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Global impact of somatic structural variation
on the cancer proteome

Fengju Chen1,8, Yiqun Zhang 1,8, Darshan S. Chandrashekar2,3,4,
Sooryanarayana Varambally2,3,5 & Chad J. Creighton 1,6,7

Both proteome and transcriptome data can help assess the relevance of non-
coding somatic mutations in cancer. Here, we combine mass spectrometry-
based proteomics data with whole genome sequencing data across 1307
human tumors spanning various tissues to determine the extent somatic
structural variant (SV) breakpoint patterns impact protein expression of
nearby genes. We find that about 25% of the hundreds of genes with SV-
associated cis-regulatory alterations at themRNA level are similarly associated
at the protein level. SVs associated with enhancer hijacking, retrotransposon
translocation, altered DNAmethylation, or fusion transcripts are implicated in
protein over-expression. SVs combined with altered protein levels con-
siderably extend the numbers of patients with tumors somatically altered for
critical pathways. We catalog both SV breakpoint patterns involving patient
survival and genes with nearby SV breakpoints associated with increased cell
dependency in cancer cell lines. Pan-cancer proteogenomics identifies targe-
table non-coding alterations, by virtue of the associated deregulated genes.

At a global level, gene transcription is normally tightly regulated in
cells. In cancer, however, this regulation is lost, resulting inwidespread
aberrant over-expression or under-expression of genes, including
oncogenes and tumor suppressor genes, respectively1. Transcript
alterations—including deregulated expression and gene fusions—often
result from somatic changes in cancer genomes2. Somatic structural
variation in cancer, stemming from genomic rearrangements, is one
major driver of altered transcription through Copy Number Altera-
tions (CNAs), gene fusions, and altered cis-regulation2–8. Altered gene
cis-regulation, as mediated by structural variants (SVs) with genomic
breakpoints falling in proximity to genes, may involve diverse
mechanisms, not limited to enhancer hijacking, disruption of Topo-
logically Associating Domains (TADs), and altered DNA
methylation5,7,9. Whole Genome Sequencing (WGS) enables the
detection of somatic SVs impacting both coding and non-coding

regions of the cancer genome10. Recently, the Pan-Cancer Analysis of
Whole Genomes (PCAWG) consortium comprehensively synthesized
and collated WGS data on cancer genomes from some 2658 patients11,
The Cancer Genome Atlas (TCGA) consortium and International Can-
cer Genome Consortium (ICGC) having generated these data. Some
1220 of the 2658 patients had tumors with gene transcription data by
RNA-sequencing, which allowed for systematic cataloging of genes
recurrently altered in expression by SVs, through gene fusion or
altered cis-regulation, across cancers of diverse lineages2–5.

In annotating the true functional impact of specific somatic SV
events in cancer, which could have implications for personalized
medicine12, both protein and mRNA expression should ideally be
considered. Gene expression can be regulated both at the transcrip-
tional and post-transcriptional levels1. Formost genes, transcript levels
across cancers only partially predict the corresponding protein
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levels13–16. Recent technological advancements in mass spectrometry
(MS)-based proteomics technologies have allowed for profiling the
expression of tens of thousands of protein features across hundreds of
human tumor specimens17. Major scientific endeavors such as the
Clinical Proteomic Tumor Analysis Consortium (CPTAC) have gener-
atedMS-basedproteomic profiling data combinedwith corresponding
multi-omics data on multiple cancer types defined by histology and
tissue-of-origin14–16. WGS combined with MS-based proteomics data
currently in the public domain would cumulatively involve over 1300
tumors, comparable to the set of tumors previously analyzed by the
PCAWGconsortium forWGScombinedwithmRNA expression4, which
numbers would be needed to study sparse somatic alteration events
such as SVs3.

In this present study, we combineMS-based proteomics data with
WGS and other multi-omics data across different cancer types to
determine to what extent somatic SV patterns impacting genes at the
mRNA level are reflected at the protein level.We systematically catalog
gene-level associations with altered expression—by either mRNA or
protein—in conjunction with nearby SV breakpoints. We focus on
associations not attributable to CNAbut to altered cis-regulation, gene
fusions, or gene disruption. We find that a substantial percentage of
SV-altered mRNAs were not similarly altered at the protein level.
However, numerous cancer-relevant genes of interest are reflected at
both protein and mRNA levels. SVs also involve DNA methylation
alterations in a fraction of associated protein expression changes. We
find somatic SVs and associated altered protein levels to considerably
extend the numbers of patient tumors somatically altered for critical
cancer-associated and targetable pathways. In addition, we can
associate a significant fraction of genes with SV-protein associations
with patterns of worse patient survival or with sensitivity to knockout
in cancer cell lines.

Results
Compendium of SVs and protein expression
We assembled a compendium dataset of combined WGS and gene
expression data on 1426 human tumors (representing 1409 patients)
from multiple public sources (Supplementary Dataset 1 and Supple-
mentary Fig. 1a, b)4–6,14–16,18–30—involving CPTAC, TCGA, ICGC, Chil-
dren’s Brain Tumor Network (CBTN), and Applied Proteogenomic
OrganizationaL Learning and Outcomes (APOLLO). Of the 1426
tumors, 1307 (representing 1290 patients) had protein expression by
mass spectrometry-basedproteomics data, 1413 hadmRNAexpression
by RNA-seq or microarray (including 1294 tumors with corresponding
proteomic data), and 988 had DNA methylation array data. The com-
bined WGS-proteomics dataset involved 12 cancer types (Fig. 1a). For
the proteomic and transcriptomic compendium datasets, we normal-
ized expression valueswithin eachcancer type,wherebyneither tissue-
dominant differences nor inter-laboratory batch effects would drive
the downstream analyses (Supplementary Fig. 1c–g)13,31–34. The total
proteomics compendium dataset consisted of 15,439 genes with pro-
teins measured in at least one tumor, including 10,087 genes with
proteins represented in at least 400 tumors profiled (Fig. 1b). In con-
trast, other genes of potential interest, such as TERT4,8, had protein
levels undetected in most tumors studied due to limitations of the
mass spectrometry platform. The phospho-protein compendium
consisted of 199,284 phospho-protein features involving 11,671 genes,
8835 phospho-proteins represented in 400 tumors profiled. As
anticipated13, protein expression of genes broadly correlated with the
corresponding mRNA levels across tumors (Fig. 1c), though not with a
high degree of correlation formost genes (median Pearson’s r-value of
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Fig. 1 | Combined proteomic and WGS datasets and associated gene features
used in this study. a Combined proteomic and WGS data involved 1307 tumors
from 1290 patients, brokendown by the 12major cancer types represented.b From
the 1307 tumors, the numbers of tumors for which a given number of genes have
proteomic data detected bymass spectrometry. Of the 15,439 genes represented in
the combined proteomics andWGS compendium, 10,087 had protein values for at
least 400 tumors. The 10,087 genes were the focus of the SV-expression associa-
tions of Fig. 2. cHistogramof gene-wise Pearson correlations ofmRNA and protein
expression across 1294 of the 1307 tumors from part a, based on the 10,087 genes
with protein data for at least 400 tumors. Genes with SV-associated altered
expression at either the mRNA or protein levels (using FDR < 10%, 442 genes for
mRNA and 32 genes for protein) are indicated along the bottom. The densities of
the respective top SV-associated gene sets with respect to the mRNA-protein cor-
relations across tumors are denoted by the degreeof shading (e.g., formRNA: black
denotes 15 or more genes with the given Pearson’s r-values). See Supplementary
Dataset 1 and Supplementary Fig. 1 to obtain a breakdown of tumors by data
platform availability and patient cohort.
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0.43). Due to the discordancebetween protein andmRNA,many genes
previously associated with SV-altered expression at the mRNA
level4–6,19,35 may not be statistically significant at the protein level. We
deposited the proteomic and phospho-proteomic data into the UAL-
CAN cancer data analysis portal (https://ualcan.path.uab.edu)36,37.

Gene-level SV-associated protein alterations
By integrating proteomic and transcriptomic data with WGS-derived
SV data38, hundreds of genes showed significantly altered gene
expression—at either the protein ormRNA levels—in relation to nearby
somatic SV breakpoints (relative to tumors without breakpoints), that
would not be explainable due to any associated CNA. For associating
SV breakpoints with altered protein expression, we focused here on
the set of 10,087 genes in our compendium with protein expression
detected for at least 400 tumors (Fig. 1b). SV breakpoints associated
with altered expression include breakpoints located downstream or
upstream of genes or occurring in the gene body (Fig. 2a and Sup-
plementary Datasets 2 and 3). Significant genes after CNA correction
(see Methods and Supplementary Fig. 2a, b) represent those for which
any SV-associated CNA6 by itself would not explain away the SV-
associated altered expression patterns observed. Consistent with
previous observations4–6,19,35,38, many more genes in our 1426-tumor
compendium dataset showed positive correlations with SV break-
points (i.e., higher expression associated with nearby breakpoint) than
negative correlations, the former including known oncogenes and the
latter including tumor suppressor genes. At the mRNA level, top SV-
associated altered genes in our WGS-mRNA cohort of 1413 tumors
overlapped highly with the top genes as previously identified using
TCGA and PCAWG cohorts5 (Supplementary Fig. 2c). We could also
define SV-associated protein and mRNA alterations according to can-
cer type as defined by tissue of origin, including genes that were not
statistically significant in the pan-cancer analyses (Supplementary
Fig. 2d, e).

For either mRNA or protein levels, a set of 1200 recurrently
altered genes by SV breakpoints combined with expression differ-
ences, with False Discovery Rate (FDR)39 of <10%, were identified
across the set of region windows examined relative to genes: 100 kb
upstream, 100 kb downstream, within the gene (including gene fusion
events), and 1Mb upstream or downstream (including long-range
effects by enhancer hijacking events, etc.). Only a fraction of the genes
significant for a given region at the mRNA level were significant at the
protein level (Fig. 2a–c). When comparing gene-level SV associations
common between mRNA and protein, we utilized relaxed statistical
criteria to lower false negatives, consistent with previous studies40. In
addition, we generated two sets of gene-level SV-mRNA associations
(Supplementary Dataset 3 and Supplementary Fig. 2a, b), using both
the complete mRNA compendium with all available expression data
and a “filtered” mRNA dataset with any values not represented in the
protein dataset filtered out. With the filtered mRNA dataset, any dis-
parate results observed between protein and mRNA should have less
to do with the diminished power for some genes due to lack of
detection by proteomics. Out of 10,087 genes, 657 had a significant SV
association for the 1Mb region (p <0.01 with cancer type and CNA
correction) at the mRNA level using the unfiltered dataset, of which
just 170 (26%) had a corresponding association at the protein level
(p < 0.05), this overlap being highly statistically significant (chance
expected overlap of 31 genes, one-sided Fisher’s exact test p < 1E−60
for over-expressed genes, p < 1E−13 for under-expressed genes). When
using the filtered mRNA dataset, 574 genes had SV associations at the
mRNA level (p <0.01), of which 180 (31%) were concordant by protein
analysis (p <0.05, Fig. 2b, c and Supplementary Dataset 3). Alter-
natively, using a more stringent statistical cutoff for protein, at
p <0.01, with a less stringent cutoff for mRNA, at p < 0.05 for the fil-
tered dataset, a relatively higher percentage—57%—of the 245 statisti-
cally significant proteins were also significant by mRNA. Any observed

discordances between protein and mRNA can stem in part from biol-
ogy (e.g., post-transcriptional regulation) and statistical false
negatives.

For a set of 201 genes with significant SV-associations for both
protein and mRNA (p < 0.05 for both, p < 0.01 for either, using fil-
tered mRNA dataset), these genes were enriched for specific gene
categories, including ‘ATP hydrolysis activity’ and’progesterone
metabolic process’ (Fig. 2b and Supplementary Dataset 2, the latter
involving aldo-keto reductase family 1 genes). In contrast, the 319
genes with significant SV-association for mRNA but not protein
(mRNA p < 0.01, protein p > 0.05) were enriched for other gene
categories, including ‘ribonucleoprotein complex’ and ‘mRNA spli-
cing – via spliceosome’ (Fig. 2b and Supplementary Dataset 3). The
201 concordant genes had higher mRNA-protein correlations on
average across the 1307 tumors than the 319 discordant genes
(average Pearson’s r of 0.49 versus 0.36, p < 1E−19 by t-test). The 201
concordant genes, but not the 301 discordant genes, were statisti-
cally enriched (p = 0.03, one-sided Fisher’s exact test) for genes
found elsewhere41 to harbor somatic SNV hotspots, involving eight
genes: CDK4, EGFR, ERBB2, KRAS, PLCB3, S100A3, TACC3, and COBL.
The 201 genes and the 319 genes did not significantly differ in terms
of intrachromosomal SV size (6.4 versus 6.2Mb, respectively,
p = 0.44, t-test on logged values) or of SV class representation
(translocation, deletion, amplification, inversion, insertion). Well-
known oncogenes and tumor suppressor genes had protein expres-
sion impacted by SV breakpoints in a sizable number of tumors—on
the order of 1 to 3% with available data—that did not harbor ampli-
fications in the given gene in the case of oncogenes (Fig. 2c). Genes of
interest, previously associated with SV-altered expression at the
mRNA level, found here also to show a corresponding association
include AKR1C family genes3,42 and IGF25 (Fig. 2d). We also identified
genes with altered phospho-protein expression associated with
nearby SV breakpoints, which genes overlapped significantly with the
genes with SV-associated altered total protein expression (Supple-
mentary Fig. 3 and Supplementary Dataset 2). All othermRNA-related
results reported below rely on the unfiltered mRNA dataset.

Gene fusions with protein expression
Somatic SV breakpoints falling within genes and associated with their
increased protein expression may represent gene fusions. As done
previously in other patient cohorts6,19, we integrated predicted fusions
using RNA-seq-based chimeric reads with WGS-based SV breakpoints.
As anticipated, only a fraction of the chimeric-based fusions predic-
tions involved an SV breakpoint falling within the boundary of one or
both genes. Out of 9459 candidate fusion events by RNA-seq, 3419
involved SV breakpoints (Fig. 3a). Most of these 3419 events involved
the over-expression of one or both genes at the mRNA level in the
impacted sample, with a fraction of these events also showing protein
over-expression (Fig. 3b). Protein data were available for 2844 candi-
date fusion events out of the 3419withWGS support, and 1098of these
involved both protein and mRNA over-expression, while 886 had
mRNA but not protein expression. Of all chimeric-based fusion events,
those with supporting evidence by both SV and gene over-expression
were highly enriched for previously identified gene fusions in
cancer43,44 (Fig. 3c). The set of 1098 fusion calls with combined WGS
and both protein andmRNA expression support involved 1055 distinct
gene fusions, 350 tumors, and346patients (Fig. 3d andSupplementary
Dataset 4). Another 386 fusions hadmRNA support where protein data
were not available. These fusions involved those common to pediatric
brain tumors19, including KIAA1549-BRAF (n = 42 tumors) and C11orf95-
RELA (n = 7). Other fusions included EML4-ALK (n = 5 tumors), FGFR3-
TACC3 (n = 8)45, ESR1-CCDC170 (n = 4)46, EGFR-SEPTIN14 (n = 4)47,
RPS6KB1-VMP1 (n = 3)48, and EGFR-SEC61G (n = 3)49. While in theory,
gene fusions contributing to tumorigenesis would not necessarily
need to involve altered gene expression, we find here that many
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by COSMIC43. d Protein (orange) and mRNA (purple) expression levels of AKR1C1
(left) and IGF2 (right), corresponding to SV breakpoints located in the genomic
region 1Mb downstream to 1Mb upstream of the respective gene. Each point
represents a single tumor (the closest SV breakpoint being represented for each
tumor). Breakpoints near the respective gene tend to be associated with its higher
expression (e.g., above the sample median, indicated by the horizontal dashed
line). Only one tumor represented involved gene amplification (represented by the
larger data point for AKR1C1). In parts a–c, SV-expression association p-values
correct for cancer type and CNA by linear modeling. For parts b and c, mRNA
results are based on the mRNA dataset filtered for any expression data values not
represented in the protein dataset.
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predicted fusions involving protein over-expression include fusions
observed elsewhere using RNA data.

SVs involved with pathway alterations
We found somatic SVs and associated altered protein levels to con-
siderably extend the numbers of patient tumors somatically altered for

critical pathways. Taking a set of cancer-associated pathways and
related genes previously annotated based on domain knowledge19,35,
we examined the tumors in our WGS-expression compendium cohort
(n = 1426 tumors) for alteration in these pathways. Alterations con-
sidered were gene fusion, SV-associated altered up-regulation or gene
disruption (by protein or alternatively by mRNA if protein data not
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available), SNV or indel, and deep deletion or high-level amplification
(Supplementary Dataset 1). Across different cancer types, SV-
associated alterations (Fig. 4a and Supplementary Dataset 5)
involved Receptor Tyrosine Kinase (RTK) pathway-related genes
(EGFR, ERBB2, FGFR2, FGFR3,KRAS,NF1), p53/Rb-relatedgenes (CCND1,
CCNE1, CDK4, CDKN2A, E2F3, RB1), TERT, MYC family genes (MYC,MYB,
MYCN), andmTORpathway-related genes (AKT1, PIK3CA, PTEN, STK11).
A pathway-level assessment for key genes (Fig. 4b, c and Supplemen-
tary Fig. 4) found a high number of SV-associated fusion or altered
regulation events involving RTKs (138 tumors uniquely altered by SVs
out of 710 tumors altered for the pathway by any gene or somatic
alteration), p53 or Rb (62 out of 788 altered tumors), mTOR pathway
(49 out of 614 altered tumors), TERT (48 out of 178 altered tumors),
MYC family (65 out of 155 altered tumors), and NRF2 (17 out of 151
altered tumors). In the abovepathway-level annotations, SV-associated
alterations were only tabulated after other somatic alterations (SNV/
indel or CNA) were not found for any genes. This aspect means that
looking only within coding regions and not considering non-coding
regions for somatic alterations would result in missing pathway
alteration events for many patients.

Impact of SVs on DNA methylation
Somatic SVs have been associated with recurrent alterations in DNA
methylation of CpG Islands (CGIs)5. We can expect some of these DNA
methylation changes to impact gene expression at the protein level.
CPTAC tumors were profiled for DNA methylation in addition to WGS
and gene expression (n = 988 tumors). At the DNAmethylation level, a
set of 2151 CGI probes associated with recurrently SV-altered DNA
methylation were significant at FDR < 10% for any one of four gene
region windows examined: 100 kb upstream, 100 kb downstream,
within the gene, and 1Mb upstream or downstream (Fig. 5a and Sup-
plementary Dataset 6). In our CPTAC cohort, CGI probes with SV-
associated increased methylation were predominantly promoter-
associated, while CGI probes with SV-associated decreased methyla-
tion were enriched for gene body CGIs (Fig. 5b), entirely consistent
with previous observations in TCGA cohort5. At the DNA methylation
level, top SV-associated altered CGIs in our CPTAC cohort overlapped
highly with the top CGIs previously identified using TCGA cohort5

(Supplementary Fig. 5a). We could also define SV-associated DNA
methylation alterations according to cancer type as defined by tissue
of origin, including CGIs and associated genes that were not statisti-
cally significant in the pan-cancer analyses (Supplementary Fig. 5b, c
and Supplementary Dataset 7).

For the genes associated with the SV-altered CGIs, only a frac-
tion showed concordant associations with nearby SV breakpoints at
the mRNA or protein levels, with an even smaller fraction of con-
cordant proteins as compared to concordant mRNAs (Fig. 5a, c). We
examined the overlap between CGI probes with SV-associated
altered methylation and the related genes with corresponding SV-
associated altered expression (in the inverse direction) at either

mRNA or protein levels (Fig. 5c). Using a p-value cutoff of <0.01
(1 Mb region, with cancer type and CNA corrections), 2602 CGI
methylation probes were positively correlated with nearby SV
breakpoints, of which 52 probes involved genes negatively corre-
lated between mRNA expression and SV breakpoints (p < 0.01), a
significant overlap (p < 1E−8, chi-squared test), with just 14 of the 52
probes also showing inverse correlation (p < 0.05) between protein
and SV breakpoints across the 1307 tumors. The 14 CGI probes
significant by protein included four for PTEN5. Out of 517 CGI
methylation probes negatively correlated with nearby SV break-
points, 50 involved genes positively correlated between mRNA and
SV breakpoints (overlap p < 1E−4, chi-squared test), of which 21 CGI
probes involved positive correlations at the protein level. Genes
involving SV-associated lower CGI methylation with concordant
protein and mRNA changes included NID250 and ANO151 (Fig. 5d).

Mechanisms of SV-associated altered protein expression
Previously explored mechanisms at work in SV-altered gene
deregulation5,6,19,35 were examined here and found to involve altered
protein expression patterns. In our protein-WGS cohort, TAD-
disrupting SVs (with breakpoints spanning two different TADs) were
significantly enriched among the SVs associated with gene up-
regulation at the mRNA level (Fig. 6a, p < 1E−10, chi-squared test). Of
the TAD-disrupting SVs associated with mRNA over-expression (with
available protein data), roughly 66% involved protein over-expression
(>0.4 SD from sample median). In addition, SV breakpoints involving
mRNA over-expression were enriched (p < 1E−47) for potential
enhancer hijacking events, where the rearrangement positioned an
enhancerwithin 0.5Mbof the gene (Fig. 6b, SupplementaryDataset 8),
with roughly 64% of these events involving protein as well as mRNA
over-expression. SV-mRNA over-expression associations were also
enriched (p < 1E−13) for retrotransposon hijacking events, including
long interspersed elements (LINEs) and short interspersed elements
(SINEs), with most of these events involving protein over-expression
(Fig. 6c, Supplementary Dataset 8). A phenomenon of the somatic
rearrangement of regions with higher or lowermethylation fromother
parts of the genome being linked with SV-associated DNAmethylation
alterations, previously observed in TCGA cohort5, was confirmed here
using the CPTAC cohort (Fig. 6d). Enhancer hijacking events involving
protein over-expression (>0.4 SD from sample median) involved 199
tumors and 171 genes, 59 of these genes involving two ormore tumors
(Fig. 6e), including EGFR (5 tumors) and CDK4 (3 tumors). Rearrange-
ment of a region of low methylation near a gene, with corresponding
decrease in methylation and increase in protein expression being
observed, involved 151 genes and 151 tumors (Fig. 6f and Supplemen-
tary Dataset 8).

SVs and associated genes involving patient survival
A subset of genes with SV-protein associations in our protein-WGS
compendium cohort also had associations with patient overall survival

Fig. 3 | Identification of gene fusion events by combined RNA-seq, WGS, and
proteomic analyses. a Out of 9459 candidate fusion events identified by RNA-seq
chimeric reads (across the 1192 tumorswith proteomic data+RNA-seq-based fusion
calls), the numbers of events with support from SV breakpoint analysis by WGS. As
indicated, for 3354 candidate fusion events, SV breakpoints were found within one
or both genes, with or without a high expression association (see Methods). An
additional 65 events involved a fusion with both RNA-seq and WGS support in
another tumor. b Of the 3419 gene body SV breakpoint events involving predicted
fusions from part a, the fractions of events associated with gene over-expression
(“OE”) by both mRNA and protein, by mRNA but not protein, by mRNA with no
protein data available, by protein but notmRNA, or bymRNA or protein in another
tumor (see Methods). cOut of 9459 candidate fusion events identified by RNA-seq
chimeric reads, the numbers of events involving a COSMIC43 fusion (left) or a fusion
identified in the GENIE dataset (v12) by DNA sequencing44. Of the candidate fusion

events involving COSMIC or GENIE, the numbers of events involving a within-gene
SV breakpoint (“BP”) by WGS (for one or both genes) and the number of events
involving SV breakpoint with mRNA or protein over-expression (“OE”) are indi-
cated. Enrichment p-values by one-sided Fisher’s exact test. d Gene fusion events
with chimeric RNA-seq reads, SV support, and corresponding high protein or high
mRNA levels, involving either greater than two tumors or two tumors plus a COS-
MIC gene, are represented as a data matrix, each colored entry representing a
fusion event meeting the criteria from part b. Cancer type is indicated along the
bottom and in the coloring of the fusion event. To the right is indicated the average
differential expression (“DiffEx,” at mRNA and protein levels, yellow denoting
higher expression) for fusion-involved genes in the affected tumors. See Supple-
mentary Dataset 4 for the entire set of the 9459 candidate fusion events from part
a, with the corresponding filtering criteria used to derive the fusion events with SV
and expression support.
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across an extended mRNA-WGS compendium cohort of over 3000
patients (Fig. 7a, Supplementary Dataset 1). Across the extended
cohort, 3156genes had somatic SVbreakpoint patterns associatedwith
worse survival (one-sided p < 0.05 stratified Cox analysis, Supple-
mentary Dataset 9, see Methods), while 3476 genes had expression
associated with worse survival (one-sided p <0.05); the intersection
between both gene sets was 679. When considering a set of 516 genes
with positive SV-protein expression correlations (p <0.05, correcting
for cancer type and CNA), 34 were part of the 679 poor prognosis
genes, representing a statistically significant overlap (p =0.01, one-
sided Fisher’s exact test). Interestingly, only one gene, PCBD2, had the
opposite patterns: a negative SV-expression association in our pro-
teomics compendium dataset and both breakpoints and expression

associated with better overall survival in the extended cohort (Sup-
plementary Dataset 9).

The above 34 genes, with both protein over-expression andworse
patient survival associated with SVs, could collectively be associated
with worse patient outcomes across multiple additional tran-
scriptomic datasets involving various cancer types. We hypothesized
that the 34-gene set would represent a broadly applicable, pan-cancer
signature of worse patient outcomes. To test this, we first scored
10,224 tumors in TCGA pan-cancer cohort based on the entire 34-gene
signature (taking the average of the normalized expression values in
each tumor profile). In TCGA, the signature was associated with worse
overall survival (Fig. 7b). Similarly, the 34 gene signature was asso-
ciated with worse prognosis across additional transcriptomic datasets
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for lung adenocarcinoma, breast cancer, pediatric brain tumors,
prostate cancer, andbladder cancer (Fig. 7c andSupplementaryFig. 6).
Genes in the 34-gene signature included G6PD (glucose-6-phosphate
dehydrogenase), which affects tumor development by regulating
several metabolic pathways52. For G6PD, nearby SV breakpoints were
associated with increased protein expression (Fig. 7d). G6PD also
showed associations with worse patient survival in terms of both
breakpoint patterns and expression (Fig. 7e and Supplementary Fig. 6
and Supplementary Dataset 9).

SV-altered cell lines sensitive to gene knockout
We hypothesized that genes over-expressed in relation to nearby SV
breakpoints represent dependencies in the cancer cells. Taking the set
of 228 genes with SV-expression associations for both protein and
mRNA (p <0.05, 1Mb region, correcting for cancer type and CNA),
these genes were enriched within genes having high variability in gene
dependencies across cancer cell lines, based on DepMap CRISPR
assay53 (Fig. 8a). For genes with high variability in gene effect scores,
only a fraction of cell lines would presumably be sensitive to CRISPR
knockout of those genes, as opposed to “essential” genes for which
knockout could bedeleterious formost or all cell types, including non-
cancer cells. Similarly, when surveying combined protein expression
and SV data across 328 cell lines38,54,55, we observed a highly significant
overlap (p < 1E−100 chi-square test) of events involving CRISPR
knockout effect in genes with events involving SV-associated protein
over-expression (Fig. 8b), involving 2682 genes, 178 with combined
breakpoint and protein over-expression involving at least 5% of cell
lines examined (Supplementary Dataset 10). When crossing the 2682
genes with genes having positive SV-expression association in human
tumors (by both protein and mRNA) in our 1426-tumor cohort, a
shorter list of 33 genes involved seven or more cell lines (Fig. 8b).
These 33 genes include known cancer genes such asKDM6A,CDK2, and
CCND1, for which CRISPR knockout show increased sensitivity in cell
lines with combined SV breakpoint and gene over-expression (Fig. 8c).

Discussion
Protein data, in addition to gene transcription data, can add another
dimension in assessing the relevance of non-coding somatic altera-
tions in cancer. Gene transcription data have previously helped
demonstrate the functional impact of non-coding somatic alterations
on nearby genes, including TERT, for which gene both recurrent point
mutations and somatic SVs associate with increased expression4,8,56,57.
Combined WGS and MS-based proteomic data on appreciable num-
bers of human tumors have only recently been available in the public
domain. Here, we found that only about 25% of the genes associated
with somatic SV-associated cis-regulatory alterations at the mRNA
level were similarly associated at the protein level. Limitations to our
findings would entail those involving the MS-based proteomics plat-
form, including challenges in detecting less abundant proteins in

particular58; however, even when accounting for this, the overall cor-
respondence levels between mRNA- and protein-based associations
are similar to the above. For an appreciable number of genes in our
proteomics compendium dataset, protein expression was not detect-
able in most tumors, TERT being the more notable example. Never-
theless, for most genes, proteomics can be effectively leveraged to
determine which gene expression alterations broadly observed at the
mRNA level are carried over to the protein level. After assembling a
catalog of combined SV-mRNA and SV-protein associations, our study
could identify associations of particular interest when considering
genes with well-established cancer roles, DNA methylation associa-
tions, gene-specific events involving fusions, enhancer hijacking or
retrotransposon transposition, patient survival associations, and
associations with cell line viability.

While protein levels broadly correlate with corresponding mRNA
levels across human tumors13, most of these statistically significant
correlations would not be particularly strong in terms of predictability
as assessed using r-values. In this present study, we focused on
expression outliers associated with SV breakpoints. In the absence of
strongprotein-mRNAcorrelations, an expression outlier in one analyte
may not show up similarly in the other analyte. Genes with weaker
protein-mRNA correlations across tumors are reflected in the genes
with SV-expression associations at the mRNA level but not at the
protein level. Still, the overlapping gene-level associations by both
mRNA and protein, while representing a fraction of the SV-mRNA
associations, are highly statistically significant, drawing greater atten-
tion to these genes over genes significant by mRNA analysis alone. In
comparingmRNA-based and protein-based results, we could usemore
relaxed p-value cutoffs for each individual analysis to limit false
negatives. In this way, the integrative analysis approach offers an
advantage in that, even when using a nominal p-value cutoff, the
observation of consistent associations across multiple analytes helps
identify additional genes of interest. Any observed discordances
between protein andmRNA in our study can stem partly from biology
or false positives or negatives, where the meaningful interpretation of
a null p-value is inherently difficult.

Our present study involving a combined WGS and expression
compendiumdataset confirmed theoverall observations onSV-altered
expression patterns made previously using PCAWG4, TCGA5,6, CBTN19,
and POG57035WGSdatasets. Theseobservations included hundreds of
genes with altered expression recurrently associated with nearby
somatic SV breakpoints, DNAmethylation changes associated with SV
breakpoints, and mechanisms involving altered cis-regulation includ-
ing enhancer hijacking and translocation of retrotransposons. In
addition, here, we could identify SV breakpoint patterns and corre-
sponding aberrantly expression genes associated with patient survival
and genes with nearby SV breakpoints associated with increased cell
dependency in cancer cell lines. This study’s use of cell line data indi-
cates that SV-associated over-expressed genes could represent unique

Fig. 4 | Somatic SVs associated with key oncogenic or tumor-suppressive
pathways. a Genomic rearrangements (represented in circos plots) involving
altered expression Receptor Tyrosine Kinase (RTK) pathway-related genes (KRAS,
EGFR, ERBB2, FGFR2, FGFR3, NF1), p53/Rb-related genes (CCND1, CCNE1, CDK4,
CDKN2A, E2F3, RB1), TERT, MYC family genes (MYC, MYB, MYCN), and mTOR
pathway-related genes (AKT1, PIK3CA, PTEN, STK11). SV events are colored
according to cancer type.b Pathway-centric view of somatic alterations across 1426
human tumors, involving key pathways and genes previously annotated across
multiple cancer types based on domain knowledge. Of the 1426 tumors, 1282
(representing 1271 patients) had at least one somatic alteration in the indicated
pathways. The panel on the right represents the significance of enrichment (one-
sided Fisher’s exact test) of gene alteration events for each pathway within a given
cancer type versus the rest of the tumors. c For the pathways from part b that also
involve at least one SV event, somatic alteration events involving each gene inclu-
ded in the pathway are represented. For SV-impacted genes, the corresponding

differential protein and mRNA expression patterns are shown. For parts a–c, SV
events represent altered gene expression (by protein or alternatively by mRNA if
proteindata not available), defined foroncogenes asbreakpoint fallingwith 1Mbof
gene and associatedwith expression >0.4 SD from themedian for the given tumor,
and defined for tumor suppressors as breakpoint falling within the gene and
expression < −0.4 SD. For parts a and b, events are colored according to the type of
somatic alteration: gene fusion, SV with altered expression (by protein or alter-
natively by mRNA if protein data not available), SNV or indel (for oncogenes, SNV
within hotspot residue; for tumor suppressor genes, SNV within hotspot residue or
inactivating mutation by indel/nonsense/nonstop), and deep deletion or high-level
amplification (respectively approximating total copy loss and copy levels more
than 2X greater than that of wild-type, based on thresholded values). All analyses
are based on the 1426 tumors with combinedWGS and expression data (by protein
or, if protein data not available, by mRNA). Expr., expression; lung adeno., lung
adenocarcinoma; lung sq., lung squamous; amp., amplication.
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vulnerabilities in cancer cells. The top SV-altered genes uncovered
herewould overlaphighly with the top genes fromprevious studies. At
the same time, SV breakpoint patterns in relation to genes represent
sparse events in cancer genomic data, whereby for a given gene typi-
cally <4% of tumors may have nearby SV breakpoints uninvolved with
amplification. Therefore, future tumor and cell line datasets involving
greater sample numbers would considerably aid in better establishing
the catalog of recurrently altered genes, with proteomic data repre-
senting an important component of this aim.

Somatic SVs and associated altered protein levels would con-
siderably extend the numbers of patient tumors altered for critical
cancer-associated pathways, which would have implications for per-
sonalized or precision medicine approaches. There are also non-
coding somatic point mutations associated with gene up-regulation,
most notably for the TERT gene. The PCAWG consortium surveyed
recurrent non-coding driver SNVs3, but they found very few genes
besides TERT impacted in this way that would represent drivers. In
contrast, SV-associated cis-regulatory alterations do not need to be as
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precise as for SNV hotspots, where SV breakpoints involving over-
expression may fall at different locations with respect to the gene
across the impacted tumors, with different mechanisms of SV-
mediated cis-regulator alterations potentially being involved5,6. For
the individual genes with SV-associated altered expression across
tumors, the associations could not be accounted for by CNA patterns
alone. When considering tumors with SV-altered protein expression
but no amplification for a given gene, 1 to 3% of tumors conservatively
show altered cis-regulation for key oncogenes. The patients involved
would be considerable if such numbers apply to all human cancers.
When grouping genes according to annotated pathways, SV-altered
gene expression greatly extended the numbers of tumors altered for
pathways beyond small mutation or CNA, involving an additional ~5%
of tumors altered for several pathways. These additional altered
tumors would presumably have not been identified using exome-
centric approaches12. In light of this, precision medicine approaches
utilizing focusedDNA sequencing of specific genesmight be improved
by incorporating gene expression data59, which could capture cis-
altered gene regulation not involving CNA. The catalog of SV-altered
genes, providedby studies suchasours, couldgreatly informonbetter
identifying patients with tumors altered for targetable pathways in the
clinical setting.

Methods
Patient cohorts
The results here are based upon data generated by the Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC), the Applied Proteoge-
nomic OrganizationaL Learning and Outcomes (APOLLO) research
network, the Children’s Brain Tumor Network (CBTN), the Cancer
GenomeAtlas (TCGA) Research Network, and the International Cancer
Research Consortium (ICGC).We assembled a compendiumdataset of
combinedWGS and gene expression data (by protein or RNA) on 1426
human tumors (representing 1409patients). CombinedWGS andmass
spectrometry-based proteomic profiling was compiled for 1307
tumors in total, representing 1290 patients (Supplementary Dataset 1).
The cancer types represented in the proteomics compendium dataset
were the following: Breast Invasive Carcinoma (n = 18 tumors with
proteomics data)15, Colorectal Adenocarcinoma (n = 46)16, Glio-
blastoma (n = 98)22, Head and Neck Squamous Cell Carcinoma
(n = 108)24, Lung Adenocarcinoma (n = 197)21,27, Lung Squamous Cell
Carcinoma (n = 108)23, Ovarian Serous Cystadenocarcinoma (n = 15)14,
Pancreatic Ductal Adenocarcinoma (n = 136)25, Pediatric Brain Tumors
(n = 219)26,29, Prostate Adenocarcinoma (n = 47)28, Renal Cell Carci-
noma (n = 219)18,20, and Uterine Corpus Endometrial Carcinoma
(n = 99)30. Combined WGS and RNA-seq profiling was compiled for
1413 tumors in total, of which 1294 had proteomic data and of which
988 had DNA methylation data (Illumina MethylationEPIC platform)
not analyzed by our group previously5. For 118 lung adenocarcinomas

in CPTAC Confirmatory cohort with combined WGS, RNA-seq, and
DNA methylation data, no proteomics data were made publicly avail-
able at the time of our study. A subset of CBTN tumors with proteomic
data represented multiple tumors taken from the same patient,
involving 34 tumors from 17 patients (two tumors/patient). Different
tumors from the same patient could demonstrate extensivemolecular
heterogeneity with respect to each other19,60. Therefore, each tumor
sample was analyzed independently in the integrative analyses. Sex
was not considered in the study design, but all tumors with available
data were incorporated into the study.

Somatic structural variant (SV) datasets
Somatic SV calls were compiled from the following sources, as
noted for each tumor sample in Supplementary Dataset 1: from the
Genome Data Commons (GDC), using the BRASS software
package61; from the PCAWG consortium of calls made by two or
more algorithms11; the CBTN Cavatica portal, using the Manta
algorithm19; SV calls on TCGA tumors based on high pass WGS
(~30–60x coverage) from Zhang et al. using Meerkat algorithm5; SV
calls on TCGA tumors based on low pass WGS (~6–8x coverage)
from Zhang et al.6 using Meerkat algorithm; and the Manta SV calls
from the GDC publication page for the APOLLO lung study21. All but
24 of the 1426 tumors involved in the study had SV calls by high-pass
WGS. Our previous studies have collectively found that the phe-
nomenon of SV-altered gene regulation may be observed indepen-
dently of the SV calling algorithm used4–6,19,35,38.

Proteomic datasets
We assembled a compendium dataset of mass spectrometry-based
proteomics data of primary tumors from previous studies (Sup-
plementary Dataset 1)14–16,20–30. Of the 1307 tumors with proteomic
data, 1155 were from CPTAC-led studies, 87 were from the APOLLO-
led adenocarcinoma study21, 47 were from a prostate cancer study28,
and 18 were from a medulloblastoma study29. The above studies
analyzed the tumors using global proteomic and phosphopro-
teomic profiling by liquid chromatography-tandem mass spectro-
metry (LC-MS/MS). We obtained processed protein expression data
from the CPTAC Data Portal62, the Protein Data Commons [https://
pdc.cancer.gov/pdc/], or the associated publications’ supplemen-
tary datasets. Proteomic data, as collected from the public domain,
were processed at the gene level rather than at the protein isoform
level; as a simplification, we did not consider different isoforms for
the same protein in the present study. We used non-imputed ver-
sions of the proteomics datasets, as our integrative SV-expression
analyses aimed to identify expression outliers across tumors, which,
by definition, could not be imputed.

For each study, taking the logged expression values provided in
the associated data table, we normalized proteomic data for

Fig. 5 | Genes with altered DNA methylation and concordant expression asso-
ciated with nearby somatic SV breakpoints. a Heatmap of significance patterns
for 2151CGI probes associatedwith SV-alteredDNAmethylation (FDR< 10%, with at
least one tumor with SV breakpoint involving methylation beta value differ-
ence>0.2 from sample median), for any genomic region window examined (invol-
ving SV breakpoints 100kb upstream of the gene, 100 kb downstream of the gene,
within the gene body, or 1MB upstream or downstream of the gene, as indicated).
Red denotes significant positive correlation; blue, negative correlation. The cor-
responding significance results for the CGI-associated genes are represented at
both mRNA and protein levels. Gene listed off to the right were significant for
methylation, protein, and mRNA (p <0.05 for each) in concordant directions (high
methylation and low expression or vice versa). b Top: Fraction of promoter-
associated CGIs for the CGIs respectively associated with increased or decreased
methylation (FDR< 10%, any region from part a). P-values by chi-square test. Bot-
tom: Breakdown by probe position relative to the gene for the CGIs associatedwith
increased or decreased methylation, respectively. P-values by chi-square test. TSS,

transcription start site; UTR, untranslated region. c Overlap between CGI probes
with SV-associated altered methylation and nearby genes with corresponding SV-
associated altered expression. For mRNA- and DNA methylation-SV breakpoint
associations inverse to each other for the same genes (e.g., mRNA positively cor-
related and DNA methylation negatively correlated with nearby breakpoint, using
p <0.01, with at least one tumor with SV breakpoint involving methylation beta
value difference>0.2 from sample median), the subset of CGI methylation probes
for which the associated genes have protein-SV associations (p <0.05) are indi-
cated. P-values for significance of overlap by chi-squared test. In parts a–c, SV-
expression and SV-methylation association p-values correct for cancer type and
CNA. d As examples of significant genes, gene expression levels (left) and DNA
methylation levels (right) of NID2 (top) and ANO1 (bottom), corresponding to
somatic SV breakpoints located in the genomic region 1Mb surrounding the gene.
Each point represents a single tumor (closest SV breakpoint represented for each
tumor). Breakpoints near the respective genes tend to associate with higher
expression and lower methylation.
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downstream analyses in the following manner and as described
previously13,34,40,42. For the profiles taken from the CPTAC data portal,
we first normalized expression values to standard deviations from the
medianwithin each proteomic profile.We then normalized expression
values across samples to standard deviations from the median for all
profiles. Similarly, we separately normalized both total protein and

phospho-protein datasets for a given cancer type and dataset. For
datasets where two different data centers generated values on the
same tumors, we averaged normalized values from the respective data
centers in instances of duplicate profiles for the same tumor sample.
As intended, by normalizing expression within each cancer type and
each proteomic dataset, neither tissue-dominant differences nor inter-
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laboratory batch effects would drive the downstream analysis results.
Our SV-expression analytical approach was intended to identify
expression outliers involving a small fraction of sample profiles, which
outliers would remain in the data after normalization. The compen-
dium dataset of total proteins included the 15,439 unique genes by
Entrez Identifier that were represented in our previous proteomics
compendium of 2002 tumors13. For the compendium dataset of
phospho-proteins, a total of 199,284 phospho-proteins, involving
11,671 unique genes, were represented in at least one of the individual
datasets. Of these phospho-proteins, 8835 had available data for at
least 400 tumors, which features were analyzed for SV breakpoint
versus phospho-protein associations.

Transcriptomic datasets
For CPTAC projects utilizing tumors from TCGA, we obtained TCGA
data RNA-seq data from the Broad Institute’s Firehose data portal
[https://gdac.broadinstitute.org], and we obtained RNA-seq data for
the other CPTAC projects from the GDC [https://gdc.cancer.gov/]. We
obtained RNA-seq data on CBTN pediatric brain tumors through the
public project on the Kids First Data Resource Portal and Cavatica
[https://cbtn.org]. We obtained data for the non-CPTAC projects from
links or accession numbers provided with the associated publications.
We normalized expression values across samples to standard devia-
tions from the median within each cancer type and dataset, as we
carried out above for proteomic data.

Copy number alteration (CNA) datasets
All but one tumor in our study had corresponding gene-level CNA
data (the one exception being a TCGA sample with SV by low pass
WGS but no SNP array data). For CPTAC projects utilizing tumors
from TCGA, we obtained SNP array-based CNA “thresholded” values
(-2, -1, 0, 1, 2) from the Broad Institute’s Firehose data portal [https://
gdac.broadinstitute.org]. We obtained gene-level absolute copy
data (0, 1, 2, 3, 4, 5) for the other CPTAC projects and the APOLLO
dataset from the Genome Data Commons [https://gdc.cancer.gov/].
We first normalized the absolute copy data according to ploidy
(dividing gene copy value by average copy value for all genes), then
thresholded to values approximating homozygous deletion (-2),
heterozygous deletion (-1), wild-type (0), gain of 1-2 copies (+1), and
amplification with at least 5 copies (2). We obtained gene-level copy
data from CBTN pediatric brain tumors from Cavatica [https://cbtn.
org] and thresholded similarly to the CPTAC copy data. For the
prostate cancer and medulloblastoma datasets, gene-level copy
data based on WGS data were previously generated by the Pan-
cancer Analysis of Whole Genomes (PCAWG) consortium from a
consensus of multiple CNA callers63. For the APOLLO cohort, gene-
level log(tumor-normal) values were obtained from the GDC pub-
lication page and then thresholded to amplification, gain, wild-type,
loss, or deletion.

DNA methylation datasets
For 988 tumors, DNA methylation profiles had been generated by
CPTAC using the Illumina Infinium MethylationEPIC BeadChip array
platform (Illumina, San Diego, CA), with level3 beta values beingmade
available via the Genome Data Commons. Our study focused on the
115,625 array probes falling within CGIs that did not involves X or Y
chromosomes (these chromosomes not being included as thesewould
be present or not present or differentially methylated according to
patient gender).

Small mutation datasets
All but five tumors in our study had small somaticmutation calls (SNVs
and indels) by whole-exome or whole-genome sequencing. We used
whole-exome sequencing (WES) data over WGS for small mutation
calls when available for a given tumor. For CPTAC projects utilizing
tumors from TCGA, we obtained somatic mutation calls by WES from
the publicly-available “MC3” TCGA MAF file [https://www.synapse.
org/#!Synapse:syn7214402]; variants called by two ormore algorithms
were used in this study. CBTN used both Strelka2 and Mutect2 to call
small somatic mutation, based on WGS19. We assessed the somatic
variant MAFs through the public project on the Kids First Data
Resource Portal and Cavatica [https://cbtn.org/]. We used only variant
calls that passed quality filters in the analyses. Variant calls made by
either Strelka2 or Mutect2 were considered, with allowances made for
the lower sequencing coverage of WGS compared to that of WES. For
the other CPTAC projects, we obtained WES somatic mutation calls
from the Genome Data Commons [https://gdc.cancer.gov/]; variants
called by two or more algorithms were used in this study. For the
prostate cancer and medulloblastoma datasets, we obtained whole-
genome somatic mutation calls from the supplemental of ref. 64.
Somatic small mutation calls for the APOLLO tumors were taken from
the GDC publication page.

Integrative analyses between SVs and expression
Using SVExpress38, we defined genes with altered expression (by pro-
tein or mRNA) associated with nearby somatic SV breakpoints. No
germline SVswereused in any analyses. Relative to eachgene, genomic
region windows considered included the within-gene regions and
within 100 kb upstream or 100 kb downstream of the gene. For the
above regions, SVExpress constructed a gene-to-sample matrix with
entries as 1, if a breakpoint occurs in the specified region for the given
gene in the given sample, and0 if otherwise.We alsousedSVExpress to
examine a 1Mb region surrounding each gene, using the “relative
distance metric” option5, whereby breakpoints close to the gene will
have more numeric weight in identifying SV-expression associations,
while breakpoints further away but within 1Mb can have some influ-
ence. Gene-level SV-expression association analyses included 15,439
unique named genes, 10,087 of which had protein values for at least
400 tumors. The 10,087 genes were the focus of the recurrent SV-

Fig. 6 |Mechanisms of SV-associated alteredprotein expression. aAs compared
to all somatic SVs, fractions of SVs involving TAD disruption and altered gene
expression. b Percentages of SV breakpoint associations involving an enhancer
within 0.5Mb of the SV breakpoint near the gene (and closer than any enhancer
within 1Mb of the unaltered gene), as tabulated for the entire set of SV breakpoint
associationswith breakpointmate on thedistal side from the gene, aswell as for the
subsets of SV breakpoint associations involving altered gene expression.
c Percentages of SVbreakpoint associations involving the translocation of a LINE or
SINE retrotransposon within 20kb of the SV breakpoint near the gene, for all SV
breakpoint associations and the subsets of SV breakpoint associations involving
altered gene expression. For parts a–c, SV-associated altered expression is defined
as p <0.01 by mRNA analysis (1Mb region) and expression >0.4 SD or <−4 SD from
the median for the tumor harboring the breakpoint. The SVs or SV-gene associa-
tions that would involve altered gene expression and that are represented in the
figures have both mRNA and protein data available. P-values by chi-square test. SV-

expression association p-values correct for cancer type and CNA. d Average DNA
methylation different represented by the rearranged region compared with that of
the CGI nearby the gene, with the average difference in methylation beta values
computed for all SV-CGI associations and the subset of SV-CGI associations invol-
ving higher or lower DNAmethylation (p <0.01). P-values by Mann-WhitneyU test.
Error bars represent standarderror.eBygene andby cancer type, thenumber of SV
breakpoint associations involving the translocation of an enhancer with altered
protein expression for at least two tumors for each gene (from part b), which
involved 59 genes and 141 tumors. f By gene and by cancer type, the number of
tumors involving the rearrangement of a region of low methylation (average
methylation beta difference< −0.1), with corresponding decrease in methylation
and increase inprotein expressionobserved (<− 4 SDand>0.4 SD from themedian,
respectively), involving 42 genes and 75 tumors (genes cancer-associated43 or
affected in >2 tumors). OE, over-expression; UE, under-expression.
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protein expression association analyses, where previously we could
identify similar SV-mRNA associations using cancer datasets of 327 or
570 cancers35,38. The 10,087 proteins were under-represented for
G-protein coupled receptors, which class was associated previously
with SV-associated altered regulation4,35. Gene-level SV-protein asso-
ciation analyses were limited to the above 10,087 genes. Using the

geneXsample SV breakpoint matrix, SVExpress assessed the correla-
tion between expression of the gene and the presence of an SV
breakpoint using a linear regression model (with log-transformed
expression values), incorporating sample cancer type and gene-level
CNA. For the analyses involving within-gene, 100 kb upstream, and
100 kb downstream gene regions, we only considered genes with at
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Fig. 7 | Somatic SV-altered proteins involving patient survival. a Gene-level
associations with patient survival, at the levels of both mRNA and nearby SV
breakpoints,wereexamined in a cohortof 3084patientswith combinedSV-survival
data from publicly available datasets (Supplementary Dataset 1). Of 516 genes with
positive SV-protein expression associations (p <0.05, using 1Mb region, with cor-
rections for tumor type and gene-level CNA), 34 genes had both nearby SV
breakpoints and expression associatedwithworsepatient outcome in3084-patient
cohort (one-sided p <0.05 for each variable, stratified Cox correcting for cancer
type; SV breakpoints also correcting for gene-level CNA). P-value for significance of
overlap by one-sided Fisher’s exact test. b Association of the 34-gene expression
signature from part a with patient survival in TCGA pan-cancer dataset
(n = 10,224)31. P-values by log-rank test (patients binned by tertiles) and by uni-
variate Cox, as indicated, corrected for cancer type. c Association of the 34-gene
expression signature from part awith patient survival across multiple cancer types
and three separate datasets: lung adenocarcinoma (n = 1453)70, breast cancer

(n = 1904)71, and pediatric brain tumors (n = 893)19. P-values by log-rank test
(patients binned by tertiles) and by univariate Cox, as indicated. For the pediatric
brain tumor dataset, p-values corrected for histologic type. d Protein expression
levels of G6PD corresponding to SVs located in the genomic region 1Mb down-
stream to 1Mb upstream of the gene (left). Each point represents a single patient
(closest SV breakpoint represented for each patient). Tumors with gene amplifi-
cation are indicated. Boxplot (right, representing 5%, 25%, 50%, 75%, and 95%)
shows G6PD expression by tumors with SV breakpoint within 1Mb of gene start
(n = 29) versus other tumors (n = 1064). P-value by t-test. e Association of G6PD SV
breakpoint and expression patterns with worse patient outcome (n = 54 within
500 kb of gene, using the extended cohort of 3084 patients), and association of
G6PD expression with worse patient outcome in lung adenocarcinoma (n = 910)
and breast cancer (n = 1904) cohorts. P-values by log-rank test and by univariate
Cox. For the SV breakpoints dataset, tests correct for cancer type.
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within genes with high variability in DepMap gene effect scores53 across cancer cell
lines. SV-expression association p-values in tumors correct for cancer type andCNA
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knockout of those genes. b In cell lines, significant overlap of events involving
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expression. Based on the set of all SV-gene associations involving an SV breakpoint
fallingwithin 1Mbof the genes combinedwith protein over-expression (taken from
all gene X cell line sample pairings), the Venn diagram represents significant
enrichment of these SV-gene associations with CRISPR knockout for these same

genes in the same cell lines. Genes listed represent those that had both a positive
SV-expression association in human tumors (p <0.05, for protein; one-sided
p <0.05 for mRNA, 1Mb region) and—for seven or more cell lines—combined low
DepMap gene effect (<−0.5, denoting sensitivity to knockout), nearby SV break-
point, and high protein expression (SD>0.4 from the median). c Box plots of
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respectively; or none of the above, i.e., “unaligned,” involving 196, 219, and 203 cell
lines, respectively). Box plots represent 5% (lower whisker), 25% (lower box), 50%
(median), 75% (upper box), and 95% (upper whisker). P values by t-test.
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least three tumors associated with an SV within the given region when
estimating False Discovery Rate39.

By SVExpress, a gene shows significant SV-expression associations
if the expression and SV breakpoint patterns line up non-randomly
with respect to eachother across all samples analyzed, after correction
for covariates. By design5, our integrative analytical approach does not
assume the specific mechanism of altered expression and treats SV
breakpoints representing different classes (tandem duplications,
insertions, deletions, inversions, and translocations) and insert sizes
the same35. Ifmultiple breakpoints occur near the gene, the breakpoint
closest to the gene start is used in the breakpointmatrix. In addition to
analyzing all tumors from the various cancer types in our combined
cohort, we carried out analyses within tumor subgroups by cancer
type, focusing on the cancer types we previously examined for SV
associations5, with additional tumors represented inour present study.
For some tumor subgroups, genes with significant SV-associated
alterations may involve breakpoints in just one or two samples, com-
bined with very high or very low expression changes relative to the
other tumors in the subgroup.

Our analytical approach factored in the effects of CNA and cancer
type, and the SV-expression associations that could be explainable by
CNA alone were not represented in our main findings. Because geno-
mic rearrangements are often involved in CNA6,65, we used our
assembled gene-level CNA table corresponding to the geneXsample
proteomic and SV breakpoint tables (see above). For each gene, we
assessed the correlation between expression of the gene (by protein or
mRNA) and the presence of an SV breakpoint using a linear regression
model, incorporating sample cancer type andgene-level CNA. By linear
regression modeling, any genes selected as having significant corre-
lations between SV breakpoints and expression must arise above any
associations that would be better explained based on either CNA or
cancer type alone. In other words, CNA alone cannot account for all
observed cases of altered expression in conjunction with SV break-
point events near the gene. In this study, cancer type largely reflected
the batches involved in the expression compendium datasets, as each
cancer type (by tissue of origin) was contained within one or two
batches (as defined by separate studies), and no batches involved
multiple cancer types. Alternative linear models incorporating the 15
batches as a covariate instead of the 12 cancer types (Supplementary
Dataset 1) yielded the same overall results as those used in our study.

Using SVExpress, we also assessed the impact of SV breakpoints
on phosphoprotein levels and on DNA methylation levels. Logit-
transformedmethylationbeta valueswere used in the linear regression
modeling for DNA methylation data. For the SV-mRNA integrative
analyses, we generated mRNA results for both the full mRNA dataset,
including expression values thatmay not be represented in the protein
dataset (e.g., protein expression not detected for a particular gene in a
particular tumor), and for a filteredmRNAdataset, with any expression
data values not represented in the protein dataset removed. The
results for the filtered mRNA dataset would help assess how missing
protein values could contribute to disparate results between the pro-
tein and complete mRNA datasets. In the Results section, the filtered
mRNA dataset results are utilized for the direct protein-mRNA con-
cordance analyses surrounding the analyses presented in Fig. 2, as
noted, with all other mRNA-related results reported relying on the
unfiltered mRNA dataset.

Gene fusion analysis
Fusion calls by RNA chimeric reads were available for 1192 of the 1307
tumors in our combined cohort with SV and protein expression data
(SupplementaryDataset 1). Fusion callswerenot available for all tumor
samples with protein expression, as some samples did not have RNA
data or had RNA data by expression arrays instead of sequencing (and
hence, would not have chimeric read results available) or did not have
fusion algorithms applied in the public data portals. ForCPTAC, TCGA,

and APOLLO tumors, we obtained from the GDC candidate fusion calls
based on RNA-seq data from STAR-Fusion and Arriba algorithms. For
CBTN tumors, we previously obtained STAR-Fusion and Arriba calls
through the public project on the Kids First Data Resource Portal and
Cavatica [https://cbtn.org/]. No RNA chimeric fusion calls were avail-
able for ICGC prostate and medulloblastoma cohorts. For Arriba calls,
we removed low-confidence fusion calls and did not consider any
further candidate fusions for which 50% or more of the calls were
designated as low confidence. Fusion candidates with breakpoints in
intergenic regions were not considered. For each fusion call based on
chimeric RNA-seq reads detected in a tumor, we determined whether
SV breakpoints by WGS were found within one or both genes. For a
subset of candidate fusion calls in tumors without SV breakpoints
detected, we noted WGS support if at least 20% of tumors with that
fusion candidate had SV breakpoints detected. Of the chimeric-based
fusion calls with SV breakpoint support, we cataloged the fusion calls
associatedwith geneover-expression by eithermRNAor protein. Here,
we defined over-expression in a tumor sample as >0.4 SD from the
samplemedianwithin the given cancer type, for either gene.We noted
RNA or protein expression support for a subset of candidate fusion
calls in tumors without over-expression if at least 20% of tumors with
that fusion candidate had over-expression by RNA or protein,
respectively.

Pathway-level somatic alteration categories
For the pathway-centric view of somatic alterations (Fig. 4b), key
pathways andgenespreviously annotated acrossmultiple cancer types
based on domain knowledge6,31,33,45 were included: Receptor Tyrosine
Kinase (RTK) pathway, HIPPO pathway, chromatin modification, SWI/
SNF complex, mTOR pathway, MYC family, TERT, Wnt/beta-catenin,
and p53/Rb-related. Oncogenes and tumor suppressor genes falling
within each pathway are listed in Figs. 4c and S4 and in Supplementary
Dataset 1. For known oncogenes with known “hotspot” residues41, if an
SNV occurred in a “hotspot,” the SNV was considered in the analysis.
We also considered TERT activating promotermutations56. At both the
gene and pathway levels, we tabulated somatic alterations in the fol-
lowing order: SNV or indel, gene fusion, deep deletion (estimated zero
gene copies), high-level amplification (estimated five or more copies),
and somatic SV (for oncogenes, breakpoint falling with 1Mb of gene
and associated with expression>0.4 SD from the median across sam-
ples for the given tumor; for tumor suppressors, breakpoint falling
within the gene body and expression < −0.4 SD).

Integration of TADs, enhancers, and retrotransposons
To identify SV breakpoints associated with TAD disruption, we used
SVExpress38 and published TAD data from the IMR90 cell line66, using
the UCSC Genome Browser LiftOver tool to convert TAD coordinates
from hg18 to the coordinate system used for the given SV call dataset
(hg19 or hg38). We defined TAD-disrupting SVs as those for which the
two breakpoints did not fall within the same TAD.

To identify potential enhancer hijacking events involving gene-
level SV-expression associations,weused SVExpresswith the enhancer
annotations as provided by Kumar et al.67. For each SV breakpoint
associationwithin 1Mbupstreamof a gene (each association involving
unique breakpoint and gene pairing, with only the SV breakpoint clo-
sest to the start of each gene being considered for each tumor in the
instance of multiple breakpoints being detected), SVExpress deter-
mined thepotential for translocationof an enhancer near the gene that
would be represented by the rearrangement (based on the orientation
of the SV breakpoint mate). SVExpress considered only SVs with
breakpoints on the distal side from the gene in this analysis. Hg19 SV
call sets were analyzed separately from hg38 SV call sets, using the
corresponding genome annotation for the enhancer positions.

To identify the translocation of LINE and SINE retrotransponsons
involving SVs associated with altered gene expression, we again used
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the SVExpress enhancer associations module but using the annota-
tions from RepeatMasker open v4.0.5 (hg19) and v4.0.5 (hg38)68. For
each SV breakpoint association within 20 kb upstream of a gene,
SVExpress determined the potential for translocation of a retro-
transposon near the gene that would be represented by the rearran-
gement (based on the orientation of the SV breakpoint mate).
SVExpress considered only SVs with breakpoints on the distal side
from the gene in this analysis. The phenomenon of translocated ret-
rotransposons, as studied here, is distinct from that of somatic
retrotransposition69.

Survival analyses
We identified gene-levelmolecular correlates of patient survival, at the
levels of both mRNA and nearby SV breakpoints, in a cohort of 3084
patients with combined SV-survival data from publicly available data-
sets (Supplementary Dataset 1). Of the 3084 patients, 1194 were
represented in our proteomic compendium dataset. In addition, the
3084 patients included 100 lung adenocarcinomas from CPTAC con-
firmatory cohort and 1790 patients from the PCAWG cohort11. Of the
3084 patients, 2373 had mRNA data. For increased statistical power,
we used a larger patient cohort for survival analyses, e.g., given shorter
median patient follow-up times.

For associating nearby SV breakpoints with patient outcome, we
utilized the [gene X tumor] relative distance breakpoint matrix, gen-
erated by SVExpress. For each gene, we used a stratified Cox (cor-
recting for cancer type) to associate patient overall survival with the
log2-transformed relative distance to the nearest breakpoint for that
gene. We also associated mRNA expression of the gene with overall
survival using stratified Cox (corrected for cancer type, using as.factor
inR).Genes significant for both the relative breakpoint analysis and the
expression analysis were compared with the set of genes with SV-
protein associations. When overlapping different results sets, we used
a more relaxed p-value cutoff to limit false negatives, as the degree of
gene set overlap itself was significant and yielded significant results in
multiple external datasets. The numbers of significant genes asso-
ciated with worse survival by either expression or breakpoint pattern
far exceeded the chance expected (see Results and Supplementary
Dataset 9), and in taking the 679 genes that overlap between both
expression and breakpoint survival results sets (Fig. 7a), multiple
testing becomes even less of a concern.

We also examined genes and gene sets of interest in public cancer
transcriptomic datasets for associations between expression and
patient outcome. To analyze lung adenocarcinomapatient survival, we
examined a compendium dataset of 11 published mRNA expression
profiling datasets for human lung adenocarcinomas40,70. To analyze
breast cancer patient survival, we used the Pereira et al. expression
dataset71 (as downloaded from CBioPortal). For analysis of pediatric
brain tumor patient survival, we used RNA-seq data from CBTN19,40.
The TCGA pan-cancer RNA-seq dataset, representing 32 major cancer
types and 10,224 tumors, was assembled from the Broad Institute’s
Firehose data portal [https://gdac.broadinstitute.org]31. Given a gene
signature (e.g., the 34-gene signature of Fig. 7a), we scored patient
profiles in the external expression dataset by taking the average of the
normalized expression values (standard deviations from the median
across samples) for the entire set of genes.We assessed the association
of the expression of individual genes or a gene signature score with
patient outcome using univariate Cox and log-rank (dividing the
patients according to low, high, or intermediate signature scoring). In
addition, for analyses utilizing the TCGA pan-cancer or CBTN datasets,
stratified Coxmodels or stratified log-rank tests were used to evaluate
survival association when correcting for tumor type. For analyses
involving the lung adenocarcinoma compendium or TCGA pan-cancer
datasets, patient survival was capped at 200 months. For the CBTN
dataset, only one tumor per patient was included in the survival ana-
lyses, and patient survival was capped at 285 months.

Cell line datasets
Weassessed themass spectrometry-basedproteomics data on949 cell
lines in total from Gonçalves et al.54 and on 375 cell lines in total from
Nusinow et al.55. For any proteomic values not represented in the
Gonçalves dataset (e.g., missing values or cell lines not represented),
we used the values from Nusinow. We then z-normalized protein
expression values to standard deviations across cell lines in the com-
bined dataset. We assessed gene-level associations between protein
expression and nearby somatic SV breakpoints across 328 cancer cell
lines in the Cancer Cell Line Encyclopedia (CCLE) with WGS data. The
CCLE datasets, including WGS and RNA profiling, were from the 2019
release72, with somatic SV calls previously made in these cell lines by
SVABA algorithm72. We cataloged all gene-to-nearby SV breakpoint
associations (within 1Mb), for which the cell line had over-expression
of the associated protein (>0.4 SD from the median across cell lines).
Gene effect scores (with low scores denoting essential genes), based
on Cancer Dependency Map (DepMap) CRISPR assays, were also
examined using the dataset as analyzed using the Chronos algorithm
from Dempster et al.53

Statistical analyses
All p-values were two-sided unless otherwise specified. Nominal p-
values do not involve multiple comparison adjustments, while FDRs
involve p-values adjusted for multiple gene feature comparisons. We
relied on a stricter FDR cutoff for defining top genes when carrying
out gene-level global molecular analyses for a single analyte (e.g.,
gene-level SV-protein associations or SV-mRNA associations). When
overlapping different top-gene results sets across multiple inde-
pendent analyses (e.g., gene-level SV-expression associations as
observed in both protein andmRNA data), we used amore relaxed p-
value cutoff for each individual analysis to limit false negatives better
identify significant overlap patterns. As reported, the degree of gene
set overlap across independent analyses was often highly statistically
significant. This practice would be consistent with our previous stu-
dies identifying genes with demonstrated functional roles as origin-
ally identified using integrative analyses73,74, and with standard
analytical methods like GSEA that can identify enrichment patterns
that would be missed using overly strict FDR cutoffs75,76. Enrichment
ofGO annotation terms77 within sets of differentially expressed genes
was evaluated using SigTerms software78 andone-sided Fisher’s exact
tests. Visualization using heat maps was performed using both Java-
Treeview (version 1.1.6r4)79 and matrix2png (version 1.2.1)80. Figures
indicate exact value of n (number of tumors or cell lines), and the
statistical tests used are noted in the Figure legends and next to
reported p-values in the Results section. Boxplots represent 5%, 25%,
50%, 75%, and 95%. Figures represent biological and not technical
replicates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. Proteomics data are
available for CPTAC and ICPC studies at the ProteomicData Commons
[https://pdc.cancer.gov/]. For CPTAC and APOLLO studies, structural
variant data, transcriptomedata, copy number data, and small somatic
mutation data are available at the Genomic Data Commons [https://
gdc.cancer.gov/]. CBTN structural variant, transcriptome data, copy
number data, and small somatic mutation data are available through
the public project on the Kids First Data Resource Portal and Cavatica
[https://cbtn.org/] and through the PedCBioPortal [https://
pedcbioportal.org/]. Raw genomic and transcriptomic CPTAC data
can be accessed via dbGap Study Accession: phs001287.v13.p5. Raw
genomic and transcriptomic APOLLO data can be accessed via dbGap
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Study Accession: phs003011.v1.p1. For ICGC studies, structural variant
data are available via the ICGC data porta [https://dcc.icgc.org/pcawg/
]. Raw data for the above may be obtained once authorized access is
granted via a Data Use Certification (DUC) agreement. Genomic and
transcriptomic prostate cancer data are available at found on Eur-
opean Genome-Phenome Archive (EGA), under accession EGA:
EGAS00001000900. TCGA RNA-seq data are also available from the
Broad Institute’s Firehose data portal [https://gdac.broadinstitute.
org]. Cancer Cell Line Encyclopedia (CCLE) datasets are available from
the CCLE website [http://www.broadinstitute.org/ccle]. For other
published studies, molecular data availability information is provided
in the associated publication. The compendium datasets of molecular
profiles for gene-level total protein, mRNA, CNA, and SV breakpoint
patterns (for genomic region windows 100 kb upstream, 100 kb
downstream, within gene, and 1Mb upstream or downstream)—com-
piled as part of our study—are available through figshare [https://doi.
org/10.6084/m9.figshare.22669888]. Each molecular dataset has a
common gene and sample set, allowing one to derive correlations
between SV breakpoint patterns and gene expression, e.g., using the
SVExpress software38. Any remaining data are available within the
Article or Supplementary Information. Source data are provided with
this paper.
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