
effect. The procedure was the same as the one for the calculation of
similarity between the brain–behavior correlations from the voxel-
based and network-based approaches (see above).

Network characterization: visual inspection and characterization of
the independent componentswithbrain–behavior correlations. ICA
separates the data into a set of spatialmaps that together compose the
whole-brain data46,90. Due to its ability to simultaneously denoise as
well as capture variances in the BOLD signal60, careful visual inspection
of the ICs is a critical step to reap its full benefits. We carefully visually
inspected the ICs such as to be sure to draw valid conclusions based on
the findings from the network-based brain–behavior correlations,
keeping in mind the drawbacks and benefits of the data-driven
approach of ICA. Examples of noise components are strong loadings in
the ventricular system and movement-related ring artifacts at the
periphery of the cortex. We further provide detailed descriptions of
which brain regions are included in the ICs and what their
implications are.

Brainmaps: figure creation. Nifti images in R were created utilizing
functions from the R-package oro.nifti (v. 0.11.4)91.

Figures illustrating brain maps were created with Nilearn (v. 0.8.1;
https://nilearn.github.io/stable/index.html).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data areprovided as a SourceDatafile. The individual fMRI data
generated in this study and necessary to reproduce the voxel-based
and network-based results have been deposited in the Open Science
Framework database under accession code https://osf.io/7nhsg. The
individual pre-processed fMRI data are not publicly available due to
size limitations but are available from the corresponding authors upon
request. The group-level statistical brain maps (subsequent memory
effects, memorability-corrected subsequent memory effects, voxel-
based brain–behavior correlations of the encoding contrast, voxel-
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based brain–behavior correlations of the subsequent memory effect
contrast, functional connectivity networks with brain–behavior cor-
relations, arousal-corrected subsequent memory effects, memor-
ability effects) have been deposited on the NeuroVault database under
the accession code http://neurovault.org/collections/14303/)92, and
the full set of 60 ICs, as calculated from subsample 1, has been
deposited on Figshare under the https://doi.org/10.6084/m9.figshare.
c.6679262. Source data are provided in this paper.

Code availability
The following publicly available software packages were used for
preprocessing, analysis, andfigurecreation:Matlab (v. R2016b), SPM12
(v. 6685), MRTools’ GLM Flex Fast 2, FreeSurfer (v. 4.5), the FMRIB
Software Library, FSL MELODIC (v. 5.0.9), FSL dual regression (v.
5.0.9), Nilearn (v. 0.8.1), RStudio (2022), and the related R packages
ggplot2 (v. 3.4.0), ggdist (v. 3.3.0), networkD3 (v. 0.4), nlme (v.
3.1–153), dplyr (v. 1.0.10), and oro.nifti (v. 0.11.4).
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