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Natural plant growth and development
achieved in the IPKPhenoSphere bydynamic
environment simulation

Marc C. Heuermann 1 , Dominic Knoch 1, Astrid Junker1,2 &
Thomas Altmann 1

In plant science, the suboptimal match of growing conditions hampers the
transfer of knowledge fromcontrolled environments in glasshouses or climate
chambers to field environments. Here we present the PhenoSphere, a plant
cultivation infrastructure designed to simulate field-like environments in a
reproducible manner. To benchmark the PhenoSphere, the effects on plant
growth of weather conditions of a single maize growing season and of an
averaged season over three years are compared to those of a standard glass-
house and of four years of field trials. The single season simulation proves
superior to the glasshouse and the averaged season in the PhenoSphere: The
simulated weather regime of the single season triggers plant growth and
development progression very similar to that observed in the field. Hence, the
PhenoSphere enables detailed analyses of performance-related trait expres-
sion and causal biological mechanisms in plant populations exposed to
weather conditions of current and anticipated future climate scenarios.

Plants express plastic phenotypes that are influenced by the con-
straints and dynamics of the environment with which they interact1–4.
Thus, any phenotype of a plant is a function of its genotype (G)
interacting with the environment (E), whether natural or artificial. The
effects of the latter are often extended by the term management (M),
and the result of all possible combinations can be condensed to the
term phenome5, which in turn means that each phenotype represents
only one possible instance among the multitude of GxExM
combinations.

A plant phenotype can be recorded ormeasured either outdoors
in a native/target environment or indoors in a controlled environ-
ment. The former, field phenotyping, and the latter, controlled-
environment phenotyping, are rapidly developing and improving
disciplines driven by technical innovations, and both approaches
have advantages and disadvantages, which have been reviewed
extensively6–10. In the field, plants are exposed to natural environ-
ments varying by season and location and characterized by strong
dynamics in air temperature and humidity, light quality and quantity,
nutrient and water availability, soil composition and compaction and

weed and pest pressure11. Global climate change will further increase
weather dynamics and will enhance the frequency and extent of
weather extremes12. Indoors, e.g., in growth chambers and green-
houses, a climate for plant growth has to be created and maintained.
This usually involves shifted mean levels and much lower amplitudes
and dynamics of the environmental variables than in the field, such as
light intensities and air and soil temperatures due to technical lim-
itations or cost-efficiency11. Furthermore, in most indoor systems,
plant performance is limited by pot size constraints13. Thus, natural
outdoor environments are more relevant for assessing the expres-
sion of performance traits in crops since phenotypes measured on
plants cultivated in greenhouses or climate chambers often deviate
greatly from those observed for plants exposed to natural conditions
in open fields, even considering common agricultural management
practices. But the lack of control, i.e., the large and mostly unpre-
dictable variation of natural conditions, can also be a strong dis-
advantage. The highly variable outdoor environment challenges the
repeatability of experiments from season to season and often results
in uncorrelated phenotypes due to random variation of weather
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conditions11. For example, in a multi-environment study analyzing
quantitative traits in maize, the vast majority of the forty-eight
detected loci (QTL) showed contextual effects and were only found
in specific environmental scenarios, except for only one common
QTL that spans all environments14. For most indoor systems, the
opposite is true. While the growth conditions can often be meticu-
lously controlled and responses to treatments can be measured
precisely, the phenotypes measured under those artificial interac-
tions between genotypes and controlled environments can lead to
low correlation and overestimations of trait effects in comparison to
field experiments15–17. Despite the availability of facilities such as rain
out shelters and free-air CO2 enrichment (FACE) installations18,19,
simulating weather conditions expected to occur in future climate
scenarios is nearly impossible in today’s field experiments. Such
simulations require that controlled environments be designed to
account for dynamics of field conditions but also enable repeatable
results10.

In an effort to combine the relevance of natural dynamic
environments and the repeatability of controlled-environment
phenotyping, we designed and built the PhenoSphere (PS) at the
Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) in
Gatersleben, Germany, which we teased in a recent review10. In the
PhenoSphere, plants can be grown under simulated field-like condi-
tions in two large compartments, which can either be combined to
merge the available space or operated independently. Inside, plants
are cultivated in large-volume soil containers and a free air space of
approx. six meters between the soil surface and the light sources so
that all important crop species can develop fully. Weather variables
like air and soil temperature, relative air humidity, vapor pressure
deficit (VPD), light quality and quantity, CO2 levels, and wind simula-
tion can be automatically controlled and manipulated to mimic sea-
sons, day length, day and night cycles, and field-like frequency and
amplitude dynamics of conditions. In addition, it is planned to install a

multisensory top-view imaging platform on an x-y-z positioning sys-
tem for automated plant phenotyping.

In this study, we benchmarked the capabilities of the Pheno-
Sphere to simulate field-like environments by continuously mon-
itoring plant growth and developmental progression of eleven
phenotypically diverse Zea mays inbred lines during their entire life
cycles in the IPK field trial area (in four consecutive years) in a high
standard climatized glasshouse (one season), and in the Pheno-
Sphere. In the latter, two experiments were conducted, the first
simulating average conditions of the years 2016–2018 and the sec-
ond closely resembling the single season of the year 2016. By simu-
lating the environment of one particular year, the maize plants in the
PhenoSphere grew and developed at the same rate as in the field in
terms of plant height, leaf stage and number, and flowering time and
differed significantly from the phenotypes measured in the glass-
house or the PhenoSphere running an averaged climate regime.
Thus, the PhenoSphere was indeed able to simulate a typical field-like
growth environment and will allow users to analyze the growth
performance of various plant species under diverse weather condi-
tions corresponding to current and expected future climate
scenarios.

Results
The potential of simulating field-like environments, and thus of elicit-
ing field-like expression of growth and developmental phenotypes,
was evaluated inside the PhenoSphere and compared to that of field-
and glasshouse-grownmaize plants (Fig. 1). Phenotypes were recorded
continuously throughout the plants’ life cycles of a population of 11
phenotypically highly diverse Zea mays inbred lines with origins in
North America, Europe, and Asia (Supplementary Table 1), which were
selected to cover a wide range of sizes and developmental character-
istics including flowering. All code developed for the subsequent
analyses is provided in Supplementary Code 1.

a b

d c

Fig. 1 | The experimental sites at the IPKGatersleben. aThe PhenoSphere as seen from the outside. View into compartment 1 of the PhenoSphere early (b) and late (c) in
the growth period. d The field 2016 at the IPK field site.
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Weather simulation
To collect benchmark data for the phenotypes and the environments,
maize plants were phenotyped at the IPK field sites in the four culti-
vation seasons from 2016 to 2019. The climatization regimes run in the
PhenoSphere were programmed from real-world measurements of
weather variables, including air temperature, relative air humidity, and
global radiation, which were recorded at the IPK weather station and
aggregated hourly during the four growing seasons (Supplementary
Data 1). For the averaged climate experiment in the PhenoSphere
(‘PhenoSphere avg’ experiment), the weather regime was reproduced
from the seasons 2016, 2017, and 2018.

For each calendar week to be modeled, the 21 days from the three
seasons were used to determine the seven daily median days. The
median day with the lowest day temperature profile of a calendar week
over all three seasons was deemed to be the cloudy day, and likewise,
the day with the highest temperature profile of that calendar week was
regarded the sunny day. The 24-h profile of hourly averaged tempera-
tures over all 7 days of the median week of each calendar week across
the 3 years was selected to represent the normal day. Each week of the
experimentwas simulated independently andconsistedof threenormal
days, two cloudy days, and two sunny days. Their consecutive occur-
rence was set once, and the pattern was kept for successive weeks.

In a subsequent experiment in the PhenoSphere (‘PhenoSphere
2016 sim’ experiment), we aimed to simulate the characteristic
weather regime of a single growing season using 2016 as template.
Normal days were still averaged over one week, as described above,
but only from the 2016 growing season. The sunny and cloudy days
were modeled, recreating the temperature profiles of uniquely mea-
sured days following the same criteria with the highest and lowest day
temperatures. In contrast to the ‘PhenoSphere avg’ experiment, the
order of the days and their number was adapted weekly to closely
follow the real-world template. An experiment in a standard climatized
glasshouse with pot cultivation was used as a reference for a
controlled-environment. In all environments, the temperature was
logged in hourly intervals over the whole growing season (Fig. 2). The
light conditions (see Supplementary Tables 4–6 for the program and
Supplementary Fig. 19 for spectra) and relative humidity values were
not reproduced daily but depended on the three model days. Three
light regimes were adjusted weekly according to the time of sunrise
and sunset. Beginning at sunrise, relative humidity decreases linearly
from 90% at night to 40% (normal/sunny days) and 50% (cloudy days),
with humidity levels remaining stable for the central 5 h during the
light period. After the end of the central light period, the relative
humidity increased linearly to 90% by sunset.

To assess the degrees of match between the real world and the
programmed controlled weather regimes, pairwise correlations of the
measured temperature profiles of all seven scenarios were calculated.
The highest correlation was observed between the temperature pro-
files of the ‘PhenoSphere 2016 sim’ experiment and the 2016 cultiva-
tion season itself (r = 0.88, R² = 0.77, p = < 0.001; Fig. 3). Lower
correlations were detected between ‘PhenoSphere avg’with either the
growing season 2016 or its simulation (Fig. 3) but the correlation
between ‘PhenoSphere avg’ and its template years was slightly higher
than among the template years themselves (Supplementary Fig. 1). The
correlations between the field environments 2017, 2018, and 2019with
both 2016 and ‘PhenoSphere 2016 sim’ followed a comparable trend
with lowest measured against 2017 and highest against 2019 (Supple-
mentary Fig. 1). The temperature profile of the glasshouse appeared to
be most divergent and correlated lowest with any dynamic environ-
ment (Supplementary Fig. 1). The root mean squared errors (RMSE) of
the hourly temperature profiles (Fig. 2) relative to the field 2016 was
lowest against the ‘PhenoSphere 2016 sim’ (Supplementary Table 2).

The profiles of the hourly calculated vapor pressure deficit (VPD)
values derived from the sensor data (Supplementary Data 1) of the
seven environments (Supplementary Fig. 2), which were also most

strongly correlated between the field 2016 and the ‘PhenoSphere 2016
sim’ (r = 0.87, Supplementary Fig. 3), had lowest RMSE between field
2016 and the ‘PhenoSphere 2016 sim’ (Supplementary Table 2).

The comparisons of the environments were complemented using
the concept of thermal time, which determines the species-specific
temperature response to growth as a ratio relative to developmental
rates under a hypothetically constant 20 °C environment20. The ther-
mal time day profiles (Supplementary Fig. 4) were againmost similar in
the ‘PhenoSphere 2016 sim’ and the field 2016 and were most strongly
correlated (r = 0.85, Supplementary Fig. 5), while only low correlations
were found among any of the other environment comparison (Sup-
plementary Fig. 5). The RMSE between the thermal time day profiles
relative to the field 2016 was lowest for the ‘PhenoSphere 2016 sim’

(Supplementary Table 2).

Plant growth performance and developmental progression
Plant height and developmental stage were used as traits to assess the
effects of the different environments on plant growth and develop-
mental trajectories (Supplementary Data 2). Phenotyping was done
manually/visually twice a week throughout the entire cultivation per-
iod, and trait expression over time was found to be most field-like in
the ‘PhenoSphere 2016 sim’ experiment. Lowermatchwas found in the
‘PhenoSphere avg’ experiment, and the largest deviation from the
growth anddevelopmentprogression in thefield cultivations occurred
in the glasshouse experiment. The appearances of the plants are
exemplarily shown for the lines ZEA 851, ZEA 332, and B73 at around
48 days after sowing (DAS) in Fig. 4. At 48 DAS in ‘PhenoSphere
2016 sim’ the plants were just slightly taller than in the field 2016 and
V-stages were comparable (Fig. 4). In the ‘PhenoSphere avg’ experi-
ment, plants of the same age were already twice as tall but were still
surpassed in size by plants in the glasshouse. Furthermore, in both
environments, V-stages were further advanced than in any field trial or
in the ‘PhenoSphere 2016 sim’ experiment (Fig. 4).

The goal of the experiments was to assess the degree of matching
of the phenotypes expressed in each environment based on plant
growth and development progression during all phases of the growth
period of the population of highly diverse maize lines. Thus, the
measured traits were analyzed using nonlinear logistic growth models
by fitting sigmoidal curves to the time-dependent progression of plant
height and developmental stages for each environment. The models
estimated the maximal endpoint values, the inflection points, which
represent the point of maximal growth speeds, and the steepness of
the curves or the growth rates.

A difference in final population plant height between the field
cultivations was significant only between 2016 and 2019 (Fig. 5).
Similarly, the plant height reached in the ‘PhenoSphere 2016 sim’

experiment was also significantly larger than in the field-grown plants
in 2019 (Fig. 5). The ‘PhenoSphere avg’ and the glasshouse experiments
produced the tallest plants with heights significantly larger than
those of the plants in the 2017, 2018, and 2019 field cultivations.
With the exception of the field experiment 2016, the plants in the
‘PhenoSphere avg’ were significantly taller than the plants in the other
template environments 2017 and 2018 and their heights were not
significantly different from that of the plants in the glasshouse (Fig. 5).

The strongest discriminatory parameter of the plants in the var-
ious environments was the inflection point (xmid) of the sigmoid
curves, the time point at which the maize population as a whole grew
fastest in the respective environment (Fig. 5, Supplementary Fig. 6).
The field environments and the ‘PhenoSphere 2016 sim’ evoked the
maximum growth rate at about 68 DAS and the differences among
these five environments were not significant (Fig. 5). Plants in the
glasshouse environment grew significantly faster and reached the
inflectionpoint about 30days earlier than the plants in thefields and in
the ‘PhenoSphere 2016 sim’ (Fig. 5). The averaged environment in
‘PhenoSphere avg’ also led to significantly faster growth than in the
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fields or in the single year simulation (‘PhenoSphere 2016 sim’) and the
inflection point was reached about 20 days earlier than in any field
season or in the ‘PhenoSphere 2016 sim’ (Fig. 5). The difference
between the inflection points of the ‘PhenoSphere avg’ and the glass-
house environment was not significant (Fig. 5).

At the average inflection point for the field and ‘PhenoSphere
2016 sim’ experiments, xmid at 68 DAS, plant height values were cal-
culated from themodeled curves for each individual genotype in each
environment (Supplementary Fig. 9). Plant height at an xmid of 68DAS
was clustered and a closest relationship was found between the gen-
otypic performance between the 2016field and the ‘PhenoSphere 2016

sim’. They clustered together with the other field years in an own clade
and were distant to the ‘PhenoSphere avg’ and the glasshouse envir-
onment, which formed another clade (Supplementary Fig. 7).

Regardless of the environment, the plants reached similar final
developmental stages; the final V-stage did not differ (Fig. 6). However,
temporal developmental progression was different in the ‘Pheno-
Sphere avg’ and the glasshouse, where leaves matured significantly
earlier than in the field or in the ‘PhenoSphere 2016 sim’ experiments
(Fig. 6, Supplementary Fig. 8). No significant differences could be
detectedbetween leafmaturation speed in the ‘PhenoSphere 2016 sim’

experiment or in any of the field environments (Fig. 6). The trait
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Fig. 2 | The temperature profiles of the seven conducted field and indoor
experiments. Temperature profiles of the field 2016–2019 (2nd May–13th Sep-
tember), of the glasshouse, of the ‘PhenoSphere avg’, and the ‘PhenoSphere
2016 sim’ experiments. Temperature values were plotted in an hourly resolution
except forminor gaps due to sensor failures. Dates for the field experiments are true

calendar dates, and the dates in the controlled environment have been relatively
mapped to simulate their templates. Colors used: field 2016 as Sky Blue (#66CCEE),
field 2017 as ForestGreen (#228833),field 2018as Silver (#BBBBBB),field 2019 asSan
Marino (#4477AA), glasshouse as Turmeric (#CCBB44), PhenoSphere avg as Froly
(#EE6677), and PhenoSphere 2016 sim as Royal Heath (#AA3377).
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growth stage, in which the appearance of all leaves was tracked, fol-
lowed the same pattern (Supplementary Figs. 9 and 10).

Modeling the plant height versus thermal time days showed the
same pattern, with the inflection point of the ‘PhenoSphere 2016 sim’

notdiffering from thefield environments (Supplementary Fig. 11). Plants
in the glasshouse and the ‘PhenoSphere avg’ developed significantly
faster than any field environment or the ‘PhenoSphere 2016 sim’ (Sup-
plementary Fig. 11). Interestingly, thepositions of theglasshouse and the
‘PhenoSphere avg’ switched and the plants in the ‘PhenoSphere avg’
grew fastest when scaled to thermal time days. For the trait plant height,
the repeatability of the genotypes was 0.55 and was approximated from
a linear mixed-effect model over all time points and all environments
with a conditional R2 of 0.96 and a marginal R2 of 0.87.

Considerable genotype x environment interaction was detectable
in the different environments, to some extent even in the direct
comparison between the field 2016 and the ‘PhenoSphere 2016 sim’,
but the individual genotypes followed the overall trend of the popu-
lation mean (Supplementary Figs. 12–15).

Modeling of flowering time
The occurrence of tassels was tracked for each phenotyped plant as a
discrete value of either presence or absence (Supplementary Data 2).

The tassel occurrence was converted into a population-wide percen-
tage of plants having a tassel at each time point. Thus, the data to be
modeled had no variation at each DAS, and a fixed-effect nonlinear
regression model was fit to the data to distinguish between the
environments on a whole population level (Fig. 7). The cultivation
scenarios and time were treated as fixed factors and found to have
significant effects. In the field environments and the ‘PhenoSphere
2016 sim’ tassels occurred about 20 and 30days later than in either the
‘PhenoSphere avg’ or the glasshouse, respectively (Fig. 7, Supple-
mentary Fig. 16).

Yield components
For a more comprehensive documentation of the experiments, yield
components like number of ears, grain number, total grain weight and
average individual grain weight were recorded (Supplementary
Data 2). Individual grain weight was consistent in all environments and
total grain weight per plant was similar for plants grown in the field
experiments in 2016/17/18, in the glasshouse, and in the ‘PhenoSphere
avg’ experiment, but reduced grain numbers and thus reduced total
grain weights per plant were observed in the ‘PhenoSphere 2016 sim’

experiment (Supplementary Fig. 21). The number of ears was elevated
in the ‘PhenoSphere 2016 sim’ in comparison to the field environments
but was unchanged for the other pairwise environment combinations
(Supplementary Fig. 21).

Homogeneity test experiment
The PhenoSphere was designed to homogeneously control the envir-
onmental conditions within the PhenoSphere cultivation area, which
was checked with a separate experiment. The experiment aimed to
decompose the variance of the experimental design components such
as the effect of the soil treatment, of the container position (row and
column), of the replicates and of the potential effect of the pre-
cultivated genotypes in the reused soil. Hierarchical variance decom-
position with rptR21 showed that throughout the experiment, from 21
to 70 DAS, between 0.6 and 0.8 of the total variance was attributed to
the genotype effect and between 0.15 and 0.3 to the residual error
(Supplementary Fig. 17, Supplementary Table 3). After the plants
matured and desiccated between 77 and 90 DAS, the variance con-
tribution of genotype and residuals reversed. The effects of column,
replicate, and soil treatment were never contributing significantly. The
effect of the pre-cultivatedgenotype contributedwith0.02 at two time
points (27, 49 DAS) and the effect of the row of containers between
0.03 and 0.06 at three time points (21, 27, 49 DAS) toward the total
measured variance (Supplementary Fig. 17, Supplementary Table 3).
Thus, we concluded that the controlled environmental conditions are
indeed spatially highly homogeneous across the cultivation areas of
the PhenoSphere.

Discussion
The weather simulation, derived from three representative model
days, proved sufficient tomatch the natural environment and resulted
in field-like plant growth and developmental progression in the
simulation of a single field season. The high spatial homogeneity of the
PhenoSphere exposed all plants in the containers equally to simulated
environmental regimes. The correlation between the weather simula-
tion and the outdoor environment concerning temperature, thermal
time, and VPD profiles over the cultivation periods was highest when
using real days as templates in the single season simulation, whichwas
supported by the lowest RMSE, and also considering their order and
frequency in a given week. The daily cumulative thermal time con-
tribution of individual calendar days would only correlate between
environments if the order and frequencywere respected, like between
the single season simulation and the field 2016 (Supplementary Fig. 5).
By choosing the median days of three vegetation periods in the ‘Phe-
noSphere avg’ experiment, always themostmoderate daywas chosen,
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which together with a fixed frequency led to a lower amplitude of
condition variation, fewer extreme values and thus to a lower corre-
lation with the values measured in the field. Future simulations of
target weather regimes could be further improved by determining the
most representative daily weather profiles from several years of his-
toric weather data, e.g., with clustering algorithms, and derive their
frequencies of occurrences from the cluster sizes. The temperature
ranges currently achieved in the PhenoSphere will, however, constrain
locations and seasons to be simulated to instances with temperatures
above0 °Cand therefore limit the simulation of late autumn,winter, or
early spring when outside temperatures can drop below 0 °C.

Simulating a singlemaize growing seasonwithin the PhenoSphere
and using large-volume soil containers resulted in plant growth and
development progression that did not differ significantly from the
rates that the same population exhibited upon cultivation in the cor-
responding field season. Field-grown plants and plants inside the
‘PhenoSphere 2016 sim’ experiment required the sameamount of time
to reach peak growth speed, maturity of leaves, and tasseling. This
made the effects of the field and field-like environment of the

‘PhenoSphere 2016 sim’ very different from the ‘PhenoSphere avg’
experiment, where, despite its dynamic environment, the plants
developed much faster and even faster under thermal time.

Averaging weather variables resulted in phenotypes more inter-
mediate betweenfield-grownplants andplants grown in the climatized
greenhouse, in which plants expressed the fastest growth and devel-
opment rate, thus proving to be the most artificial environment. The
difference between the ‘PhenoSphere 2016 sim’ experiment and the
‘PhenoSphere avg’ and glasshouse experiments were as evident after
the conversion of the temperature profiles into thermal time days,
which transforms growth progression into a new temporal dimension.
This is basically a scaling according to temperature and emphasizes
the remaining differences in feature expression due to other envir-
onmental factors such as light and/or relative air humidity (VPD)
regimes.

The tight clustering of the ‘PhenoSphere 2016 sim’ with the field
environments for the plant heights of the individual genotypes,
especially with the year 2016, at the average inflection point for the
fields and field-like environments supported the observed field-like
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Fig. 4 | Habitus of plants of the same age grown in different indoor and field
environments. Example images of the three genotypes ZEA 851, ZEA 332, and B73
taken in the glasshouse (GH) [47 DAS, 2018-11-28; 169 cm (V9), 172 cm (V10), and
142 cm (V10) respectively], in the ‘PhenoSphere avg’ (PS avg) [47 DAS, 2018-11-28;
123 cm (V8), 123 cm (V11), and 111 cm (V9) respectively], in the ‘PhenoSphere

2016 sim’ (PS ‘2016’) [48 DAS, 2020-01-23; 53 cm (V6), 55 cm (V6), and 42 cm (V6)
respectively], and in the field 2016 [50DAS, 2016-06-16; 39 cm (V7), 36 cm (V6), and
36 cm (V7) respectively]. The provided values are the BLUEs of plant height and
V-stage.
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development within the single season simulation also at the individual
genotype level (Supplementary Fig. 7, Supplementary Figs. 12–15).

Although the focus of this study was on vegetative growth traits
up to flowering, yield parameters such as number of ears and total
number and weight of grains per plant were recorded for each gen-
otype in each environment to document the experiments. In the
benchmark environment in the field 2016, the 11 genotypes were part
of a larger cultivation set with 30 genotypes, while in the ‘Pheno-
Sphere 2016 sim’, only the 11 selected genotypes were cultivated. The
longer vegetation period in the ‘PhenoSphere 2016 sim’ and the
correspondingwider spread of flowering timesmeant that compared
to the greenhouse and to the ‘PhenoSphere avg’, fewer genotypes
released pollen at the same time. Because the genotypes were grown
in double-row plots with random genotypes as neighbors, the next
container of the same genotype (n = 5) was usually too far apart to
serve as pollen donor. Thus, most probably too low pollen avail-
ability in the in ‘PhenoSphere 2016 sim’ experiment resulted in lower
grain number and reduced total grain weight per plant. The
increased number of ears in ‘PhenoSphere 2016 sim’ hints at poten-
tial compensatory responses of the plants to the low seed set (Sup-
plementary Fig. 21). Besides the consequences of the wide range of
flowering times in the investigated maize population, environmental
parameters such as the total intercepted light, or the night tem-
peratures or soil water potential during flowering have been shown
to affect grain number in a genotype-dependent manner22 and may
have contributed to the differences between the ‘PhenoSphere avg’
and ‘PhenoSphere 2016 sim’ experiments. Interestingly, the observed
effects on grain yield and yield components were genotype-
dependent with different genotype x environment interactions
(Supplementary Fig. 22).

As shown in the ‘PhenoSphere avg’ experiment, maize plants can
fully mature and produce grains in the PhenoSphere in comparable
quantities as in field trials. For a proper evaluation of grain yield for-
mation, however, a very different experimental setup will be required,
either by using genotypes with a very narrow range of flowering times
and/or by creating larger plots composed of multiple adjacent con-
tainers of the same genotype and by assessing the yield in the central
container(s). Furthermore, the aforementioned environmental para-
meters need to be considered and carefully set in experiments
designed to evaluate grain yield in the PhenoSphere.

The presented results show that in the PhenoSphere a field-like
environment can be simulated in terms of the evoked plant growth
rates and the progression of developmental stages, resulting in field-
typical plant growth performance. The PhenoSphere thus fills the gap
between hitherto established controlled-environment phenotyping
systems and field phenotyping trials10. Compared to other phenotyp-
ing platforms, the PhenoSphere occupies a unique position by
enabling the exposure of crop plants to repeatable and specifically
designable dynamic environments that mimic relevant natural condi-
tions, ranging frombenign to detrimental6,9–11. The ability to elicit field-
like growth and development in the dynamic but controlled environ-
ment of the PhenoSphere is a very substantial and important advance
and goes far beyond previous improvements in standard climatized
glasshouse cultivation procedureswithwhich correlationwith thefield
was increased by imposing adjusted temperature regimes:11,23 The
technical capabilities of the PhenoSphere overcomeseveral limitations
of typical growth chambers and glasshouses11,17 such as light intensity
level and variation, light spectrum (including the visible range and UV-
A but no UV-B), air temperature, humidity, and VPD ranges and var-
iation enabling extremely high levels (albeit no frost), CO2
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Fig. 5 | Plant heights and growth speeds over time observed in seven field and
indoor environments.Plant height plotted as a bestfit logistic growth curve (forfit
to BLUEs, see Supplementary Fig. 6) representing the growth trend of the maize
population in each environment versus days after sowing (DAS). The first derivative
of the fitted curve represents change in plant height in percent per DAS for each

environment. Colors used: field 2016 as Sky Blue (#66CCEE), field 2017 as Forest
Green (#228833), field 2018 as Silver (#BBBBBB), field 2019 as San Marino
(#4477AA), glasshouse as Turmeric (#CCBB44), PhenoSphere avg as Froly
(#EE6677), and PhenoSphere 2016 sim as Royal Heath (#AA3377).
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concentration (regulated elevation), and wind simulation. The con-
tainer system even overcomes limitations of soil volumes in pots and
enables the use of field-like soil structure and composition, controlled
(drip) irrigation, and soil temperature control independent from air
temperatures. The optimized and validated field-like environment
simulation programs can now be used to perform also (grain) yield
trials, which require a specific experimental setup and designs funda-
mentally different from the benchmarking experiments of this study.

Clear limitations of the PhenoSphere are biotic interactions.
Topsoil taken directly from the field can aid in microbial interaction,
while interaction with insects or animals is limited, which can be a
strength but is also artificial.

We present the PhenoSphere to the plant science community as a
novel tool to study the plant’s response to variation in weather vari-
ables and environmental conditions specifically tailored to the
addressed research topic: Deliberate temperature profiles can be
realized with an hourly resolution, light quality and quantity can be
manipulated on a minute resolution scale, wind speed and direction
can be changed on the sub-hour scale, atmospheric CO2 levels can be
increased, water and fertilization can be automatically applied daily,
and the large-volume containers allow the use of different soil types
and compositions and the modulation of the soil temperature.

For fundamental and application-oriented research, there is a
need to expose plants, especially crop plants, to relevant field-like
conditions in a reproduciblemanner. Thiswill support systemsbiology
analyses carried out to elucidate molecular mechanisms underlying
the expression of agronomically relevant traits. It furthermore enables
testing hypotheses derived from approaches such as network analysis
and modeling on the consequences of genetic variation and on the
propagation of the elicited effects through biological pathways/

networks that result in variation of performance-related trait expres-
sion under a range of different environmental conditions. Finally, the
PhenoSphere allows stakeholders to study the performance of specific
genotypes under beneficial and detrimental weather conditions
expected to occur in future climate scenarios (compared to con-
temporary situations).

Methods
PhenoSphere technical specifications
The PhenoSphere has a ground layout of 40 × 25mwith an eave height
of 10.5m and harbors four compartments of equal size (each 189m²
ground area) and a work and pre-/post-processing area of 276m²
(Supplementary Fig. 18). A large rhizotron system for root phenotyp-
ing is integrated into compartments 3 and 4, whichwill be presented in
detail elsewhere. A container-based cultivation system is installed in
compartments 1 and 2, which are fully climatized and allow field-like
environment simulation and were used in this study. Up to 55 con-
tainers per compartment are positioned onto a steel grating floor 1m
above the ground floor. From the assimilation light sources (8.09m
above ground floor) to the edge of the container (2.3m above ground
floor), 5.77m of air space (c. 5.90m from soil surface to lamps) is
available for the plant to develop fully and still have sufficient distance
to the lamps. One air ventilation system dispenses conditioned fresh
air by air hoses below the steel grating floor and takes out air through
exhaust vents 6m above ground level. Five large fans on either side of
the cultivation area in each compartment enable wind simulation with
up to 6m/s (4 Bft). A second air circulation and cooling system is
deployed to cool the light source. Exhaust vents directly below the
lights prevent heated air from the lamps from mixing with the condi-
tioned air from the main cooling system. The upper temperature limit

0 20 40 60 80 100 120 140

0
5

10
15

20

V − Stage

M
at

ur
e 

le
av

es
field 2016
field 2017
field 2018
field 2019
glasshouse
PhenoSphere avg
PhenoSphere 2016 sim

0 20 40 60 80 100 120 140

0.
0

0.
1

0.
2

0.
3

0.
4

Leaf maturation

Le
av

es
 m

at
ur

in
g 

/ d
ay

Days after sowing (DAS)

field 2016
field 2017
field 2018
field 2019
glasshouse
PhenoSphere avg
PhenoSphere 2016 sim
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Royal Heath (#AA3377).
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in compartments 1 and 2 is 47.5 °C at 35% relative humidity (VPD 6.94
kPa) and 37.5 °C at 7.5% relative humidity (VPD 5.99 kPa). The lower
temperature limits depend on light intensities and the freezing
point (>0 °C).

Assimilation light sources are composed by four independently
controlled groups of General Electric Lighting CMH400 light bulbs
(General Electric Deutschland Holding GmbH, D-60313 Frankfurt am
Main) complemented by six different LEDs in intervening light bars
(cool white 5700K L1C1-5770, deep red L1C1-DRD1, far red L1C1-FRD1,
blue L1C1-BLU1, royal blue L1C1-RYL1, and cyan L1C1-CYN1; LUMILEDS,
D-52068 Aachen). Ultraviolet radiation (UVA 315–400 nm) is provided
by NARVA LT 36W T8/ 010 UV (NARVA, D-09618 Brand-Erbisdorf). All
spectraof all light sourceswere individually recorded at 100% intensity
and in various combinations (all 100%, sunny, normal, and cloudy day
settings) using the same settings with an OceanOptics USB2000+XR1-
ES (Ocean Insight, D-73760) (Supplementary Fig. 19).

Total light intensity at 100% of all light sources wasmeasuredwith
a Licor LI-250A light meter coupled with a LI-190R-BNC-2 quantum
sensor (LI-COR Bioscience GmbH, D-61352) at 20 cm, 120 cm, and
220 cm above soil level with averages over the cultivation area of 1277,
1348, and 1436 µmol m−2 s−1 PAR, respectively (Supplementary Fig. 20).

Field cultivation
Five Zea mays inbred lines from the yellow dent, stiff stalk, and non-
stiff stalk breeding pools (B73, N22, P148, PHT77, and S052) and six
accessions (amplified after single seeddescent, SSD, passage) from the
Genebank of the IPK Gatersleben (ZEA 132, ZEA 324, ZEA 332, ZEA
3660, ZEA 399, and ZEA 851) were grown in double-row plots in two
replicates (three replicates in 2019) in a randomized block design, in
total 22 double-row plots, in the field site at the IPK Gatersleben from
April to September 2016/17/18/19 (for more information about the Zea

mays lines see Supplementary Table 1). In 2016/17/18, the fields were
part of a larger cultivation with 30 genotypes in total. The stands in all
years were protected by border planting of commercially available
maize hybrids to mimic field conditions. Each double-row plot con-
sisted of 18 plants, nine in each row, with dimensions of 80 cm length
and 60 cm width. The plant-to-plant distance in one row was 10 cm,
and the distance between rows was 60 cm. From the inner six indivi-
duals of each double-row plot, five representative individuals were
selected and marked with an identifier, a label on the ground. These
110 plants were visually rated twice a week (Mondays and Thursdays)
for plant height, growth stage and vegetative stage24, time point of
tassel emergence. The first batch of seed stocks for the experiment in
2016 was kindly provided by the German plant phenotyping network
(DPPN) project as part of a nested reference collection. The seed
stocks of the later experiments were self-propagated by line main-
tenance from the previous cultivations.

Seeds were sown out in Jiffy strips (5 × 5 × 5 cm bio-degradable
pots, Hermann Meyer KG, D-01683 Nossen) filled with substrate 2
(Easy Growing, Klasmann-Deilmann GmbH, D-49744 Geeste) and
cultivated under 16-h days at 24 °C/18 °C day/night in a greenhouse
with auxiliary illumination for 7 days. Young seedlings were then
transferred to a protected outside soil bed, which was protected
from animal pests, to acclimate to outdoor climate conditions. After
4 days, plants were brought to the field site in the early morning
hours (7 am) and transplanted together with the well-watered Jiffy
into the field at a depth of 5–7 cm to fully cover the Jiffy. Initially, the
field was sufficiently watered to ensure that plants are able to
penetrate their roots through the bio-degradable Jiffy pots. Supple-
mentary irrigation was applied in the following two weeks if neces-
sary. Fertilizer was applied about onemonth after transplanting each
year. In 2016, an ammonium sulfate fertilizer with 21% nitrogen and
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24% water soluble sulfur was given and in 2017, 2018, and 2019 the
fertilizer Nitrophoska 15+15+15 (+2S) 15% Nitrogen, 15% P2O5, 15% K2O,
2% S (EuroChem Agro GmbH, D-68165 Mannheim) was applied to
reach 75 kg P2O5 ha

−1.

Glasshouse cultivation, PhenoSphere cultivations
In a parallel experiment (2018/19) in the PhenoSphere and in a large
climatized glasshouse, the aforementioned lines were grown in
double-row plots for 115 days in a container-based system and in
single pots, respectively. Plants for both experiments were sown out
and pre-cultured together in the same greenhouse used for the pre-
treatments of field experiments and under the same conditions for
7 days. Subsequently, plants were transferred into the PhenoSphere
(‘PhenoSphere avg’ experiment) and the glasshouse for a 4-day
acclimatization period, after which they were transplanted into large-
volume soil containers and single pots, respectively. In the ‘Pheno-
Sphere 2016 sim’ experiment that only simulated one vegetation
period (2016) and which was carried out in 2019/20, the plants were
pre-treated in the same way as in the aforementioned ‘PhenoSphere
avg’ experiment.

In the ‘PhenoSphere avg’ and ‘PhenoSphere 2016 sim’ experi-
ments, the double-row plot layout per genotype of the field was
applied to the containers, which led to five containers per genotype
(each with a double row of 2 × 9 plants) and to a total of 55 containers
for the 11 genotypes. Each container had a surface area of one square
meter and a soil depth of 100 cm, which equals a volume of one cubic
meter or 1000 L of soil volume. Containers were filled with layers of
different materials to mimic a field-like soil-layer structure. The lowest
layer (2.5 cm) was made up of floor elements with honeycombs filled
with expanded polystyrene granules covered by a mat of fibers to
enable drainage and prevent waterlogging and at the same time to
serve as thermal insulation toward the bottom of the containers. The
next layer (8 cm) consisted of coarse gravel, followed by a third layer
(40 cm)of coarse sand. A fourth layer (25 cm)wasfilledwith loess from
a local site. The final layer (25 cm) was filled with a substrate mixture
(two parts homemade compost, one part white peat substrate TS 1
(Klasmann-Deilmann GmbH, D-49744 Geeste), one part sand). Five
liters ofwater per container (3 L in the earlymorning, 2 L at night) were
supplied by a droplet irrigation system thrice a week; in total, 15 L
water perweek. Fertilizationwas applied as in thefield onemonth after
transplanting by 50 g/container Nitrophoska 15+15+15 (+2S) 15%
Nitrogen, 15% P2O5, 15% K2O, 2% S (EuroChem Agro GmbH, D-68165
Mannheim).

In the glasshouse, plants were grown in single pots (5.5 L volume),
which were arranged in 10 rows of 11 plants, each with one plant of
every genotype at randomized positions within the rows. Pots were
filled with the same substrate mixture as used in the top layer of the
container-based system in the PhenoSphere. Manual irrigation was
applied daily to ensure continuous well-watered conditions. Plants
were fertilized once aweekwith the irrigation in a concentration of 2‰
dissolved in the irrigation water. Before tassel emergence, Hakaphos
blue (15% N (4% Nitrate and 11% Ammonium), 10% P2O5, 15% K2O, 2%
MgO) and after tassel emergence, Hakaphos red (8% N (3% Nitrate and
5% Ammonium), 12% P2O5, 24% K2O, 4% MgO) was applied (COMPO
EXPERT GmbH, D-48155 Münster).

After a 4-day acclimation phase in the PhenoSphere and the large
glasshouse, plants were transplanted. Environmental conditions in the
PhenoSphere were set to mimic the average weather of the same time
of the years 2016/17/18 starting with the beginning of May and ending
with the end of August. Hourly aggregated local weather data were
derived from a standard Lambrecht weather station on the IPK
grounds equippedwith a 180° pyranometer 16130 0–2000w/m² and a
global range of 285–3000nm (Lambrecht Meteo GmbH, D-37085
Göttingen). All sensor data from all environments can be found in
Supplementary Data 1.

For every calendar week to be simulated, sevenmedian days were
calculated from the 21 template days (3 years × 7 days/week) from
2016/17/18. One representative sunny and one cloudy day with high
and low day temperatures, respectively, was chosen from the daily
medians for any givenweek. Thenormal day for eachweekwasderived
by averaging the hourly temperature of the seven median days. The
seven days of a week were simulated from three normal days, two
sunny and two cloudy days. Their sequence was randomized once at
the beginning of the experiment and repeated every week (normal:
Friday, Tuesday, Wednesday; cloudy: Sunday, Thursday; sunny:
Saturday, Monday). Daily air humidity profiles in the field were rather
uniformover the growth periods in all years. Therefore, air humidity in
the PhenoSpherewas set to 90% relative humidity during the night and
to a gradual decline to 40% (on normal/sunny days) and 50% (on
cloudy days) during the five central hours of the light period. Sudden
changes in humidity values were avoided by programming ramps
between the different levels. The illumination was controlled for nor-
mal, sunny, and cloudy days individually, and light intensities and
fraction of day covered under cloudswere predefined (Supplementary
Tables 4–6).

On normal days, 5 h of cloud cover was simulated through light
intensity fluctuations (intensity changes in a sinus curve). Sunny days
included only 2 h of cloud cover simulation (fluctuating light), and
cloudy days 8 h of cloud cover simulation (fluctuating light). Light
intensities were highest on sunny days, only marginally lower on nor-
mal days (around 961 and 940 µmol m−2 s−1 on sunny and normal days,
respectively) and low on cloudy days (319 µmol m−2 s−1). The length of
the day was changed every week by 10min earlier sunrise and 10min
later sunset with a reciprocal pattern after the 21st of June. Moderate
wind movement was simulated by five big fans (PBT/4-630/32, Soler &
Palau Deutschland GmbH, D-64293 Darmstadt) on each side of the
PhenoSphere compartment (left and right perpendicular to the plant
rows). Wind direction was changed every 2 h, and wind intensity
oscillated between 10 and 20%ofmaximal rotation speedduring night.
Wind intensity during the days was split into ramping between 30 and
50% in the morning and in the late afternoon and into a constant 50%
during midday. At 100% rotations, fans reached a maximum volu-
metric flow rate of 16,450m³ h−1, which translated into wind speeds of
6m s−1 at 6m distance and gradually decreased to 2m s−1 at 28m
distance.

To simulate/recreate the weather characteristics of the growing
season 2016 (‘PhenoSphere 2016 sim’), the hourly recorded weather
profiles from the field site at the IPK of just the year 2016 were used.
For any recreated week, the temperature profile of the hourly
averages of the 7 days of the week was deemed to define the normal
day type of this week. The sunny and cloudy days of a week were
modeled from individual days selected according to the same criteria
as for the ‘PhenoSphere avg’ experiment. Instead of using the same
number of the three representative days in reoccurring patterns, the
frequencies and patterns were adjusted individually for each week. If
a week, e.g., hadmore sunny days, they would have been represented
more often in frequency, and they would have been repeated con-
secutively instead of distributing them randomly to better reflect
reality as low- and high-pressure areas usually persist for more than
one day.

In the GH, conditions were set to 25 °C/18 °C temperature and
80%/60% relative humidity at day and night, respectively, with 16 h/8 h
day-night cycle. Assimilation light was switched onwhen the sensor on
the roof dropped below 60 klx between 7 am and 11 pm, and glass
panels were partially shaded to maintain a stable light intensity of
around 250 µmol m−2 s−1 in the glasshouse.

The homogeneity test experiment in the PhenoSphere was run
with the genotypes PHT77 and N22 in every container to estimate the
effects of container position and potential effects of preculture of
the ‘PhenoSphere avg’ experiment in the containers as the soil was
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reused. The containers were randomly sorted into three groups. For
25 containers, the soil from the preceding experiment was reused
unchanged. For the other 25 containers, the top soil layer was
exchanged with fresh substrate mixture, and for the remaining five
containers, all soil layers were renewed and the containers were
completely refilled. In each container, the two genotypes were ran-
domly distributed between side 1 and 2. The environment simulation
of the ‘PhenoSphere avg’ experiment running the averaged weather
conditions of the years 2016/17/18 was reused in this experiment. As
in the ‘PhenoSphere avg’ experiment, fertilizer was applied 1 month
after transplanting with 50 g/container Nitrophoska 15+15+15 (+2S)
15% Nitrogen, 15% P2O5, 15% K2O, 2% S (EuroChem Agro GmbH,
D-68165 Mannheim).

Phenotyping
Phenotypic traits of maize plants were measuredmanually/visually in
regular intervals throughout the cultivation phase of every cultiva-
tion scenario (Supplementary Data 2). Plant Height was defined as
the distance from the soil to the highest point of a plant. The vege-
tative stage (V-stage) was determined as the number of leaves that
are mature and express a visible leaf collar24,25. The trait growth stage
complementarily counts the total number of leaves visible at any
time point. The lower leaves were manually marked with metal rings
before they deteriorated to ensure precise counting. The final
vegetative development stage (VT) was defined as the ratio between
the growth stage and V-stage approaching 1. The occurrence of tas-
sels was visually scored during every measurement as either present
or absent. After the VT-stage, plants were kept in their respective
environment until the ears were mature. The ears per plant were
counted, harvested and total grain number and total grain weight per
plants was measured. Measurement raw data for all traits and every
environment are provided with this paper as well as the sensor data
logged.

Vapor pressure deficit (VPD) was calculated from the relative air
humidity and the air temperaturewith the equation fromBuck 198126,27

with updated improved empirical values for aw = 6.1121, bw = 18.678,
cw = 257.14, and dw = 234.5, taken from Buck Research Instruments
L.L.C. operating manual for the CR-1A Hygrometer (http://www.
hygrometers.com/wp-content/uploads/CR-1A-users-manual-2009-
12.pdf).

Best linear unbiased estimators of the phenotypic traits
Best linear unbiased estimators (BLUEs) were obtained for the traits
plant height, growth stage, and vegetative stage. Linear mixed models
(LMM) were fit with the lme4 package version 1.1.27.128. The random-
effect structures of all LMM, fitted to estimate BLUEs, were kept
maximal if justified by the experimental design29.

traiti ∼Nðαj½i�,k½i�,l½i�,m½i�,n½i�,o½i�,p½i� +βðGenotypeÞ ,σ2Þ
αj ∼Nðμαj

,σ2
αj
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αk ∼Nðμαk
,σ2
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Themodel for the ‘PhenoSphere avg’ and ‘PhenoSphere 2016 sim’

experiments is defined in (1). The 11 genotypes were fitted as fixed
effects and the effects of replicate (αp), of the position of a plant in the
container (αo), of the row (αn) and column (αm) position of a container,
the interaction between replicate and row (αj), the interaction between
replicate and position (αk), and the interaction between replicate and

column (αl) as random effect with the error term ε∼N 0,σ2
ε

� �
. BLUEs

were estimated individually for each date of measurement from the
genotypes fitted as fixed effects.

The model for the glasshouse experiment was defined in (2):

traiti ∼Nðαj½i�,k½i� +β ðGenotypeÞ,σ2Þ
αj ∼Nðμαj

,σ2
αj
Þ, for Replicate j = 1, . . . ,J

αk ∼Nðμαk
,σ2

αk
Þ, for Row k= 1, . . . ,K

ð2Þ

The genotypes were fitted as fixed effects again and replicate (αj)
and row of the pots in the greenhouse (αk) as random effects with the
error term ε∼N 0,σ2

ε

� �
.

The model for the field experiments in 2016/17/18/19 is defined in
(3):

traiti ∼Nðαj½i�,k½i�,l½i� +β ðGenotypeÞ,σ2Þ
αj ∼Nðμαj

,σ2
αj
Þ, for Replicate : Position j = 1, . . . ,J

αk ∼Nðμαk
,σ2

αk
Þ, for Position k = 1, . . . ,K

αl ∼Nðμαl
,σ2

αl
Þ, for Replicate l = 1, . . . ,L

ð3Þ

Genotypes were fitted as fixed effects and replicate (αl), position
in the field plot (αk), and its interaction (αj) as random effects with the
error term ε∼N 0,σ2

ε

� �
.

Nonlinear mixed-effect models
Differences between cultivation scenarios (field, glasshouse, and Phe-
noSphere cultivations) were estimated with nonlinear mixed-effect
models using the nlme package version 3.1–152 in R version 4.1.030,31.
Model fitting followed suggestions fromother researchers32,33. Prior to
fitting nonlinear mixed-effect models, data were grouped by crossing
the cultivation and the genotype factors into 77 groups.

A three-parameter simple logistic growth model y xð Þ= ϕ1

1 + e
ðϕ2�x

ϕ3
Þ
,

SSlogis30,32 was fit for the parameters ϕ1 = “Asym”, ϕ2 = “xmid”, and
ϕ3 = “scal” on the BLUEs of plant height as a complete random effects
model assuming zero autocorrelation. Intercepts of the random
effectsmodelwere used as starting values forfixed effect estimation to
update the model to a mixed-effect model with cultivations as fixed
effects and genotypes as randomeffects, whichwas justifiedby a lower
Akaike information criterion (delta AIC) of 82.6. Variances were
allowed to differ for each cultivation scenario with the constant var-
iance function (varIdent), which improved the model fit by delta AIC
15.7. Autocorrelationbetween themeasurementsduring the timeseries
was accounted for by an autoregressive-moving average (ARMA) cor-
relation structure of order (p = 2, q = 2) for a global intercept found by
the auto.arima function from the forecast package version 8.1534, jus-
tified by a delta AIC of 1654 to the mixed-effect model. The ARMA
(p = 2, q = 2) effectively accounted for the first 10 lags of the model
(Box-Ljung test, X-squared = 4.5, df = 10, p-value = 0.9). Themodel was
updated by maximum likelihood. The standard deviation for the ran-
dom effect of the parameter “scal” was found to be close to zero and
thus the random effect for “scal” was removed, increasing model fit
with a delta AIC 2. The model for plant height was then refit with
restricted maximum likelihood, which further decreased the AIC by
80.8. The model fit to the BLUEs of plant height is shown in Supple-
mentary Fig. 6. From the final model, individual “Asym” and “xmid”
values were extracted from the random effects for each genotype and
“scal” was the same for all genotypes, as it was best fitted as a fixed
effect. Temporal development of plant height for each individual
genotype, calculated from this data, was then plotted in Supplemen-
tary Fig. 12.

To cluster the plant height of each genotype in each environment
at 68 DAS, the average maximum growth speed for the four field
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environments and the ‘PhenoSphere 2016 sim’, the modeled logistic
growth function SSlogis was solved individually for an “xmid” value of
68 DAS. The hierarchical clustering was done with the heatmap.2
function of the gplots package version 3.1.135 calculating a Manhattan
distance matrix and performing a complete-linkage clustering scaled
for rows to have a mean zero and standard deviation of one (Supple-
mentary Fig. 7).

For the trait vegetative stage (V-stage), a random effects model
was fit with the SSlogis function, assuming zero correlation between
parameters. Including fixed effects into a mixed-effect model, fit with
the intercepts of the random-effects model, improved model fitting
(delta AIC 30.2). Variance modeling allowing different standard
deviations per cultivation further improved the model (delta AIC 2.8).
An autocorrelation structure of ARMA (p = 2, q = 2) for time as primary
covariate grouped by crossed cultivation and genotype, determined
by auto.arima, accounted for time series dependence (Box-Ljung test,
X-squared = 5.1, df = 10,p-value = 0.89) justifiedby adeltaAICof 2711.9.
The random effect of the “scal” parameter was removed (delta AIC 2)
after maximum likelihood estimation. The final model was estimated
with REML (delta AIC 50.8). The model fit to the BLUEs of V-stages is
shown in Supplementary Fig. 8. As for plant height “Asym” and “xmid”
from random effects and one “scal” from the fixed effect was used to
calculate best fit model to leaf maturation of each genotype (Supple-
mentary Fig. 13).

The data from counting all leaves per plants (growth stage) was
also fit with the SSlogis function assuming zero correlation between
parameters. Updating themodel with the intercepts from the random-
effects model as starting values into themixed-effectmodel improved
its fitting (delta AIC 36.5). The autocorrelation structure most suitable
for the growth stage data for time as primary covariate grouped by
crossed cultivation and genotype was found to be represented by an
ARMA (p = 4, q = 2) by the auto.arima function (Box-Ljung test,
X-squared = 1.42, df = 10, p-value = 0.99). This drastically improved
model fitting (delta AIC 2368.9). After estimation of the model with
maximum likelihood standard deviations of the random parameters
for “xmid” and “scal” were found to approach zero and were removed
(delta AIC 3). The final model was estimated by restricted maximum
likelihood (delta AIC 52). The bestfitmodel to the BLUEs of the growth
stages can be seen in Supplementary Fig. 10. To plot individual tra-
jectory of growth stage development for each genotype (Supplemen-
tary Fig. 14), “Asym” values from the random effects were determined
genotype-wise and “xmid” and “scal” were taken model-wide from the
fixed effects.

Bonferroni-corrected 95% confidence intervals and p-values were
estimated for differences between the environments for all traits
(Supplementary Data 3) for the parameters “asym”, “xmid”, and “scal”
with the emmeans package version 1.6.2–136.

The appearance of tassels is a binary characteristic in that tassels
are either present or not. Tasseling wasmeasured for each replicate of
each genotype but aggregated as total percentages of tasseling plants
over all genotypes for each cultivation at each time point. A fixed-
effect nonlinear regression model was fit with the nls function for the
logistic growth function formula from the SSlogis model32. Measure-
ment time points and the cultivations were treated as fixed effects.
Residuals and fitted values of the fixed-effectmodel were analyzed in a
two-way ANOVA with time and cultivation as factors. Neither
factor significantly affected the residuals of the model, but both fac-
tors had a significant effect on the fitted values (factor “time”, df = 83,
F = 23.5, p-value = < 0.001; factor “cultivation”, df = 6, F = 17.0,
p-value = <0.001). The model fit to the percentages of plants with
tassel is plotted in Supplementary Fig. 16.

The repeatability for the population of 11 genotypes over all cul-
tivation scenario was approximatedwith amixed-effectsmodel (4). To
reduce heteroscedasticity, the trait plant height was square root
transformed. Model fit was optimized with the AICtab function from

the bbmle package version 1.0.2437.

Plant Heighti ∼Nðαj i½ �,k i½ �,l i½ � +β1ðExperimentÞ+β2ðExperiment timeÞ, σ2Þ
αj ∼Nðμαj

,σ2
αj
Þ, for Genotype : Experiment time j = 1, . . . ,J

αk ∼Nðμαk
,σ2

αk
Þ, for Genotype : Experiment k = 1, . . . ,K

αl ∼Nðμαl
,σ2

αl
Þ, for Genotype l = 1, . . . ,L

ð4Þ

The effects of the experiments and the experiment time, which is
the date of measurement in each experiment were fit (4) as fixed
effects. All other effects were fit (4) as random for genotype (αl), for
the interaction between genotype and experiment time (αj), and for
the interaction between genotype and experiment (αk). The repeat-
ability for the genotype (Rg =0.55) was calculated with

Rgenotype =
σ2
αl

σ2
αl

+ σ2
ε
;σ2

αl
being the between-group variance for the geno-

types and σ2
ε the residual variance from the error term ε∼N 0,σ2

ε

� �
. The

marginal coefficient of determination (r²m = 0.866) and the condi-
tional coefficient of determination (r²c = 0.961) of the model (4) were
estimated with the MuMIn package version 1.43.1738.

Variance decomposition of positioning effects in the Pheno-
Sphere homogeneity test experiment
To determine the influence of positioning effects in the PhenoSphere
on variance composition, repeatabilitywas approximated froma linear
mixed-effect model on plant height with the rptR package version
0.9.2221. Plant height data from the homogeneity test experiment in
2019 were square root transformed to reduce heteroscedasticity.

Plant:Heighti ∼Nðαj½i�,k½i�,l½i�,m½i�,n½i� +βðGenotypeÞ, σ2Þ
αj ∼Nðμαj

,σ2
αj
Þ, for Preculture j = 1, . . . ,J

αk ∼Nðμαk
,σ2

αk
Þ, for Column k= 1, . . . ,K

αl ∼Nðμαl
,σ2

αl
Þ, for Row l = 1, . . . ,L

αm ∼Nðμαm
,σ2

αm
Þ, for Replicate m= 1, . . . ,M

αn ∼Nðμαn
,σ2

αn
Þ, for Soil n = 1, . . . ,N

ð5Þ

The genotypes were fit (5) as fixed effects, and the effects of
preculture (αj), column (αk), row (αl), replicate (αm), and soil treatment
(αn) were fit as random effects with the error term ε∼N 0,σ2

ε

� �
. Var-

iance composition was individually determined at each measurement
date (Supplementary Table 3) and plotted (Supplementary Fig. 17).
rptR was specified to determine the agreement repeatability39 with
confidence intervals for 1000 bootstrapping cycles.

Thermal time scaling
Cumulative thermal time (tt) was calculated in (6) for every hour of a
day and for every day of a growing season on the fields, in the Phe-
noSphere, and in the glasshouse20. In occasionswithmissing data, data
were linearly imputed to fill the gaps.

ttn = ttn�1

� �
+

1
24

� T � e
�ΔHA
R�T

� �

1 + e
�ΔHA
R�T20

� �" #α 1� T
To

� � = T20 � e
�ΔHA
R�T20

� �

1 + e
�ΔHA
R�T20

� �" #α 1�T20
To

� �
ð6Þ

In (6), n is the hour beginning with 1, T is the temperature in

Kelvin, �ΔHA = � 73900J*mol�1 is the enthalpy of activation specific
for maize, T20 = 293 K is the temperature at 20 °C in Kelvin,
To = 306.4 K is the maize specific maximum temperature in Kelvin,
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R=8:314J*mol�1*K�1 is the gas constant, and α = 3.5 is a unitless
parameter20. Differences between plant height in cultivation scenarios
(field, glasshouse, and PhenoSphere cultivations) for thermal time
days were estimated with nonlinear mixed-effect models like descri-
bed above. A four-parameter simple logistic growth model

y xð Þ=ϕ1 +
ϕ2�ϕ1

1 + e

�
ϕ3�x
ϕ4

� SSfpl30,32 was fit for the parameters ϕ1 = “A” hor-

izontal asymptote on the left side, ϕ2 = “B” horizontal asymptote on
the right side,ϕ3 = “xmid”, andϕ4 = “scal” on the BLUEs of plant height
as a complete random effects model assuming zero autocorrelation.
Bonferroni-corrected 95% confidence intervals and p-values were
estimated for differences between the environments for all model
parameters (Supplementary Data 3).

Yield components
The yield parameters ear count, grain number, and total grain weight
were analyzed by calculating the best linear unbiased predictors
(BLUPs) using the same Eqs. (1, 2, and 3) for the respective environ-
ments but treating the genotype as a random effect. BLUPs were
extracted with the coef functions in R31. From a simple mixed model
with cultivation as fixed effect and genotypes as random effects, the
estimated means (emmeans::emmeans) for each cultivation were
plotted, and pairwise Tukey-adjusted p-values (emmeans::pwpm) were
computed36. Confidence intervals were determined via the confint
function for the 0.95 level on the basis of the genotypes fitted as
random effects.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that sensor and phenotypic data from each
environment generated in this study are provided in Supplementary
Data 1 and 2, respectively. The processed data are provided within the
Supplementary Code 1 folder. Sixmaize accession (ZEA 132 https://doi.
org/10.25642/IPK/GBIS/33630, ZEA 324 https://doi.org/10.25642/IPK/
GBIS/33799, ZEA 332 https://doi.org/10.25642/IPK/GBIS/33807, ZEA
3660 https://doi.org/10.25642/IPK/GBIS/234225, ZEA 399 https://doi.
org/10.25642/IPK/GBIS/70927, ZEA 851 https://doi.org/10.25642/IPK/
GBIS/70928) were sourced from the IPK Gene Bank (https://gbis.ipk-
gatersleben.de/gbis2i/).

Code availability
The authors declare that all code supporting the findings of this study
is available within the folder Supplementary Code 1, which contains R
scripts and the necessary source files to reproduce every figure and
statistics presented in this study.
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