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Shared and distinct genetic etiologies for
different types of clonal hematopoiesis

Derek W. Brown 1,2,8, Liam D. Cato3,4,8, Yajie Zhao 5,8,
Satish K. Nandakumar 3,4,6, Erik L. Bao 3,4, Eugene J. Gardner5,
Aubrey K. Hubbard1, Alexander DePaulis1, Thomas Rehling1, Lei Song1, Kai Yu1,
Stephen J. Chanock 1, John R. B. Perry 5,7,9 , Vijay G. Sankaran 3,4,9 &
Mitchell J. Machiela 1,9

Clonal hematopoiesis (CH)—age-related expansion of mutated hematopoietic
clones—can differ in frequency and cellular fitness by CH type (e.g., mutations
in driver genes (CHIP), gains/losses and copy-neutral loss of chromosomal
segments (mCAs), and loss of sex chromosomes). Co-occurring CH raises
questions as to their origin, selection, and impact. We integrate sequence and
genotype array data in up to 482,378 UK Biobank participants to demonstrate
shared genetic architecture across CH types. Our analysis suggests a cellular
evolutionary trade-off between different types of CH, with LOY occurring at
lower rates in individuals carrying mutations in established CHIP genes. We
observed co-occurrence of CHIP andmCAswith overlap atTET2,DNMT3A, and
JAK2, in which CHIP precedes mCA acquisition. Furthermore, individuals car-
rying overlapping CH had high risk of future lymphoid and myeloid malig-
nancies. Finally, we leverage shared genetic architecture of CH traits to identify
15 novel loci associated with leukemia risk.

Recent studies have reported the frequent occurrence and clonal
expansionofpost-zygoticmutations in thehematopoietic system, now
seen in all human tissues but at different attained frequencies1–6.
Initially, clonal expansion was recognized by the presence of skewed X
chromosome inactivation7,8. Subsequent studies have revealed the
presence of mosaic chromosomal alterations (mCAs), including fre-
quent loss of X (LOX) and Y (LOY) chromosomes, in a subset of
hematopoietic cells. Most recently, clonal expansion of recurrent
somatic driver mutations observed in hematologic malignancies have
been identified in individuals with otherwise normal hematologic

parameters, a condition known as clonal hematopoiesis of indetermi-
nate potential (CHIP). These somatic alterations can predispose to
either myeloid or lymphoid malignancies, but do not necessarily pro-
gress; in otherwords,many otherwise healthy individuals are observed
to have CH9. Moreover, recent studies have shown the additive impact
of mCAs and CHIP mutations on predisposition to blood cancers, with
respect to overall risk for a primary hematologic malignancy and also
in the setting of therapy-associated myeloid malignancies10,11, but do
not systematically examine genetic relationships which can inform
shared mechanisms.
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Large studies have begun to reveal how germline genetic variants
can increase risk for acquisition of CH but have yet to investigate
germline factors leading to the co-existence of events or the biologic
mechanisms of hematopoiesis that confer the risk of CH. Here, we
perform a systematic investigation examining genetic and phenotypic
associations across all types of CH utilizing a spectrum of genotyping
and sequencing data from large-scale genetic susceptibility studies of
types of clonal hematopoiesis (e.g., mCAs, LOX, LOY, and CHIP),
hematologic malignancies (e.g., myeloproliferative neoplasms
(MPNs)), and hematopoietic phenotypes. We identify numerous
interrelated genetic and phenotypic associations between these dis-
tinct but potentially related phenotypes, providing substantial new
insights into the shared and distinctmechanisms and consequences of
different types of clonal hematopoietic expansions.

Results
CH states display shared genetic and phenotypic relationships
We began by investigating the co-existence of different types of CH:
loss of chromosome Y (LOY) in men, loss of chromosome X (LOX) in
women, autosomalmCAs including gains, losses, and copy neutral loss
of heterozygosity (CNLOH), CHIP, and MPNs (Fig. 1). We subsequently
examined associations with germline susceptibility variants, in antici-
pation of the discovery of shared elements. Genome-wide association
study (GWAS) summary statistics for each type of CH were analyzed
and pairwise genetic correlations between traits were computed
(Online Methods). Using the high-definition likelihood (HDL) method,
positive genetic correlations were observed between LOY and LOX
(ρ =0.23, P = 5.53 × 10−9), LOY and MPN (ρ = 0.35, P = 1.74 × 10−4),
autosomalmCAs andMPN (ρ =0.57, P = 1.83 × 10−3), andCHIP andMPN
(ρ =0.48, P = 4.32 × 10−3) (Fig. 2, Supplementary Data 1). We repeated
genetic correlation analyses using linkage disequilibrium score
regression (LDSC) (Online Methods) and likewise observed positive
genetic correlations for LOY with both LOX (ρ =0.30, P = 4.09 × 10−5)
and MPN (ρ =0.21, P = 1.67 × 10−2) (Supplementary Fig. 1, Supplemen-
tary Data 2). The genetic correlation between autosomal mCAs and
MPN, andCHIPandMPNhad the samedirection of effect as foundwith
HDL (Supplementary Fig. 1, Supplementary Data 2).

In an analysis of 482,378 subjects from the UK Biobank, we
investigated adjusted phenotypic associations between types of CH
(Online Methods, Supplementary Data 3). Consistent with previous
studies of CH12–14, each type of CH investigated demonstrated a strong
positive association with age (Supplementary Fig. 2). We observed an
inverse phenotypic association between LOY and MPN (T-statistic =
−4.76, P = 1.96 × 10−6) (Fig. 3, Supplementary Data 4), which is opposite
in direction from the genetic correlation. We were unable to evaluate
the phenotypic association between LOY and LOX, as these are sex-
specific traits.

We report positive phenotypic associations of autosomal mCAs
with LOY (T-statistic = 4.31, P = 1.61 × 10−5), LOX (T-statistic = 12.44,
P = 1.54 × 10−35), CHIP (T-statistic = 8.89, P = 6.41 × 10−19), andMPN (T-
statistic = 41.00, P < 5 × 10−324) (Fig. 3, Supplementary Data 4). Sensi-
tivity analyses removed individuals with mCAs spanning the JAK2
region (N= 550), a region frequently impacted by mCAs in MPNs15–18,
and still observed a positive phenotypic association between auto-
somal mCAs and MPN, though the association was attenuated (T-sta-
tistic = 15.53, P = 2.39 × 10−54). CHIP was also positively associated with
MPN (T-statistic = 8.82, P = 1.18 × 10−18) and inversely associated with
LOY (T-statistic = −4.11, P = 4.04 × 10−5) (Fig. 3, Supplementary Data 4).
The inverse association and exclusivity between CHIP and LOY were
most prominent when stratified by the frequently observed CHIP gene
mutations DNMT3A CHIP with LOY (NCHIP = 1,818, T-statistic = −3.71,
P = 2.08 × 10−4) and TET2 CHIP with LOY (NCHIP = 786, T-statistic =
−3.99, P = 6.50× 10−5) (Supplementary Data 5). Limited evidence was
observed for an inverse relationship with LOY for less common CHIP
mutations, suggesting DNMT3A and TET2 mutations are primarily

responsible for the overall inverse relationship observed between
CHIP and LOY. Sensitivity analyses restricting LOY to cell fractions
greater than 15% to eliminate potential bias in detection differences
between CHIP and mCAs provided some support of the inverse rela-
tionships between DNMT3A CHIP with LOY (NCHIP = 1467, T-statistic =
−2.18, P = 2.91 × 10−2) and TET2 CHIP with LOY (NCHIP = 662, T-statis-
tic = −1.71, P = 8.71 × 10−2)(Supplementary Data 5). Associations by
specific non-DNMT3A or non-TET2 CHIP genes displayed little evi-
dence of directional relationship, perhaps due to small numbers of
individuals with CHIP gene and LOY overlap. In further evaluation, we
performed exome-wide burden analyses to identify rare (MAF < 0.1%)
protein coding variants associated with LOY (Online Methods). These
analyses identified three established CHIP genes at exome-wide sig-
nificance (Supplementary Data 6), demonstrating that individuals
carrying heterozygous loss-of-function variants in TET2 (n = 193,
beta = −0.21, SE = 0.03, P = 7.7 × 10−15), ASXL1 (n = 213, beta = −0.18,
SE = 0.03, P = 1.3 × 10−12), and DNMT3A (n = 89, beta = −0.17, SE = 0.04,
P = 2.2 × 10−5) were less likely to exhibit LOY (Supplementary Figs. 3, 4,
Supplementary Data 7). These findings reinforce the idea that acquir-
ing LOY in the presence of some CHIP mutations is likely selected
against in clonally-expanded hematopoietic stem cells.

We next examined the cellular fraction of individuals with auto-
somalmCA events and the variant allele frequency (VAF) of individuals
with CHIPmutations and observed that individuals with higher cellular
fractions of autosomal mCA events (i.e., greater proportion of cells
carrying the somatic event) were more likely to have LOX (T-statistic=
3.08, P = 2.09 × 10−3), CHIP (T-statistic = 2.35, P = 1.88× 10−2), and MPN
(T-statistic = 17.83, P = 3.17 × 10−70) (Supplementary Fig. 5, Supple-
mentaryData 8). Higher autosomalmCA cellular fractionwas inversely
associated with LOY (T-statistic = −7.76, P = 9.77 × 10−15) (Supplemen-
tary Fig. 5, Supplementary Data 8). Individuals with higher VAF of CHIP
mutations (i.e., higher clonal fractions) were more likely to have
detectable autosomal mCAs (T-statistic = 5.82, P = 6.21 × 10−9) and
MPNs (T-statistic = 7.19, P = 7.36 × 10−13), and less likely to have LOY (T-
statistic = −3.80, P = 1.48 × 10−4) (Supplementary Fig. 6, Supplemen-
tary Data 9).

In an analysis of co-existence of types of CH, CHIP and autosomal
mCAs significantly co-occurred in the same individual (hypergeo-
metric P = 5.32 × 10−28; Supplementary Fig. 7a) with 439 individuals
(6.0% of individuals with CHIP, 6.3% of individuals with autosomal
mCAs) carrying both (Supplementary Data 3). Individuals with auto-
somal mCAs displayed a distinct pattern of CHIP gene mutations
compared to individuals without autosomal mCAs (Supplementary
Fig. 7b, Supplementary Data 10). 13 CHIP gene mutations were sig-
nificantly enriched in individuals with autosomal mCAs (DNMT3A,
TET2, ASXL1, TP53, SF3B1, STAT3, SRSF2, MPL, KRAS, JAK2, IDH1,
PRPF40B, and PIGA; Supplementary Fig. 7b), a similar pattern of co-
occurrence as previously observed10,11. Additionally, individuals with
CHIPmutations weremore likely to acquire autosomalmCAs across 16
chromosomes (Supplementary Fig. 7c, Supplementary Data 11), with
enrichment for several chromosome-specific copy number states (e.g.,
CNLOH in chromosomes 1, 4, and 9; Supplementary Fig. 7c, Supple-
mentary Data 11).

An evaluation of the 439 individuals with both a CHIP mutation
and autosomal mCA revealed that 53 (12.1%) had events spanning the
same genomic region (binomial P = 1.70 × 10−10). 9 CHIP genes over-
lapped with autosomal mCAs, with TET2 mutations accounting for 34
(54.0%) of theobservedoverlappingmutations (SupplementaryFig. 8).
CNLOH was the most frequently observed autosomal mCA event
(N = 46 (73.0%)) among all overlapping mutations (Supplementary
Fig. 8).We examined the clonal fractions of both somaticmutations to
provide a window into the clonal evolution of CHIP mutations and
autosomalmCAs and foundhigher estimatedCHIPVAF thanestimated
mCA cellular fraction in a majority of co-localizing mutations, sug-
gesting the acquisition of the CHIP mutation preceded the acquisition
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Fig. 1 | Description of each type of clonal hematopoiesis (CH). The top panel depicts the acquisition and clonal expansion of a CH clone and its potential for ele-
vated hematologic cancer risk. Lower panels illustrate loss of chromosomeY (LOY); loss of chromosomeX (LOX); autosomalmosaic chromosomal alterations (mCAs) that
include (A) genomic deletions, (B) copy neutral loss of heterozygosity (CNLOH), and (C) genomic duplications; clonal hematopoiesis of indeterminate potential (CHIP);
and myeloproliferative neoplasms (MPN).
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of autosomal mCAs (binomial P = 1.75 × 10−4; Supplementary Fig. 9);
this finding is consistent with a multi-hit hypothesis in driving clonal
evolution. This is particularly evident in loss-of-heterozygosity of
chromosome 9 alterations after acquisition of a JAK2 V617Fmutation,
as has been seen in individuals with MPNs19–21. Subsequent autosomal
mCA-induced loss of heterozygosity or amplification of CHIP driver
mutations could confer strong selective advantages promoting rapid
cellular expansion. To test this hypothesis, we investigated the asso-
ciation between CHIP VAF and co-occurrence and overlap of CHIP and
autosomal mCAs (Supplementary Fig. 10, Supplementary Data 12). We
found that individuals with bothCHIP and autosomalmCAs had higher
CHIP VAF (T-statistic = 3.88, P = 1.03 × 10−4) and that individuals car-
rying overlapping CHIP and autosomal mCAs displayed further ele-
vated CHIP VAF (T-statistic = 6.54, P = 6.75 × 10−11) compared to
individuals with only CHIP mutations, demonstrating that individuals
with CHIP and autosomal mCAs, especially those with overlapping
mutations, have increased clonal expansion. As detection of CHIP

requires higher VAF than cell fractions required to detect autosomal
mCAs, we performed sensitivity analyses restricting to autosomal
mCAs with cell fractions similar to the detection level for CHIP muta-
tions (cell fraction >15%) to eliminate any potential bias due to detec-
tion differences. Results from the sensitivity analysis showed similar
significant associations with higher estimated effect sizes, further
supporting potential mutational cooperativity between CHIP and
autosomal mCAs (Supplementary Fig. 10, Supplementary Data 12).

We further investigated lymphoid and myeloid risk in individuals
with and without CHIP and autosomal mCAs. Individuals with both
CHIP and non-overlapping autosomal mCAs (N = 386) demonstrated a
strong positive association with both incident lymphoid malignancy
risk (hazard ratio (HR) = 8.63, 95%confidence interval (CI) = 5.93–12.58,
P = 3.09 × 10−29) and incidentmyeloidmalignancy risk (HR= 24.70, 95%
CI = 14.82–41.16, P = 7.98 × 10−35) compared to individualswithoutCHIP
or autosomal mCAs (Supplementary Fig. 11). Individuals carrying
overlapping CHIP and autosomal mCAs (N = 53) displayed even
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Fig. 2 | Pairwise genetic correlations between each type of clonal hematopoi-
esis, telomere length, and 19 blood cell traits derived using the high-definition
likelihood (HDL) method. Square areas represent the absolute value of genetic
correlations. Blue, positive genetic correlation; red, negative genetic correlation.

Genetic correlations that are significantly different from zero (p-value < 0.05) are
marked with an asterisk. All pairwise genetic correlations and p-values are given in
Supplementary Data 1.
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stronger associations with lymphoid malignancy risk (HR = 16.43, 95%
CI = 7.80–34.60, P = 1.77 × 10−13) and myeloid malignancy risk (HR =
63.46, 95% CI = 26.01–154.84, P = 7.56 × 10−20) (Supplementary Fig. 11
and Supplementary Data 13).

We also assessed incident hematological malignancy risk with all
combinations of LOY, LOX, CHIP, and autosomal mCAs (Table 1).
Individuals with only LOX (HR = 1.46, 95% CI = 1.03–2.01,
P = 2.09 × 10−2) or only autosomalmCAs (HR = 5.24, 95% CI = 4.47–6.14,
P = 2.89 × 10−93) had significant risk of incident lymphoidmalignancies.
Individuals with LOY or CHIP were only associated with increased
lymphoid malignancy risk when also harboring autosomal mCAs
(Table 1). For myeloid malignancies, individuals with only CHIP muta-
tions (HR = 5.44, 95%CI = 3.97–7.47, P = 9.00 × 10−26) or only autosomal
mCAs (HR = 7.19, 95% CI = 5.32–9.70, P = 6.14 × 10−38) were associated
with increased risk. Individuals carrying LOY or LOX mutations were
only associated with increased myeloid malignancy risk when also
harboring CHIP or autosomalmCAs. The co-occurrence and overlap of
CHIP and autosomal mCAs motivates future studies that jointly assess

both CH traits to better understand CH interactions that could confer
increased propensity for clonal expansion and elevated disease and
mortality risk, particularly at specific loci or with specific mutations9.

Pathway-based analyses using GWAS summary statistics (Online
Methods) utilized 6290 curated gene sets and canonical pathways
from Gene Set Enrichment Analysis (GSEA) and revealed significant
associations between several biological pathways and types of CH
(Supplementary Fig. 12) with all types of CH associated with gene sets
related to apoptosis, IL-2 signaling, DNA methylation, promyelocytic
leukemia gene product (PML) targets, and cancer-related gene sets
(Supplementary Data 14–18). LOY, LOX, and MPN were significantly
associated with hematopoietic progenitor cells, hematopoietic cell
lineage and differentiation gene sets, and DNA damage response
(Supplementary Data 14, 15, and 18). LOY, autosomal mCAs, CHIP, and
MPNwere associatedwith telomereextension by telomerase, with LOY
and MPN also associated with telomere stress-induced senescence
(Supplementary Data 14, 16–18). Additionally, the 12 genetic pathways
significantly associated with autosomal mCAs were also associated
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HCT * * * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

HGB * * * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

MCH ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

MCHC * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

MCV ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

MEAN_RETIC_VOL ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

RBC_COUNT ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** **

RDW ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** **

RETIC_COUNT ** * * ** * ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** **

BASO_COUNT * ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** **

EO_COUNT ** * ** * ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

LYMPH_COUNT * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

MONO_COUNT ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

NEUTRO_COUNT ** ** * ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

WBC_COUNT ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

1,600

0

-450

Fig. 3 | Pairwise phenotypic associations between each type of clonal hema-
topoiesis, telomere length, and 19bloodcell traits.Blue, positive T-statistic; red,
negative T-statistic. T-statistics were derived using linear regression adjusted for
age, age-squared, 25-level smoking status, and sex (in non LOY or LOX

comparisons). Black cellswere not tested. T-statistics that are significantly different
from zero at a nominal p-value (p <0.05) are marked with an asterisk and Bonfer-
roni corrected p-value (p < 1.67 × 10−4) are marked with two asterisks. All pairwise
T-statistics and p-values are given in Supplementary Data 4.
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with CHIP, providing further evidence that these types of CH are
interrelated. Overall, pathway analyses suggest core shared patho-
genic mechanisms related to cellular differentiation, DNA damage
repair, and cell cycle regulation that are critical for the development
and clonal expansion of most types of CH.

Correlation of types of CHwithmyeloid and lymphoid cell traits
We examined genetic and phenotypic correlations between types of
CH and 19 blood cell traits to assess lineage-specific effects by type of
CH (Figs. 2, 3). All types of CH displayed positive genetic correlations
for both plateletcrit (P <0.02) and platelet count (P <0.05) (Fig. 2,
Supplementary Data 1). LOY,MPN, and CHIP were the only types of CH
to also display significant phenotypic associations with plateletcrit
(P < 2 × 10−13) and platelet count (P < 1.5 × 10−13) (Fig. 3, Supplementary
Data 4). LOY and MPN demonstrated additional genetic correlations
enriched for myeloid lineage traits, namely, positive correlations with
total white blood cell, eosinophil, monocyte, and neutrophil counts
(P < 0.026; Fig. 2, Supplementary Data 1). LOY was additionally posi-
tively correlated with lymphocyte count (ρ = 0.05, P = 8.74 × 10−3;
Fig. 2, Supplementary Data 1). MPN was positively correlated with
other myeloid lineage traits including hematocrit, hemoglobin, and
red blood cell count (P < 6.5 × 10−4; Fig. 2, Supplementary Data 1), as
previously reported22. In support of the genetic correlations, we
observed strong phenotypic associations of LOY and MPN with mye-
loid traits that closely mirror the magnitude and significance of the
genetic correlation results (Fig. 3, Supplementary Data 4), and pre-
viously reported phenotypic associations23–25. Both LOY andMPNwere

positively associated with monocyte, neutrophil, and white blood cell
counts (P < 1.5 × 10−41; Fig. 3, Supplementary Data 4). LOY was also
inversely associated with lymphocyte count (T-statistic = −2.75,
P = 5.91 × 10−3) (Fig. 3, Supplementary Data 4). These findings suggest
shared mechanisms regulating hematopoiesis likely also govern sus-
ceptibility to LOY and MPN.

LOX was the only type of CH to display both a positive genetic
correlation (ρ = 0.17, P = 8.40 × 10−5; Fig. 2, SupplementaryData 1) and a
positive phenotypic association with lymphocyte count (T-statistic=
23.96, P = 9.11 × 10−127) (Fig. 3, Supplementary Data 4). LOX had a
positive genetic correlation with myeloid traits such as basophil count
and eosinophil count, whereas it displayed an inverse genetic corre-
lation with hematocrit and hemoglobin (P < 0.02, Fig. 2, Supplemen-
tary Data 1). LOX also had positive phenotypic associations with MCH,
MCHC, MCV, and monocyte count (P <0.015, Fig. 3, Supplementary
Data 4), and inverse associationswith hematocrit, red bloodcell count,
and neutrophil count (P < 0.03, Fig. 3, Supplementary Data 4).

Besides the aforementioned genetic correlations with plateletcrit
and platelet count, we observed additional genetic correlations
between autosomal mCAs and CHIP with blood cell traits (Fig. 2).
Inverse genetic correlations were observed between autosomal mCAs
with MCH, MCV, and mean reticulocyte volume (P < 3.0 × 10−2, Fig. 2,
Supplementary Data 1). CHIP had a positive genetic correlation with
MCHC and reticulocyte count (P < 4.0 × 10−2, Fig. 2, Supplementary
Data 1). In the case of combined autosomal mCAs, there was evidence
for positive phenotypic associations with both lymphocyte count (T-
statistic = 60.33, P < 5 × 10−324) and total white blood cell count (T-

Table 1 | Incident lymphoid and myeloid malignancy associations (HR) with 95% confidence intervals by CH status

Malignancy CH status NCancer NNo_cancer HR (95% CI) p-valuea

Lymphoid

No LOY, LOX, CHIP, or Autosomal mCAs 919 163,193 REF –

LOY only 169 15,458 1.03 (0.86–1.23) 7.67 × 10−1

LOX only 41 4620 1.46 (1.06–2.01) 2.09 × 10−2

CHIP only 51 5837 1.19 (0.90–1.58) 2.32 × 10−1

Autosomal mCA only 186 5198 5.24 (4.47–6.14) 2.89 × 10−93

LOY and CHIP 7 727 0.86 (0.41–1.81) 6.83 × 10−1

LOY and Autosomal mCA 40 787 4.38 (3.16–6.06) 5.40 × 10−19

LOX and CHIP 1 218 0.69 (0.10–4.89) 7.08 × 10−1

LOX and Autosomal mCA 20 267 10.93 (6.98–17.13) 1.55 × 10−25

CHIP and Autosomal mCA 26 313 10.06 (6.80–14.89) 6.55 × 10−31

LOY, CHIP, and Autosomal mCA 3 71 3.36 (1.08–10.49) 3.64 × 10−2

LOX, CHIP, and Autosomal mCA 6 20 41.10 (18.34–92.09) 1.77 × 10−19

Myeloid

No LOY, LOX, CHIP, or Autosomal mCAs 202 163,910 REF -

LOY only 29 15,598 0.98 (0.65–1.49) 9.34 × 10−1

LOX only 10 4651 1.48 (0.78–2.83) 2.30 × 10−1

CHIP only 49 5839 5.44 (3.97–7.47) 9.00 × 10−26

Autosomal mCA only 55 5329 7.19 (5.32–9.7) 6.14 × 10−38

LOY and CHIP 9 725 6.14 (3.09–12.2) 2.19 × 10−7

LOY and Autosomal mCA 4 823 2.45 (0.9–6.67) 7.96 × 10−2

LOX and CHIP 0 219 - 9.94 × 10−1 b

LOX and Autosomal mCA 1 286 2.21 (0.31–15.86) 4.29 × 10−1

CHIP and Autosomal mCA 17 322 31.69 (19.2−52.28) 1.10 × 10−41

LOY, CHIP, and Autosomal mCA 1 73 6.42 (0.89−46.15) 6.47 × 10−2

LOX, CHIP, and Autosomal mCA 3 23 87.29 (27.67−275.35) 2.45 × 10−14

Associations were derived using Cox proportional hazards regression adjusted for age, age-squared, 25-level smoking status, and sex.
CH clonal hematopoiesis, HR hazard ratio, CI confidence interval.
aTwo-sided Cox proportional hazards regression.
bThere were no incident myeloid cancers in this group.
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statistic= 34.48, P = 3.89 × 10−260) (Fig. 3, Supplementary Data 4).
Combined CHIP was positively associated with platelet distribution
width (T-statistic = 5.02, P = 5.26 × 10−7), red blood cell distribution
width (T-statistic = 4.09, P = 4.37 × 10−5), and neutrophil count (T-sta-
tistic = 3.59, P = 3.32 × 10−4) (Fig. 3, Supplementary Data 4), all of which
are myeloid lineage traits. The CHIP phenotypic association findings
support recent evidence suggesting CHIP primarily results in myeloid-
related disruptions, although select distinct CHIP events could
increase the risk for disruptions in the lymphoid lineage9. Together our
results support lineage-specific effects that differ by type of CH, sug-
gesting shared etiology, specifically shared genetic etiology for LOY
andmyeloid traits, aswell as ample phenotypic associations that detail
early downstream phenotypic disruptions in hematologic phenotypes
that alter disease risk.

A dynamic association of telomere length with CH
Telomere length in leukocytes provides a metric of hematopoietic
stem cell activity and can provide insights into how genetic variation
in hematopoietic stem cells interact with risk for acquiring CH22,26.
The genetic relationship between each type of CH with leukocyte
telomere length (TL) was evaluated to determine whether genetic
variation in telomere maintenance genes could also contribute to
predisposition to CH. A positive genetic correlation for autosomal
mCAs with TL was observed (ρ = 0.23, P = 4.95 × 10−3) (Fig. 2, Sup-
plementary Data 1). To further test for a causal relationship with TL,
we conducted one-direction Mendelian randomization (MR)
between TL and each CH type using 130 previously published TL-
associated variants (Supplementary Fig. 13)27. Based on MR-IVW
models, we observed a positive relationship between the TL IV and
autosomal mCAs (Zfiltered = 5.65, P = 1.21 × 10−7), CHIP (Zfiltered = 5.72,
P = 9.65 × 10−8), and MPNs (Zfiltered = 5.61, P = 1.88 × 10−7), and
observed a negative relationship between the TL IV and LOY
(Zfiltered = −6.40, P = 8.11 × 10−9) and did not identify evidence for a
causal relationship between telomere length and LOX (Supplemen-
tary Fig. 14, Supplementary Data 19). These observations provide
additional support of a causal relationship between inherited telo-
mere length and select CH traits12,22,28–31. The intercept fromMR-Egger
regression was significant (p < 0.05) for both autosomal mCAs and
MPN (Supplementary Data 19), so we performed additional MR
weighted median (MR-WM) analyses which displayed the same
positive relationships between the TL IV and autosomal mCAs
(Zfiltered = 4.16, P = 6.19 × 10−5), and MPNs (Zfiltered = 4.34,
P = 3.53 × 10−5) (Supplementary Data 19). These MR relationships are
supported by our pathway analyses, which demonstrate telomere
pathways are significantly associated with LOY, autosomal mCAs,
CHIP, and MPN (Supplementary Data 14, 16–18). Based on these data
it is plausible that inherited variation in telomere lengthmaintenance
contributes to clonal expansion of mutated hematopoietic stem
cells, or alternatively confers greater risk for mutation acquisition
and clonal evolution in hematopoietic stem cells.

Measured telomere length is a metric of hematopoietic stem cell
growth and clonal expansion. Using available measured telomere
length data from UK Biobank, we observed inverse phenotypic asso-
ciations between CH and measured telomere length (Fig. 3). CHIP,
which presents with the smallest fraction of mutated clones, had an
insignificant phenotypic association with measured TL (T-statistic =
−1.03, P =0.30) (Fig. 3, SupplementaryData 4). To further examine this
relationship, we conducted analyses between CHIP VAF andmeasured
TL and observed individuals with higher VAF, i.e., higher CHIP cellular
fraction, had a more inverse association with measured TL (T-statis-
tic = −6.50, P = 8.34 × 10−11, Supplementary Fig. 15a and Supplementary
Data 20). Additionally, individuals with higher autosomal mCA cellular
fraction also demonstrated a stronger inverse association with mea-
sured TL (T-statistic = −9.02, P = 2.16 × 10−19, Supplementary Fig. 15b
and Supplementary Data 21). The number of mutations present in an

individual was also inversely associated with TL for increasing auto-
somalmCA count (T-statistic = −10.01, P = 1.35 × 10−23). Individuals with
both CHIP and autosomal mCAs demonstrated an inverse association
with TL (T-statistic = −2.75, P = 5.93 × 10−3) as well, with individuals
carrying overlapping CHIP and autosomal mCAs displaying a stronger
inverse association with TL (T-statistic = −3.48, P = 5.01 × 10−4) com-
pared to individuals without CHIP or autosomalmCAs (Supplementary
Fig. 16 and Supplementary Data 22). These inverse TL associations
indicate increased clonal expansion leads to reduced measured telo-
mere length and suggest reductions in telomere length from the
expansion of mutated clones could lead to further genomic instability
and the acquisition of additional CH mutations.

Leveraging shared correlations to nominate additional MPN
susceptibility loci
Finally, we leveraged the shared genetic architecture between these
CH traits (Fig. 4) to identify novel loci associated with MPN - a disease
where it has been challenging for GWAS to performwell powered case-
control analyses, despite the finding of considerable heritable influ-
ences on this disorder22. We first performed multi-trait analysis of
GWAS (MTAG), which boosts the power to identify potential MPN-
associated signals by leveraging the shared genetic architecture with
LOY and TL (Online Methods). This approach identified 25MPN loci at
genome-wide significance (P < 5 × 10−8), 15 of which have not been
previously implicated in MPN (Supplementary Data 23). We next
evaluated a complementary approach of performing colocalization
analyses (Online Methods) using genome-wide significant loci asso-
ciatedwith LOY, TL, andMPN.We found that 12 LOY loci,mapping to 11
genes (TET2, NREP, GFI1B, TERT, DLK1, PARP1, TP53, RBPMS, MAD1L1,
MECOM, and ATM) co-localized with MPN (Supplementary Data 24),
highlighting 6 loci that have not previously reached genome-wide
significance forMPN (P = 1.17 × 10−4 to 5.14 × 10−8). In addition, 5 leading
SNPs for TL co-localizedwithMPNandmapped to4genes (TERT,NFE2,
PARP1, and ATM), 2 of which have not reached genome-wide sig-
nificance (P < 5 × 10−8) in prior MPN analyses (NFE2 and PARP1) (Sup-
plementary Data 25). Of note, leading SNPs at TERT, PARP1, and ATM
colocalized across all 3 traits (Supplementary Data 24 and Supple-
mentary Data 25), and 5 co-localized loci also reached genome-wide
significance in the MTAG analysis (PARP1, MAD1L1, DLK1, RBPMS, and
TP53) (Fig. 5). While validation is required for the newly identified
putative MPN risk loci, these results illuminate opportunities to use
insights from correlated diseases or phenotypes to gain new genetic
and biological insights on blood cancer risk.

Discussion
Understanding the underlying molecular mechanisms of different
types of CH is critical for disentangling age-related clonal evolution
and the possible impact of CH on future disease risk, particularly the
risk of acquiring hematologic malignancies. We performed one of the
first systematic analyses to examine associations across all types of CH
using large-scale genetic and phenotypic data. Our results highlight
both similarities in the underlying mechanisms and key differences,
particularly with respect to distinct aspects of hematopoiesis. Com-
mon to the types of CH are core pathways, namely, cellular differ-
entiation, DNA repair, and cell cycle regulation, that contribute to the
generation and clonal expansion of CH types. Together, these findings
detail specific characteristics of CH that should be investigated to
improve the utility of detectable CH for disease risk and possible
intervention or prevention.

Prior reports have focused on phenotypic relationships between
types of CH, not genetic associations, and could be missing important
relationships relevant for informing mechanism. We provide evidence
for genome-wide genetic correlations between LOY and LOX, LOY and
MPN, autosomal mCAs and MPN, as well as between CHIP and MPN,
suggesting shared biologicmechanisms promoting or predisposing to
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Fig. 4 | Shared etiologies and associations between types of clonal hemato-
poiesis (CH) and hematopoietic phenotypes: telomere length, andwhite blood
cell count (WBC). Pairwise high-definition likelihood (HDL) genetic correlations
are given in the left plot, pairwise phenotypic associations derived using linear

regression adjusted for age, age-squared, 25-level smoking status, and sex (in non-
LOY or LOX comparisons) are given in the right plot. The black lines separate types
of CH from each other and the color and width of the bands represent the strength
of association. All genetic correlations are available in Supplementary Data 1 and 4.
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the development and clonal expansion of different CH types. Likewise,
these genetic relationships can be leveraged to identify disease sus-
ceptibility loci for related traits, as we demonstrated for MPN. Genetic
correlations with blood cell traits further demonstrate lineage-specific
effects that differ by type of CH. As many of these CH and blood cell
traits are interrelated, we report associations that do not adjust for
stringent multiple testing corrections and caution against the over-
interpretation of marginally significant associations.

Phenotypic associations between types of CH provide additional
evidence for a shared genetic etiology, but could also indicate shared
environmental factors that drive CH growth and expansion (e.g.,
medication32,33 or tobacco usage12,34–38). A notable discordance in
directionality is between the genetic correlation and the phenotypic
relationship between LOY and MPN; although further genetic investi-
gations in larger MPN sets are needed to replicate these findings. This
potential discordance supports a shared genetic etiology as indicated
by the genetic associations, but the phenotypic relationship indicates a
mutual exclusivity between LOY and MPN suggesting that for some
types of CH when one type of CH develops, the occurrence of others
could be suppressed (e.g., DNMT3A and TET2 CHIP39). This observed
mutual exclusivity is most likely due to hematopoietic stem cells being
unable to tolerate multiple independent somatic drivers of CH. Indi-
viduals with CHIP and higher cellular fraction autosomal mCAs also
demonstrated an inverse phenotypic association with LOY, indicating
a similar mutually exclusive relationship. Our findings support com-
mon genetic factors across types of CH and raise the importance of
pursuing shared environmental contributors beyond smoking and air-
pollution that could differentially impact clonal selection of CH
types12,34–38,40.

While our findings reveal possible mutual exclusivity of CH, we
also observe strong evidence for the co-occurrence of CHIP and
autosomal mCAs in the same individual, and in many instances, over-
lapping within known CHIP driver mutations (e.g., TET2, DNMT3A,
JAK2). Cross-sectional observations of cellular fraction indicate the
CHIP mutations often precede autosomal mCAs, which can lead to
preferential clonal expansion ofmCAs containing CHIPmutations (i.e.,
a “second hit”), as has been mechanistically examined in specific
cases41.

Rapid clonal expansion afforded by each type of CH leads to
marked reductions in measured telomere length. These reductions in
telomere length can lead to increased genomic instability in indivi-
duals with CH and could increase the likelihoodof acquiring additional
types of CH. Individuals who acquired overlapping CHIP and auto-
somalmCAswere found to have greater reductions in telomere length,
which is a marker of past clonal expansion, while also having a sig-
nificantly higher risk for acquiring hematologic malignancies. Detec-
tion of these highly clonal, co-occurring CH events, especially at TET2,
DNMT3A, and JAK2, could be helpful in identifying individuals at
increased risk of developing hematologicmalignancies. Future studies
should focus on investigating the co-occurrence and overlap of CHIP
and autosomal mCAs to further evaluate associations with environ-
mental factors, elevated disease risk, and mortality.

Methods
Ethics statement
Research conducted herin complies with all relevant ethical regula-
tions. UK Biobank has approval from the Northwest Multi-centre
Research Ethics Committee (MREC) as a Research Tissue Bank (RTB)
approval. All participants provided informed consent to paritcipate in
the UK Biobank.

Hematopoietic phenotypes
Weused genome-wide association study (GWAS) summary statistics to
investigate germline similarities and differences of 25 hematopoietic-
related phenotypes. These included loss of chromosome Y (LOY) in

men13, loss of chromosome X (LOX) in women, autosomal mCAs
includinggains, losses, and copyneutral loss of heterozygosity30, CHIP,
MPNs22, leukocyte telomere length (TL)27, and 19 blood cell traits22

(Supplementary Data 26). For LOX, we used previously generated data
on copy number variation25,30, and performed GWAS on 243,106
women in the UK Biobank using a linear mixed model implemented in
BOLT-LMM42, to account for cryptic population structure and relat-
edness, a similar methodology was used to conduct the LOY GWAS13.
For CHIP, we called somatic mutations using Mutect2 from available
UK Biobank 200K whole exome sequencing data43. A QCed set of
N = 198,178 individuals were analyzed using a panel of one hundred
normals created from UK Biobank participants with age <40, and
included as part of the QC process. Variants were considered passing
QC if the following criteriaweremet:meeting FilterMutectCalls quality
standards including learned read orientation, variant allele fraction
(VAF) >=2%, depth of calling >10, and a Phred scaled GERMQ score of
>20 (1% error rate). CHIP was defined in these individuals using a
curated list of CHIP mutated variants as previously described in the
UKBB WES cohort (Supplementary Data 27)44. Individuals with a diag-
nosis of myeloid malignancy (AML, MDS, MPN) before blood draw
were excluded from the CHIP phenotype while those that went on to
develop myeloid malignancy post-blood draw by at least 5 years were
retained. In total, 7280 (3.7%) individuals were found to have at least
one CHIP curated variant (Supplementary Data 27, Supplementary
Data 28). We performed a CHIP GWAS in the UK Biobank array data45,
restricted to European ancestry individuals (Supplementary Data 26)
and those passing the following QC measures: individual had not
withdrawn consent, included in kinship inference, no excess (>10) of
putative third-degree relatives inferred from kinship, not an outlier in
heterozygosity and missing rates, not found to have putative sex
chromosome aneuploidy, no genotype missing rate of >0.1. Variants
were included if they had a genotype missing rate <0.1 across QC’ed
individuals, Hardy-Weinberg equilibrium p-value of >1 × 10−15, and a
minor allele frequency of >0.1%. Using Regenie45, we performed ridge
regression in step 1 using a set of ~300,000 pruned SNPs and default
cross-validation settings. We included age, age-squared, sex, smoking
status (categorical level variable), and principal components of
ancestry 1 through 10 as covariates. To further increase the power of
downstream analyses, we conducted ameta-analysis usingMETAL46 of
CHIP GWAS summary statistics between our generated UK Biobank
summary statistics and those from a previous CHIP GWAS in
TOPMed12. Before meta-analysis, both GWAS summary statistics were
lifted-over from their respective genome builds to reference genome
hg19. Alleles were flipped according to the hg19 build reference allele,
and if neither allele was present the variant was removed. Strand
ambiguous and non-biallelic SNPs were removed. Minor allele fre-
quency was filtered to > = 0.1%. RSIDs were assigned to variants using
dbSNP version 144.

Data on 482,378 subjects from the UK Biobank were used for
phenotypic association analyses, after removing individuals with sex
discordance or whose DNA failed genotyping QC. We used previously
generated data for each of the hematopoietic related
phenotypes13,22,27,30, with the exception of CHIP which was called in the
UK Biobank as detailed above (Supplementary Data 3).

Genetic correlation
We used both the high-definition likelihood method47 (HDL) and link-
age disequilibrium score regression48 (LDSC) to compute pairwise
genetic correlation between hematopoietic phenotypes. For HDL, we
utilized an LD score reference panel available within HDL which con-
tains 1,029,876 QCed UK Biobank imputed HapMap3 SNPs47, and also
calculated the observed heritability for each hematopoietic phenotype
(Supplementary Fig. 17 and Supplementary Data 29). For LDSC, we
utilized an LD score reference panel generated on 6285 European
ancestry individuals combined from the 1000 Genomes Phase 3 and
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UK10K cohorts, with a total of 17,478,437 available variants, and GWAS
summary statistics were filtered to include overlapping variants with
>1% MAF and >90% imputation quality score. As all of the included
GWAS summary statistics utilizedUKBiobank data, we constrained the
interceptwithinbothHDL and LDSCby accounting for both the known
sample overlap and phenotypic correlation between traits (Supple-
mentary Data 30). Pairwise genetic correlations with CHIP were con-
ducted using the generated UK Biobank summary statistics, due to
incomplete overlap with the HDL reference panel within the TOPMed
CHIP summary statistics (Supplementary Data 26 and Supplementary
Data 30). Correlation matrixes and circular charts for results visuali-
zation were generated using the “corrplot” (v0.92) and “circlize”
(0.4.15) R packages49,50.

Phenotypic associations
Pairwise phenotypic associations between all hematopoietic pheno-
types were generated using linear regression adjusting for age, age-
squared, sex (in non sex-specific traits), and a 25-level smoking variable
to reduce the potential for confounding variables driving
associations36. To ensure compatibility betweenbinary and continuous
phenotypic association results, association T-statistics were generated
and reported to measure strength and direction of phenotypic
associations.

Hematological malignancy association
Using available data within UK Biobank, we extracted relevant cancer
information from both inpatient records and cancer registry data.
Incident hematological cancers were defined as occurring after study
enrollment. Lymphoid cancers were defined using codes: C81: Hodg-
kin’s disease, C82: Follicular [nodular] non-Hodgkin’s lymphoma, C83:
Diffuse non-Hodgkin’s lymphoma, C84: Peripheral and cutaneous
T-cell lymphomas, C85: Other and unspecified types of non-Hodgkin’s
lymphoma, C86: Other specified types of T/NK-cell lymphoma, C88:
Malignant immunoproliferative diseases, C90: Multiple myeloma and
malignant plasma cell neoplasms, C91: Lymphoid leukemia, C96.3:
True histiocytic lymphoma, D47.2 Monoclonal gammopathy. Myeloid
cancers were defined using codes: C92: Myeloid leukemia, C93:
Monocytic leukemia, C94.0: Acute erythraemia and erythroleukaemia,
C94.2: Acute megakaryoblastic leukemia, C94.4: Acute panmyelosis,
C94.5: Acute myelofibrosis, C94.6: Myelodysplastic and myeloproli-
ferative disease, not elsewhere classified, C96.0: Letterer-Siwe disease,
C96.1: Malignant histiocytosis, C96.2: Malignant mast cell tumor,
C96.5:Multifocal andunisystemic Langerhans-cell histiocytosis,C96.6:
Unifocal Langerhans-cell histiocytosis, C96.8: Histiocytic sarcoma,
D47.0: Histiocytic and mast cell tumors of uncertain and unknown
behavior, D47.1: Chronic myeloproliferative disease, D47.3: Essential
(hemorrhagic) thrombocythaemia, D47.4: Osteomyelofibrosis, D47.5:
Chronic eosinophilic leukemia [hypereosinophilic syndrome].We per-
formed Cox proportional hazards regression to assess the risk of
hematological malignancies across CH groups adjusting for age, age-
squared, sex, and a 25-level smoking variable36. Hazards ratios and 95%
confidence intervalswere generated and reported tomeasure strength
and direction of hematological malignancy risk.

Mendelian randomization analyses
We performed one-direction Mendelian randomization (MR) between
TL and LOY, LOX, autosomal mCAs, CHIP, and MPN. Briefly, MR ana-
lyses utilize genetic variants fromGWAS as instrumental variables (IVs)
to assess the directional association between an exposure and out-
come, which can mimic the biological link between exposure and
outcome51. Each variant used in a MR analysis must satisfy three
assumptions: (1) it is associated with the risk factor, (2) it is not asso-
ciatedwith any confounder of the risk factor–outcome association, (3)
it is conditionally independent of theoutcomegiven the risk factor and
confounders52,53.

For our analyses, we used summary statistics and 130 significant
signals of the largest TL GWAS to date to form the TL IV27. We then
extracted the same set of signals from summary statistics for each CH
outcome. If any signals were missing in the outcome summary statis-
tics, we collected proxies for these signals using GCTA54 with European
UK Biobank individuals as reference (within 1 MB of reported signals
and R2 > 0.4). We chose the proxy of each missing signal with the lar-
gestR2 value as the replacement IV, whichwas contained in bothGWAS
summary statistics of the exposure and outcome. All TL signals were
aligned to increasing allele and alleles for outcome were realigned
accordingly.

The MR inverse-variance weighted (MR-IVW) model, which can
provide high statistical power55, was used as our primary analysis. As
some signals may have a stronger association with the outcome than
the exposure, which may induce reverse causality, we applied Steiger
filtering to each IV in order to remove these variants using the “Two-
SampleMR” R package (v0.5.6)56. We then applied Radial filtering to
exclude signals thatwere identified asoutliers according toRücker’sQ′
statistic57.

The sensitivity of MR models was checked by the degree of het-
erogeneity (I2 statistics and Cochran’s Q-derived P-value), horizontal
pleiotropy (MR-Egger pintercept < 0.05), and funnel and dosage plots
(Supplementary Fig. 13). To account for potential horizontal pleio-
tropy and heterogeneity, three additionalMRmodels wereperformed:
MR-Egger58, weighted median (MR-WM)59, and penalized weighted
median (MR-PWM)59.

Pathway and Gene Set Analyses
We performed agnostic pathway-based analyses using the summary
data-based adaptive rank truncated product (sARTP) method, which
combines GWAS summary statistics across SNPs in a gene or a
pathway60, to identify gene sets and pathways associated with each
type of CH. A total of 6,290 curated gene sets and canonical pathways
from GSEA (https://www.gsea-msigdb.org/gsea/msigdb/) were used
for the analyses. For each type of CH, the signals from up to five of the
most associated SNPs in a genewere accumulated.We adjusted for the
number of SNPs in a gene and the number of genes in a pathway
through a resampling procedure that controls for false positives60. The
P values of gene- and pathway-level associations were estimated from
the resampled null distribution generated from 100 million permuta-
tions. Linkage disequilibrium between SNPs was computed from Eur-
opean individuals within 1000 Genomes Project data61. To reduce the
potential for population stratification to bias the results, we rescaled
the marginal SNP results for each CH trait to set the genomic control
inflation factor to 1. A Bonferroni corrected level of significance of
7.95 × 10−6 (0.05/6,290 GSEA pathways) was used to assess statistical
significance.

Rare variants gene-burden test for LOY in UK Biobank
To explore the relationship between rare variant burden and LOY, we
performed association tests using whole exome sequencing (WES)
data for 190,759 males provided by the UK Biobank. Prior to per-
forming association tests, we performed quality control on provided
sequencing data as previously described62.

We utilized the ENSEMBL Variant Effect Predictor (VEP) v10463 to
annotate variants on the autosomal and X chromosomes. VEP was run
with default settings, the “everything” flag, and the LOFTEE plugin64.
The predicted consequence of each variant was prioritized by a single
MANE (version:0.97) or, when not available, a VEP canonical ENSEMBL
transcript, and the most damaging consequence as defined by VEP
defaults. Variants with high confidence (HC, as defined by LOFTEE)
stop gained, splice donor/acceptor, and frameshift consequences
were grouped as protein-truncating variants (PTVs). Following tran-
script annotation, we utilized CADD v1.6 to calculate the Combined
Annotation Dependent Depletion (CADD) score for each variant65.
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To perform gene burden tests, we implemented BOLT-LMM
v2.3.642. As input, BOLT-LMM requires genotyping data for variants
with allele count greater than 100, all variants fromWES passing QC as
defined above, and a set of dummygenotypes representing participant
carrier status per-gene for PTVs, missense variants with CADD ≥ 25
(MISS_CADD25,) and damaging variants (HC_PTV +MISS_CADD25,
DMG). Dummy genotypes were generated by collapsing all variants
within each gene with a minor allele frequency (MAF) < 0.1%. For each
gene, carriers with a qualifying variant were set to heterozygous (“0/1”)
and non-carrierswere set as homozygous reference (“0/0”). Allmodels
were controlled for age, age-squared, WES batch, and the first ten
genetic ancestry principal components (PCs) as generated by Bycroft
et al.66.

Following association testing, we further excluded genes with less
than 50 non-synonymous variant carriers, leaving 8984 genes of PTVs,
14,685 genes of MISS_CADD25, and 16,066 genes of DMG for an
exome-wide significance threshold of 1.26 × 10−6 (0.05/39,735) after
Bonferroni correction (Supplementary Data 6).

Associations between CHIP loss of function variant carriers
and LOY
As associations between known CHIP genes and LOY identified as part
of rare variant burden testing could be due to reverse-causality –

somatic instability such as LOY could lead to, or occur in parallel with,
variants arising within CHIP genes –we queried underlying variant call
data to determine if individual variants within these genes were likely
to have arisen somatically. We first extracted the number of reads
supporting the alternate and reference alleles for all carriers of protein
truncating variants (PTV) at MAF <0.1% in four genes associated with
LOY—three known CHIP genes, ASXL1 (n = 213 carriers), DNMT3A
(n = 89), and TET2 (n = 193), and one control gene not previously
associated with CHIP, GIGYF1 (n = 81; Supplementary Fig. 3). This
information was then used to calculate a Variant Allele Fraction (VAF)
for each genotype, where a VAF of 0.5 indicates perfect balance
between sequencing reads supporting the reference and alternate
allele (Supplementary Fig. 4). For all variants, we also annotated whe-
ther it was found in a list of known, specific CHIP driver mutations or
was likely to be a CHIP driver mutation based on a broader set of
criteria presented in Bick et al.12. For each gene, we tested for an
association between PTV carrier status and PAR-LOY except using 6
additional criteria that excluded individuals carrying:
1. Frameshift InDels with a binomial test P-value for allele balance

<0.001 (i.e. filtering InDels identically to SNVs, see above).
2. Any variant with VAF <0.25 or > 0.75.
3. Any variant with VAF <0.4 or > 0.6.
4. Any variant with VAF >0.35.
5. A variant explicitly listed in SupplementaryData 3 fromBick et al.12.
6. A variant explicitly listed in SupplementaryData 3 ormatching the

criteria in Supplementary Data 2 from Bick et al.12.

All association tests were run separately for each gene using a
logistic model corrected for identical covariates as the rare variant
burden tests outlined above.

MTAG and colocalization analysis among TL, LOY, and MPN
GWAS summary statistics for LOY13, TL27, and MPN22 were utilized to
conduct a meta-analysis by implementing the multi-trait analysis of
GWAS (MTAG)67,68. Based on the summary statistics from GWAS of
multiple correlated traits, MTAG can enhance the statistical power to
identify genetic associations for each trait included in the analysis67,68.
We performed the MTAG analysis using Python (2.7.18). Prior to the
analysis, we excluded the variants with MAF <0.01 from the summary
statistics of all three traits13,22,27. A potential problem for MTAG is that
SNPs can be null for one trait but non-null for another trait, which can
cause MTAG’s effect size estimations of these SNPs for the first trait to

shift away from0. This causes the false positive rate (FDR) to increase.
Therefore, we estimated themax FDR for each trait by invoking “—fdr”
when runningMTAG. We implemented a clumping algorithm to select
signals from theMTAGgeneratedMPN summary statistics. Preliminary
leading signals were selected with a P < 5 × 10−8 and a MAF>0.1% at a
1Mb window. We then selected the secondary leading signals using
approximate conditional analyses in GCTA69 with UK Biobank refer-
ence panel. If the genome-wide significant leading signals shared any
correlation with each other due to the long-range linkage dis-
equilibrium (r2 > 0.05), these signals were excluded from further ana-
lysis. We mapped the leading signals to the genes with 1Mb window
based on the start and end sites of genes’ GRCh37 coordinates. For all
leading signals, we extracted their summary statistics from the original
MPN GWAS summary statistics. In total, 36 independent leading sig-
nals were identified. We then applied Bonferroni correction for the
identified signals. We further excluded the signals with P > 0.05/
36 = 1.39 × 10−3 in the original GWAS to avoid false positivesmentioned
above, as GWAS for both LOY and TL identified many more leading
signals than MPN, which increased the FDR for MPN (Max FDR of
MPN=0.11).

We conducted the Bayesian test for colocalization between pairs
of TL and MPN, and LOY and MPN using their summary statistics13,22,27

and the leadingGWAS signals by implementing R (3.6.3) package coloc
(v5.1.0)70. The signals with posterior probability (h4.pp) ≥ 0.75 were
defined as the co-localized causal variant for both traits. Manhattan
plots for results visualizationweregenerated using the “qqman” (0.1.4)
R package71.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the analysis is available fromUK Biobank upon request
(https://www.ukbiobank.ac.uk). Source data for figures are available in
the Supplementary Data.
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