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Machine learning coarse-grained potentials
of protein thermodynamics

Maciej Majewski 1,2,14, Adrià Pérez 1,2,14, Philipp Thölke 1, Stefan Doerr2,
Nicholas E. Charron3,4,5, Toni Giorgino 6, Brooke E. Husic7,8,9,10,
Cecilia Clementi 3,4,5,11 , Frank Noé 5,7,11,12 & Gianni De Fabritiis 1,2,13

A generalized understanding of protein dynamics is an unsolved scientific
problem, the solution of which is critical to the interpretation of the structure-
function relationships that govern essential biological processes. Here, we
approach this problem by constructing coarse-grained molecular potentials
based on artificial neural networks and grounded in statistical mechanics. For
training, we build a unique dataset of unbiased all-atom molecular dynamics
simulations of approximately 9 ms for twelve different proteins with multiple
secondary structure arrangements. The coarse-grained models are capable of
accelerating the dynamics by more than three orders of magnitude while
preserving the thermodynamics of the systems. Coarse-grained simulations
identify relevant structural states in the ensemble with comparable energetics
to the all-atom systems. Furthermore, we show that a single coarse-grained
potential can integrate all twelve proteins and can capture experimental
structural features of mutated proteins. These results indicate that machine
learning coarse-grained potentials could provide a feasible approach to
simulate and understand protein dynamics.

Proteins are complex dynamical systems that exist in an equilibrium of
distinct conformational states, and their multi-state behavior is critical
for their biological functions1–5. A complete description of thedynamics
of a protein requires the determination of (1) its stable and metastable
conformational states, (2) the relative probabilities of these states, and
(3) the rates of interconversion among them. Here, we focus on
addressing the first two problems by demonstrating how to learn
coarse-grained potentials that preserve protein thermodynamics.

Due to the structural heterogeneity of proteins and the ranges of
time and length scales over which their dynamics occur, there is no

single technique that is able to successfully model protein behavior
across the whole spatiotemporal scale. Computationally, the main
method to study protein dynamics has traditionally been molecular
dynamics (MD). The first MD simulation ever made was carried out in
1977 on the BPTI protein in vacuum, and only accounted for 9.2
picoseconds of simulation time6. As remarked by Karplus &
McCammon7, these simulations were pivotal towards the realization
that proteins are dynamic systems and that those dynamics play a
fundamental role in their biological function2. When compared with
experimental methods such as X-ray crystallography, MD simulations
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may obtain a complete description of the dynamics in atomic resolu-
tion. This information can explain slow events at the millisecond or
microsecond timescale, typically with a femtosecond time resolution.

In the last several decades, there have been many attempts to
better understand protein dynamics by long unbiased MD. For exam-
ple, Lindorff-Larsen et al.8 and Piana et al.9 simulated several proteins
that undergo multiple folding events over the course of micro- to
millisecond trajectories, yielding crucial insights into thehierarchy and
timescales of the various structural rearrangements. With current
technological limitations, unbiased MD is not capable of describing
longer-timescale events, such as the dynamics of large proteins or the
formation of multi-protein complexes. Due to the computational cost
and timescales involved, there are just a few examples of modeling of
such events, including folding of a dimeric protein Top7-CFr10 and all-
atom computational reconstruction of protein-protein (Barnase-Bar-
star) recognition11. Many methods have been developed to alleviate
these sampling limitations, for instance, umbrella sampling12, biased
Monte Carlo methods13, and biased molecular dynamics like replica-
exchange14,15, steered MD16,17, and metadynamics18. More recently, a
new generative method based on normalizing flows has been pro-
posed to sample structures from the Boltzmann distribution in one-
shot, thereby avoiding the many steps needed in MD to sample dif-
ferent metastable states19,20.

Another way to access the timescales of slow biological processes
is through the use of coarse-graining (CG) approaches. Coarse-
graining has a long history in the modeling of protein dynamics21,22

and since the pioneering work of Levitt and Warshel23, many different
approaches to CG have been proposed24–29. Notably, the work by Hills
et al.30 has made significant strides towards creating a transferable
bottom-up coarse-grained potential for the simulation of proteins,
contributing valuable insights to the field. Popular CG approaches
include structure-based models31, MARTINI32,33, CABS34, AWSEM35, and
Rosetta36. In general, a CGmodel consists of two parts: the selection of
the CG resolution (or mapping) and the design of an effective energy
function for themodel once themapping has been assigned. Although
recent work has attempted to combine these two points37, they are in
general kept distinct. The choice of an optimalmapping strategy is still
an open research problem38–40 andwewill assume in the following that
the mapping is given, focusing instead on the second point, which is
the choice of an energy function for the CGmodel that can reproduce
relevant properties of the fine-grained system. Recently, our groups
and others have used machine learning methods to extend the theo-
retical ideas of coarse-graining to systems of practical interest, which
provides a systematic and general solution to reduce the degrees of
freedom of a molecular system by building a potential of mean force
over the coarse-grained system41–47.

Machine learning models, in particular neural network potentials
(NNPs), can learn fast, yet accurate, potential energy functions for use
in MD simulations by training on large-scale databases obtained from
more expensive approaches43,44,48–51. One particularly interesting fea-
ture of machine learning potentials is that they can learn many-body
atomic interactions52. A steady level of improvement of the metho-
dology over the years has led to dozens of novel and better modeling
architectures for predicting the energy of small molecules. The first
important contributions are rooted in the seminal works by Behler and
Parrinello53 and Rupp et al.54. One of the earliest transferable machine
learning potentials for biomolecules, ANI-155, is based on Behler-
Parrinello (BP) representation, while other models use more modern
graph convolutions51,56,57.

In thiswork,we investigate twelve non-trivial protein systemswith
a variety of secondary structural elements. We build a unique multi-
millisecond dataset of unbiased all-atom MD simulations of studied
proteins. We show the recovery of experimental conformations start-
ing from disordered configurations through the classical Langevin
simulations of a machine-learned CG force field. We demonstrate

transferability across macromolecular systems by using a singlemulti-
protein machine learning potential for all the targets. Finally, we
investigate the predictive capabilities of the NNP through simulation
and analysis of selected mutants (i.e., sequences outside of the
training set).

Results
Multi-millisecond all-atom molecular dynamics dataset
We created a large-scale dataset of all-atom MD simulations by
selecting twelve fast-folding proteins, studied previously by Kubelka
et al.58 and Lindorff-Larsen et al.8 Supplementary Table 1. These pro-
teins contain a variety of secondary structural elements, including α-
helices and β-strands, as well as unique tertiary structures and various
lengths from 10 to 80 amino acids. In the case of the shortest proteins,
Chignolin and Trp-Cage (up to 20 amino acids), the secondary struc-
ture is quite simple. In general, the dataset contains a higher propor-
tion of α-helical proteins. The exceptions are the β-turn present in
Chignolin, themostly β-sheet structure ofWW-Domain, and themixed
αβ structures of BBA, NTL9, and Protein G (Fig. 1). The dataset was
generated by performing MD on each of the proteins starting from
random coil conformations, simulating their whole dynamics and
reaching the native structure. The total size of the dataset amounts to
approximately 9 ms of simulation time across all proteins (Table 1).
The dataset is available for download as a part of Supplementary
Information.

Coarse-grained neural network potentials
A common approach to bottom-up coarse-graining is to seek ther-
modynamic consistency; i.e., the equilibrium distribution sampled by
the CG model—and thus all thermodynamic quantities computable
from it, such as folding free energies—should match those of the all-
atom model30. Popular approaches to train thermodynamically con-
sistent CG models are relative entropy minimization59 and variational
force matching27,60,61. The latter has recently been developed into a
machine-learning approach to train NNPs to compute the CG
energy43,44.

LetD be a dataset ofM coordinate-force pairs obtained using an
all-atom MD force field. Conformations are given by rc 2 R3Nc ,
c = 1,…,M and forces by FðrcÞ 2 R3Nc , whereNc is the number of atoms
in the system. The number of atomsNc depends on c aswewish to also
have different protein systems in the dataset D. We define a linear
mapping Ξ which reduces the dimensionality of the atomistic system
x=Ξr 2 R3n, where 3n are the remaining degrees of freedom. For
example, Ξ could be a simple map to α-carbon atom coordinates for
each amino acid, to backbone coordinates or to the center ofmass.We
seek to obtain Uðxc;θÞ : R3n ! R for any configuration c para-
meterized in θ, such that to minimize the loss

LðR;θÞ= 1
3nM

XM

c= 1

k ΞFðrcÞ+∇UðΞrc;θÞk2 ð1Þ

In order to reduce the conformational space accessible during the
CG simulation and prevent the system from poor exploration, it is
important to provide a prior potential44,62. This also serves to reduce
the complexity of the force field learning problem, and can equiva-
lently be viewed as imposing physical biases from domain knowledge.
The NNP is therefore performing a delta-learning between the all-atom
forces and the prior forces. We applied bonded and repulsive terms to
avoid rupture of the protein chain as well as clashing beads (Eqs. (11)
and (12) in “Methods”). Furthermore, we enforce chirality by introdu-
cing a dihedral prior term (Eq. (13) in “Methods”). This prevents the CG
proteins from exploring mirror images of the native structures. The
functional forms and parameters of all prior terms are available in
“Methods”.
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CG representationswere created by retaining only certain atoms
of each protein’s all-atom representation; the retained atoms are
referred to asCGbeads. NNPswere trained to predict forces basedon
the coordinates and identities of the beads, where the latter is
represented as an embedding vector. Each CG bead comprises the α-
carbon atomof its amino acid, and each amino acidwas described by
a unique bead type. In previous work, we experimented with both α-
carbon and αβ-carbon representation; however, the simplerα-carbon
representation was sufficient to learn the dynamics of small
proteins63.

Coarse-grained molecular dynamics with neural network
potentials reconstructs the dynamics of proteins
Initially, we carried out CG simulations of all twelve proteins using the
models trained on individual all-atom MD datasets corresponding to
eachprotein; that is,we trained twelvemodels, eachoneonly using the
corresponding data for one protein. To validate the models, we per-
formed 32 parallel coarse-grained simulations for each target, starting

from conformations sampled across the reference free energy surface,
built based on all-atom MD (Supplementary Fig. 1). The intent was to
explore the conformational dynamics, sample the native structure and
reconstruct the reference free energy surface.

A Markov state model (MSM)64–68 analysis of CG simulations
shows that all of the individual protein models were able to recover
the experimental structure of the corresponding target (Fig. 1),
accurately predicting all the secondary structure elements and the
tertiary structure, with loops and unstructured terminal regions
being the most variable parts. For the simplest target, Chignolin, the
average root-mean-square deviation (RMSD) value of the native
macrostate was 0.7Å. For less trivial structures, such as WW-Domain
or NTL9, the values were below 2.5Å. For even more complex
arrangements of secondary elements, like Protein B and λ-repressor,
the average RMSD of the nativemacrostate predicted by the network
increased to 5.5 and 4.2Å, respectively. In all cases, however, the
network was able to sample conformations below 2.5Å and global
distance test (GDT)69 scores above 60 (Table 2 and Supplementary
Table 2).

For all protein-specific models, simulations were able to sample
folding events, inwhich theprotein goes froma randomcoil to a native
conformation (Fig. 2 and Supplementary Fig. 2). The dynamics of
transitions is accelerated more than three orders of magnitude, as the
process happens in nanosecond timescale, in contrast to micro-
seconds in the case of all-atom MD8. It is worth noting that, with cur-
rent software, coarse-grainedmolecular dynamicswith neural network
potentials is 1–2 orders of magnitude slower than equivalent simula-
tion with explicit solvent using classical force fields63. However, we
expect that this difference is going to reduce fast. In addition, indivi-
dual trajectories were able to explore the conformational landscape
and transition between different metastable states observed in the
original all-atom trajectories. For each protein, a representative tra-
jectory is shown in a video included in Supplementary Information
(Supplementary Table 3). A few models, in particular Homeodomain,
α3D, and λ-repressor, failed to sample direct transitions from ordered
to disordered conformations (Supplementary Fig. 2). This could have
been caused partially by the model over-stabilizing the native
structure.

Table 1 | All-atom MD simulation dataset generated for this
work and used for training and testing of NNPs

Protein Sequence
length (#aa)

Aggregated
time (μs)

Min.
RMSD (Å)

Chignolin 10 186 0.15

Trp-Cage 20 195 0.45

BBA 28 362 1.13

WW-Domain 34 1362 0.73

Villin 35 234 0.47

NTL9 39 776 0.32

BBL 47 677 1.55

Protein B 47 608 1.19

Homeodomain 54 198 0.56

Protein G 56 2266 0.55

α3D 73 768 1.81

λ-repressor 80 1422 0.82

Fig. 1 | Comparison of simulated and experimental protein structures. Struc-
tures obtained from CG simulations of the protein-specific model (orange) and the
multi-protein model (blue), compared to their respective experimental structures
(gray). Structureswere sampled fromthenativemacrostate, whichwas identified as
themacrostate containing the conformation with theminimumRMSDwith respect
to the experimental crystal structure. Ten conformations were sampled from each
conformational state (visualized as transparent shadows) and the lowest RMSD

conformation of each macrostate is displayed in cartoon representation, recon-
structing the backbone structure fromα-carbon atoms. The native conformationof
each protein, extracted from their corresponding crystal structure is shown in
opaque gray. The text indicates the protein name and PDB ID for the experimental
structure. WW-Domain and NTL9 results for the multi-protein model are not
shown, as themodel failed to recover the experimental structures. The statistics of
native macrostates are included in Table 2.
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Coarse-grained potentials maintain the energetic landscape
In order to estimate the equilibrium distribution and approximate the
free energy surfaces from the CG simulations, we built MSMs for each
CG simulation set. Time-lagged independent component analysis
(TICA)70,71 was used to project coarse-grained trajectories onto the first
three components, using covariances computed from reference all-
atom MD. Overall, the MSMs were able to recover the surface
describing the dynamics, correctly locating the position of the global
minimum in the free energy surface for all cases except ProteinB (Fig. 3
and Supplementary Figs. 3 and 4). The most ill-defined regions of TIC
space correspond to unstructured conformations, which are more
difficult for the models to sample. In most of the models, simulations
transition rapidly to the native structure, and only the surface around

the global minimum is sampled. This is particularly true for larger
helical proteins, such as Homeodomain, α3D, and λ-repressor, where
the space explored falls mostly around the native structure. Alter-
natively, in Chignolin, Trp-Cage, Villin, NTL9, and Protein G, the
models are able to samplemost of the free energy surface, locating all
different metastable minima identified through TICA.

In the case of Protein G, the model was able to identify all the
metastable states, sharing similar features as the reference all-atom
MD simulations (Fig. 4). Furthermore, the model correctly replicates
the main transition to the native structure and allows for a possible
interpretation of the folding pathway. In the most probable folding
pathway, the protein initially forms an intermediate, partially folded
state containing the α-helix and the first hairpin. Next, the native

Table 2 | Native macrostate statistics from all MSMs built with CG simulations from all protein-specific models and the multi-
protein model

Protein-specific Multi-protein Reference

Protein Macroprob. (%) Mean
RMSD (Å)

Min
RMSD (Å)

Macro
prob. (%)

Mean
RMSD (Å)

Min
RMSD (Å)

Macro
prob. (%)

Mean
RMSD (Å)

Min
RMSD (Å)

Chignolin 19.7 ± 0.8 0.7 ± 0.4 0.2 33.4 ± 0.6 1.2 ± 0.6 0.2 57.5 ± 0.6 1.0 ± 0.4 0.1

Trp-Cage 93.2 ± 0.7 2.8 ± 0.5 1.0 81.1 ± 12.0 2.9 ± 0.5 1.0 30.1 ± 3.9 2.5 ± 0.8 0.4

BBA 41.1 ± 1.8 3.8 ± 1.0 1.6 17.5 ± 1.4 4.4 ± 1.0 1.6 5.24 ± 0.9 3.9 ± 1.3 1.1

WW-Domain 15.4 ± 2.5 2.5 ± 0.5 1.1 — — — 45.5 ± 1.1 2.7 ± 1.1 0.7

Villin 77.3 ± 8.9 2.7 ± 0.9 0.8 77.7 ± 13.0 2.9 ± 0.9 1.0 69.2 ± 1.4 3.4 ± 1.8 0.5

NTL9 32.0 ± 2.2 2.4 ± 0.9 0.6 — — — 15.3 ± 3.5 1.6 ± 0.9 0.3

BBL 95.0 ± 0.5 2.8 ± 1.2 1.0 47.8 ± 8.3 2.4 ± 0.6 0.9 30.5 ± 2.7 3.1 ± 1.3 0.7

Protein B 71.6 ± 1.6 5.6 ± 1.0 2.3 75.8 ± 6.4 3.3 ± 0.5 2.0 30.1 ± 0.4 4.4 ± 1.4 1.2

Homeodomain 77.6 ± 14.0 2.8 ± 0.4 1.8 98.5 ± 0.4 2.4 ± 0.3 1.5 53.5 ± 1.9 2.3 ± 1.5 0.3

Protein G 64.8 ± 3.9 2.7 ± 0.5 1.4 2.1 ± 0.9 2.2 ± 0.4 1.2 17.1 ± 1.6 2.9 ± 1.9 0.6

α3D 90.5 ± 6.9 3.2 ± 0.2 2.4 96.4 ± 2.4 3.4 ± 0.3 2.2 67.9 ± 1.2 3.5 ± 0.7 1.8

λ-repressor 77.4 ± 10.7 4.3 ± 0.5 2.1 79.1 ± 7.0 4.6 ± 0.7 2.8 21.9 ± 0.5 4.5 ± 1.2 0.8

The data describes the identified native macrostate for each protein, showing equilibrium probabilities in percentage (Macro prob.), average (with standard deviation), and minimum RMSD values
with respect to the experimental structure.

Fig. 2 | Trajectory analysis of protein dynamics. Three individual CG trajectories
selected from validation MD of Trp-Cage, WW-Domain, and Protein G. Each
visualized simulation, colored from purple to yellow, explores the free energy
surface, accessesmultiple major basins and transitions among conformations. Top
panels: 100 states sampled uniformly from the trajectory plotted over CG free
energy surface, projected over the first two time-lagged independent components

(TICs) for Trp-Cage (a), WW-Domain (b), and Protein G (c). The red line indicates
the all-atom equilibrium density by showing the energy level above the free energy
minimumwith the value of 7.5 kcal/mol. The experimental structure is marked as a
red star. Bottom panels: Cα-RMSD of the trajectory with reference to the experi-
mental structure for Trp-Cage (d), WW-Domain (e), and Protein G (f). Source data
are provided as a Source data file.
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structure is completed by the formation of the second hairpin. Alter-
natively, a second pathway is possible where the structure goes
through a misfolded state with an almost complete native structure
except for the first hairpin, which shows increased flexibility. This
replicates the results of all-atomistic MD simulations performed by
Lindorff-Larsen et al.8. The variant simulated both there and in this
study is intermediate in sequence between the wild type and rede-
signed NuG2 variant. Despite high similarities in the sequence,
experiments show that these variants exhibit distinct folding path-
ways. The difference is in the order of formation of the elements of β-
sheet; in the wild-type variant of Protein G, the second hairpin folds
before the first hairpin72,73 while in the NuG2 variant the order is
reversed74. The CG simulation using NNP shows the majority of flow
going into the NuG2 variant folding, which agrees with one of the
possible folding pathways. In addition, the simulation correctly
recovered the minima around the native conformation of Protein G,
however, the position of the other minima on the free energy surface
are less similar. In general, the force-matching method does not pre-
serve kinetics27,60, so the height of the energy barriers is not expected
to be accurately captured, as shown in the free energy plot (Supple-
mentary Figs. 3 and 4).

For NTL9, the model correctly replicates the transition to the
native structure, allowing for a possible interpretation of its pathway
(Supplementary Fig. 5). From the structural samples, we can see that
the α-helix is the first secondary element formed that appears even in
the unstructured macrostate. By identifying the intermediate state,
where the β-sheet is not entirely formed, we can understand that β-
sheet formation is the limiting step in the process.

The multi-protein model recovers the native structures of most
reference proteins
The individual CG models recovered native structures of the proteins,
demonstrating the success of our approach for complex structures.

These NNPs are, however, limited to the individual targets they were
trained on. In the next step, we examined if it was possible to train a
single, multi-protein model using the reference simulation data of all
the protein targets (Supplementary Fig. 6). We then simulated all tar-
gets with the multi-protein model, in the same way we did for the
protein-specific models. The main objective of the multi-protein
model is to match the results of individual models using a single CG
potential.

The CG simulations show that the multi-protein model is able to
reproduce the native structure of most of the proteins, with the
exception of NTL9 and WW-Domain (Fig. 1 and Supplementary Figs. 3
and 4). We identify each native macrostate based on its RMSD to the
corresponding experimental structure. However, a simple criterion of
minimal potential energy produced by the NNP is able to correctly
identify all of the native macrostates for protein-specific models
described in the previous section, and in nine out of ten cases
(excluding NTL9 and WW-Domain) where the multi-protein model
sampled thenative structure. The onlyexception is BBA,where aquasi-
foldedmacrostate is selected instead which has not fully stabilized the
small β-sheet (Supplementary Fig. 7).

In general, the free energy landscapes produced by the multi-
proteinmodel resemble the protein-specific ones. However, themulti-
protein model neglects energetic barriers and overestimates the glo-
bal minima, which leads to some trajectories being stuck at the native
structure (Fig. 3 and Supplementary Figs. 3, 4 and 8).

In the cases of NTL9 and WW-Domain, the native structure is
sampled only as an artefact of starting positions being equally dis-
tributed on the reference free energy surface (Supplementary Fig. 1).
The native structure is not stable as all simulations move quickly to
unstructured conformations. For Protein G, simulations show that the
native conformation is stable, but we could not sample any transitions
into this conformation from random coil initial conditions, although
we could capture unfolding events (Supplementary Fig. 9). In these

Fig. 3 | Free energy surface comparison across all-atom reference and coarse-
grained models. Comparison between the reference MD (left), protein-specific
model (center), and multi-protein model (right) coarse-grained simulations free
energy surface across the first two TICA dimensions for each protein. The free
energy surface for each simulation set was obtained by binning over the first two
TICA dimensions, dividing them into a 80× 80 grid, and averaging the weights of

the equilibrium probability in each bin computed by the Markov state model. The
red triangles indicate the experimental structures. The red line indicates the all-
atom equilibrium density by showing the energy level above free energy minimum
with the values of 9 kcal/mol for Villin and α3D, 6 kcal/mol for NTL9, and 7.5 kcal/
mol for the remaining proteins. Source data are provided as a Source data file.
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cases, the native structure is identified as the lowest energy structure
by the NNP. Therefore we can promote transitions to the low-energy
states by lowering the temperature of the simulation. We simulated
these systems at temperatures of 300K and 250K. This approach
showed that the NNP recovers the native structure of NTL9 at 300K.
For Protein G and WW-Domain, lowering the temperature stabilizes
conformations that resemble the experimental structures, but we have
not observed transitions from fully disordered to ordered structures
(Supplementary Fig. 10).

One aspect that the failed cases have in common is the presence
of β-sheets, which could be the reason why the multi-protein models
make the proteins’ structured states unstable. Ten out of twelve pro-
teins in the training set contain α-helices, with only Chignolin andWW-
domain representing completely β-sheet proteins and BBA, NTL9 and
Protein G containing a mix of secondary structure elements. There-
fore, the multi-protein model might be biased towards helical struc-
tures. Another explanation could be that due to the locality of
interactions α-helices may be easier to learn for the NNP. α-helices can
be formed gradually with smaller energy barriers, while β-sheets
arrange a full strand at a time. In addition, α-helices are stabilized by
residues close in the sequence, which providesmolecular context even
in the randomcoil state. On the contrary, the stabilizing interactions of
β-sheets occur between the residues distant in the sequence. There-
fore, for randomconformations, the beads are usually outside of the 12
Å upper cutoff of the NNP, reducing the number of examples to learn
from. Extending the upper cutoff leads, however, to noisy potentials
and an overall worse performance. Similar difficulties with β-sheet
proteinswereobservedduring hyperparameter optimization of single-
protein NNPs.

For all the helical proteins, the multi-protein model performs
similarly to the protein-specific models (Table 2). In some cases, the
frequency of transitions between states is altered, as well as the sta-
bility of the macrostates, but both models successfully recover the
native conformations.

In the case of Trp-Cage, the multi-protein potential outperforms
the protein-specific model. The location and the shape of the global
minimum match better the reference simulations as well as experi-
mental data, which indicates that the model benefits from additional
data fromother proteins (Fig. 3 and Supplementary Figs. 3, 4 and 8). In
the case of Protein B, the multi-protein model also outperforms the
protein-specific one, as it is able to improve the average RMSD of the
native macrostate and samples the correct location of the experi-
mental structure, although it is not detected as a minimum
(Table 2, Fig. 3).

The results obtained with the multi-protein model are in line with
protein-specificmodels, which indicates that our approach could scale
to create a general-use CG force field. This model was able to simulate
the transition from random coil to the correct native conformation for
almost all target proteins, with the exception of β-sheet proteins (WW-
Domain, NTL9, and Protein G), which required simulations at lower
temperatures to recover the native state.

Themulti-protein NNP recovers the native structure of mutated
proteins
To further test the multi-protein NNP and assess its predictive power
we simulated mutants of the originally targeted proteins. All mutants
were sourced from PDB and the mutations did not affect the native
structure of the target. Supplementary Table 4 summarizes the

Fig. 4 | Free energy surface and structural analysis of Protein G simulations.
a Free energy surface of Protein G over the first two TICs for the all-atom MD
simulations (top) and the coarse-grained simulations (bottom) using the protein-
specific model. The circles identify different relevant minima (yellow—native,
magenta—misfolded, cyan—partially folded, red—randomcoil).bThe propensity of
all the secondary structural elements of Protein G across the differentmacrostates,
estimated using an RMSD threshold of 2Å for each structural element shown in the

x-axis. c Sampled conformations from the macrostates of coarse-grained simula-
tions corresponding to the marked minima in the free energy surfaces in (a).
Sampled structure colors correspond to the minima colors in the free energy sur-
face plot, with blurry lines of the same color showing additional conformations
from the same state. Arrows represent themain pathways leading from the random
coil to the native structure with the corresponding percentages of the total flux of
each pathway. Source data are provided as a Source data file.
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structures selected for the experiment. For each mutant, we initially
performed a CG simulation of a single trajectory that started from the
native structure using the multi-protein model. In the majority of
cases, the structure immediately transitioned to a random coil. The
mutants that kept the native conformation for 1 ns were further eval-
uated using the same protocol we used for the previous CG
simulations.

The results show that the multi-protein CG model is able to
recover the native conformation for all cases that succeeded in the
initial validation, except one (Protein B mutant 2N35), with reasonably
low RMSD values (Table 3, Supplementary Fig. 11). Although the NNP
was able to simulate the protein dynamics, the exploration of con-
formational space was limited, as the simulations converge rapidly to
the native structure or the conformations resembling it (Supplemen-
tary Fig. 12). These cases demonstrate some ability of themulti-protein
model to generalize outside of the training set even with a narrow
training set of only twelve proteins.

All the examples that recovered the native conformation had very
few mutations and were solely helical structures, for which the multi-
proteinmodel performswell. In the case of amutant of Protein B (PDB:
2N35), the NNP failed to obtain the native structure. Its sequence
contains 10 mutated residues, which may exceed the capacity of the
model to generalize outside of the training set. As shown in Supple-
mentary Table 4, an increased number of mutations reduces the sta-
bility of the native macrostate. In the case of β-sheet containing
proteins, even with a point mutation, the model failed to recover the
native structure and the amino-acid chains immediately formed
unstructured bundles. This observation is not surprising, given the
difficulties encountered by the multi-protein model on the β-sheet
containing targets.

Overall, the mutagenesis tests have shown limited but encoura-
ging results for the predictive capabilities of the multi-protein model.
Despite its failure to keep the native conformation stable for the
sequences that are substantially altered or for proteins that contain β-
sheets, the NNP recovered native macrostates of α-helical proteins
with minor changes in the sequence. This shows some capacity of the
model to generalize.

Discussion
In the previous work, we have shown that an NNP with a non-
transferable coarse-grained model architecture can learn the

thermodynamics of a single protein44. Then, in the following publica-
tion, we replicated the task using a model architecture that is in prin-
ciple transferable43. In this work,we apply a revisedmodel architecture
and show that we can effectively learn thermodynamics for twelve
structurally diverse proteins at once, in a single model. This demon-
strates for the first time that the model architecture is truly transfer-
able and might generalize providing enough data. To achieve that, we
generated a multi-millisecond dataset of MD simulations sampling the
dynamical landscape of the proteins and used it to obtain machine-
learned CG potentials for studying the protein dynamics. Results show
that we were able to model protein dynamics in computationally
accessible timescales, and recover the native structure of all twelve
proteins through coarse-grainedMD simulations using NNPs and an α-
carbon CG representation, with a unique bead type corresponding to
each amino-acid type. From the model-generated CG simulation data,
we were able to reconstruct multiple metastable states, capturing the
folding pathways and the formation of different types of secondary
and tertiary structures. In contrast to novel deep-learning structure
prediction methods75,76, our method offers a substantial improvement
and models protein dynamics, which is essential for understanding
protein function.

The multi-protein model, trained over all proteins in the MD
dataset, demonstrates that we were able to model multiple proteins
with a single NNP. The following tests on mutants of the 12 proteins
have shown the robustness of the multi-protein NNP to small differ-
ences in sequence.Wehighlight, however, that the current training set,
while being one of the largest ever produced, only contains data for
12 small proteins. With such a small number of training examples, it is
unrealistic to expect that the NNPwill model sequences different from
the training set. Therefore we do not provide a hold-out test set. While
it is not a physical model, this work is a fundamental step in that
direction.

There are a few limitations to the current approach. In general,
machine learning potentials do not extrapolate well outside of the
training set for atom positions that are never sampled in the training
set. Therefore, unseen positions are assigned unrealistically low
energies and often produce spikes in forces. This has been solved by
limiting the physical sampled space with the use of basic prior energy
terms44. The network also relies on large datasets of all-atommolecular
dynamics trajectories which are expensive to produce. Furthermore,
the current accuracyof coarse-grainedMD is limitedby the accuracyof
the underlying all-atom simulations. While all-atom force fields are
reasonably good for proteins, improved approaches are required for
coarse-grained small molecules77. Ultimately, the ability to create a
truly general model that is transferable from smaller to larger proteins
would revolutionize thefield78. Someworks suggest that transferability
can be achieved by a sufficient sampling of various configurations and
state variables79. We think that, in order to learn transferable poten-
tials, some key improvements need to be made, mainly: much larger
molecular simulation datasets, alternative training strategies,
improved coarse-grained mapping strategies, and more robust archi-
tectures that candealwith non-physical states. Current results indicate
that this might be achievable.

Methods
All-atom molecular dynamics simulations and training data
All initial structures were solvated in a cubic box and ionized as
described by Lindorff-Larsen et al.8. MD simulations were performed
with ACEMD80 on the GPUGRID.net distributed computing network81.
The systems were simulated using the CHARMM22*82 force field and
TIP3P water model83 at the temperature of 350K. All the simulations
were performed following a previously used adaptive sampling
strategy84, in order to explore efficiently as many conformations as
possible. Homeodomain dataset also contains simulations that started
from the native conformation, as low RMSD values (≤2Å) with respect

Table 3 | Nativemacrostate statistics ofmutant variants of the
proteins based on the CG simulations performed with the
multi-protein model

Protein PDB Number of
substitutions

Min
RMSD
(Å)

Mean
RMSD (Å)

Eq.
prob. (%)

BBL 1BAL 3 1.5 3.9 ± 0.9 52.3 ± 1.4

Protein B 1GAB 2 2.3 4.9 ± 1.2 32.5 ± 1.4

Protein B 2N35 10 4.0 9.3 ± 1.4 19.4 ± 0.8

Homeodomain 1DU0 1 1.6 2.6 ± 0.4 57.0 ± 3.2

Homeodomain 1P7I 1 1.4 2.5 ± 0.3 92.2 ± 13.3

Homeodomain 1P7J 1 3.8 4.6 ± 0.3 16.6 ± 6.6

Homeodomain 2HOS 4 1.6 3.1 ± 0.8 65.4 ± 5.7

Homeodomain 6M3D 2 1.5 2.5 ± 0.3 24.5 ± 4.0

α3D 2MTQ 3 2.8 4.4 ± 0.6 96.2 ± 0.9

λ-repressor 1LLI 3 3.1 5.1 ± 0.9 97.0 ± 0.8

λ-repressor 3KZ3 6 2.3 5.8 ± 1.4 76.1 ± 7.6

The table shows the protein name, PDB ID and the number of amino acid substitutions for each
mutant. Results show theminimumRMSDwith respect to themutant experimental structure, as
well as the mean RMSD and equilibrium probability of the native macrostate, obtained from an
MSM built based on CG simulations of the mutant.
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to the native structure are difficult to sample when starting from ran-
dom coil conformations. A Langevin integrator was used with a
damping constant of 0.1 ps−1. Integration time step was set to 4 fs, with
heavy hydrogen atoms (scaled up to four times the hydrogen mass)
and holonomic constraints on all hydrogen-heavy atom bond terms85.
Electrostatics were computed using Particle Mesh Ewald with a cutoff
distance of 9Å and grid spacing of 1Å. Ten NVT simulations of 1 to
10 ns length were carried out for each protein, with a dielectric con-
stant of 80 and temperature of 500K to generate ten different starting
random coil conformations for the production runs. Production
simulations consisted of thousands of short trajectories of 20, 50, or
100 ns, distributed across different epochs using the adaptive
sampling84,86 protocols implemented in HTMD87. In adaptive sampling,
multiple rounds of simulations are performed, and in each round the
available trajectories are analyzed to select the initial coordinates for
the next round of simulations. The MSM constructed during the ana-
lysis was done using atom distances, using TICA for dimensionality
reduction and k-centers for clustering. From the trajectories, we
extracted forces and coordinates with an interval of 100ps. Total
aggregate times used for training for all the proteins are summarized
in Table 1.

Based on the MD dataset we built MSMs for each protein. The
models were able to describe the conformational dynamics of each
protein, sample the native conformation and identify intermediate and
metastable states for some of them, such as Villin, NTL9, WW-Domain,
or Protein G (Fig. 3).

Neural network training
To train NNPs we used TorchMD-Net77. We performed an exhaustive
hyperparameter search, which is described in Supplementary Table 5.
The total number of parameters of the network is 294,565. The data
was randomly split between training (85%), validation (5%), and testing
(10%). An epoch for simulation was selected when the validation loss
reached a minimum or a plateau. The training and validation loss
reported asMSE loss, test loss reported asL1 loss and the learning rates
of models selected for simulation are presented in Supplementary
Figs. 6 and 13. The models were trained using Nvidia GeForce RTX
2080graphics cards. The trainingof protein-specificmodels took from
7min/epoch on a single GPU for Chignolin to 24min/epoch on 2 GPUs
for λ-repressor. The training of the multi-protein model took 46 min/
epoch on 3 GPUs.

A lot of effort was dedicated to building a graph neural network
architecture TorchMD-GN, inspired by SchNet56,88 and PhysNet51 and
optimized to work optimally on noisy forces and energies proper of
the reduced dimensionality of our coarse-graining. This scenario is
different from the quantum case, where energy and forces are deter-
ministic functions of the coordinates. In coarse-grained systems, the
same coordinates generate stochastic energies and forces. The soft-
ware was implemented using PyTorch Geometric89 and PyTorch
lightning framework90 and is publicly available in TorchMD-Net77. The
SchNet architecture has several distinct components, each playing an
important function in predicting system forces and energies for given
input configurations. The formal inputs into the network are the Car-
tesian coordinates for a full configuration and a predetermined type
for each coarse-grain bead. In the first network operation, a molecular
graph, G, is constructed, where each coarse grain bead represents a
node. Eachnode is given an embedding feature vector, the set ofwhich
is grouped into a feature tensor. For SchNet, the embedding is pro-
duced by applying a learnable linearmapping. The edges of G are used
to define the network operations that update the features of each
node. These updates are encompassed in so-called “interaction
blocks”, which are a form of message-passing updates. The edges of G
are the set of pairwise distances for each bead from its nearest
neighbors, the range ofwhich is set uniformly for all beads by an upper
cutoff distance. In thisway, several interaction blocks canbe stacked in

succession to give the network increased expressive power. After the
final interaction block, an output network is used to contact the node
feature dimension to a scalar for each node. This forms a set of scalar
energy predictions, U from each node. By applying a gradient opera-
tion with respect to the network input coordinates, the curl-free Car-
tesian forces, F, are predicted for each bead, representing the final
network output.

The hyperparameters were selected based on the quality of the
simulation produced using protein-specific models. An example of a
training input file is presented in Supplementary Listing 1. The test loss
wasnot a usefulmetric for hyperparameter selectionbecause the value
did not change much between successful and failed models91,92. The
only way to correctly validate the models was to use them in coarse-
grained simulations. A high-quality model produces stable MD simu-
lations, the trajectories explore the conformation landscape and the
free energy surface is smooth. In addition, a goodmodelwillmatch the
results of all-atom simulations and form energy minima around the
relevant states, and wewill observemultiple transitions between these
states. The hyperparameter combination had the biggest influence on
the stability of the MD simulation, the smoothness of the free energy
landscape, and the visited areas of the conformational landscape. We
found that reducing the number of radial base functions from150, as in
the previous work63, to around 18 has a big impact on the stability of
the MD simulations of proteins bigger than chignolin. With a higher
number of RBFs, the forces become spiky for the conformations that
are not present in the training set, which leads to the instability of MD
runs. Further improvement can be made by replacing the Gaussian
function that was used in previous works with expnorm. It is slightly
elongated towards longer distances and this shape better suits mod-
eling theproperties ofCGbeads. The smoothnessof the landscapewas
affected the most by the type of activation function. Hyperbolic tan-
gent (tanh) makes the free energy surface smooth, while shifted soft-
plus (ssp) caused the trajectories to collapse into many local minima,
making the surface grainy. Other parameters that have a significant
influence on the quality of the models are the number of interaction
layers and the range of radial base functions. It is important tomention
that in some cases even the random seed has an influence on the
quality of the models, especially on the coverage of the free energy
landscape. For that reason, to ensure reproducibility of the results we
trained 2–4 replicas of each model, as mentioned in the main text.
Based on the results for protein-specific models as well as the multi-
protein model, we selected the following combination: 4 interaction
layers, 128 filters used in continuous-filter convolution, 128 features to
describe atomic environments, and 18 expnorm as radial base func-
tions (RBF) span in the range from 3.0 to 12.0Å. In general, we found
that themodels with hyperparameters similar to these tend to be good
quality in terms of the metrics mentioned before.

Neural network architecture
The series of full network operations can be written as:

ξ0 =WEz ð2Þ

ξ 1 = ξ0 +W0σ Aggr WC*ξ0
� �� �

ð3Þ

ξ2 = ξ 1 +W1σ Aggr WC*ξ 1
� �� �

ð4Þ

..

. ð5Þ

ξN = ξN�1 +WN�1σ Aggr WC*ξN�1
� �� �

ð6Þ
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U =HoutðξNÞ ð7Þ

F= � gradðU,xÞ ð8Þ

for N interaction blocks. Note that for clarity, we have omitted learn-
able additive biases in all linear operations above, though they are
easily incorporated. The first step of the message-passing update
involves expanding the pairwise distances into a set of radial basis
functions, ϕ. ϕ then comprises a filter generating network used to
produce a set of continuous filters, WC:

WC =W2ðσðW1ϕÞÞ ð9Þ

where W1,W2 are learnable linear weights and σ is an element-wise
non-linearity. These filters are used in a continuous filter convolution
through an element-wisemultiplication with the current node features
for G. These convolved features are then passed through a non-
linearity and added directly to the unconvolved node features through
a residual connection:

ξ i + 1 = ξ i +Wiσ Aggr WC*ξ i
� �� �

ð10Þ

where “Aggr” is a chosen pooling/aggregation function that reduces
the convolution output (eg, sum, mean, max, etc.). This message-
passing update, combined with the residual connection, forms the
entirety of an interaction block, producing an updated set of node
features for G that can be used as input for another interaction block.
Our implementationof this network architecture allows for training on
multiple GPUs and more efficient utilization of GPU memory.

Coarse-grained simulations
Coarse-grained representations were created by filtering all-atom
coordinates such that only certain atoms are retained. This mapping is
a simple linear selection, wherein the mapping matrix that transforms
the all-atom coordinates to the coarse-grained coordinates is a matrix
where zero-entries filter out unwanted beads. The all-atom trajectories
were filtered to retain the coordinates and forces of α-carbon atoms
(CA). To speed up the training of protein-specific modes, trajectories
were further reduced by selecting every 10th frame. However, for
smaller proteins (Chignolin, Trp-Cage, BBA, and Villin), the training
data was not sufficient to produce satisfactory models. Therefore all
the frames were used in the training of these systems. To train the
multi-proteinmodel we combined the datasets for all the targets. Each
CA beadwas assigned a bead type based on the amino acid type. In the
assignment, we ignored the protonation states and distinguished
norleucine, a non-standard residue appearing in Villin, as a unique
entity. The terminal residues were assigned the same embedding as
the non-terminal residues, despite the charge. As a result, we obtained
21 unique bead types. To each bead type we assigned a unique integer,
an embedding that will be used as an input for the network.

To perform the coarse-grained simulations using a trained NNP,
we used TorchMD63, an MD simulation code written entirely in
PyTorch93. The package allows for an easy simulation with a mix of
classical force terms and NNPs. The parameters for the prior energy
terms were enumerated and stored in YAML files. The NNP was
introduced as an external force, as described in the previous work63.
We carried out CG simulations over all the proteins, both for each
protein-specific model and for the multi-protein model, as well as
selected mutants. Simulations were set up with a configuration file (an
example in Supplementary Listing 2). We selected 32 conformations
evenly distributed across the free energy surface of the reference
simulations from where to start the coarse-grained simulations (Sup-
plementary Fig. 1). For each system, 32 parallel, isolated trajectories
were run at 350 K for the time necessary to observe transitions

between stateswith a 1 fs time step, saving the output every 100 fs. The
length of each individual trajectory was 1.56 ns (accumulated time of
50 ns) for Chignolin and BBA, 3.12 ns (accumulated time of 100 ns) for
Trp-Cage and Villin, 12.5 ns (accumulated time of 400 ns) for WW-
Domain and Protein G, and 6.25 ns (accumulated time of 200 ns) for
the remaining protein targets. For some systems andmodels, we were
able to obtain stable trajectories with a time step as high as 10 fs.
However, to make the results comparable we adapted identical para-
meters for all simulations, and thus we were limited by the highest
possible time step where all types of simulations were stable (1 fs). We
observed that for the conformations not represented in the training
set, the forces tend to form spikes, which leads to the instability of the
simulations. This can be reduced by applying prior force terms and
applying cutoffs to radial base functions that limit the exploration of
unphysical conformations. In addition, a reduced number of radial
base functions has a positive impact on the overall smoothness of the
force field. The coarse-grained simulations were performed using
Nvidia GeForce RTX 2080 graphics cards.

Prior energy terms
The pairwise bonded term was represented with the following equa-
tion:

VbondedðrÞ= kðr � r0Þ2 +V0, ð11Þ

where r is the distance between the beads forming the bond, r0 is the
equilibriumdistance, k is the spring constant andV0 is a base potential.
The nonbonded repulsive term was represented by the potential

V repulsiveðrÞ=4ϵr�6 +V0, ð12Þ

where ϵ is a constant that was fit to the data, r is the distance between
the beads and V0 is a base potential. The parameters were used as in
TorchMD63. The parameters for norleucine, a non-standard residue
appearing in Villin, were adapted from leucine. In addition, we
introduced a third prior dihedral term:

VdihedralðϕÞ=
X
n= 1,2

knð1 + cosðnϕ� γnÞÞ, ð13Þ

whereϕ is the dihedral angle between the four consecutive beads, kn is
the amplitude and γn is the phaseoffset of the harmonic component of
periodicity n. The parameters for dihedral terms were fit to the data
used for training, containing all the proteins. The extracted values of kn
were scaled by half to achieve a soft prior that will break the symmetry
in the system but will not disturb the simulation in a major way. For
simplicity, all combinations of four beads were treated equally,
therefore all dihedral angles were characterized by the same set of
parameters, in contrast to bonded and repulsive prior. The force field
file with terms and associated parameters is available in the GitHub
repository. To enable the simultaneous use of both Dihedral and
RepulsionCG force terms in TorchMD, exclusions between pairs of
beads for RepulsionCG term are defined by an additional parameter
“exclusions”.

Markov state model estimation and structure selection
For the analysis of the CG simulations and their comparison with the
all-atom MD simulations, we built MSMs for each protein, both for
the all-atom MD simulations and the two sets of coarse-grained
simulations (protein-specific and multi-protein models). The basic
concept behind MSMs is that the dynamics of the system are mod-
eled as a memory-less jump process, where future states are only
conditioned on the current state, hence the dynamics areMarkovian.
MSM estimation of transition rates and probabilities requires parti-
tioning the high-dimensional conformational space into discrete

Article https://doi.org/10.1038/s41467-023-41343-1

Nature Communications |         (2023) 14:5739 9



states. In order to project the high-dimensional conformational
space into an optimal low-dimensional space, we use TICA, a linear
transformation method that projects simulation data into its slowest
components by maximizing autocorrelation of transformed coordi-
nates at a given lag time70,71. The resulting low-dimensional projected
space is then discretized using a clustering algorithm for the MSM
construction.

For the all-atom MD simulations, we featurized the simulation
data into pairwise Cα distances and applied TICA to project the fea-
turized data into the first 4 components. Next, the components were
clustered using a K-means algorithm and the discretized data was used
to perform the MSM estimation. Although better reference MSM
models could be obtained by using different featurizations, we are
limited to only using pairwiseCα distances as it is transferable between
systems and comparable with the coarse-grained simulations.

For the coarse-grained simulations, the sameprocedurewas used.
However, when projecting the featurized data into the main TICs, we
used the covariance matrices computed with the all-atom MD simu-
lations to project the first 3 components, in order to compare howwell
the coarse-grained simulations reproduce the free energy surface for
each protein. For each MSM, we used the PCCA algorithm to cluster
microstates into macrostates for better interpretability of the model
and to define a native macrostate that we can use to evaluate the
performance of the coarse-grained simulations.

The free energy surface plots used for comparison were obtained
by binning over the first two TICA components, dividing them into an
80 × 80 grid, and averaging the weights of the equilibrium probability
in each bin, obtained for each defined microstate through MSM ana-
lysis. To recover the native conformation from a set of coarse-graining
simulations, we used the MSMs and sampled conformations from the
native macrostate. The native macrostate was defined as the macro-
state containing the frame with the minimum RMSD to the experi-
mental structure.

Statistics and reproducibility
To ensure the reproducibility of the results, the training of eachmodel
was repeated 2 to 4 times with different random seeds. Each replica
was then tested by performing a fast simulation of 4 parallel trajec-
tories of a corresponding system, with the objective of a fast assess-
ment of the model. The model that produced the best results was
selected for the main validation.

All the statistics obtained using MSMs are reported with an aver-
age and standard deviation obtained from estimating 10 different
models by bootstrapping the simulation data, taking 90% of the tra-
jectories. This was performed for both reference MD and coarse-
grained simulations. In addition, for coarse-grained trajectories, we
removed 10% of the initial frames of each trajectory from the analysis
to avoid biasing the model with starting conformations. All structures
shown were obtained by sampling 10 conformations from the corre-
sponding macrostates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The models
and data generated in this study are available at github.com/torchmd/
torchmd-protein-thermodynamics (https://doi.org/10.5281/zenodo.
8155342)94. Starting structures for molecular dynamics were sourced
from Protein Data Bank https://www.rcsb.org/, with PDBids: 5AWL,
2JOF, 1FME, 2F4K, 1PIN, 2HBA, 2WXC, 1PRB, 1ENH, 1MI0, 2A3D, 1LMB,
1BAL, 1GAB, 2N35, 1DU0, 1P7I, 1P7J, 2HOS, 6M3D, 2MTQ, 1LLI,
3KZ3. Source data are provided with this paper.

Code availability
All codes are free and available in github.com/torchmd. The code to
run molecular dynamics is available at github.com/torchmd/
torchmd(https://doi.org/10.5281/zenodo.8155115)95. The neural net-
work architecture is available at github.com/torchmd/torchmd-
net(https://doi.org/10.5281/zenodo.8155330)96.
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