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Variation in spatial dependencies across the
cortical mantle discriminates the functional
behaviour of primary and association cortex

Robert Leech 1 , Reinder Vos De Wael2, František Váša 1, Ting Xu 3,
R. Austin Benn4, Robert Scholz 5, Rodrigo M. Braga6, Michael P. Milham3,
Jessica Royer2, Boris C. Bernhardt 2, Emily J. H. Jones7, Elizabeth Jefferies8,
Daniel S. Margulies4 & Jonathan Smallwood 9

Recent theories of cortical organisation suggest features of function emerge
from the spatial arrangement of brain regions. For example, association cortex
is located furthest from systems involved in action and perception. Associa-
tion cortex is also ‘interdigitated’ with adjacent regions having different pat-
terns of functional connectivity. It is assumed that topographic properties,
such as distance between regions, constrains their functions, however, we lack
a formal description of how this occurs. Here we use variograms, a quantifi-
cation of spatial autocorrelation, to profile how function changes with the
distance between cortical regions. We find function changes with distance
more gradually within sensory-motor cortex than association cortex. Impor-
tantly, systemswithin the same type of cortex (e.g., fronto-parietal and default
mode networks) have similar profiles. Primary and association cortex, there-
fore, are differentiated by how function changes over space, emphasising the
value of topographical features of a regionwhen estimating its contribution to
cognition and behaviour.

One of the most important discoveries in human neuroscience is that
brain topography plays an important role in determining how a region
contributes to cognition and behaviour1. These topographic features
can shape a region’s function in many ways including: (i) through the
influence of neighbouring neural systems that make up the local
environment within which a specific region is embedded2, (ii) the
physical location of the network on the cortical mantle with respect to
core cortical landmarks3, (iii) andmoreabstract topographical features
such as the degree to which functional activity within a network is
spatially distributed across the cortical mantle2,4, or, instead is limited
to adjacent regions, often within a single cortical lobe5,6.

Contemporary evidence suggests that local topographical
properties influence a region’s function in a complicated, inter-
dependent manner. For example, neural systems concerned with
sensation and movement, such as the visual or motor cortex, are
spatially distant fromeach other, yet bothof these systems tend to be
relatively spatially contiguous, and both contain topographic fea-
tures resembling maps, either of the external environment or how
the organism engages with the outside world7–10. Other systems, such
as the default mode or frontoparietal networks, are located in
regions of association cortex, are spatially adjacent to one another,
both are spatially distributed across cortex; yet functionally these
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systems appear to serve different, often opposing roles in human
cognition11. Topography is also important for understanding mac-
roscale brain function, because systems that tend to be more spa-
tially discontinuous (e.g., the default mode network) tend to bemore
distant from sensory and motor systems where spatial discontinuity
is an exception rather than the norm (e.g. sensorimotor or visual
cortex)3. In contemporary neuroscience, macroscale topographical
features provide a useful heuristic for understanding the involve-
ment of frontoparietal and default mode networks in cognition.
These networks are hypothesised to be at the transmodal apex
regions of a broad sensory-fugal hierarchy, allowing oversight across
broad areas of cortex12. In contrast, mesoscale features of topo-
graphy, such as the retinotopic maps located within sensory cortex,
are thought to explain aspects of how the visual system represents
and extracts features of the environment from retinal input8.

Topography at both macro and mesoscale is, therefore, a key
principle of brain organisation and is crucial for understanding brain
function both within specific systems and across the cortex as a whole.
Our study set out to formally examine how the meso and macro scale
perspectives can be combined to formally understand the relationship
between topography and brain function. The distance between
regions, calculated as the geodesic distance between two vertices,
provides one metric to understand how topography influences func-
tion. This measure has been used to describe macroscale features of
cortical topography, for example, highlighting that systems like the
defaultmode and frontal-parietal cortex are distant fromboth systems
concerned with sensory input andmotor output systems13. However, a
given location on the cortical mantle may be influenced by local
topographical features as well, such as the features of the local
neighbourhood in which the region is situated, or, whether the system
is part of a distributed or localised network. Accordingly, it is

important to understand how the balance of meso and macro scale
influences combine in order to understand how topography influences
function within a given brain region. Our study set out to understand
meso and macro scale changes in the influence of topographical fea-
tures on brain function by examining whether there are regional dif-
ferences in the way distance impacts functional connectivity.

In order to establish how distance between regions influences
their similarity in function, we calculated for each cortical surface
vertex how the similarity of its activity changes with all other vertices
as a function of the distance between them; quantifying the local rate
of change of similarity across the cortex. This is a simplified version of
the empirical variogram14, as illustrated schematically in the upper
panel of Fig. 1. Spatial variograms are expected to show that similarity
in function declines with distance until it reaches an asymptote, the
distance after which there is no longer a spatial dependency between
vertices. The empirical variogram can be summarised by fitting an
exponential function which in turn can be described by two values
capturing how similarity changes with distance for each vertex: the
effective range and the sill. The sill is the height (i.e., degree of dis-
similarity between two regions) and the range is asymptote (i.e., the
spatial distance between the two regions). Heterogeneity in the spatial
variogram across regions can be used to quantify the different ways
topography influences function in different cortical locations. For
example, in regions where function is more influenced by the local
neighbourhood, the spatial variogram shows a relatively shallow
decline in similarity with distance. In contrast, in regions where func-
tion is relatively distinct from the local environment, the variogram
should increase more rapidly with the distance. This approach allows
for the presence of variable spatial dependencies across the cortex, in
contrast to accounts that imply a homogeneous spatial relationship,
e.g., a single exponential distance rule15.

Fig. 1 | Calculationof variograms. Top Panel. Schematic illustration of how spatial
variograms can be used to characterise how functional connectivity changes as
distance increases between brain regions. Bottom Left. Whole-brain variograms of
functional connectivity can be calculated by comparing how the distance along the
cortical surface is related to the average similarity in brain activity between regions.

BottomRight. Whole brain variograms are shown for the left and right cortices and
can be seen to be broadly similar. The thick lines/dots are the mean across parti-
cipants, and the filled area is the standard error of the mean. The dashed lines are
the estimated location of the sill (asymptotic correlation between vertices) and
range (distance in mm between vertices at which the asymptote is reached).
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Results
Whole-brain spatial dependency
We first quantified the spatial dependency between functional con-
nectivity and distance by calculating whole-brain variograms assessing
how functional connectivity (Pearson’s correlation) varies with dis-
tance along the cortical surface for each hemisphere (Fig. 1, lower
panel). We used resting state fMRI data from 51 participants from the
Human Connectome Project. We took two scans on the same data for
each individual allowing us to calculate the reliability of these metrics
within an individual. Averaging these vertex-wise variograms across
the whole cortex, the global variogram, reveals an initially steep rise
(rapidly increasing dissimilarity with distance (Fig. 1). This is followed
by a continuous increaseup to themeasured limit (all vertices included
distances up to 150mm, which was the maximum distance present for
all vertices (see Supplementary Figure 1 for vertex distance distribu-
tions and higher upper measurement limits). The variograms for the
left and right hemispheres show a similar pattern (see left hand panel).
The landscape of these variograms can be formally understood by
comparing the observed rate of change in function with distance with
different mathematical growth functions (e.g., exponential, gaussian,
sinusoidal and power-law). It can be seen in Fig. 1 that the whole brain
variogram of the human ismost similar to an exponential relationship.

For the purposes of our analyses, we extracted the two para-
meters used to fit the theoretical function to the empirical variograms:
(i) the sill, which is the height the variogram reaches at 95% of its
asymptote and reflects the approximate point at which there is
no longer a relationship between space and functional connectivity
(i.e., that vertex’ baseline average correlation level with other vertices);
and (ii) the range which is where the sill occurs. These are both dis-
played in the top panel of Fig. 2. Importantly comparing the variogram
calculated for each of the participants from separate resting state
scans on the same day shows a high degree of correspondence both in
terms of the sill (the average difference in correlation between ver-
tices) and the distance (i.e., rho > 0.73; Fig. 2 top panel).

Regional variation in spatial dependency across the cortex
Thewhole-brain variogramsestablish that in humans, distance leads to
an increase in dissimilarity in neural function that is asymptotic
exponential in nature and that these measurements are broadly con-
sistent within an individual over time. This aligns with descriptions of
spatial similarity previously reported in humans and non-human pri-
mates e.g., refs. 15–18. By computing variograms, we are able to go
beyond a single description of spatial dependency in each region of
the brain, and this therefore allows us to capture regional differences
in spatial dependencies (see also Supplementary Fig. 2, for random
models with homogeneous spatial dependency structures to contrast
with the empirical results). To understand whether there are sys-
tematic differences in howdistance leads to changes inneural function
across different brain regions, we calculated separate variograms for
each vertex across the cortex. The middle panel in Fig. 2 summarises
how the twometrics (sill and effective distance) vary across the cortex.
It can be seen that sill (reflecting the spatial dissimilarity in functional
connectivity across the cortex) ranges between 0.25 and 0.5, and that
in some regions the dissimilarity continues to increase to the max-
imum range of our measurements (150mm).

Relationship between spatial dependency and cortical
organisation
Having highlighted the features that whole brain variograms have, we
next considered how this varied across the cortex. To this end, we
examined how the distribution of the sill and the effective range varies
across the principal gradient of change in functional connectivity3.
This gradient can be derived by application of dimensionality reduc-
tion techniques to functional connectivity data3, and recapitulates
foundational features of the sensory-transmodal cortical hierarchy1.

The lower panel of Fig. 2 shows that regions closer to the transmodal
end of the principal gradient tend to be regions where the variograms
tend to have a relatively high sill and short effective distance (i.e.,
regions where dissimilarity shows a relatively rapid increase), in gen-
eral. In contrast, regions closer to the unimodal end of the principal
gradient tend to have a relatively lower sill and a longer effective dis-
tance (i.e., regions that show a slower rate of decline in function with
increasing distance). This analysis provides preliminary support that
two broad types of cortex (primary and association cortex) can be
discriminated based on how activity varies with distance. Spin per-
mutation tests (Fig. 2, bottom, right) as well as generative null models
basedon randomisation or randomisation followedby smoothingwith
a homogeneous function (Supplementary fig. 2) show that these rela-
tionships are unlikely to be due to chance.

The principal gradient provides an organising principle for mac-
roscale features of brain function, including large-scale brain networks
(see ref. 3). Next, we examined how the large-scale networks that span
theprincipal gradient, focusingonawell-defined setof canonical resting
state networks from Yeo and colleagues4. Figure 3 (upper panel) shows
the average empirical variogram for each network while the lower panel
shows the average sill and effective distance of each network. Regions
making up the limbic network (Cream) have the highest sill and the
shortest effective distance, a pattern that is also seen in the transmodal
networks (Defaultmode, Red; Fronto-parietal network, Orange) but to a
lesser degree. Regions that make up unimodal cortex (Visual network,
Purple; Motor cortex, Blue) show the reverse profile with variograms
with small sills and relatively long effective distance. Finally, the two
attention networks (Dorsal and Ventral) show intermediate profiles
both having moderate sills and effective ranges. These two systems are
distinguished fromeachother because theDorsal attentionnetwork has
a longer effective distance and a short sill, and so is more similar to the
unimodal systems, whereas the ventral attention network shows the
opposite profile.

This network analysis contrasts with a comparison between broad
features of brain organisation such as the principal gradient. In parti-
cular, while there are clear differences between networks in terms of
their variogram profile, networks embedded in similar types of cortex
show relatively high similarity. In particular, both the default mode
network and the frontoparietal network, embeddedwithin association
cortex, show similar profiles. Likewise, the variograms of visual and
motor systems, which are both embedded in primary cortex, are also
similar. To quantify this apparent similaritywe randomly permuted the
location of the Yeo networks (by rotating them on the sphere) to
generate null models and compared the difference in the Range and
Sill parameters. This analysis showed the only significant differences
were between different types of cortex (see Fig. 4), e.g., between visual
and default mode networks.

Having established that heterogeneity in spatial dependencies
capture important features of brain organisation in humans, we next
sought to understandwhether this generalises to non-humanprimates.
To this end, we repeated this analysis in a sample of macaques (using
homologue networks, see Methods for details). This analysis identified
that the network profile of each species is broadly similar. For example,
in both species the limbic network has the highest sills and the shortest
effective distances, and the visual system provides the clearest exam-
ple of the opposite profile (low sills and longer effective distance). We
note that some regions within the limbic network have been reported
to have signal dropout and related issues in the Human Connectome
Project dataset19 and so should be interpreted with caution.

Clustering variation in spatial dependency
The variograms stratified by resting-state network suggest that there
may be a small set of spatial dependency profiles that characterise a
larger number of networks, and that these likely correspond to the
difference between association and primary cortex. To provide an
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independent test of this idea, we performed hierarchical clustering on
the binned data from the vertex-wise variograms and display the results
coloured by different canonical networks. The top panel of Fig. 5 pre-
sents the dendrogram produced by this analysis. Clustering vertices
based on their variogram profiles gives rise to two groups, one pre-
dominantly encompassing the unimodal systems (primary sensor-
imotor networks as well as parts of the dorsal attention network) and
the other corresponding to limbic and transmodal systems, as well as
the ventral attention network. This analysis, therefore, highlights a
broad dissociation of cortex into two classes based on their variograms:
one class of regions where the variograms have low sills and long con-
nectivity and a second class of regions with higher sills and shorter
effective distances. We also assessed how consistent these results were
for individuals’ variograms across different scans (Fig. 5C), to ensure the
cluster structure was not a consequence of group averaging and

generalises to out-of-sample data. Comparing each individual partici-
pant’s empirical variograms across scans showed within-cluster corre-
lations (cluster variograms from scan 1 correlated with cluster
variograms from scan 2) substantially higher than across clusters.

Our analysis highlights that variograms vary between primary and
association cortex, but do not separate large-scale networks such as
the default mode and fronto-parietal cortex, even though these have
contrasting behaviour at rest20 and have differing functional profiles.
Our next analysis, therefore, examined how the variograms vary with
meta-analytic descriptions of function. To this end, we averaged
vertex-wise estimates of the range and sill parameters for responsive
vertices (defined as those with an estimated evoked BOLD response
greater than threshold) in 24 topic maps generated by data mining
the neuroimaging-related literature21 and discovering brain maps
associated with them from an automated meta-analysis22. Figure 5

Fig. 2 | Distribution of the sill and effective distance of variograms across the
cortex. A Variograms can be formally described through comparison of the
observed rate of change between similarity in brain activity and distance with
different mathematical growth functions. We observe that the whole-brain vario-
gram has most similarity to an exponential function. B Variograms can be char-
acterised by two numbers, the partial sill (the height of the curve at 95% of its
asymptote) and the effective range (the distance of the sill). C Both the sill and the
range of the whole brain variogram show reasonable similarity when measured
within the same individual in two scans on the same day (>0.73). D The regional
distribution of the range (the distance of the sill) and (E) the sill (the height of the

variogram at 95% of its asymptote) across the vertices of the human cortex. It can
be seen that the sill varies from 0.25 and 0.5 across the cortex and that in some
regions the range can be as long as 15 cm. The relationship between the
F distribution of the principal gradient of intrinsic connectivity and (G) variograms
at each vertex (as described by each vertex’s partial sill and effective distance).
H Spin permutation tests to assess the significance of the correlation between the
principal gradient and theoretical variogram parameters (the range and the sill).
The true values are depicted by the dashed lines and the histogram displays the
distribution of correlations from the permuted maps.
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shows how brain regions related to different cognitive states differ in
terms of their profile of spatial dependencies. In general, more exter-
nally focused tasks (e.g., labelled “visual” or “motor”) showed slower
decrease in similarity with distance and a lower sill; whereas cognitive
tasks associated with more abstract functions (such as “emotion”,
“social”, “memory”), were associated with the opposite pattern with

shorter ranges and higher sills. We subsequently clustered the tasks
according to their sills/ranges to allow us to easily visualise the varia-
bility in the variograms associatedwith each task (the red/blue colours
in Fig. 5, panels A–E). This allowed us to create a composite task acti-
vation map for each cluster and plot the associated variograms
showing the different spatial dependency profiles.

Fig. 3 | Variograms calculated for each canonical resting state network (Yeo,
Krienen et al.47) in humans and in homologue networks in macaques. The
middle panel shows the mean variogram (FC dissimilarity by distance along the
cortex) calculated across all vertices for each Yeo network in the human Human

Connectome Project data; the filled areas are the standard errors of the mean
across vertices. Below is a similar analysis with fMRI data averaged from 14 awake
Macaque monkey as a comparison. Data to recreate the variograms in Fig. 3 is
available in source data file.

Fig. 4 | Permutation tests to assess the difference in average Sill and Range
between networks. The results from spin permutation tests comparing the dif-
ference in thedifferences between the range and sill between each pair of canonical

resting state networks (in the human); network pairs with significant differences
(FDR-corrected, α <0.1) are indicated with an asterisk.
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Relationship between spatial dependency and intracortical
myelin
Our final analysis examined how microstructural features of different
regions of the cortex correspond to the observed differences in spatial
dependencyprofiles across cortex. Given its role in signal propagation,
we examined whether myelination is linked to the shape of the vario-
grams for different vertices. Figure 6 depicts the spatial distribution of
estimated cortical myelin. We split vertices into deciles based on their
levels of corticalmyelination and plotted separate variograms for each
decile. A clear separation emerges, with more highly myelinated ver-
tices displaying, on average, longer distance spatial dependencies, and
lower sills. This is mademore explicit by plotting the range and the sill
per vertex (Fig. 6) coloured by the level of myelination (warm colours
indicating higher myelination).

Discussion
Given emerging evidence of the importance of topography in the
mammalian cortex3,12, our study set out to understand how the dis-
tance between regions relates to their functional similarity. In parti-
cular, we examined whether this profile of spatial dependence is
heterogeneous, varying across different cortical regions. Our analysis
first established whole brain variograms are reasonably consistent
across hemispheres, individuals, and within individuals measured in
different scans on the same day. When we examined these on a
regional basis, we observed substantial differences across the cortex.

This finding suggests a more complex relationship between functional
connectivity and distance along the cortex than has typically been
reported. For example, multiple previous studies have defined a
homogeneous cortex- or brain-wide relationship between function
and distance (such as a single exponential distance rule, e.g.,
refs. 15,17,18,23, although23 noted that a single spatial relationship was
inadequate to fully explain patterns of brain activity). The regional
variability that we observed, reflects known functional divisions of
brain function. Notably, the observed differences in spatial depen-
dence profile recapitulated the distinction between primary sensor-
imotor and transmodal association cortex. In primary sensorimotor
cortices, including visual and somatosensory cortex, we found that
increasing distance is associated with a gradual change in function. In
contrast, in association cortex we found that function changed with
distance at a much faster rate. Importantly, while these broad types of
cortex differed substantially in terms of their spatial dependencies,
networks located within similar types of cortex were generally similar
to each other, an observation which is important because these sys-
tems are often thought to have contrasting functional and cognitive
associations. These differences between unimodal and association
cortex in humans were broadly similar to those seen in macaques
suggesting that they are conserved across the primate nervous system.
We found that these changes in how distance impacts functional var-
iation are likely to be at least partly related to differences in micro-
structure, as we found differences between association and unimodal

Fig. 5 | Clustering vertices based on empirical variograms. Left A: clustering
vertices based on empirical variograms. The dendograms, are coloured by the Yeo
network that each vertex belongs to, displaying the tree structure of the similarity
betweenvariograms; the number for each column is the index of the representative
vertex. B The dendogram was used to cluster the data into two clusters (coloured
red and blue) for the left and right hemispheres. The order of the clustering was
arbitrary across hemispheres and has been coloured based on approximate simi-
larity between the left and right hemispheres. Broadly, transmodal regions were
clustered together in a separate cluster (red) to unimodal sensorimotor regions

(blue). C Correlation of empirical variograms across vertices are consistent within
each cluster within individuals and across differentMR scans; bars are the standard
error of the mean. D Average empirical variograms for each of the clusters within
individuals reveals that one cluster exhibits more dramatic change in functional
similarity with distance (shaded areas are the standard error of the mean). E The
range and sill for each vertex, coloured by the cluster label for the left and right
hemispheres. F the ranges and sills calculated across vertices activated by different
cognitive processes (taken from a large automatic meta-analysis); These are over-
layed on vertices coloured by their cluster membership from E.
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cortex similar to those seen when exploring variation in intracortical
microstructure approximated by the ratio of T1w/T2w image intensity
a known proxy for intracortical myeloarchitecture24.

These results have implications forunderstandinghow topographic
differences influence cortical function. First, our data provides support
for an organisation of unimodal cortex that supports the progressive
elaboration of encoded stimulus features25. Our analysis established that
both sensorimotor cortex andvisual cortex are situatedwithin regions in
which the changes in function over distance are some of the most gra-
dual when the cortex is viewed as a whole. When contrasted with asso-
ciation cortex, this pattern is consistent with the view that sensory
regions have a spatial organisation in which adjacent regions encode
progressively complex features of the information extracted from sen-
sory signals and that these compressed signals form the basis of signal
processing for the next stage in the hierarchy e.g. ref. 26. This pattern of
progressive change is assumed to be important in regions of primary
cortex, such as visual cortex, and is captured empirically by the vario-
grams in these regions which show relatively small steady changes in
functional properties as the distance between two regions increases.

Our study also provides insight into theoretical perspectives on
how neural processing occurs in regions of association cortex. For
example, contemporary work highlights that regions of association
cortex can have relatively unique features both in termsof the functions
they support, and in their observed neural properties (for a similar
argument see12). For example, both the fronto-parietal and default
mode networks are implicated in cognition in a relatively abstract
manner, highlightedby their involvement in awide range of taskswhich
despite being superficially different may draw on similar underlying
cognitive operations. For example, situations that have superficially
different features, such as the Stroop27 or working memory28, but show
a common reliance on executive control, tend to activate the fronto-
parietal network, as well as other task positive systems29. Similarly, the
default mode network is often observed as contributing to situations
when information from memory may be important for organising
cognition, such as during mental time travel30, memory processes that
rely on semantic31 or episodic knowledge32. Our analysis suggests that
both of these large-scale systems are situated in regions of cortexwhere
there are fairly rapid changes in functional similarity with increasing
distance. These rapid changes in functionover relatively short distances
are likely to reflect the interdigitated nature of these systems6,33. These
perspectives assume that a general property of associative cortex may
be a topographic organisation in which relatively different functional

systems terminate within close proximity of one another. This topo-
graphic system could form the basis of an architecture that is hypo-
thesised to explain why both the fronto-parietal34 and default mode
networks12 contribute to multiple different forms of behaviour in a
relatively abstract manner. These more complex, interdigitated pat-
terns of function are captured empirically by the variograms which
show rapid functional changes as a function of distance in each of the
large-scale networks in association cortex. Importantly, our analysis
suggests that both the fronto-parietal and default mode network share
similar variogram profiles, suggesting that this is likely to explain simi-
larities in their function rather than their differences.

Our study provides insights into the important observation that
the default mode network, a brain system located at the maximal dis-
tance from primary landmarks like the calcarine sulcus, also has a
functional profile which is one of the most unique in the mammalian
nervous system3. Our analysis suggests regions of cortex where the
default mode network is located combine two unique topographic
properties that together explain why the distance between these sys-
tems and the primary sensorimotor landmarks corresponds to the
primary dimension of functional differentiation with the whole brain
connectivity space3. Our analysis suggests that the increasing distance
from primary landmarks in sensory cortex, and regions of the DMN
would first lead to increasing differences in functional similarity
through the slow progressive changes in function with distance that
emerge in primary cortex. In conjunction, with these gradual changes,
our study suggests that the cortex where the DMN is where function
changes most rapidly with increasing spatial distance. Thus, the
observation that the distance between the DMN and sensory cortex
corresponds to the greatest differentiation in function (i.e. the princi-
ple gradient of functional connectivity3) is inevitable because this dis-
tance combines (i) the progressive changes in function within primary
sensorimotor cortex, and (ii) the complex interdigitated structure seen
within theDMN6. Basedonour analysis of T1w/T2w images it is possible
that microstructural differences, such as myelin content, may be an
important feature in distinguishing these types of cortex, an important
question for future research to explore with more detailed anatomical
techniques (e.g. ref. 35, than those used in the current investigation.

Although our study highlights how different types of cortex can
be understood through the emergence of functional differentiation
across space, it also raises a number of important questions for future
research into how topography shapes function. First, although our
study shows that association and unimodal cortex systematically vary

Fig. 6 | Variograms vary with intracortical myelin. A The empirical variograms
between functional connectivity and distance split into deciles based on vertices’
myelin value (pink-greener colours correspond to higher-myelin content; shaded
area is the standard error of the mean across individuals). Individual average esti-
mated intracortical myelin for the two clusters. B The estimated range and sill for

each vertex, coloured by estimated myelin. The inset brain is the average dis-
tribution of estimated cortical myelin (from the HCP group average dataset). C the
average estimated myelin distribution from the lateral and medial surfaces. D spin
permutation tests comparing the spatial distribution of myelin with the range and
sill parameters; the true correlations are depicted by the dashed lines.

Article https://doi.org/10.1038/s41467-023-41334-2

Nature Communications |         (2023) 14:5656 7



in how function changes across the surface of the brain, this metric
does not discriminate between systems that are known to be dis-
tinctive in their functions. For example, although the variograms for
both the fronto-parietal and default mode networks are similar, the
situations inwhich these systems contribute to cognition aredifferent.
Likewise, the variograms in motor and visual cortex are similar, yet
these systems have clear functional differences. It is likely that the
different roles that these systems play in cognitionmay arise, not from
the general way that function changes with space in these areas of
cortex, but in terms of the specific location that these systems inhabit
within the broader cortical landscape. In this way, our study highlights
the more abstract properties that distinguish association and unim-
odal cortex, but do not provide a concrete explanation for how these
systems contribute to cognition and behaviour in a distinctivemanner.

Second, our study does not constrain accounts of why association
and unimodal cortex have differences in the spatial differentiation that
we observe. Our analysis highlights that microstructural differences,
via a proxyof intracorticalmyelination, systematically trackdifferences
in the empirical variograms. However, there are likely to be multiple
microstructural features that track these differences, and these
microstructural properties may also vary as a consequence of experi-
ence. Therefore, it is important for futurework to examine thedifferent
genetic and experiential changes that influence how function varies as
a function of distance in both primary and association cortex to fully
understand the influences that determine this fundamental feature of
cortical organisation. One possibility is that the high degree of spatial
heterogeneity within association cortex may result from the long-
distance connections that link specific regions36. By extrapolation,
these long-distance connections may provide a clue into how regions
within these areas of cortex are able to serve distinct cognitive func-
tions. Understanding how the broad changes in the parameters cap-
tured by the variograms relate to long-distance connections is an
important question for future research to address. In addition, from a
methodological perspective, it is important for future work to under-
standhowdata analysis decisions (such as smoothing) impact variation
in spatial autocorrelation as well as their consequences for quantifying
large-scale cortical organisation37 and making statistical inferences.

Methods
The researchpresentedhere complieswith relevant ethical regulations
(King’s College London College Research Ethics Committee) govern-
ing reanalysis of existing data.

Imaging data
The data used in this study are available from the HumanConnectome
Project (https://www.humanconnectome.org/study/hcp-young-adult/
document/extensively-processed-fmri-data-documentation), the PRI-
MatE Data and Resource Exchange (https://fcon-1000.projects.nitrc.
org/indi/indiPRIME.html), and Neurosynth https://neurosynth.org/
analyses/topics/).

The majority of the analyses were performed on 51 participants’
resting state fMRI from the Human Connectome Project’s minimally
pre-processed dataset (34 female); this involved registration to a
common MNI152 template, minimal spatial smoothing and extensive
filtering for slow drifts, motion and other nuisance signals estimated
using independent components analysis38. The 4D fMRI datasets for
each participant were projected onto the Conte32k surface and
the number of faces reduced resulting in 10,000 remaining vertices
(using Matlab’s reducepatch command). Two resting-state runs
(with opposite phase encoding direction, left-to-right and right-to-left,
from the same scanning session) were taken from each participant.
No further pre-processing was performed on the data. Since we were
not focused on across-participant or within-participant variability, and
for computational efficiency, we focused only on two scans from a
subset of the whole Human Connectome Project dataset.

Group averaged data from 14macaquemonkeys (two female) was
used from the Newcastle cohort. Surface geodesic distance and
homologous regions to the human data were taken from ref. 39.

The vertex-wise map of cortical myelin was the group-average
map taken from the Human Connectome Project 900-subject release;
it is released in the Conte32k surface space and reduced to the
same 10,000 vertices as the fMRI data. Similarly, the Yeo cortical
parcellation4 in Conte32k surface space was taken from the same HCP
900 data release and was also reduced to 10,000 vertices. The 50
Neurosynth data-derived topic maps were downloaded in MNI152
2mm space and then projected onto the mid-thickness Conte32k
surface using the Connectome Workbench40 and then reduced to the
same 10,000 vertices. Topics that were not related to cognitive tasks/
states were removed, leaving 24 topics.

Geodesic distance
Pairwise geodesic distance was calculated along the cortical surface
between all vertices (excluding themedial wall) using the Connectome
Workbench tools, as implemented through the BrainSmash toolbox41.
This was done on each hemisphere’s mid-thickness Conte32k surface
reduced to 10,000 vertices prior to calculating the distances. The
resulting vertex-wise distance matrices were used in all subsequent
analyses.

Functional connectivity
The functional connectivity affinitymatrixwasfirst calculated between
all 10,000 vertices for each individual fMRI scan using Pearson’s cor-
relation between the BOLD time series. For group-average results, the
correlation coefficients were subsequently Fisher transformed and
then for each vertex, averaged across subjects before applying an
inverse Fisher transform, resulting in values between −1 and 1 for each
edge of the functional connectivity matrix. Using a bounded similarity
metric (0 = no similarity, 1/−1 identical) aids comparison across indi-
viduals/vertices and facilitates interpretation for the resulting empiri-
cal variograms.

Empirical variograms
The empirical variogram was calculated by quantifying how functional
connectivity decreases in similarity as distance increases. To do this, all
distances between pairs of vertices were collapsed into 20 equally
spaced bins. Subsequently, dissimilarity matrix was created from the
functional connectivity (1- Pearson’s correlation coefficient) between
pairs of vertices. These values were formed into equally spaced bins
using a Gaussian smoothing function (following the approach set out in
refs. 41,42). This resulted in a whole-cortex empirical variogram. For
vertex-wise variograms, the same approach was taken but repeated for
every row of the functional connectivity/distance matrix separately,
resulting in a simplified formof the empirical variogram for each vertex.
The empirical variogram captures the rate of change of (dis)similarity
along the cortical surface, either globally or locally for each vertex.

Theoretical variogram
It is common practice to fit a function to empirical variograms, this is
typically used prior to spatial regression; however, in our case, it allows
us to compactly summarise the shape of the empirical variogram with
a small number of parameters, facilitating comparisons across datasets
and vertices, and aggregation across multiple vertices. For the repor-
ted analyses we used an exponential function. This is motivated by a
range of prior studies suggesting exponential relationships between
distance and various neuralmeasures (e.g., ref. 43).We also performed
a similar fit for three other theoretical models (a Gaussian, a power-
law model, and a periodic model which allows for non-monotonic
functions), with qualitatively similar results. Empirical variograms
were trimmed to bins between 2 and 19 (to remove bins with few
sampleddistances). Subsequently, non-linear least squareswas used to

Article https://doi.org/10.1038/s41467-023-41334-2

Nature Communications |         (2023) 14:5656 8

https://www.humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation
https://www.humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation
https://fcon-1000.projects.nitrc.org/indi/indiPRIME.html
https://fcon-1000.projects.nitrc.org/indi/indiPRIME.html
https://neurosynth.org/analyses/topics/
https://neurosynth.org/analyses/topics/


estimate the sill and range parameters. Given that the distribution of
pairwise distances varies across vertices (see Supplementary Fig. 1,
left), for the main analyses we restricted the maximum distance to be
150mmfor calculating bins. However, qualitatively similar resultswere
obtained by varying the upper distance limit (see Supplementary
Fig. 1, right).

Low-dimensional embedding of functional connectivity
The principal connectivity gradient was calculated using the Brain-
space toolbox44. This involved taking the group-average functional
connectivity affinity matrix and performing non-linear dimensionality
reduction using the Laplacian Eigenmaps approach, separately for
each hemisphere.

Clustering
Agglomerative hierarchical clustering, with ward linkage and the Eucli-
dean distance metric was applied simultaneously to all the vertex-wise
variograms separately for each cortical hemisphere. Subsequently,
SciPy’s fcluster command was used to flatten the hierarchy into two
clusters. To assess the robustness of the resulting clusters each vertex’s
variogram was correlated with all other variograms calculated in a
separate fMRI run within the same individual. The correlation scores
were Fisher transformed and then subsequently averaged both within
and across clusters.

Cognitive tasks
From the Neurosynth 50 data-derived topics dataset22, those that did
not refer to cognitive or behavioural states were removed, leaving:
cognitive, inhibition, motor, numerical, action, conflict, spatial, emo-
tion, empathy, decision, pain, memory, language, semantic, face,
imagery, visual, eye movement, motion, attention, auditory, reward,
social and working memory. The corresponding map for each topic
was thresholded (absolute value z > 10, although qualitatively similar
results were observed for other thresholds) and binarized, resulting in
a vertex-wise mask of values that were strongly implicated for that
topic (other thresholds produced qualitatively similar results). For
each topic, the range and sill (taken from the theoretical variogram
from the group average functional connectivity analysis) for each
vertex within each mask were averaged together.

Myelin
The estimated intracortical myelin maps derived from the ratio of T1
and T2 weighted MR images24 from the Human Connectome Project
were split into deciles based on their estimated myelin level. The
empirical variograms of vertices within each decile were averaged. In
addition, the estimated average myelin value for each of the clusters
(see above) were calculated.

Null models
We used spin permutation tests to assess the strength of correlations
between theoretical variogram parameters with the principal gradient
and estimated myelin spatial maps. A 1000 permutations of randomly
rotated data were generated for the spatial maps using ref. 45 and
permutation correlation values were then compared to the true value,
resulting in a p-value. We also applied a similar approach to spinning
the Yeo7 parcellation on the sphere 1000 times, and then calculating
the difference in estimated range and sill between each of the Yeo7
networks; this resulted in a distribution of random differences for the
sill and the parameter against which the true difference scores could
be assessed.

We also used generative null models (Supplementary Fig. 2)46 both
to generate alternate statistics but also to illustrate the difference
between homogeneous spatial dependency structure and the observed
heterogeneous structure. To this end, three generative null models
were applied to a downsampled (for computational efficiency) version

of the empirical functional connectivity matrix from which the vario-
grams were generated: full random permutation, Mantel permutation
(that preserved row and column structure), or Mantel permutation
followed by spatial smoothingmatched to the empirical variogram and
then resampling (similar to the approach taken by41 but applied to
the functional connectivity matrix). All three approaches enforce an
approximately homogeneous spatial dependency across the brain,
although in the case of the randomisation and Mantel randomisation
the spatial dependency is destroyed. For approach 3, a smoothing
kernel was chosen iteratively to maximise the overlap with the mea-
sured empirical variogram; thereby approximately capturing thewhole-
brain spatial dependency but with an homogeneous spatial relation-
ship. Eachmodelwas recalculated 1000 times, and the sill and the range
for each vertex calculated. The true sill and range parameters could
then be compared to the equivalent null model parameters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are available from the HumanConnectome
Project (https://www.humanconnectome.org/study/hcp-young-adult/
document/extensively-processed-fmri-data-documentation), the PRI-
MatE Data and Resource Exchange (https://fcon-1000.projects.nitrc.
org/indi/indiPRIME.html) and Neurosynth https://neurosynth.org/
analyses/topics/). Data to recreate the variograms in Fig. 3 is avail-
able in source data file. Source data are provided with this paper.

Code availability
Python code to reproduce the analyses and figures is available at
https://github.com/ActiveNeuroImaging/BrainVariograms.git.
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