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Context-dependent perturbations in chro-
matin folding and the transcriptome by
cohesin and related factors

Ryuichiro Nakato 1,6 , Toyonori Sakata2,3,4,6, Jiankang Wang 5,
Luis Augusto Eijy Nagai1, Yuya Nagaoka1, Gina Miku Oba1, Masashige Bando 2 &
Katsuhiko Shirahige 2,3,4

Cohesin regulates gene expression through context-specific chromatin folding
mechanisms such as enhancer–promoter looping and topologically associat-
ing domain (TAD) formation by cooperating with factors such as cohesin
loaders and the insulation factor CTCF. We developed a computational
workflow to explore how three-dimensional (3D) structure and gene expres-
sion are regulated collectively or individually by cohesin and related factors.
The main component is CustardPy, by which multi-omics datasets are com-
pared systematically. To validate ourmethodology, we generated 3D genome,
transcriptome, and epigenome data before and after depletion of cohesin and
related factors and compared the effects of depletion. We observed diverse
effects on the 3D genome and transcriptome, and gene expression changes
were correlated with the splitting of TADs caused by cohesin loss. We also
observed variations in long-range interactions across TADs, which correlated
with their epigenomic states. These computational tools and datasets will be
valuable for 3D genome and epigenome studies.

The cohesin complex is crucial for gene transcription and chromatin
folding in mammalian cells1,2. Cohesin colocalizes with the CCCTC-
binding factor CTCF to function as an insulator3. In contrast, a small
proportion of cohesin binds the genome independently of CTCF,
regulating gene expression with tissue-specific transcription factors4,5.
At least a subset of CTCF-independent cohesin mediates chromatin
interactions between enhancer andpromoter sites of active geneswith
mediator complexes6. Cohesin also participates in transcription elon-
gation machinery by interacting with RNA polymerase II (Pol2)7.
Mutations in the cohesin loader NIPBL and cohesin core subunits have
been found in the human cohesinopathy Cornelia de Lange syndrome
(CdLS), a multisystem developmental disorder8, and in cancers9,10.
Although themolecularmechanisms of CdLS are not fully understood,

the function of cohesin as a gene expression regulator is considered to
be important8,11.

Recent studies using whole-genome chromatin-conformation
capture (Hi-C) have established the role of cohesin in the 3D organi-
zation of the genome12,13. Briefly, chromosomes are folded into
megabase-scale TADs, the boundaries of which are strongly enriched
for cohesin and CTCF14. TADs can be nested, and interactions between
TADs (interTAD interactions) are rarer than those within TADs (intra-
TAD interactions)15,16. The depletion of cohesin or the cohesin loader
NIPBL causes a dramatic loss of TADs and chromatin loops throughout
the genome17,18, whereas CTCF depletion affects TAD boundaries and
loopsmore locally19. These observations can be explained by the “loop
extrusion”model, in which cohesin translocates along chromatin until
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it encounters CTCF, resulting in the formation of TADs13,20. Thismodel
also explains the depletion effects of cohesin unloading factors (WAPL
and its binding partners PDS5A and PDS5B2,21,22), which prevent the
release of cohesin fromDNA and cause loop extension, resulting in the
appearance of longer loops than usual23,24. The loop extension would
be due to the “passing through” of CTCF sites by cohesin due to
temporal dissociation of CTCF23 or the physical clustering of neigh-
boring CTCF boundaries called “traffic jam“25. Importantly, such
extended loops are rare but also occur in wild-type cells25. This sug-
gests that the dynamics of TAD and loop formation is not absolute, but
rather stochastic, anddependson the amountof cohesinon chromatin
as a result of its continuous loading and unloading (i.e., turnover)26.
Cohesin turnover is also critical for the proper regulation of gene
expression; its loss by the WAPL depletion resulted in the loss of
cohesin localization and loops near several genes, leading to loss of
gene expression27. A mutation in the cohesin deacetylase HDAC8 has
also been found in CdLS, where increased cohesin acetylation results
in low efficiency of cohesin turnover28.

Despite extensive efforts, the detailed mechanism that results in
hierarchical chromosome organization and the functional relation-
ships that result in transcription regulation still need to be clarified12.
Comprehensive loss of TADs/loops or loop extension has a limited
impact on gene expression and does not cause the spread of histone
modifications17–19,23,29,30. Moreover, cohesin and CTCF also localize
within TADs without forming boundaries5,31. These results suggest a
more complicated set of rules for chromatin structure formation and
gene expression regulation by cohesin and related factors than the
current models present. Although each cohesin-related factor has
been studied using different cell lines by different laboratories, a study
to explore how cohesin and its related factors collectively or indivi-
dually regulate chromatin folding, gene expression, and the epigen-
ome is needed.

To this end, we have generated 3D genome, transcriptome, and
epigenome data before and after depletion of cohesin and related
factors and conducted a large-scale comparative multi-omics analysis.
To analyze our dataset, we developed a computational workflow to
systematically compare multi-omics datasets, the main component of
which is a package named CustardPy (Fig. 1a). CustardPy is primarily
designed to comparemultipleHi-C samples to evaluate the variationof
depletion effects across multiple proteins, and wraps several existing
tools to cover the entire Hi-C process. Using our methodology, we
comprehensively evaluated the similarities and differences in the
effects of the depletion of individual factors, as summarized in Fig. 1b.
Having confirmed the consistency of our results with thoseof previous
studies that used different cell types and depletion methods
(Figs. 2–4), we made the following observations. (1) Gene expression
dysregulation that was correlated with splitting of TADs (i.e., TAD
splits) was associated with the loss of cohesin (Fig. 5). (2) There was an
imbalanced enrichment of cohesin binding on chromatin between
active and inactive chromosome regions, which persisted even after
CTCF depletion (Fig. 6). (3) CustardPy identified the context-specific
pattern of inter-TAD interactions between depletions (Fig. 7). (4) Per-
turbation of long-range interactions was correlated with epigenomic
states of loop anchors and TADs (Figs. 8 and 9). These computational
tools and extensive datasets will be helpful for 3D genome and epi-
genome studies.

Results
Multi-omics data from a variety of cohesin-related depletions
Here we used human retinal pigment epithelium (RPE) cells to avoid
the effects of aneuploidy or other genomic rearrangements. We used
short interfering RNA (siRNA) to deplete cohesin (Rad21), cohesin
loaders (NIPBL and Mau2), cohesin unloaders (WAPL, PDS5A and
PDS5B), a boundary element (CTCF), and a cohesin acetyltransferase
(ESCO1) individually and carried out two co-depletions (Rad21 and

NIPBL, PDS5A and B; Fig. 2a). We verified that most asynchronous cells
were in G1 phase (Fig. S1a) and that the extent of depletion in most
samples was sufficient for this analysis (Figs. 2b and S1b). Although the
knockdown efficiency of PDS5B was not ideal, we included it as a
reference in this study, because an incomplete loss of cohesin function
causes the CdLS phenotype8. Tominimize potential secondary effects,
we evaluated the similarity and variability in depletion effects among
factors rather than determining the function of each factor individu-
ally. We also generated a sample treated with the BET bromodomain
inhibitor JQ1, as thebromodomainprotein BRD4 is reported to interact
with NIPBL and to be mutated in CdLS32.

We used a 72-h treatment with siRNAs for most samples, but we
also explored the effect of different treatment times (24, 48, and 120 h;
Fig. S2a).Using these samples, we carried out in situHi-C, RNA-seq, and
spike-in ChIP-seq data (Supplementary Data 1–3). We generated in situ
Hi-C data with multiple independent replicates (31 samples, 14 billion
paired-end reads in total). In the spike-in ChIP-seq analysis, we
observed that 60–80% of the peaks in control cells were lost after
siRNA (Fig. S2b).

We evaluated the overall similarity of our Hi-C samples and con-
firmed the sufficient similarity among replicates (Fig. 2c). We also
found that the depletion effects could be categorized into four groups
based on their siRNA targets (Fig. 2c): cohesin and loaders, CTCF,
cohesin unloaders and acetyltransferase, and control and JQ1-treated
samples.Depletionof cohesinunloaders and acetyltransferase showed
a milder effect on chromosome structure than did depletion of
cohesin loading and localization at CTCF sites. Having confirmed the
sufficient similarity among replicates, we merged all replicates into a
single deep Hi-C dataset for control, siRad21, siNIPBL (except for the
24-h treatment, at which the depletion was not sufficient; Fig. S2a),
siCTCF, and siESCO1, resulting in up to 3 billion reads for each con-
dition, for further analysis of these depletions.

Comparative Hi-C analysis reveals diverse depletion effects on
chromatin folding
We first evaluated the depletion effects on TADs and loops to verify
that our results were consistent with those of previous studies that
used different cell types and depletionmethods. As expected, ourHi-C
data showed adramatic lossof TADs and loops after siRad21 or siNIPBL
(Fig. 3a, b), consistent with the previous studies17,18. Co-depletion of
Rad21 andNIPBL showed amore severe effect. Mau2 depletion led to a
milder impact than did siNIPBL, possibly because some cohesin can be
loadedwithoutMau223. AlthoughCTCFdepletion strongly affected the
number of loops, it had a limited effect on TAD numbers and intraTAD
interactions as compared with cohesin depletion (Fig. 3a, b), con-
firming the function of CTCF as a boundary element19,33.

Chromosomesare spatially segregated intoactive “compartmentA”
and inactive “compartmentB” regions34. Suchcompartmentalization can
be uncoupled from TAD formation; the compartmentalization is
strengthened by the depletion of cohesin and loaders17,18,23 but not by
depletion of CTCF19. We observed a similar tendency in our data, as
indicated by the “plaid pattern” (Fig. S3a) and quantitative compartment
strength estimatedby a saddle plot (Figs. 3b andS3b). This tendencywas
also indicated by the relative contact frequency of mapped reads
(Fig. 3c). Thedepletionof cohesin and loaders diminished interactions at
lengths consistent with TADs (~1Mb), whereas the long-range interac-
tions at a distance consistent with the compartment (~10Mb) drastically
increased. In contrast, depletion of CTCF, WAPL, PDS5A and B co-
depletion or ESCO1 decreased long-range interactions, suggesting wea-
kened compartmentalization. Depletion of PDS5A or PDS5B alone did
not show a clear trend, suggesting the partly redundant function of
PDS5A and PDS5B24. Finally, we did not observe notable compartment
switching35 in these samples (Fig. S3c).

We next explored the loop length distribution, which showed a
distinct tendency from the relative contact probability (Figs. 3d and
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S4a). After siRad21, most short loops were depleted, and the dis-
tribution peaked at a longer length (~1 Mbp) than the control (~400
kbp). siCTCF also resulted in depletion of short loops, which is less
drastic compared with siRad21. siMau2 resulted in highly depleted
long loops (~1 Mbp), and the distribution peaked at a shorter length
than the control (~400 kbp). Based on the loop extrusion model, it is

likely that shorter loops were retained under the mild loss of cohesin
after siMau2. After the depletion of unloaders (PDS5B, PDS5A and B, or
WAPL), the peak distribution increased slightly relative to control
samples (~500 kbp), consistent with their function as cohesin unloa-
ders. siESCO1 also caused the appearance of longer loops, consistent
with a previous report36.
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Additionally, we investigated the allele-specific depletion effect
on chromosome X. Whereas the active chromosome X (Xa) forms the
typical chromosome structure, inactive chromosome X (Xi) is parti-
tioned into two megadomains, the boundary between which is affec-
ted by depletion of cohesin37,38. Our data did not show an explicit
disruption of the megadomain boundary in Xi, possibly due to
incomplete depletion by siRNA. However, we observed a difference in
depletion effects between Xi and Xa, independent of depletion effi-
ciency (Fig. S4). Xi showed a “coarser” plaid pattern thanXa, whichwas
strengthened by siRad21 and siNIPBL. siCTCF showed an asymmetric
tendency of interaction frequency between the megadomain

boundary and the two megadomains (black arrows), whereas Xa had
no similarly clear chromosome-wide pattern.

In summary, our Hi-C analysis showed consistent tendencies with
previous studies, confirming its reliability, and provided multiple new
findings of diverse depletion effects on chromatin folding.

Gene expression changes are correlated with direct cohesin
binding
Next,we explored thedepletion effect ongene expression andChIP-seq
peaks. We detected 2000–7000 differentially expressed genes (DEGs)
for each sample (false discovery rate [FDR] <0.01; Figs. 4a and S5a). We
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selected the top-ranked 1,000DEGs from all samples andmerged them
into a single DEG list (4240 genes in total). Pairwise comparisons
showed an overlap of DEGs between cohesin and loaders and between
individual unloaders (Fig. 4a, red boxes). siCTCF and JQ1 treatment
showed less correlation with the others, suggesting their distinct roles
in gene expression regulation.

To identify the pattern of expression dysregulation, we applied
k-means clustering (k = 20) based on the overlap of up- and down-
regulated genes among depletions (Fig. 4b and Supplementary
Data 4). For example, clusters 6 and 10 represent down- and upre-
gulated genes after cohesin and loader depletion, respectively.
Gene ontology (GO) analysis suggested that cluster 6 was mainly
enriched in “growth factor activity,” consistent with slower growth
under such depletions39. Clusters 9 and 18 contained down- and
upregulated genes after NIPBL and unloader depletions, respec-
tively. These DEGs were not observed after siRad21, suggesting
DEGs from dysregulation of cohesin turnover. Their GO terms were
correlated with fundamental functions related to the cytoskeleton
andextracellularmatrix. These diverse expressionpatterns suggest

that cohesin-related factors have distinct roles in gene expression
regulation.

We then implemented a permutation test (n = 1000) to examine
the overlap of the DEG loci with the ChIP-seq peaks and chromatin
loops (Fig. 4c). Transcription start sites (TSSs) associated with the
DEGs were enriched for Rad21 and Mau2 peaks in most clusters, sug-
gesting that the DEGs were less likely to have been derived from a
secondary effect. The exceptions were the downregulated genes after
siWAPL (clusters 3 and 9), which were affected independently of
cohesin binding, implying the indirect or unrelated regulation relative
to cohesin. We also applied a TAD-boundary proximity analysis29 and
found that the siRad21 DEGs were less likely to be located around
disrupted TADs than non-differential boundaries (Fig. S5b). These
results suggest that expression dysregulation of these clusters was
causedby the lossofRad21 andMau2binding to eachgene, rather than
by region-wide effects caused by TAD disruption.

A certain amount of cohesin on the genome is acetylated by
ESCO1, which protects cohesin from release by WAPL, resulting in
more stable binding of cohesin to the genome40. Therefore, the
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acetylated cohesin sites (Smc3ac) would be more persistent even
under siNIPBL and siRad21 than non-acetylated sites. This tendency
can be observed in Rad21 peaks in siRad21, i.e., since stronger Rad21
peaks remain more under siRad21, the clusters where Rad21 peaks
are enriched under siRad21 indicate containing more stronger
Rad21 peaks at TSSs. The clusters enriched for Smc3ac and Rad21

under siRad21 are highly correlated (0, 5, 7, 10, 14, and 18). Loops
mediated by Smc3ac were enriched in upregulated DEGs associated
with siNIPBL and siPDS5B (clusters 1, 7, 18), whereas clusters not
enriched for Smc3ac (clusters 12, 13, 15) were downregulated (Fig. 4c).
This result also suggests the necessity of cohesin at TSSs for gene
expression.
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Figure 4d shows the ChIP-seq distribution around several top-
ranked DEG loci, each having cohesin peaks around their TSSs. Rad21
peaks around TSSs were lost after siNIPBL, whereas they remained
after siCTCF (red arrows), suggesting that cohesin binds at TSSs in a
more CTCF-independent manner. In contrast, Rad21 peaks in BMP6’s
exon, SSBP2’s intron, and the intergenic region were lost after siCTCF
(black arrows). We confirmed that this tendency occurred genome-
wide (Fig. 4e). siNIPBL significantly depleted cohesin peaks at
upstream and exon regions, whereas siCTCF affected intron and
intergenic regions. This result is reminiscent of a report using CTCF
knockout mouse embryonic fibroblast (MEF) cells41, in which cohesin
accumulated near TSSs of active genes, where the cohesin loader is
also located. In the absence of CTCF, cohesin would be more corre-
lated with gene activity and cohesin loading sites. Our results suggest
that cohesin positively regulates gene expression via direct binding at
TSSs. In contrast, other mechanisms (e.g., turnover and acetylation)
add to the diversity of this pattern of dysregulation.

Quantitative classification of insulation levels among
boundaries
To further study the depletion effects on chromatin folding, we com-
pared a multi-scale insulation score42 among samples (Fig. 5a–c). We
found various patterns of insulation perturbation at TAD boundaries:
(i) boundaries depleted by siRad21 and siNIPBL but not by siCTCF
(cohesin-dependent); (ii) boundaries strengthened by siNIPBL and
siRad21 (cohesin-separated); (iii) boundaries depleted by siRad21,
siNIPBL, and siCTCF (all-dependent); and (iv) boundaries that were
barely affected by any siRNA (robust). To quantify the observed pat-
terns across the genome, we classified all boundaries into six cate-
gories based on their insulation scores (Fig. 5d and Supplementary
Data 5). Whereas over half of the boundaries were annotated as
“robust,” indicating their stability against reduced amounts of a tar-
geted protein, we also identified those subcategories of boundaries
that were lost or gained after depletions. Depletion of unloader pro-
teins did not show an explicit perturbation, which is consistent with
their minimal influence on the number of TADs (Fig. 3b).

We then investigated the overlap among boundaries, ChIP-seq
peaks, and DEGs (Figs. 5e and S7a). Whereas cohesin- and CTCF-
dependent boundaries (i.e., boundaries that were lost after depletion)
were enriched for loops and CTCF peaks, there were few DEGs, even
though Pol2 peaks were enriched at cohesin-dependent ones. In con-
trast, cohesin-separated boundaries significantly overlapped with
upregulated DEGs after the depletion of cohesin and loaders. At the
boundaries,Mau2peakswere strikingly enriched, butRad21, CTCF, and
loops were not, suggesting that these are cohesin loading points. This
result suggests that the loss of cohesin loading at these points leads to
an enhancement of insulation, which could potentially lead to dysre-
gulation of gene expression in the surrounding region. As CTCF-
separated boundaries also overlapped with DEGs (although not sig-
nificantly), a gain of boundaries would be more highly correlated with
upregulated DEGs than a loss of boundaries. These observations
highlight the necessity of considering the boundary type based on the
depletion effects of factorswhen investigating the association between
chromatin folding and gene expression as regulated by cohesin.

In addition, CTCF-dependent and cohesin-separated boundaries
occurred more frequently between compartments A and B, whereas
cohesin-dependent ones occurred less frequently (Fig. S7b). This result
implies that cohesin has a role in connecting neighboring TADs18,
especially those from compartments A and B. In contrast, CTCF is
involved in partitions within compartment A and, to a lesser extent,
compartment B.

Cohesin is broadly distributed in the active compartment
We next explored the genomic regions that changed significantly after
depletions across the genome to investigate the correlation between

the depletion effect on the epigenome and chromatin folding (Figs. 6a
and S8a). To directly identify significant changes after depletion at the
absolute level, we evaluated –log10(p) values comparing ChIP reads of
control and siRNA samples under spike-in normalization43. As reported
in previous studies17,19, broad histone marks (H3K36me3, H3K27me3,
andH3K9me3)werenot substantially affected, suggesting that the loss
of TAD boundaries does not cause these histone modifications to
spread. In contrast, H3K27acmarks were largely perturbed after NIPBL
and Rad21 depletion, indicating that these marks can be affected by
changes in intraTAD or interTAD interactions.

We next investigated the binding of cohesin and several related
factors. Strikingly, we observed a broad decrease in cohesin binding
after siRad21 and siNIPBL (Fig. 6a, purple arrows). In contrast, siCTCF
depleted cohesin binding only at CTCF binding sites (Fig. 6a, red
regions of CTCF in siCTCF, green arrows). This suggests that cohesin is
located not only in peak regions as detected by peak calling but also in
background regions more broadly, as assumed in the loop extrusion
model20.

We further investigated this tendency across the genome by
dividing compartments A and B into “strong” and “weak” ones based
on their compartment PC1 values (Fig. 6b). The significant depletion of
cohesin in the background as noted above was not detected within
compartment B regions (Fig. 6a, blue bars), suggesting that there are
different amounts of cohesin between compartments A and B. Gen-
ome-wide, we observed a more significant amount of cohesin, parti-
cularly in “strong A” regions (Fig. 6b). This observation is also
supported by the milder loss in Strong B and a more severe loss in
Strong A in intraTAD interactions under siRad21 compared to siCTCF
(Figs. 6c and S8b).

We also evaluated cohesin enrichment from an epigenomic per-
spective using “extended ChromHMM”44 and found that cohesin
accumulated to the highest levels at highly active sites (states 4 and 7,
enriched for H3K27ac and H3K4me3; Fig. 6d). Heterochromatin
regions enriched for H3K9me3 in compartment B showed subtle
cohesin enrichment (state 14). In contrast, siCTCF did not show such a
context-specific tendency (Fig. 6b, d), which indicates that the imbal-
ance in the amount of cohesin between compartments A and B was
retained even after the loss of CTCF-dependent boundaries. The
imbalance was also observed in our biological replicate data (Fig. S8c)
and also partly reported in a previous study that used calibrated ChIP-
seq analysis of Nipbl-deleted mouse liver18. Consequently, our data
showed that cohesin also accumulated in non-peak regions,more so in
compartment A, in conjunction with gene activity. CTCF acts as an
obstacle for cohesin translocation (resulting in sharp cohesin peaks at
CTCF sites) but does not control the amount of cohesin on chromatin.

InterTAD interactions are affected by context-specific depletion
In addition to the six boundary types (Fig. 5d), we also found long-
range insulation boundaries that appeared after siNIPBL and siRad21
(~500 kbp; Fig. 5c, red rectangle). By visualizing the relative interaction
frequency (Figs. 7a and S9a), we found that these insulation bound-
aries likely reflect the substantial depletion of interactions between an
“active TAD” (Fig. 7a, A4, enriched by active markers H3K4me3 and
H3K27ac, and Pol2) and an “inactive TAD” (Fig. 7a, B2, in compartment
B, black arrows). Although a decreased interaction between active and
inactive regions is consistent with compartmentalization
strengthening18, this depletion effect wasmore region specific andwas
not symmetrical (e.g., there was a milder effect between B2 and A5;
Fig. 7a). Moreover, we also observed a difference even between
siRad21 and siNIPBL on interTAD interactions (e.g., A3–B2; Fig. 7a,
black rectangles), despite their very similar effects on TAD and loop
structures. We were, therefore, interested in the variation in pertur-
bations of interTAD interactions among different siRNA targets.

To identify the strong effect of depletions on interTAD interac-
tions, we recently developed the directional relative frequency (DRF)
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approach44, which evaluates the directional bias of long-range deple-
tion effects (Fig. 7b). We scanned the whole genome and identified 241
regions in which DRF values changed significantly after cohesin or
loader depletion (black ovals in Fig. 7c and Supplementary Data 6).
Some of these changes consisted of a decrease across broad regions
(C1 and C2), whereas other regions showed a decreased interaction on
one side of a TAD (C3 and C4), reminiscent of the “stripe” structure,
where a loop anchor site highly interacts with entire region of a TAD45.
Whereas stripes were reported to be near super-enhancer regions45,

thedifferentialDRF regions in our datawereoften located at thepoints
of transition for compartmental PC1 values (dashed lines in Fig. 7c, d).
Because PC1 values around these transition points were not perturbed
by siNIPBL (Fig. 7d), the substantial depletion in interTAD inter-
actions is likely to be distinct from the strengthened compartmenta-
lization. Moreover, these interactions often increased after siRNA
of the cohesin unloader WAPL; therefore, the effect was inversely
correlated with depletion of cohesin and loaders. We examined
this tendency across all 241 regions using cosine similarity of the
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relative interaction frequency and confirmed the contrasting
depletion effects between cohesin/loaders and unloaders (Figs. 7e
and S9b). siESCO1 showed a positive correlation with the unloaders,
consistent with the role of ESCO1 with respect to facilitating loop
stabilization and boundary formation40, which is also supported by the
loop length distribution (Fig. 3d). The stochasticity of cohesin pass-
through could explain this stripe-like depletion effect at CTCF

roadblocks25. Considering that the effect is not symmetric and is one-
sided, it would thus be more context specific.

Depletion effects on long-range interactions
To further evaluate the correlation between epigenomic features and
depletion effects on long-range interactions, we carried out peak-level
and TAD-wide level comparisons within our Hi-C and ChIP-seq
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datasets. For the peak-level analysis, we applied a structured interac-
tion matrix analysis (SIMA)30,46 for a distance of 500 kbp–5 Mbp and
did observe a striking difference among depletions (Figs. 8a and S10a).
Whereas interactions between active markers (H3K4me2, H3K4me3,
H3K27ac, Med1, and Pol2) increased after both siRad21 and siNIPBL,
interactions between the suppressive marker H3K27me3 and the
activemarkers decreased only after siNIPBL. CTCF depletion increased
interactions, especially between promoter markers (Pol2, H3K4me2,
and H3K4me3). Again, the depletion of cohesin unloaders showed the
opposite tendency relative to siNIPBL. siESCO1 affected cohesin, CTCF,
and enhancer markers. We found that the difference between siRad21
and siNIPBL was mainly derived from a global increase in long-range
interactions (>2 Mbp) in siRad21, corresponding to interTAD

interactions (Figs. 8b and S10b). Although this increase could be
involved in strengthened compartmentalization17,18, it does not explain
the difference between siRad21 and siNIPBL. Considering that longer-
range interactions require more cohesin translocation from loading
points to increase the probability of loop extension, our findings
suggest that a different effect between the amount of cohesin on
chromatin and the frequency of cohesin loading can appear in long-
range interactions.

We also tested whether there is a region-wide depletion effect
between TADs and the relationship to the epigenome. For this, we
annotated all TADs with epigenomic marks and then classified all TAD
pairs based on their relative change in interactions (k-means, k = 5;
Fig. 9). There was a substantial decrease in interactions in clusters 2–4
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after the depletion of cohesin and loaders (Fig. 9b, c). These clusters
were enriched for interactions between active and inactive markers
(Fig. 9d), consistent with the depleted long-range interactions (A4–B2
in Fig. 7a). However, the effect is different between H3K9me3 and
H3K27me3, for which the depletion effect in long-range interTAD
interactions was more epigenomic dependent.

Lastly, we evaluated the correlation between DEGs and TAD-wide
interTAD interactions. Although we found several genes for which
changes in expression were consistent with a depletion effect on the
interTAD interaction, the effect was not region-wide (e.g., RUNX1
dysregulation was correlated but two neighboring DEGs, KCNE1 and
DOP1B, were not correlated; Fig. S11). Whether these DEGs result from
TAD disruption or changes in interTAD interactions or if their
expression is regulated independently via cohesin binding at TSSs or
other gene-specific factors are important questions for future studies.

Discussion
Despite multiple promisingmodels3,4,6,7,19, the cooperative and distinct
roles of cohesin in combination with related factors concerning

chromatin folding and gene expression still need to be fully under-
stood, especially in a context-specific manner. In this study, we gen-
erated a large-scale multi-omics dataset and developed a
computational pipeline, named CustardPy, to systematically compare
the effects of depleting cohesin and related factors. Although previous
studies have often focused on the correlation between loop and TAD
structures and gene expression, our methodology evaluates 3D fea-
tures at various scales, including inter-TAD interactions. We found a
variety of TAD boundaries and interTAD interactions that should be
considered when investigating the functional and mechanistic rela-
tionships associated with cohesin. Whereas several studies have
reported genome clustering using a single Hi-C sample—e.g., a third
compartment47 and subcompartment analysis48,49—our analysis com-
pared multiple Hi-C samples and classified genomic regions based on
the variation in depletion effects among samples (i.e., multiple-pair
comparison in Fig. 1a). The perturbation of long-range interTAD
interactions observed in this study cannot be captured by a typical
analysis that evaluates only the number/strength of TADs and loops. A
limitation of our approach is the cost associated with sample
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generation. Multi-sample pair comparisons require the generation of
numerous samples, and long-range interaction analysis requires deep
sequencing, both of which are costly. Another caveat is that the inter-
TAD interaction analysis is dependent on the identified TADs, which
varies between the tools used for TAD calling50. A future approach
should enable tool-independent long-range interaction analysis to
provide a more impartial perspective.

Most of the cohesin-related DEGs were related to the direct
binding of cohesin around TSSs, which was more likely to be CTCF-
independent. Some DEGs were also enriched near cohesin-separated
boundaries, in which Mau2 specifically accumulated. In contrast, the
disruption of TAD boundaries was not correlated with DEGs and
histone modifications. Whereas the BRD4 mutation also causes a
CdLS-like syndrome32, there was little effect of JQ1 on chromatin
folding despite the many isolated JQ1-related DEGs. Considering the
report that BET inhibition does not disrupt enhancer–promoter
contact51, the CdLS phenotype might not involve the perturbation of
chromatin structure but could be caused by direct transcription
regulation by cohesin, e.g., by transcription machinery interacting
with Pol27,41.

It should be noted that the siRNA system we used in this study
has several limitations, such as incomplete depletion and potential
secondary effects. For example, cohesin- and CTCF-independent
boundaries may be lost after extreme depletion (e.g., with the
auxin-inducible degradation system17). To circumvent these lim-
itations, we focused here on the context-specific variation asso-
ciated with the depletion of these factors by investigating the
similarity and variability of the depletion effects. We delineated the

dominant factors for boundaries and interTAD interactions. In
future experiments, this computational strategy should provide
more insights as additional samples are analyzed using various
conditions and other factors.

We demonstrated that cohesin is broadly distributed within
compartment A, not only at peak sites of Rad21 or CTCF localization.
Cohesin did not accumulate substantially in compartment B, where
cohesin depletion had a minor effect. Because our siRNA system is
independent of genomic context, this observation is unbiased and
represents the distribution of cohesin abundance in the control sam-
ple. Under the loop extrusionmodel, cohesin distribution should have
become more uniform after CTCF depletion because of the loss of
cohesin stalling at CTCF sites. However, the unequal amounts of
cohesin between compartments A and Bwere retained after siCTCF. In
contrast, the interactions between neighboring TADs increased with
the depletion of CTCF-dependent boundaries (e.g., Fig. 7a). Therefore,
the amount of cohesin on the genome is notmerely derived from loop
extrusion but also is affected by the genomic context. How genomic
segmentation within the whole genome is regulated by loop extrusion
and other mechanisms remains an essential question for future
studies.

Methods
Cell culture and siRNA
We used the siRNA system for depletion, as the auxin-inducible
degradation system reduces protein levels even in the absence of
auxin, which is unsuitable as a control40. RPE cells3 were cultured in
DMEM (Wako) supplemented with Penicillin-Streptomycin-L-
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Glutamine Solution (Wako), 10% fetal bovine serum (Biosera), and
20mM HEPES-KOH (pH 7.4). All siRNA transfections were performed
using Lipofectamine RNAiMAX (Thermo Fisher Scientific) and the
manufacturer’s protocol 2 or 3 days before sample preparation, with a
final RNA duplex concentration of 50 nM. The siRNA sequences are
shown in Supplementary Data 7 and are the same as those described
previously28,52. For inhibition of BET family proteins, cells were treated
with JQ1 (Selleck Chemicals) for 6 h at a 1μM final concentration. We
labeled JQ1-treated and the corresponding control samples as JQ1(+)
and JQ1(–), respectively.

Antibodies
Antibodies used for ChIP and immunoblotting were as follows.
Antibodies against histone H3 lysine-27 acetylation (H3K27ac)53, H3
lysine-4 trimethylation (H3K4me3), H3 lysine-9 trimethylation
(H3K9me3), H3 lysine-36 trimethylation (H3K36me3), and Pol2ser2
were provided by Dr. Kimura (Tokyo Institute of Technology,
Tokyo, Japan). We also used antibodies against Rad21, Smc3ac, and
ESCO1, whichwere described previously52. Antibodies against NIPBL
(A301-779A, BETHYL), Mau2 (ab46906, abcam), CTCF (07-729,
Merck), BRD4 (A301-985A50, BETHYL), AFF4 (A302-538A, BETHYL),
Pol2 (14958, Cell signaling technology) and H3 lysine-27 trimethy-
lation (H3K27me3, ab192985, abcam) were used for ChIP. Anti-
bodies against NIPBL (sc-374625, Santa Cruz Biotechnology), α-
tubulin (T6074, Merck), WAPL (16370-1-AP, Proteintech), PDS5A
(A300-088A, BETHYL), PDS5B (ab70299, abcam), and CTCF (3417,
Cell Signaling Technology) were used for immunoblotting. The
mouse monoclonal antibody against Mau2 was generated using a
synthetic peptide corresponding to residues 596–613
(PVQFQAQNGPNTSLASLL) of human Mau2 and used for immuno-
blotting. Antibody dilutions for immunoblotting were 1:500 (NIPBL
and ESCO1) and 1:1000 (all other antibodies).

Protein analysis
Cells were lysed with lysis buffer (20mMHEPES-KOH, pH 7.5; 100mM
NaCl; 10mMKCl; 10% glycerol; 340mMsucrose; 1.5mMMgCl2; 10mM
sodiumbutyrate; 0.25%TritonX-100; 1mMdithiothreitol; 1× cOmplete
protease inhibitor cocktail [Roche]) as described28. The resulting lysate
was mixed with SDS-PAGE sample buffer (50mM Tris–HCl, pH 6.8; 2%
SDS; 0.005% bromophenol blue; 7% glycerol; 5% 2-mercaptoethanol)
and boiled for 5min. The proteinswere analyzedwith aMini-PROTEAN
Tetra Vertical Electrophoresis Cell (Bio-Rad) following the manu-
facturer’s protocol.

In situ Hi-C
We used the in situ Hi-C protocol as described in Rao et al.48. In
brief, ~3 × 106 RPE cells were crosslinked with 1% formaldehyde for
10min at room temperature, followed by an additional 5 min with
200mM glycine in phosphate-buffered saline (PBS). Fixed cells
were permeabilized in Hi-C lysis buffer (10mM Tris–HCl, pH 8.0;
10mM NaCl; 0.2% Igepal CA630; 1× protease inhibitor cocktail
[Sigma]) on ice. The cells were treated with 100 U of MboI (New
England Biolabs) for chromatin digestion, and the ends of digested
fragments were labeled with biotinylated nucleotides followed by
ligation. After DNA reverse crosslinking and purification, ligated
DNA was sheared to a size of 300–500 bp using a Covaris S2
focused-ultrasonicator (settings: Duty Cycle, 10%; Intensity, 4;
Cycles per Burst, 200; Duration, 55 s). The ligated junctions were
then pulled down with Dynabeads MyOne Streptavidin T1 beads
(Thermo Fisher Scientific). The pulled-downDNAwas end-repaired,
ligated to sequencing adaptors, amplified on beads, and purified
using a Nextera Mate Pair Sample Preparation kit (Illumina) and
Agencourt AMPure XP (Beckman Coulter). DNA was then
sequenced to generate paired-end 150-bp reads using the Illumina
HiSeq-2500 or X Ten system.

Hi-C analysis by CustardPy
We developed various custom scripts for this study, most of which
were integrated into the Hi-C analysis pipeline CustardPy (https://
custardpy.readthedocs.io). It is written in Python3.7 and is available
using the Docker system (https://www.docker.com/). CustardPy is
designed to comparemultipleHi-C samples to evaluate the variationof
depletion effects across multiple proteins (Fig. 1a), and all the tools
used for Hi-C analysis described below are included in the latest ver-
sion of the CustardPy docker image (version 1.2.0, https://hub.docker.
com/r/rnakato/custardpy).

Hi-C data processing with Juicer
Sequenced reads were processed using Juicer version 1.5.7 and Juicer
tools version 1.9.954, with TADs and loops defined as in Rao et al.48. The
detailed steps were as follows. Sequenced paired-end reads were
mapped by BWA version 0.7.1755 and converted to BAM format using
Samtools v1.15 (http://www.htslib.org/). We then generated contact
map files with square root vanilla coverage (VC_SQRT) normalization.
Weused25-kbp resolutionmapsunless otherwise described.Wecalled
TADs using the Juicer tools Arrowhead command. Because the
obtained TADs can be nested, we also generated a list of non-
overlapping TADs by segmenting the genome based on all TAD
boundaries. TAD boundaries were defined as edges for all annotated
TADs. Loopswere called at 5-kbp, 10-kbp, and 25-kbp resolution by the
Juicer tools HiCCUPS command. To obtain peak-overlapping loops
(Fig. 4c), we used BEDTools v2.28.0 (https://bedtools.readthedocs.io/
en/latest/) and extracted loops for which both anchor sites overlapped
with the peaks. High-resolution data that combined all replicates were
generated by mega.sh script provided in Juicer. Eigenvector (PC1)
values for compartment analysis were calculated by HiC1Dmetrics44

because the Eigenvector command in Juicer tools sometimes failed. For
allele-specific Hi-C analysis of chromosome X, we obtained single-
nucleotide polymorphismdata forRPE cells fromDarrowet al.56, which
was then converted to genome build hg38 by the liftOver tool (https://
genome-store.ucsc.edu/). We modified the diploid.sh script provided
by Juicer and made interaction map files for active and inactive
chromosome X.

The samples and mapping statistics are summarized in Supple-
mentary Data 1. As we generated six replicates as control samples, we
merged them into a single high-resolution Hi-C data. We used it to
obtain reference data for the TADs, loops, and compartments. For the
comparative analysis, we normalized Hi-C matrices based on the
number of mapped reads on each chromosome. Therefore, the ten-
dency for increases and decreases is relative; increased long-range
interactions might be compensated for by increased short-range
interactions57. siRad21 and siNIPBL were most affected by this fact,
because almost all TADs and loops were depleted after these treat-
ments. Therefore, our analysis focused on the variation of depletion
effects across samples to capture the context-specific tendency, rather
than translating the biological meaning of increased/decreased
interactions.

Hi-C data processing with other tools
To evaluate the quality and reproducibility of our Hi-C data, we used
3DChromatin_ReplicateQC58, which internally implements QuASAR59

and HiCRep60. Because of the large computational complexity
involved, we used only chromosomes 21 and 22 with a 50-kbp bin for
the quality evaluation. We confirmed that all of our Hi-C data had
sufficient quality (QuASAR-QC scores > 0.05; Supplementary Data 1).
HiCRep was used to evaluate the overall similarity of the depletion
effects among our Hi-C samples by calculating a stratum-adjusted
correlation coefficient that captures the similarity of chromatin fea-
tures including TADs and loops. We used Cooler61 and cooltools
(https://cooltools.readthedocs.io/) for APA plots, plots of average TAD
data, and saddle plots. We used GENOVA62 to calculate the
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compartment strength. The Hi-C matrices with ChIP-seq distributions
were visualized using CustardPy commands.

Structured interaction matrix analysis (SIMA)
To explore interactions between specific chromatin features (e.g.,
ChIP-seq peaks), we used a SIMA46 implemented in HOMER
(http://homer.ucsd.edu/homer/). SIMA assembles information for
multiple occurrences of each feature, providing an overview of
Hi-C interactions associated with a genomic feature between each
pair of specified domains. In this study, the genomic features
included the ChIP-seq peak list (AFF4, CTCF, H3K27ac,
H3K27me3, H3K36me3, H3K4me3, H3K4me2, Smc3ac, Mau2,
Med1, Pol2, Pol2ser2, and Rad21), and TSSs of DEGs (siCTCF,
siNIPBL, siRad21). Domains of interest were defined as TAD lists,
and the distance between two TADs was specified to be <5 Mbp,
<2 Mbp, or 2 to <5 Mbp with ‘-max -min’ parameters. By com-
paring the background model, we obtained an enrichment score,
representing the degree to which a genomic feature pair was
enriched in the Hi-C interactions between two TADs. To compare
differences in enrichment scores between cohesin-knockdown
and control Hi-C samples, we used the paired Wilcoxon signed-
rank test to calculate the p-value and effect size for each genomic
feature pair, as described30. We used Cytoscape v3.8.2 (https://
cytoscape.org/) to visualize the results.

Multi-scale insulation score
CustardPy calculates a multi-scale insulation score as described42. In
brief, the insulation score was calculated at a resolution of 25 kbp as
the log-scaled relative contact frequency across pairs of genomic loci
located around the genomic positions from 100 kbp to 1 Mbp. The
500-kbp distance was used in the single insulation score analysis. For
the classification of insulation boundaries into six types, we used the
following criteria based on this 500-kbp insulation score:
1. if(siNIPBL – control) > Tins and if(siCTCF – control) > Tins: “all-

dependent”
2. else if(siNIPBL – control) > Tins or if(siRad21 – control) > Tins:

“cohesin-dependent”
3. else if(siCTCF – control) > Tins: “CTCF-dependent”
4. else if(control – siCTCF) > Tins: “CTCF-separated”
5. else if(control – siNIPBL) > Tins or if(control – siRad21) > Tins:

“cohesin-separated”
6. else if(siNIPBL – control) <Tins and if(siCTCF – control) <Tins and

if(siCTCF – control) < Tins: “robust”
where we set Tins, the threshold of the insulation score, as 0.13. We
excluded siMau2 as a criterion because it had a smaller effect than
siNIPBL and siRad21 on the insulation score. We excluded chromo-
somes X and Y and the mitochondrial genome from this boundary
analysis. The obtained six boundary types are summarized in Supple-
mentary Data 5.

Directional relative frequency (DRF)
CustardPy can calculate the DRF that identifies the directional bias of
depletions on interTAD interactions44. DRF measures the bias in the
relative interaction frequency M = log(CsiRNA) – log (Ccontrol) between
regions up- and downstream of each genomic region, where C is a
normalized contact matrix. Therefore, the DRF can be calculated by

DRFi =
Xlmax

j = lmin

Mi,i + j �
Xlmax

j = lmin

Mi,i�j, ð1Þ

Where lmin and lmax indicate the range of the interaction. In this study,
we set lmin = 500 kbp and lmax = 2 Mbp.

To obtain differential DRF regions, we classified Hi-C samples as
“cohesin and loaders,” “cohesin unloaders,” and “others (including

control)”. We then calculated the average DRF values and 99% con-
fidence intervals (CIs) for each region. We used these values to identify
the regions that satisfied the following criteria: the 99% CI ranges of
“cohesin and loaders” and “others”didnotoverlap, and the averageDRF
valueof “cohesin and loaders”was>TDRF or <–TDRF,whereTDRF refers to
the DRF threshold. We set TDRF =0.7 in this study. The obtained dif-
ferential DRF regions are summarized in Supplementary Data 6.

RNA-seq
Total RNA was isolated using Trizol (Thermo Fisher Scientific) and a
NucleospinRNAkit (Macherey-Nagel). rRNAwas removedwith theRibo-
Zero Gold rRNA Removal kit (Illumina), followed by sequencing library
preparation with the NEBNext Ultra Directional RNA Library Prep kit for
Illumina (New England Biolabs). Single-end 65-bp reads were sequenced
by the Illumina HiSeq-2500 system. Sequenced reads were mapped to
the human reference sequence (GRCh38) by STAR version 2.7.3a63 with
the following options “SortedByCoordinate --quantMode Tran-
scriptomeSAM --outSAMattributes All”. The samples and mapping sta-
tistics are summarized in Supplementary Data 2. The gene expression
levelswere estimatedbyRSEMversion 1.3.164with theoption “--estimate-
rspd --strandedness reverse”. We used DESeq265 to identify DEGs (pro-
tein-coding genes, false discovery rate [FDR] <0.01). We focused on
protein-coding genes to avoid the effects of repetitive non-codingRNAs.

To mitigate the indirect effect and the technical variances, we
generated the list of DEGs bymerging the top-ranked 1000DEGs from
each pairwise comparison between each siRNA and the controls. For
clustering RNA-seq samples based on DEGs, we used the Simpson
index to compare the binary overlap of DEGs. We did not adopt
quantitative clustering using the z-score of gene expression level
because we prepared the RNA-seq samples by three different experi-
ments, each with control samples, and the quantitative analysis would
be more affected by the technical variations due to sample prepara-
tion. For clustering DEGs, we generated DEG vectors of each depletion
containing {1: upregulated, −1: downregulated, 0: not included} and
created amatrix by combining the vectorsof all depletions.We applied
K-means clustering to the matrix and classified the DEGs into 20
clusters. We used clusterProfiler66 for the GO enrichment analysis.

Spike-in ChIP-seq
Chromatin preparation for ChIP was performed as described7. In brief,
~8 × 106 RPE cells were crosslinked with 1% formaldehyde for 10min at
room temperature, followed by an additional 5min with glycine in PBS
added at a final concentration of 125mM. Fixed cells were lysed in LB1
(50mM HEPES-KOH, pH 7.4; 140mM NaCl; 1mM EDTA; 10% glycerol;
0.5% NP-40; 0.25% Triton X-100; 10mMdithiothreitol; 1mM PMSF) on
ice. The lysate was washed sequentially with LB2 (20mM Tris-HCl, pH
8.0; 200mM NaCl; 1mM EDTA; 0.5mM EGTA; 1mM PMSF) and LB3
(20mM Tris-HCl, pH 7.5; 150mM NaCl; 1mM EDTA; 0.5mM EGTA; 1%
Triton X-100; 0.1% sodium deoxycholate; 0.1% SDS; 1× cOmplete pro-
tease inhibitor cocktail [Roche]) on ice. The lysate was resuspended in
LB3 and sonicated using a Branson Sonifier 250D (Branson) for chro-
matin shearing (12 sec with amplitude set at 17% of the maximum
amplitude, six times). In addition, lysate containing fragmented chro-
matin was also prepared from ~2 × 106 mouse cells (C2C12) with the
sameprocedures. Humancell lysate andmousecell lysate (as a spike-in
internal control) were combined (~4:1 ratio) and incubated with pro-
tein A or G Dynabeads (Thermo Fisher Scientific) conjugated with 2μg
of the relevant antibodies for 14 h at 4 °C. The beads were thenwashed
five times with cold RIPA wash buffer (50mM HEPES-KOH, pH 7.4;
500mM LiCl; 1mM EDTA; 0.5% sodium deoxycholate; 1% NP-40) and
once with cold TE50 (50mM Tris-HCl, pH 8.0; 10mM EDTA). Material
captured on the beads was eluted with TE50 containing 1% SDS. The
eluted material and input were incubated for 6 h at 65 °C to reverse
crosslinks. They were then treated with 100 ng RNaseA (Roche) for 1 h
at 50 °C, followed by treatment with 100 ng Proteinase K (Merck)
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overnight at 50 °C. The input and ChIP DNA were then purified with a
PCR purification kit (Qiagen). DNA from the ChIP and input fractions
was end-repaired, ligated to sequencing adaptors, amplified, and size-
selected using NEBNext Ultra II DNA Library Prep kit for Illumina (New
England Biolabs) and Agencourt AMPure XP (Beckman Coulter). DNA
was then sequenced to generate single-end 65-bp reads using the
Illumina HiSeq-2500 and NextSeq 2000 systems.

Reads were aligned to the human genome build hg38 and mouse
genome build mm10 using Bowtie2 version 2.4.167 with default para-
meters. Quality assessment was performed with SSP version 1.2.268 and
DROMPAplus version 1.12.169. Spike-in read normalization, peak calling,
and visualization were performed with DROMPAplus. The mapping
statistics, quality values, and scaling factors for spike-in normalization
are summarized in Supplementary Data 3. The default parameter set
was used for peak calling (100-bp bin, --pthre_internal 5, --pthre_enrich
4) except for H3K9me3 (--pthre_internal 1 --pthre_enrich 2) due to the
lower signal-to-noise ratio. For read visualization, we displayed
–log10(p) scores of ChIP/input enrichment (--showpenrich 1 option),
which is recommended for distinguishing the signal from the noise70.

Permutation test for overlapping analysis
To compare the overlapping ratio of TSSs of DEGs and ChIP-seq peaks,
Hi-C loops, and insulation boundaries, we implemented a permutation
test (n = 1000) that compared the relative overlap frequency against
the background distribution. As a background, we used all DEGs
obtained by DESeq2 (11,345 genes, FDR <0.01) for DEGs and all
boundaries (7421) for the six types of boundaries.We randomly picked
up the same number of genes or boundaries from the background in
each permutation and generated the frequency distribution. For the
boundary analysis, we counted DEGs and the peaks that overlapped
within 50 kbp of them.

Correlation of interactions with epigenomes
For interTAD interaction comparisons, we extracted all TAD regions
with widths of >100 kbp and annotated them using the epigenomic
marks (H3K36me3, H3K27me3, H3K9me3, and Pol2) if the marks
covered >40.0% of the TAD length. To avoid a low read coverage at
long-range distances and the technical effect derived from the differ-
ent resolutions of Hi-C matrices, we used the log-fold change
log2(NsiRNA/Ncontrol) whereNsiRNA andNcontrol indicate the total number
of fragments mapped within the interTAD regions between a TAD pair
(with ≤2 Mbp between them) annotated with the epigenomic marks.
We calculated scores for each TADpair and applied k-means clustering
(k = 5). Then we calculated the z-score–normalized fraction of epige-
nomic status for the TAD pairs included in each cluster to estimate the
epigenomic-dependent depletion effect of interTAD interactions.

Extended ChromHMM
Our previous study showed that several one-dimensional metrics for
Hi-C data are effective for annotating chromatin states in detail44. In
this study, we added CTCF, TAD boundaries, and compartment
information in addition to five core histone marks (H3K4me3,
K3K27ac, H3K27me3, H3K36me3, and H3K9me3) to ChromHMM and
annotated 15 chromatin states.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human reference genome hg38 was obtained from the UCSC
Genome Browser (https://genome.ucsc.edu/). The raw sequencing
data and processed files for the Hi-C, RNA-seq, and ChIP-seq data from
this studyhavebeen submitted to theGene ExpressionOmnibus (GEO)
under the accession number GSE196450. The .hic files of the merged

Hi-C samples and the reference TAD and loop files are also available on
GSE196034. The reference data of TAD and loops obtained from the
merged control sample are available on Zenodo (https://doi.org/10.
5281/zenodo.8218447). Source data are provided with this paper.

Code availability
The original code used for the principal analysis is available on Zenodo
(https://doi.org/10.5281/zenodo.8218447). The CustardPy docker
image is available on DockerHub (https://hub.docker.com/r/rnakato/
custardpy).

References
1. Merkenschlager, M. & Nora, E. P. CTCF and Cohesin in genome

folding and transcriptional gene regulation. Annu. Rev. Genomics
Hum. Genet. 17, 17–43 (2016).

2. van Ruiten, M. S. & Rowland, B. D. SMC Complexes: universal DNA
looping machines with distinct regulators. Trends Genet. 34,
477–487 (2018).

3. Wendt, K. S. et al. Cohesin mediates transcriptional insulation by
CCCTC-binding factor. Nature 451, 796–801 (2008).

4. Schmidt, D. et al. A CTCF-independent role for cohesin in tissue-
specific transcription. Genome Res. 20, 578–588 (2010).

5. Faure, A. J. et al. Cohesin regulates tissue-specific expression by
stabilizing highly occupied cis-regulatory modules. Genome Res.
22, 2163–2175 (2012).

6. Kagey, M. H. et al. Mediator and cohesin connect gene expression
and chromatin architecture. Nature 467, 430–435 (2010).

7. Izumi, K. et al. Germline gain-of-function mutations in AFF4 cause a
developmental syndrome functionally linking the super elongation
complex and cohesin. Nat. Genet. 47, 338–344 (2015).

8. Kline, A. D. et al. Diagnosis and management of Cornelia de Lange
syndrome: first international consensus statement.Nat. Rev. Genet.
19, 649–666 (2018).

9. Kon, A. et al. Recurrent mutations in multiple components of the
cohesin complex in myeloid neoplasms. Nat. Genet. 45,
1232–1237 (2013).

10. van der Lelij, P. et al. Synthetic lethality between the cohesin sub-
units STAG1 and STAG2 in diverse cancer contexts. Elife 6,
e26980 (2017).

11. Garcia, P. et al. Disruption of NIPBL/Scc2 in Cornelia de Lange
Syndrome provokes cohesin genome-wide redistribution with an
impact in the transcriptome. Nat. Commun. 12, 4551 (2021).

12. Sikorska, N. & Sexton, T. Defining functionally relevant spatial
chromatin domains: it is a TAD complicated. J. Mol. Biol. 432,
653–664 (2020).

13. de Wit, E. & Nora, E. P. New insights into genome folding by loop
extrusion from inducible degron technologies. Nat. Rev. Genet. 24,
73–85 (2023).

14. Dixon, J. R. et al. Topological domains in mammalian genomes
identified by analysis of chromatin interactions. Nature 485,
376–380 (2012).

15. Bonev, B. &Cavalli, G.Organization and function of the 3Dgenome.
Nat. Rev. Genet. 17, 772 (2016).

16. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and func-
tionality of topologically associating domains. Nat. Genet. 52,
8–16 (2020).

17. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains.Cell 171,
305–320.e24 (2017).

18. Schwarzer, W. et al. Two independent modes of chromatin orga-
nization revealed by cohesin removal. Nature 551, 51–56 (2017).

19. Nora, E. P. et al. Targeted degradation of CTCF decouples local
insulation of chromosome domains from genomic compartmenta-
lization. Cell 169, 930–944.e22 (2017).

20. Fudenberg, G. et al. Formation of chromosomal domains by loop
extrusion. Cell Rep. 15, 2038–2049 (2016).

Article https://doi.org/10.1038/s41467-023-41316-4

Nature Communications |         (2023) 14:5647 15

https://genome.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196450
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196034
https://doi.org/10.5281/zenodo.8218447
https://doi.org/10.5281/zenodo.8218447
https://doi.org/10.5281/zenodo.8218447
https://hub.docker.com/r/rnakato/custardpy
https://hub.docker.com/r/rnakato/custardpy


21. Ouyang, Z., Zheng, G., Tomchick, D. R., Luo, X. & Yu, H. Structural
basis and IP6 requirement for Pds5-dependent cohesin dynamics.
Mol. Cell 62, 248–259 (2016).

22. Bastie, N. et al. Smc3 acetylation, Pds5 and Scc2 control the
translocase activity that establishes cohesin-dependent chromatin
loops. Nat. Struct. Mol. Biol. 29, 575–585 (2022).

23. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts
chromatin loop extension. Cell 169, 693–707.e14 (2017).

24. Wutz, G. et al. Topologically associating domains and chromatin
loops depend on cohesin and are regulated by CTCF, WAPL, and
PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

25. Allahyar, A. et al. Enhancer hubs and loop collisions identified from
single-allele topologies. Nat. Genet 50, 1151–1160 (2018).

26. Tedeschi, A. et al. Wapl is an essential regulator of chromatin struc-
ture and chromosome segregation. Nature 501, 564–568 (2013).

27. Liu, N. Q. et al. WAPLmaintains a cohesin loading cycle to preserve
cell-type-specific distal gene regulation. Nat. Genet. 53, 100–109
(2021).

28. Deardorff, M. A. et al. HDAC8 mutations in Cornelia de Lange syn-
drome affect the cohesin acetylation cycle. Nature 489, 313–317
(2012).

29. Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal
uncoupling between genome topology and gene expression. Nat.
Genet. 51, 1272–1282 (2019).

30. Seitan, V. C. et al. Cohesin-based chromatin interactions enable
regulated gene expression within preexisting architectural com-
partments. Genome Res. 23, 2066–2077 (2013).

31. Huang, H. et al. CTCF mediates dosage- and sequence-context-
dependent transcriptional insulation by forming local chromatin
domains. Nat. Genet. 53, 1064–1074 (2021).

32. Olley, G. et al. BRD4 interacts with NIPBL and BRD4 is mutated in a
Cornelia de Lange-like syndrome. Nat. Genet. 50, 329–332 (2018).

33. Hansen, A. S. CTCF as a boundary factor for cohesin-mediated loop
extrusion: evidence for a multi-step mechanism. Nucleus 11,
132–148 (2020).

34. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range
interactions reveals folding principles of the human genome. Sci-
ence 326, 289–293 (2009).

35. Dixon, J. R. et al. Chromatin architecture reorganization during stem
cell differentiation. Nature 518, 331–336 (2015).

36. van Ruiten, M. S. et al. The cohesin acetylation cycle controls
chromatin loop length through a PDS5A brake mechanism. Nat.
Struct. Mol. Biol. 29, 586–591 (2022).

37. Wang, C. Y., Jegu, T., Chu, H. P., Oh, H. J. & Lee, J. T. SMCHD1
merges chromosome compartments and assists formation of
super-structures on the inactive X. Cell 174, 406–421.e25 (2018).

38. Kriz, A. J., Colognori, D., Sunwoo, H., Nabet, B. & Lee, J. T. Balancing
cohesin eviction and retention prevents aberrant chromosomal
interactions, polycomb-mediated repression, and X-inactivation.
Mol. Cell 81, 1970–1987.e9 (2021).

39. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct
pathways remove mammalian cohesin from chromosome arms in
prophase and from centromeres in anaphase. Cell 103, 399–410
(2000).

40. Wutz, G. et al. ESCO1 andCTCF enable formation of long chromatin
loops by protecting cohesin(STAG1) from WAPL. Elife 9, e52091
(2020).

41. Busslinger,G. A. et al. Cohesin is positioned inmammaliangenomes
by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).

42. Crane, E. et al. Condensin-driven remodelling of X chromosome
topology during dosage compensation.Nature 523, 240–244 (2015).

43. Nakato, R. & Shirahige, K. Recent advances in ChIP-seq analysis:
from quality management to whole-genome annotation. Brief
Bioinform. 18, 279–290 (2017).

44. Wang, J. & Nakato, R. HiC1Dmetrics: framework to extract various
one-dimensional features from chromosome structure data. Brief
Bioinform 23, bbab509 (2021).

45. Vian, L. et al. The energetics and physiological impact of cohesin
extrusion. Cell 173, 1165–1178.e20 (2018).

46. Lin, Y. C. et al. Global changes in the nuclear positioning of genes
and intra- and interdomain genomic interactions that orchestrate B
cell fate. Nat. Immunol. 13, 1196–1204 (2012).

47. Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps
eliminates systematic biases to characterize global chromosomal
architecture. Nat. Genet. 43, 1059–1065 (2011).

48. Rao, S. S. et al. A 3D map of the human genome at kilobase reso-
lution reveals principles of chromatin looping. Cell 159, 1665–1680
(2014).

49. Liu, Y. et al. Systematic inference and comparison of multi-scale
chromatin sub-compartments connects spatial organization to cell
phenotypes. Nat. Commun. 12, 2439 (2021).

50. Forcato, M. et al. Comparison of computational methods for Hi-C
data analysis. Nat. Methods 14, 679–685 (2017).

51. Crump, N. T. et al. BET inhibition disrupts transcription but retains
enhancer-promoter contact. Nat. Commun. 12, 223 (2021).

52. Minamino, M. et al. Esco1 acetylates cohesin via a mechanism dif-
ferent from that of Esco2. Curr. Biol. 25, 1694–1706 (2015).

53. Stasevich, T. J. et al. Regulation of RNA polymerase II activation
by histone acetylation in single living cells. Nature 516, 272–275
(2014).

54. Durand, N. C. et al. Juicer provides a one-click system for analyzing
loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

55. Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

56. Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X
chromosome alters higher-order genome architecture. Proc. Natl
Acad. Sci. USA 113, E4504–E4512 (2016).

57. Nora, E. P. et al. Molecular basis of CTCFbinding polarity in genome
folding. Nat. Commun. 11, 5612 (2020).

58. Yardimci, G.G. et al.Measuring the reproducibility andquality of Hi-
C data. Genome Biol. 20, 57 (2019).

59. Sauria, M. E. G. & Taylor, J. QuASAR: quality assessment of spatial
arrangement reproducibility inHi-Cdata. Preprint atbioRxivhttps://
doi.org/10.1101/204438 (2017).

60. Yang, T. et al. HiCRep: assessing the reproducibility of Hi-C data
using a stratum-adjusted correlation coefficient. Genome Res. 27,
1939–1949 (2017).

61. Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data
and other genomically labeled arrays. Bioinformatics 36,
311–316 (2020).

62. van derWeide, R. H. et al. Hi-C analyses withGENOVA: a case study
with cohesin variants. NAR Genom. Bioinform. 3, lqab040 (2021).

63. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinfor-
matics 29, 15–21 (2013).

64. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinform.
12, 323 (2011).

65. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold
changeanddispersion for RNA-seqdatawithDESeq2.GenomeBiol.
15, 550 (2014).

66. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16,
284–287 (2012).

67. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with
Bowtie 2. Nat. Methods 9, 357–359 (2012).

68. Nakato, R. & Shirahige, K. Sensitive and robust assessment of ChIP-
seq read distribution using a strand-shift profile. Bioinformatics 34,
2356–2363 (2018).

Article https://doi.org/10.1038/s41467-023-41316-4

Nature Communications |         (2023) 14:5647 16

https://doi.org/10.1101/204438
https://doi.org/10.1101/204438


69. Nakato, R. & Sakata, T. Methods for ChIP-seq analysis: a practical
workflow and advanced applications. Methods 187, 44–53 (2020).

70. Roadmap Epigenomics Consortium,et al. Integrative analysis of 111
reference human epigenomes. Nature 518, 317–330 (2015).

Acknowledgements
We thank all members of the Nakato and Shirahige Laboratories for their
discussions and comments on themanuscript. This work was supported
by a Grant-in-Aid for Scientific Research (17H06331 and 23H02466 to
R.N. and 20H05686 and 20H05940 to K.S.), the Japan Agency for
Medical Research and Development under grant number
JP23gm6310012h0004 and the Japan Science and Technology Agency
under grant number JPMJCR18S5.

Author contributions
R.N. conceived this project and wrote the manuscript. R.N., J.W.,
L.A.E.N., and G.M.O. implemented the computational analysis. R.N. and
Y.N. developed and tested CustardPy. T.S. prepared Hi-C, ChIP-seq, and
RNA-seq samples. M.B. designed ChIP-seq and RNA-seq samples. K.S.
supervised the samplepreparation and sequencing and suggestedways
to improve the analysis and the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-41316-4.

Correspondence and requests for materials should be addressed to
Ryuichiro Nakato or Katsuhiko Shirahige.

Peer review informationNatureCommunications thanksShuai Cheng Li
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-41316-4

Nature Communications |         (2023) 14:5647 17

https://doi.org/10.1038/s41467-023-41316-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors
	Results
	Multi-omics data from a variety of cohesin-related depletions
	Comparative Hi-C analysis reveals diverse depletion effects on chromatin folding
	Gene expression changes are correlated with direct cohesin binding
	Quantitative classification of insulation levels among boundaries
	Cohesin is broadly distributed in the active compartment
	InterTAD interactions are affected by context-specific depletion
	Depletion effects on long-range interactions

	Discussion
	Methods
	Cell culture and siRNA
	Antibodies
	Protein analysis
	In situ Hi-C
	Hi-C analysis by CustardPy
	Hi-C data processing with Juicer
	Hi-C data processing with other tools
	Structured interaction matrix analysis (SIMA)
	Multi-scale insulation score
	Directional relative frequency (DRF)
	RNA-seq
	Spike-in ChIP-seq
	Permutation test for overlapping analysis
	Correlation of interactions with epigenomes
	Extended ChromHMM
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




