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Integrating end-to-end learning with deep
geometrical potentials for ab initio RNA
structure prediction

Yang Li 1,2,8, Chengxin Zhang 2,3,8, Chenjie Feng2,4,8, Robin Pearce2,5,
P. Lydia Freddolino 2,6 & Yang Zhang 1,2,5,6,7

RNAs are fundamental in living cells and perform critical functions determined
by their tertiary architectures. However, accurate modeling of 3D RNA struc-
ture remains a challenging problem. We present a novel method, DRfold, to
predict RNA tertiary structures by simultaneous learning of local frame rota-
tions and geometric restraints from experimentally solved RNA structures,
where the learned knowledge is converted into a hybrid energy potential to
guideRNA structure assembly. Themethod significantly outperformsprevious
approaches by >73.3% in TM-score on a sequence-nonredundant dataset
containing recently released structures. Detailed analyses showed that the
major contribution to the improvements arise from the deep end-to-end
learning supervised with the atom coordinates and the composite energy
function integrating complementary information from geometry restraints
and end-to-end learning models. The open-source DRfold program with fast
training protocol allows large-scale application of high-resolution RNA struc-
ture modeling and can be further improved with future expansion of RNA
structure databases.

RNAmolecules perform a broad range of important cellular functions,
ranging from gene transcription, regulation of gene expression and
scaffolding, to catalytic activities. The critical functional roles of RNAs
make them a new type of drug target. For example, it is estimated that
targeting RNAs with small molecules will expand the drug design
landscape by more than an order of magnitude compared to tradi-
tional protein-targeted drug discovery1. Since many biological func-
tions depend on the specific tertiary structures of RNAs, it is
imperative todetermine the 3D structures of RNAs in order to facilitate
RNA-based function annotation and drug discovery. The biophysical
experiments capable of resolving RNA structures, e.g., X-ray crystal-
lography, Cryogenic Electron Microscopy (Cryo-EM) and Nuclear

Magnetic Resonance (NMR) Spectroscopy, are unfortunately cost- and
labor-intensive. Therefore, fast and accurate computational approa-
ches for sequence-based RNA structure modeling are highly needed.

Traditional RNA structure prediction approaches are often
designed to construct 3D RNA structures from homologous modeling
approaches and/or physics-based simulations. For example, methods
such as ModeRNA2 and RNABuilder3 extract structure information
from previously solved homologous structural templates. For RNA
targets with divergent sequences or novel topologies, their perfor-
mance is usually unsatisfactory. Another familyofmethods, typifiedby
RNAComposer4 and 3dRNA5, assemble full-length RNA structures from
fragments searched from a prebuilt fragment library. Ab initio RNA
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structure prediction methods, such as SimRNA6, FARFAR27, and RNA-
BRiQ8 apply statistical potentials to guide the structure folding simu-
lations. Although utilizing domain expert knowledge with these
methods could lead to somewhat better performance in RNA-Puzzles
and CASP9,10, their performance is often suboptimal in automated
benchmark test runs, suggesting that automatic prediction of regular
RNA structures remains a challenging task to the ab initio simulations.

Deep machine learning has recently demonstrated promising
performance in RNA structure feature prediction. For example, SPOT-
RNA11, MXfold212 and Ufold13 utilize convolutional neural networks
(CNNs) or recurrent neural networks (RNNs) to improve the accuracy
of secondary structure (SS) prediction for RNAs. Analogous to the
highly successful efforts in protein contact and distance prediction14,
SPOT-RNA-2D15 and RNAcontact16 applied deep residual networks to
learn inter-nucleotide distance/contacts from profile covariance.
Despite the interest in property learning, few studies have performed
full-length modeling of RNA tertiary structures. Recently, a deep
equivariant model, ARES17, was trained to score the conformations
from limited data. However, it requires sufficient pre-sampled con-
formations, which may limit the application.

Inspired by the recent success of deep learning techniques in 3D
protein structure prediction18–20, we proposed a different deep learn-
ing pipeline, DRfold, to improve the performance of ab initio RNA
structure prediction. Different from the full-atom end-to-end training
in proteins18, we adopted a coarse-grained model of RNA specified by
the phosphate P, ribose C4’, and glycosidic N atoms of the nucleobase,
for training efficiency given the limited availability of RNA structures.
In particular, we added a geometricmodule which is trained in parallel
to assist the end-to-end training, andmeanwhile aggregated both end-
to-end and geometric potentials to guide subsequent RNA structure
reconstruction simulations. We found that the integration of the end-
to-end training and deep geometric learning, followed by the gradient-
based optimization, generates RNA structure models with accuracy
significantly beyond themodels solely built on the coarse-grained end-
to-end learning or geometry-based structural optimization alone.

Results
TheDRfold pipeline is outlined in Fig. 1. The query sequencealongwith
its SS predictions is first fed into anembedding layerwhich outputs the
sequence and pair representations. The embedded representations
are then passed through 48 RNA transformer blocks and are used for
end-to-end RNA global-frame training, in terms of nucleotide-wise
rotationmatrices and translation vectors,which canbeused to recover
the atomic coordinates of the RNA structure. Meanwhile, the pair
representations are also used for RNA inter-nucleotide geometry
prediction through a similar but independent set of transformer
blocks. Next, the predicted frame vectors and geometric restraints are
aggregated into a composite potential for gradient-based RNA struc-
ture reconstruction, where the optimized conformation with the
lowest energy is selected as the output model. Finally, the coarse-
grainedmodels are submitted to a two-stepmoleculardynamics-based
procedure for atomic-level structure reconstruction and refinement.

DRfold was tested on 40 non-redundant RNA structures with
lengths from 14 to 392 nucleotides, which were collected from
sequence cluster centers (sequence identity cutoff of 90%) of solved
structures deposited in or after the year 2021 in the PDB21. Structures
without any valid base pairs were not included. All test sequences, as
well as their clustermembers,were excluded from the training dataset,
which contains 3864 unique RNAs extracted from the PDB that were
deposited before the year 2021. Thus, a filter based on both sequence
identity and time stamp implements a stringent separation between
the training and testing datasets of DRfold, both of which are available
for download at https://zhanggroup.org/DRfold. The length range of
the test RNAs [14, 392 NTs] was slightly larger than but generally
consistent with the crop-size range of the RNAs that were used for

training the DRfold models (i.e., <200 NTs) due to the GPU memory
limitations.

DRfold outperforms previous RNA structure predictors
To benchmark the performance of DRfold with previous approaches,
two representative fragment assembly methods, RNAComposer4 and
3dRNA5, and three representative ab initio RNA structure prediction
methods, RNA-BRiQ8, SimRNA6, and FARFAR27, were considered as
control methods, where a brief introduction to the configurations of
these methods is given in Text S1. Figure 2A compares the root mean
squared deviation (RMSD) of the models generated by DRfold and the
control methods relative to the target structures, where the coordi-
nates of the P atoms were used for topology evaluation. The average
RMSD value obtained by our method (14.45 Å) was significantly lower
than those obtained by 3dRNA (20.54Å), FARFAR2 (22.48 Å), RNA-
Composer (20.80Å), BRiQ (22.88 Å), and SimRNA (23.88Å), where the
corresponding P-values obtained by two-tailed Student’s t-tests were
7.35E−05, 3.72E−07, 1.90E−04, 3.34E−07, and 6.14E−07, respectively.
The median RMSD of DRfold was 9.38 Å, compared to the lowest
median RMSD of 19.04 Å obtained by the control methods (RNA-
Composer). Among the 40 test targets, 6 (or 2) targets were found to
be successfully folded byDRfold at a high accuracywith RMSDs <2.5 Å,
as evaluated by the P-atom (or full-atom) RMSD. In Fig. 2B, we further
list the accumulative fraction of cases with RMSD values below
thresholds ranging from 2.5Å to 15.0 Å, where DRfold generated sig-
nificantly more cases than the control methods across all RMSD cut-
offs. For example, 47.5% of the DRfold models had an RMSD less than
7.5 Å, which is more than twice the fraction (20.0%) obtained by the
best-performing third-party method, 3dRNA.

Since a local error could cause a high RMSD, the RMSD value may
not be ideal for assessing the quality of the RNA models at the high
RMSD range. In Fig. 2C, we further list the results for the TM-score, an
index that is more sensitive to the global fold of the RNA structures22.
Here, TM-score ranges from (0,1�with a higher value indicating a closer
structural similarity, where a TM-score above 0.45 indicates a correct
fold for RNA structures independent of the sequence length. As shown
in Fig. 2C, the average TM-score of the DRfold models (0.435) was
73.3% higher than the average TM-score of 0.251 obtained by the
second-bestmethod, 3dRNA, with a P-value of 5.79E−07. Furthermore,
45% (=18/40) of the DRfold models had correct folds with TM-scores
>0.45, while the second-best method only achieved a success rate of
12.5%. The ability of DRfold to obtain very high-quality overall models
for a substantial fraction of targets is apparent in the large upper
shoulder in the distribution of TM-scores shown in Fig. 2C.

In Fig. 3, we present a detailed head-to-head comparison of TM-
score and RMSD between DRfold and the control methods, where a
pronounced advantage of DRfold over the control methods was
observed in all boxes. For example, the fraction of the test targets for
which DRfold achieved a lower RMSD than the control methods was
80.0% (to 3dRNA), 82.5% (FARFAR2), 72.5% (RNAComposer), 75.0%
(RNA-BRiQ), and 80.0% (SimRNA), respectively, as shown in Fig. 3A–E.
The superiority of DRfold was more robust when evaluated by TM-
score in Fig. 3F–J, as themaximumabsolute difference in TM-scorewas
only 0.039 for those targets where any of the control methods per-
formedbetter. In contrast, for those targets where DRfold had a higher
TM-score, the absolute difference was up to 0.734. Such observation
suggests again that DRfold can consistently predict better global
conformations compared to the classic RNA folding methods.

To investigate the possible impact of sequence homology cutoffs
on the accuracy of the DRfold models, an exhaustive test considering
various sequence identity cut-offs between the training and test sets
was conducted. Following conventional criteria used in previous stu-
dies for RNA structure/SS prediction using deep learning11,23–25, addi-
tional datasets were constructed by excluding targets with sequence
identities greater thanmultiple thresholds (i.e., 80%, 70%, and 60%) to
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the DRfold training dataset; this resulted in 32, 23, and 10 sequence-
nonredundant RNA structures, respectively. The results show that the
performance of DRfold correlates with the sequence cut-offs for the
test sets, where the average TM-scores of the selected test targets
gradually decreased from 0.435 to 0.309 as the maximum sequence
identity cut-off decreased from 90% to 60% (Fig. 2D). These data
suggest that the deep learning-based predictions are more reliable
when trained on similar sequences. Nevertheless, the average TM-
score for DRfold consistently exceeded that of the best control
methods by at least 33.9% across all thresholds.

The advantage of DRfold is consistent with our expectations,
as existing automatic RNA structure prediction methods mostly
utilize basic empirical and statistical potentials of the form
P structurejsequenceð Þ. Given the limited number of parameters in
their forcefields, the global sequence conditions cannot be extensively
accounted for and the generic potential forms (e.g., distanceor angles)
do not precisely determine the complex topology of the RNA struc-
tures. In contrast, the extensive weighting parameter settings

embedded in the transformer module used by DRfold allow for access
to the global sequence information. In addition, the end-to-end loss
function (see “Methods”) can further ensure the high correspondence
of the deep learning predictions with the correct overall
conformations.

In Figure S1, we list the scatter plot of TM-score versus the length
of the test RNAs, where a weak correlation (Pearson Correlation
Coefficient, PCC = −0.20) can be observed, indicating that the perfor-
mance of DRfold is overall weakly dependent on the RNA length. It is
notable that for those targets with lengths >200 NTs, the TM-scores
obtained by DRfold are lower overall than those obtained for smaller
targets <200 NTs. One reason for the suboptimal performance for
large-size RNAs is probably that a maximumRNA length cutoff was set
to 200 NTs when we trained the models in DRfold due to the limited
GPU memory (with a single Nvidia A40 GPU with 32 GB memory), and
therefore the interaction patterns for extremely distant (>200)
nucleotide pairs may not be sufficiently learned. Developing length-
insensitive variants of attention networks by utilizing more

Fig. 1 | ThepipelineofDRfold fordeep learning-basedRNAstructureprediction
by combining end-to-endmodel and geometry potentials. ADRfold pipeline for
sequence-based RNA structure prediction, where Ds and Dz are hidden dimension
sizes of sequence and pair features, respectively, and L is the length of the query

sequence. B–E Details of embedding layer, RNA transformer block, and structural
and geometry modules, respectively. F Reduced representation of nucleotide
residues by a 3-bead model (C4’, P, glycosidic N) in DRfold. G Illustration of the
frame aligned point error (FAPE).H Prediction terms of inter-nucleotide geometry.
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comprehensive RNA dataset and larger computing resources should
help DRfold to learn the longer-range inter-residue interactions and
therefore enhance its ability to fold large-sized RNA structures.

The hydrogen-bonding interactions between conjugated nucleo-
tides are critical to stabilize the tertiary structures and functions of
RNAs. It is therefore useful to investigate whether and how DRfold can
recover these SS patterns. In Table S1, we summarize the base inter-
action network fidelity (INF)26,27 and deformation index (DI)28 scores of
themodels generated by DRfold and the control methods, which were
calculated using the RNA-Puzzles toolkit29. Here, the INF is defined as
Matthews Correlation Coefficient (MCC) between the interactions of
the reference structure and that of the predicted structure, and it was
split into four categories according to the interaction types, including
Watson-Crick (INF_wc), non-Watson-Crick (INF_nwc), stacking (INF_-
stack), and overall interactions (INF_all). The DI is defined as the RMSD
between two optimally aligned 3D structures divided by the base INF
and can reflect the overall features (encoded by the RMSD) calibrated
by the quality of the reproduced interaction network (encoded by the
INF value). Although DRfold does not employ specific base-pairing

related potentials, it outperforms other methods across each evalua-
tion index, suggesting that the relative frame positions in the frame
aligned point error (FAPE) and geometrical potentials may have
implicitly helped DRfold to recover the base-pairing patterns of
the structure models (see “Methods”). In the lower panel of Table S1,
we also list the performance comparisons on the targets with a
sequence identity cut-off of 80% to the DRfold training set, where
DRfold still shows an advantage compared to the automatic control
methods. It is noted that despite the overall advantage, the success
rate of non-canonical base-pairing prediction (INF_nwc) by DRfold was
still low. Amore detailed learningmodel at the atomic level trained on
the datasets with enhanced non-canonical pairing samples might help
improve the accuracy for INF_nwc.

In Table S2, we further list the mean of circular quantity (MCQ)30

and Handedness scores of the DRfold models compared to the five
control methods. Here, the MCQ score measures the dissimilarity
between two structures in torsion angle space using full-atom
representations30, assuming the standard bond lengths and bond
angles are constant values. In addition, the Handedness score is

Fig. 2 | The comparison of DRfold with the control methods. A Distribution of
RMSD (Å) of the predicted models to the target structure. The central mark indi-
cates the median. B Fraction of the test RNAs achieving successful structure pre-
diction at different RMSD cut-offs. C TM-score distribution of different methods.

The central mark indicates the median. D The average TM-score by different
methods versus the sequence identity cut-off between the test and DRfold training
datasets.
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introduced to evaluate the correctness of the chirality of the RNA
helices, which computes the fraction rate of non-loop residues in the
predicted models that have closer C4’ torsion angles to the targets
than to the mirror images of the target structures. The results show
that while DRfold does not outperform the control methods in MCQ,
likely due to the coarse-grained representation of RNA structures
during the model training procedure, DRfold excels in Handedness
score over all control methods. This performance could be attributed
to the use of mirrored-sensitive potentials by DRfold, including the
reflection transformation-sensitive FAPE potential18 and the use of
long-range dihedral angles in the geometry potential, which are cap-
able of distinguishing the desired structures from their mirror images.

Out of the 40 test targets, 15 contain pseudoknots as assigned by
DSSR31. While 3dRNA and RNAComposer cannot detect any of the
pseudoknots for the 15 targets, SimRNA and FARFAR2 produce 6 and
2 structures that contain pseudoknots, respectively; however, none of
the detected pseudoknots by SimRNA and FARFAR2 have correct
correspondence to those in the native structures. DRfold predicts two
structures that have pseudoknots assigned, as shown in Figure S2. It
can be observed that DRfold can correctly recover the pseudoknots in
both cases, highlighting the ability of the DRfold networks to learn
complex inter-nucleotide interaction patterns.

End-to-end models provide complementary information to
geometric restraints for RNA structure modeling
The core of the DRfold pipeline is the introduction of two types of
complementary potentials, i.e., the FAPE potential and the geometry
potentials, from two separate transformer networks. The former
models directly predict the rotation matrices and the translation vec-
tors for the frames representing each nucleotide, forming an end-to-
end learning strategy for RNA structure prediction. In DRfold, 6
independent end-to-endmodels were trainedwith different parameter
initializations, where Table S3 lists the average TM-score of those
models on the test set. Without any post-processing, the individual
end-to-end models already outperform all control methods sig-
nificantly. For example, the lowest average TM-score (0.393) obtained
among the 6 end-to-endmodels was 57.2% higher than that of the best

control method 3dRNA (0.250). After applying an optimization pro-
cedure which is an ensemble of the 6 conformations, the average TM-
score rose to 0.417.

To further examine the importance of the end-to-end potential to
DRfold, we plot in Fig. 4A a TM-score comparison of the models gen-
erated by the full-version of DRfold with those generated without the
FAPE potential in DRfold, where the latter indicates that the structures
were only optimized by the geometry potentials. Without considering
the atomic-level refinement, the average TM-score of raw DRfold
dropped from 0.439 to 0.413, with a P-value of 2.7E−02 as determined
by a two-tailed Student’s t-test, indicating that the performance loss is
statistically significant. In Fig. 4C–E we present one example from the
sgRNA (PDB ID: 7OX9 Chain A) in the Cas9 endonuclease. The model
built using the geometry potential has a reasonable fold but with sig-
nificant local errors mainly in the 5’- and 3’-terminal regions and the
central loop (26–41NTs), which resulted in anoverall TM-score = 0.369
and RMSD=6.52Å. As shown in Fig. 4E, the end-to-end structural
models have variable quality in the 5’- and 3’-terminal regions with
consistently lower errors in the loop region. A consensus-based opti-
mization of both end-to-end and geometric potentials resulted in a
significantly improved model with a TM-score = 0.749 and RMSD=
2.00Å (see Fig. 4D and the bottom of Fig. 4E).

The geometrypotential in DRfold adopts a composite set of terms
representing inter-nucleotide geometry, including distances and tor-
sion angles. To examine the impact of such potentials to DRfold, we
compare the TM-scores of DRfold on the 40 test RNAs with and
without the geometry potentials in Fig. 4B. It was observed that
including the geometry potentials on top of the end-to-end potential
brings small but consistent improvements in TM-score (with P-
value = 2.1E−07). In Figure S3, we list the TM-score improvements by
the geometry potentials over the RNA length, which shows that the
incorporation of the additional long-range inter-nucleotide geometric
restraint potential can consistently improve the folding performance
for RNA with various sizes.

Overall, these results demonstrate that, although they start from
the same set of sequence and SS embedding matrices in the network,
the independent training of the end-to-end and geometric potentials

Fig. 3 | Head-to-head comparisons between DRfold and the control methods on the 40 test RNA structures. A–E RMSD (Å). F–J TM-score.
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learned structural features complementary to each other and collec-
tively improved the overall quality of the DRfold models.

Secondary structure prediction facilitates feature learning and
model construction
Unlike the strategy used in AlphaFold218 which feeds the embedding
module directly with the query sequence, DRfold uses a consensus of
two SS predictors by RNAfold32 and PETfold33 to extract 2D features for
the additional pair embedding. To examine the impact of the SS pre-
dictions, Fig. 5A shows a head-to-head comparison of TM-score for the
full DRfold pipeline vs. an ablated pipeline in which the predicted SS
input is omitted. There is a significant performance drop, i.e., from
0.439 to 0.295 in TM-score, without the inclusion of secondary
structure information.

As a complementary test to determine the amount of information
on tertiary structure that can be obtained from secondary structure
alone, weperformed an additional experiment inwhichwe replaced all
input residues with an “N” (which represents the “unknown” residue
type) and only fed DRfold with the predicted secondary structure
features, mimicking a tertiary structure recovery task from SS pre-
diction alone. Unsurprisingly, the average TM-score significantly
dropped from 0.439 to 0.268. Nevertheless, the TM-score value was
still considerably higher than that by the best third-party program,
3dRNA, based on statisticalmodels (0.250). Among the 40 test targets,
therewere 5 targets that hadcorrect foldswith TM-scores >0.45 for the
sequence-free DRfold modeling.

In Fig. 5B, C, we show one example in which DRfold successfully
recovered the overall topology only based on its predicted secondary
structure. This is a tRNA (PDB ID: 7MRL Chain A), which has a clover-
like structure. Based on the predicted SS only (Fig. 5B), DRfold

constructed a model of correct fold with a TM-score = 0.564 and
RMSD= 3.19 Å (Fig. 5C). Nevertheless, we noticed that many of the
base-pairs were not correctly formed, due to the lack of nucleotide
sequence information. After the inclusion of the sequence informa-
tion, the RNA model by the full DRfold pipeline had much-improved
base-pairingqualitywith anoverall TM-score=0.765 andRMSD= 2.22 Å
(Fig. 5D), demonstrating the impact of sequence-specific base-pairing
on the RNA structure modeling.

Overall, these results demonstrate the significant importance of
the SS embedding feature to the DRfold performance, although the
pipeline starts from the nucleotide sequence only. In principle, an ideal
deep learning model should be able to learn the secondary structure
directly from sequence. Previous studies11–13 have shown success in
learning RNA secondary structure directly from sequence. However,
given the limitation of available RNA structure data, relevant input
structural feature, containing auxiliary information related to the RNA
topology suchas SS, shouldbe greatly beneficial to facilitate the neural
networks to improve the learning efficiency and effectiveness in RNA
tertiary structure prediction.

Given the special role of SS in RNA tertiary structure prediction,
we further tested DRfold with two other types of SS inputs from either
SPOT-RNA predictions or extracted from the target structures.
Table S4 compares the average TM-score and RMSD of raw DRfold
predictions under three conditions with different SS features. Com-
pared to the default settings, the SPOT-RNA-based SS feature provides
comparable overall performance, with a slightly lower average TM-
score but lower average RMSD, despite DRfold not being trained with
this SS model. As expected, the SS features extracted from the
experimental structures (Ground-Truth in Table S4) yield the best
performance compared to other SS features. However, the superiority

Fig. 4 | Performance comparisons between the full DRfold pipeline and those
without component potentials. TM-score comparison of full versus ablated
pipelines A without end-to-end potential and B without geometry potential.
C Structure superposition between target structure (green) and the structure
predicted without end-to-end potential (blue) for target 7OX9A. D Structure
superposition between target structure (green) and the predicted structure with

the full DRfold pipeline (red) for target 7OX9A. E Residue-wise errors of the
structure predicted without end-to-end potential, the structures predicted by 6
end-to-end models, and the structure predicted by the full DRfold pipeline for
target 7OX9A. The residue-wise errors were computed from the superpositions
produced by TM-score.
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is somewhat limited, as the average TM-score using ground-truth SS
features is only 0.91% and 2.78% higher than that using two predicted
SS features, respectively. One possible reason for the modest
improvement from using the native SS assignment is that the DRfold
was trained based on predicted SS information with noises and
therefore the modeling weights associated with the SS component
may not be strong enough to count for the true SS assignments. To
examine this possibility, we made a further test on the end-to-end
component of the DRfold pipeline with both default and retrained
parameters when using new SS assignments. As shown in Table S5,
although the use of native SS still results in significantly better per-
formance than the predicted SSs, there is no appreciable difference on
the average TM-score and RMSD between the models using default
and retrained parameters, suggesting that the default models are
robust and no retraining is needed when using different SS
assignments.

Overall, the data show that the current DRfoldmodel is not overly
sensitive to the SS feature, as long as SS predictions are of reasonable
accuracy, where all tested SSmodels have anMCCabove0.670.On the

other hand, the current 2D SS features from traditional Watson-Crick
base-pairing predictions are relatively simple, while input matrices
withmore specific SS information, such as pseudoknots or inter-helical
interactions, and richer descriptors, such as distances or torsion
angles, may be helpful to further leverage the local SS features for
more accurate RNA structure prediction.

Structure refinement improves the physical realism of DRfold
models
The learning models and potentials utilized in DRfold are coarse-
grained built on the P, C4’, and N atoms (Fig. 1F). To enhance the
validity and biological usefulness of the predicted models, a two-step
refinement process was designed to obtain atomic-level, fine-grained
models. Table S6 presents a comparison of the RNA structure validity
parameters through different stages of structural refinement. The raw
DRfold models exhibit a high clash score (224.15), resulting in a high
MolProbity score34 (3.95). Arena, an in-house program (see “Meth-
ods”), was employed to quickly reconstruct full-atom RNA structures
and rectify incorrect base conformations on top of raw coarse-grained

Fig. 5 | Secondary structure feature improves performance. A TM-score com-
parisons between the full DRfold pipeline and an ablatedmodel without predicted
secondary structure information. B The predicted secondary structure for target
7MRLA. C Superposition of the predicted structure (blue) by DRfold using only the

secondary structure with the experimental structure (green) for target 7MRLA.
D Superposition of the predicted structure (blue) by the full version DRfold with
the experimental structure (green) for target 7MRLA.
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models, termed as Step 1. Subsequently, the clash and MolProbity
scores decreased to 82.79 and 3.42, respectively. Step 2 involved the
use of OpenMM35 to further refine the structures through AMBER-
guided36 all-atommolecular dynamics (MD)minimization, leading to a
significant decrease in the clash (18.57) and MolProbity scores (2.42).
Accordingly, the bond length and torsion angle violations, assessed by
the root mean square (RMS) deviations from their restrained ideal
values, were reduced from 0.06 and 10.99 to 0.03 and 4.21, respec-
tively, after the two-step refinement procedure.

The validity parameters from experimental structures in the PDB
are also listed as a reference at the bottom of Table S6. Prior to
refinement, theMolProbity score of DRfold was 63.2% higher than that
of native structures. Following refinement, the MolProbity score dif-
ference between the DRfold models and experimental structures
decreased to 16.9%. Moreover, the clash score, bond length and tor-
sion angle variations of thefinalDRfoldmodels all becamemuchcloser
to those of the experimental structures after the atomic level structure
refinement. As a tradeoff, the global model quality assessed by TM-
score suffered only a very minor decrease from 0.439 to 0.435.

DRfold produces competitive predictions to cutting-edge deep
learning methods
Most recently, several deep learning models have been proposed for
RNA structure prediction. Table S7 summarized the results of DRfold
on the 40 test RNAs compared to five publicly released deep learning
methods: ARES17, DeepFoldRNA24, RhoFold23, RoseTTAFoldRNA37, and
trRosettaRNA25. Depending on the input features that themodels were
trainedon, thesemethods canbe classified into either single sequence-
based or multiple sequence alignment (MSA)-based approaches.
Although MSA-based methods can benefit from co-evolution infor-
mation derived from MSAs and therefore often achieve better per-
formance on overall structure prediction18,38, training on single query
sequences has advantages in terms of the speed and flexibility of
modeling as the procedure does not rely on the construction of MSAs,
which can often be tedious and complicated39.

The data in Table S7 show that DRfold significantly outperforms
other single sequence-based approaches, including the previous con-
trol methods and FARAFA2/ARES, with p-values as determined by two-
tailed Student’s t-tests ≤ 1.05E−06. Although DRfold was trained on
single sequences, it achieved comparable performance with most of
the MSA-based approaches. For instance, DRfold had a higher TM-
score (0.435) than RhoFold (0.420) and RoseTTAFoldRNA (0.428), but
lower than DeepFoldRNA (0.485) and trRosettaRNA (0.474); the dif-
ferences between them were not statistically significant except for
DeepFoldRNA which had a p-value = 1.66E−02 against DRfold.

It should be noted that a non-redundancy filter between the
training and test datasets was stringently implemented for DRfold, but
the samewasnot implementedbetween the training sets of the control
methods and the 40 test targets used in this study. For example, we
found that 26 targets in our test dataset had a sequence identity above
90% to the trRosettaRNA training dataset. If we exclude these 26 tar-
gets, the average TM-score of trRosettaRNA will be reduced to 0.422,
which is considerably lower than that of DRfold (0.476). This result
again suggests that the performance of most deep learning RNA
structure prediction methods may depend on the sequence simila-
rities between the target and training sequences.

From a methodological perspective, the aforementioned deep
learningmethods can be classified as end-to-end approaches (RhoFold
and RoseTTAFoldRNA) or geometry-based approaches (trRosettaRNA
and DeepFoldRNA). DRfold, however, combines both approaches
through potential integration. The integration provides DRfold with
flexibility in its pipeline expansion. For instance, we can use Deep-
FoldRNA’s geometry predictions to construct hybrid geometry
potentials and replace the default geometry potentials in DRfold. For
this, we combined the end-to-end potentials (from DRfold) and

geometry potentials (constructed from DeepFoldRNA predictions)
into a new hybrid potential and use it to guide the subsequent struc-
ture optimization, while keeping other part of the DRfold procedure
unchanged. In such setup, because DeepFoldRNA focuses on training
precise inter-nucleotide geometry terms (e.g., distances and orienta-
tions) by leveraging co-evolution from MSA and unlabeled RNA
sequences, it can provide extra and sometimes more accurate spatial
restraints than theDRfold geometry restraints; thus, a hybrid potential
with complementary and more accurate restraints helps better guide
the structural assembly and refinement process of DRfold pipeline.

As shown in Table S7, without any further parameter optimiza-
tion, the hybrid pipeline (DRfold/DeepFoldRNA) achieves an average
TM-score of 0.501, which is 3.3% higher than the best individual pro-
gram, DeepFoldRNA (0.485), for the 40 test targets. Although the
major goal of this study is to develop new standalone pipeline for
independent RNA structure modeling, the experiment does show the
methodological flexibility of DRfold to combine other methods for
further improving its ability for higher-accuracy RNA structure
prediction.

Blind RNA structure prediction in CASP15
An early version of the automated DRfold program participated in the
recent community-wide CASP15 experiment for RNA structure
prediction40 with Group ID ‘rDP’. Although there were only 12 test
targets41, this gave an opportunity to objectively assess DRfold relative
to the state of the art of the field. In Tables S8 and S9, we list the
cumulative Z-scores for all groups in terms of RMSD and TM-score of
the first predicted models, respectively. Following the convention of
CASP, the Z-scores were calculated using the following procedure: (1)
for a given target raw Z-scores were calculated as the difference
between the raw score and themean in the unit of standard derivation
for the first models of different groups; (2) remove the outlier models
with raw Z-scores below the tolerance threshold (set to −2.0); (3)
recalculate Z-scores on the reduced model set; (4) assign Z-scores
below the penalty threshold (either −2.0 or 0.0) to the value of this
threshold. As shown in Table S8, using RMSD Z-score (calculated by
negative of RMSD values), DRfold ranks 5th and 6th with penalty
thresholds of −2.0 and 0.0, respectively. When using TM-score, the
ranking becomes 6th and 9th, respectively (Table S9).

In Table S10, we further list the comparisons of averageRMSDand
TM-score of the groups that have submissions for all CASP15 targets,
where DRfold ranks 4th and 9th on RMSD and TM-score, respectively,
which are largely consistent with its ranking on Z-scores. Meanwhile,
we found that the average values of TM-score/RMSD on the CASP15
targets (=0.288/21.60Å, or =0.302/20.34 Å after excluding the super-
long 720 NTs target R1138) are largely consistent with the benchmark
test results on the targets with a sequence identity cutoff of 60% to the
training dataset (=0.309/24.27 Å). Considering that all CASP15 targets
also have a sequence identity below 60% to the DRfold training data-
set, this result demonstrates the robustness of the benchmark test and
generalization ability of the DRfold on modeling different RNA
structures.

There is an obvious performance gapbetweenDRfold and the top
4 methods (AIchemy_RNA2, Chen, RNApolis, and GeneSilico), which
fold RNAs guided by highly specialized human-expertise in the field of
RNA structure. Ourmethod, in contrast, only requires single sequence
information and is fully automatic. Nevertheless, we found that the
performance of DRfold is comparable with that of other top methods
which require additional information sources such as templates (e.g.,
CoMMiT-server), MSAs (e.g., AIchemy_RNA, Yang-Server, and Ultra-
Fold) or pretrained nucleotide sequence models (e.g., AIchemy_RNA).
Considering that the only input of DRfold is the RNA sequence, the
reason for such competitive performance should be attributed to the
network of DRfold that learns complementary potentials to improve
RNA folding. Meanwhile, the excellent performance of other top-
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ranked methods demonstrated potential to further improve DRfold
with the integration of those additional information sources.

Discussion
We developed a novel method, DRfold, for ab initio RNA structure
prediction through single sequence-based deep learning models. The
approach is able to learn the coarse-grained RNA structures directly
from sequences in an end-to-end fashion, using cutting-edge self-
attention transformer networks. The predicted conformations are
further optimized by integrating a separately trained deep-geometric
potential through gradient-descent-based simulations. DRfold was
tested on a nonredundant set of RNA structures, whichwere separated
from the training RNAs with a strict control of release time and
sequence identity cutoff, where the results showed significant advan-
tage over existing approaches built on statistical model and fragment
assembly simulations. Despite the simplified training on single
sequences, DRfold generatedmodels with competitive accuracy to the
sophisticated approaches trained on MSAs, where a simple hybrid of
DRfold with another MSA-based approach (DeepFoldRNA) out-
performed all state-of-the-art deep learning approaches on the
benchmark tests.

The success of DRfoldmainly arises from the deep learning-based
potentials, which, to our knowledge, have rarely been introduced in
existing RNA structure prediction pipelines. The end-to-endmodels in
DRfold have proven to be highly effective in predicting the frames of
residue positions that can recover the atomicmodel of RNA structures
through trained rotation and translationmatrices.With the integration
of geometric restraints, the hybrid potentials can further improve the
accuracy for structural models through atomic-level optimization.
Moreover, the predicted secondary structure features from physical-
based folding programswere found beneficial to facilitate the network
learning and help generate more accurate base-pairing and local
structural packing for the RNA models.

Despite the success demonstrated here, we found that the overall
performance of structure prediction for RNA is still limited, compared
to that for proteins (for example, AlphaFold218). Thismaybe partly due
to the lack of a sufficient number of RNA structures that are needed to
train the high number of parameters in the end-to-end networks. This
is especially true for the CASP15 targets41, where DRfold performed
better on the natural RNAs than the synthetic RNAs that may bear
different folding pattern from the natural RNAs on which DRfold was
trained. The second limitation of DRfold comes from the present GPU
memory resource which allows model training only on small RNAs
<200 NTs and, together with the limitation of the training structural
repositories, made the current models fall short on large-size RNA
modeling as demonstrated in both the benchmark and CASP15
experiments. Finally, to facilitate the modeling of hard RNAs without
many homologous sequences, DRfold was trained only on single
sequences, while the inclusion of multiple sequence alignments38,
structure templates, and RNA physical knowledge (e.g., atomic pat-
terns of pseudoknots and base pairs) might help to improve the RNA
structure prediction through the aggregation of more extensive evo-
lutionary features or the incorporation of general knowledge-based
potentials in the simulations. Nevertheless, as a proof of concept, the
release of the open-source DRfold program provides a flexible and
useful platform to the community for efficient deep learning-based
RNA structure prediction whose accuracy will continue to improve
with the progress of new machine learning techniques and RNA
structure and sequence databases.

Methods
DRfold is a deep machine learning-based approach to ab initio RNA
structure prediction. It consists of three steps of end-to-end frame and
geometric potential training, deep-potential-guided 3D structure

assembly simulations, and full-atom structure reconstruction and
refinement, where the flowchart of the pipeline is shown in Fig. 1.

Feature preparation and embedding
The only required input of DRfold is the nucleotide sequence, which is
represented by a 5-D one-hot encoded vector, including 4 types of
nucleotides (‘A’, ‘U’, ‘G’, ‘C’) and an unknown state (‘N’) representing
modified or degenerate nucleotides. The last state is added to avoid
possible training noise brought by the uncertainty of the nucleotides.
Therefore, the DRfoldmodel canmodel RNAs with 5 states (‘A’, ‘U’, ‘G’,
‘C’, ‘N’). At the last stage of atomic structure reconstruction and
refinement, however, the residue ‘N’ will be mutated to either the
smallest base ‘U’ (for unpaired residues) or the conjugated base (for
paired residues) for full-length RNA structure prediction.

Based on the query sequence, the SS is predicted by two com-
plementary methods: RNAfold32 and PETfold33, which are con-
catenated in the network. Here, consistent with the requirement of
DRfold, both RNAfold and PETfold are configuredwith sequence input
only. The predicted SS is in the form of a matrix, where the entry is set
to 1 if the corresponding residuepair forms abase pair.We also include
the SS probability map predicted by the considered methods, which
brings in another 2 channels for the pair input. Thus, given a sequence
of length L, the sequence feature (1-D) and the pairwise feature (2-D)
have the shapes L× 5 and L× L×4, respectively, where ‘4’ is from 4 SS
channels (Fig. 1A).

The query sequence feature sF 2 RL× 5 and the pair feature zF 2
RL× L×4 act as the input of the embedding layer. Here, the embedding
layer is a neural networkmodule that transforms the input features (sF
and zF ) into learned representations (sequence representation s and
pair representation z) through a set of linear layers. After the embed-
ding layer, each residue and residue-residuepairwill be representedby
a 64-D vector. This layer of embedding is important for generating
hidden representations (s and z) as the input for the subsequent RNA
transformer networks. Specifically, the sequence feature sF will be
projected to the desired dimension (Ds = 64) by a linear layer. Another
two linear projections of sF will be added vertically and horizontally to
form the initial pair representation. The initial pair representation will
then be added to the projected representation of the pair feature zF ,
with a channel size ofDz = 64. Thus, the output of the embedding layer
contains the sequence representation s 2 RL×64 and the pair repre-
sentation z 2 RL× L×64 (Fig. 1B).

We alsoembedded the 1-D and2-Dpositional encodings (‘pos’ and
‘relpos’ layers in Fig. 1B) to s and z. A recycling strategy is used by
encoding the geometry descriptors of the predicted structure con-
formation (for end-to-end models only), bringing the 1-D representa-
tion and the 2-D representation from the previous recycle to the input
of the current cycle. The recycle number is set to 3 for both end-to-end
and geometry models (Fig. 1A).

RNA transformer network
There are a total of 48 transformer blocks in DRfold. The transformer
block module is extended from the design of the Evoformer in
AlphaFold218. As shown in Fig. 1C, the sequence representation s and
the pair representation z will first go through a sequence row-wise
gated self-attention with a pair bias module that outputs the new
sequence representation. The number of heads and the channel size of
each head are set to 8 and 8, respectively. A sequence transition layer
that contains 2 linear layers is stacked after the sequence self-attention.
The sequence transition layer first expands the dimension from 64 to
128 and then projects it to the original channel size (64). The obtained
sequence representation is transformed to a pair representation by an
outer product mean (OPM) block. The OPM block first projects the
sequence channel size to 12 with two separated linear layers. After the
outer productmean operation, the output 2-D representation thus has
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a channel size of 12 × 12. Another linear layer in the OPM block then
projects it to the desired channel size, i.e., 64.

The 2-D representation from the OPM block will sequentially go
through a set of blocks, including (1) a Triangle multiplicative update
block using outgoing edges, (2) a Triangle multiplicative update block
using incoming edges, (3) a Triangle self-attention block around
starting node, (4) a Triangle self-attention block around starting node,
and (5) a pair transition block. For the Triangle multiplicative update
blocks, the channel size is set to 32; for the Triangle self-attention
blocks, the number of heads and the channel size are set to 4 and 8,
respectively. It should be noted that the sequence and pair blocks are
stacked residually42 for efficient and stable training.

RNA structure module
The end-to-end model in DRfold predicts the spatial location of each
nucleotide, which can be represented by a rotation matrix and a
translation vector operating on a predefined conformation at a local
frame. Here, we use a three-beadmodel, as specified by the C4’, P, and
glycosidic N atoms of the nucleobase (Fig. 1F), to represent the coarse-
grained conformation of a nucleotide. These three atoms (C4’, P, N)
represent the structural centers of the nucleotide, phosphate back-
bone, and nitrogenous base, respectively, which are critical to deter-
mine the global structure of the RNA conformation. The full-atom
models can be effectively recovered from the 3-vector virtual bond
system.

The predefined conformations were obtained by collecting
the resulting local structures after performing symmetric
orthogonalization43 on coordinates of eachnucleotide type in the ideal
A-form RNA helix structure. We assume that the three atoms form a
rigid body for each of the four nucleotides. The RNA structuremodule
takes the sequence representation from the RNA transformer network
as the input to iteratively train the nucleotide-wise rotation matrices
and translation vectors. As shown in Fig. 1D, the pair representation is
also utilized by the invariant point attention (IPA) module to equivar-
iantly update the RNA structure conformation during the structure
module iterations. The channel sizes for the sequence and pair
representations are set to 128 and 64, respectively, in the RNA struc-
ture module. The IPA hyperparameters (Nhead , c, Nquerypoints ,
Npointvalues), are set to (8, 16, 4, 6), and the iteration number is set to 5.

An important step of the RNA structure module is the construc-
tion of the local frames from ground truth positions. Considering the
higher flexibility of RNA structures compared to that of proteins, we
construct frames with the SVD orthogonalization43, instead of the
Gram-Schmidt orthogonalization that was used in Alphafold2 (Fig-
ure S4). Since SVD orthogonalization maximizes the likelihood in the
presence of Gaussian noise, it is less greedy than the Gram-Schmidt
orthogonalization and thus has a lower bias during the estimation
process. Levinson et al.44 has shown that in the view of matrix recon-
struction, the approximation error of SVD orthogonalization is half
that of the Gram-Schmidt procedure.

Loss function of the end-to-end models
Two types of loss functions, including the FAPE loss18 (Fig. 1G) and the
inter-N atom distance loss, are used when training the end-to-end
models, i.e.,

Le2e = 1:5LFAPE +0:6Ldist ð1Þ

The FAPE loss is defined as

LFAPE =
X
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X
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where Ti (or T
exp
i ) represents the Euclidean transformation, including

rotation matrices and translation vectors that are learned by the net-
works, to convert a position i at the local frame (~r) to the global space
for the predicted model (or the target experimental structure in the
trainingdataset). Theparameterdcut is set to 30Åand ϵ is set to 10�3 Å.
Here, i and j enumerate all the nucleotide positions and all the trained
atoms of the coarse-grained RNA structure, respectively. Because each
term contains two reversible transforms, i.e., T�1

i T j ~r
� �� �

, any rigid-
body transformations will be canceled out in the calculation. There-
fore, LFAPE is by design invariant to any rigid-body conformational
transformations to the predicted structures.

The distance loss function Ldist in Eq. (1) takes the cross-entropy
form of

Ldist = �
X
i,j

X38

b= 1

ybij logp
b
ij ð3Þ

where ybij is an indicator function to check if the distance of atom pair
(i, j) in the target experimental structure falls into the b-th distance
interval; and pb

ij is the predicted probability for the interval. The inter-
atom distance is split into 36 intervals between 2–40Å, with two
additional bins representing distances <2 Å and >40Å.

Prediction terms of geometry models
For a pair of residues, a set of geometry potentials are extracted from
the experimentally determined structures as supervised information
to train deep geometric potentials20. As shown in Fig. 1H, the Euclidean
distance between the P, C4’, and glycosidic N atoms are calculated,
where the distance values for the inter-P atoms, inter-C4’ atoms, and
inter-N atoms are discretized into 56, 44, and 32 bins in the ranges of
[2, 30Å], [2, 24 Å], and [2, 18 Å], respectively. For each distance term,
two additional bins are added representing values < 2 Å and >M Å,
where M is the corresponding maximum distance values (30, 24, and
18 Å, respectively). Meanwhile, the long-range dihedral angles formed
by atoms of each nucleotide pair (i, j) are extracted, which are formed,
respectively, by P(i)-C4’(i)-C4’(j)- P(j), C4’(i)-N(i)-N(j)-C4’(j), and P(i)-
N(i)-N(j)-P(j). The dihedral angle values are discretized into 36 bins,
plus the dimension representing whether the length of the virtual
bond, i.e., C4’(i)-C4’(j) and N(i)-N(j), is larger than their corresponding
maximum distance values M (=24 and 18Å, respectively).

The loss functionof the geometrymodels is the cross-entropy loss
of the distance and dihedral angle terms defined by

Lgeo = �
X
i,j

X
g2G

wg logðpg
ijÞ ð4Þ

where G is the set of geometry terms for the distance and dihedral
angles, and the weight parameters wg = 1.0 and 0.5 for the distance-
and dihedral angle-related losses, respectively. The models (pg

ij) are
trained using a multi-task learning architecture as described in Fig. 1E.

Training process of the end-to-end and geometry models
The end-to-end and geometric networkmodels were trained using the
Adam optimizer45 with an initial learning rate of 1e−3 for 100 epochs.
Themaximum RNA sequence length was set to 200 following the GPU
memory limits used in this study. For an RNA sequence with over 200
nucleotides, a continuous segment of 200 nucleotides was randomly
sampled during the training. The batch size was set to 3 to accelerate
the training with the gradient accumulation mechanism in PyTorch46.
We also use gradient checkpointing to reduce the memory occupancy
for each transformer block47. The whole end-to-endmodel was trained
on a single Nvidia A40 GPUwith 32GB of memory, where 6 end-to-end
models and 3 geometry models with different random parameter
initializations were trained, and training each of them took 2 weeks.
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For the 3 geometry models, it took around 50 epochs of training for
5 days each.

Gradient-based structure optimization with integrated end-to-
end and geometry potentials
Following the end-to-end and geometry modeling, a combination of
two deep-learning energy terms, EDL = Ee2e + Egeo, is used to guide the
next step of RNA structure optimization. The first end-to-end potential
is written as

Ee2e =
X
i,j

X
k2 P,C40 ,Nf g

min dcut ,
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where Ti is the predicted rotation matrices and translation vectors by
the end-to-endmodels as defined in Eq. (2), which are kept unchanged
during the structure optimization. Tconf

i represent the transforms to
recover the RNA conformation of the predictedmodel for the atom set
{P, C40, N} from the predefined local frame, {~rP ,~rC4

0
,~rN}. We sum the

end-to-end energy values calculated by the 6 end-to-endmodels as the
final consensus end-to-end potential.

The geometry potential Egeo is defined as
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X
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where Pd
ij dij

� �
and Pθ

ij θij

� �
are the predicted probabilities for a given

distance dij and dihedral angles θij between a nucleotide pair (i,j); PdN
ij

and PθN
ij are the corresponding probabilities of the last distance bin

below the upper threshold. The negative log-likelihood of the
predicted probabilities is interpolated using cubic spline interpolation
to form a potential curve for the specific distance/dihedral angle
terms20.

The 6 conformations predicted by the end-to-endmodels are also
used as initial structures for the optimization system and separately
optimized by the same hybrid potential function. The gradient of
parameters with respect to the hybrid potential function can be cal-
culated by the automatic differentiation package in PyTorch. Given the
energy values and gradients, we can use the L-BFGS algorithm48 to
iteratively update the parameters of the system, i.e., Tconf

i , which
determines the 3D conformations of the RNA models. The conforma-
tion with the lowest energy is considered as the final predicted struc-
ture among the 6 different L-BFGS trajectories.

Atomic-level structure refinement
Since both the end-to-end pipeline and the L-BFGS folding simulations
operate on the reduced 3-bead model, we implement a two-step pro-
cedure to reconstruct and refine the full atomic model of DRfold.
During the first step, we use Arena (https://zhanggroup.org/Arena/) to
construct the standard conformations of the full-atomic structure for
eachof the four types of nucleotides, basedon the generic A-formRNA
helix with a 32.7° twist and a 2.548 Å rise49, which are then super-
imposed to the three-atom frame (P, C4’, N) of the coarse-grained
DRfoldmodel to quickly obtain the initial full-atomic RNA structure. In
this step, three fast refinement steps are taken to rectify incorrect
bond lengths and angles, base and base pair conformations, and atom
clashes, respectively, while keeping the input 3-bead model frozen.
Next, a full-atom MD minimization is performed using OpenMM35 to
further refine the local structure geometry, including steric clash and
bond-length/angle violation removal. The MD force field is based on
AMBER1436 and specified by ‘amber14-all.xml’ and ‘amber14/
tip3pfb.xml’ in the package. For each model, k ×Natoms=20

minimization steps are run, where k = 0.6 is the empirical coefficient
and Natoms is the number of atoms in the full-atomic structure.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon reasonable request. All input data are
freely available from public sources. We show structures of 7OX9 and
7MRL obtained by four-digit accession codes in the Protein Data Bank
repository (https://www.rcsb.org/). RNA structures for training were
collected from PDB (https://www.wwpdb.org/ftp/pdb-ftp-sites).

Code availability
The DRfold standalone package are available at https://zhanggroup.
org/DRfold/ and https://github.com/leeyang/DRfold/. Data were ana-
lyzed usingNumpy v.1.20.3 (https://github.com/numpy/numpy), SciPy
v.1.7.1 (https://www.scipy.org/), and Matplotlib v.3.4.3 (https://github.
com/matplotlib/matplotlib). Structures were visualized by Pymol
v.2.3.0 (https://github.com/schrodinger/pymol-open-source) and
UCSF ChimeraX v.1.5 (https://www.cgl.ucsf.edu/chimerax/).

References
1. Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting

RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17,
547–558 (2018).

2. Rother,M., Rother, K., Puton, T. & Bujnicki, J. M.ModeRNA: a tool for
comparative modeling of RNA 3D structure. Nucleic Acids Res. 39,
4007–4022 (2011).

3. Flores, S. C., Wan, Y., Russell, R. & Altman, R. B. Predicting RNA
structure by multiple template homology modeling. Pac. Symp.
Biocomput. 216–227 (2010).

4. Biesiada,M., Pachulska-Wieczorek, K., Adamiak, R.W. & Purzycka, K.
J. RNAComposer and RNA 3D structure prediction for nano-
technology. Methods 103, 120–127 (2016).

5. Zhao, Y. et al. Automated and fast building of three-dimensional
RNA structures. Sci. Rep. 2, 734 (2012).

6. Boniecki, M. J. et al. SimRNA: a coarse-grained method for RNA
folding simulations and 3D structure prediction. Nucleic Acids Res.
44, e63 (2016).

7. Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo
rosetta prediction of complex global RNA folds. Structure 28,
963–976.e966 (2020).

8. Xiong, P., Wu, R., Zhan, J. & Zhou, Y. Pairing a high-resolution sta-
tistical potential with a nucleobase-centric sampling algorithm for
improving RNA model refinement. Nat. Commun. 12, 2777 (2021).

9. Miao, Z. et al. RNA-Puzzles Round IV: 3D structure predictions of
four ribozymes and two aptamers. RNA 26, 982–995 (2020).

10. Rhiju, D. et al. Assessment of three-dimensional RNA structure
prediction in CASP15. Preprint at bioRxiv https://doi.org/10.1101/
2023.04.25.538330 (2023).

11. Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure
prediction using an ensemble of two-dimensional deep neural
networks and transfer learning. Nat. Commun. 10, 5407 (2019).

12. Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure
prediction using deep learning with thermodynamic integration.
Nat. Commun. 12, 941 (2021).

13. Fu, L. et al. UFold: fast and accurate RNA secondary structure pre-
diction with deep learning. Nucleic Acids Res. 50, e14 (2022).

14. Li, Y., Hu, J., Zhang, C., Yu, D. J. & Zhang, Y. ResPRE: high-accuracy
protein contact prediction by coupling precision matrix with
deep residual neural networks. Bioinformatics 35, 4647–4655
(2019).

Article https://doi.org/10.1038/s41467-023-41303-9

Nature Communications |         (2023) 14:5745 11

https://zhanggroup.org/Arena/
https://www.rcsb.org/structure/7OX9
https://www.rcsb.org/structure/7MRL
https://www.rcsb.org/
https://www.wwpdb.org/ftp/pdb-ftp-sites
https://zhanggroup.org/DRfold/
https://zhanggroup.org/DRfold/
https://github.com/leeyang/DRfold/
https://github.com/numpy/numpy
https://www.scipy.org/
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/schrodinger/pymol-open-source
https://www.cgl.ucsf.edu/chimerax/
https://doi.org/10.1101/2023.04.25.538330
https://doi.org/10.1101/2023.04.25.538330


15. Singh, J., Paliwal, K., Litfin, T., Singh, J. & Zhou, Y. Predicting RNA
distance-based contact maps by integrated deep learning on
physics-inferred secondary structure and evolutionary-derived
mutational coupling. Bioinformatics 38, 3900–3910 (2022).

16. Sun, S., Wang, W., Peng, Z. & Yang, J. RNA inter-nucleotide 3D
closeness prediction by deep residual neural networks. Bioinfor-
matics 37, 1093–1098 (2021).

17. Townshend Raphael, J. L. et al. Geometric deep learning of RNA
structure. Science 373, 1047–1051 (2021).

18. Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

19. Baek, M. et al. Accurate prediction of protein structures and inter-
actions using a three-track neural network. Science 373,
871–876 (2021).

20. Li, Y., Zhang, C., Yu, D. J. & Zhang, Y. Deep learning geometrical
potential for high-accuracy ab initio protein structure prediction.
iScience 25, 104425 (2022).

21. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28,
235–242 (2000).

22. Gong, S., Zhang, C. & Zhang, Y. RNA-align: quick and accurate
alignment of RNA 3D structures based on size-independent TM-
scoreRNA. Bioinformatics 35, 4459–4461 (2019).

23. Shen, T. et al. E2Efold-3D: end-to-end deep learning method for
accurate de novo RNA 3D structure prediction. Preprint at https://
arxiv.org/abs/2207.01586 (2022).

24. Pearce, R., Omenn, G. S. & Zhang, Y. De novo RNA tertiary structure
prediction at atomic resolution using geometric potentials from
deep learning. Preprint at bioRxiv https://doi.org/10.1101/2022.05.
15.491755 (2022).

25. Feng,C. et al. Accurate denovoprediction of RNA3D structurewith
transformer network. Preprint at bioRxiv https://doi.org/10.1101/
2022.10.24.513506 (2022).

26. Gendron, P., Lemieux, S. &Major, F. Quantitative analysis of nucleic
acid three-dimensional structures. J. Mol. Biol. 308, 919–936
(2001).

27. Lemieux, S. & Major, F. RNA canonical and non-canonical base
pairing types: a recognition method and complete repertoire.
Nucleic Acids Res. 30, 4250–4263 (2002).

28. Parisien, M., Cruz, J. A., Westhof, É. & Major, F. New metrics for
comparing and assessing discrepancies between RNA 3D struc-
tures and models. RNA 15, 1875–1885 (2009).

29. Magnus, M. et al. RNA-Puzzles toolkit: a computational resource of
RNA 3D structure benchmark datasets, structuremanipulation, and
evaluation tools. Nucleic Acids Res. 48, 576–588 (2020).

30. Zok, T., Popenda, M. & Szachniuk, M. MCQ4Structures to compute
similarity of molecule structures. Cent. Eur. J. Oper. Res. 22,
457–473 (2014).

31. Lu, X. J., Bussemaker, H. J. & Olson, W. K. DSSR: an integrated
software tool for dissecting the spatial structure of RNA. Nucleic
Acids Res. 43, e142 (2015).

32. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6,
26 (2011).

33. Seemann, S. E., Gorodkin, J. & Backofen, R. Unifying evolutionary
and thermodynamic information for RNA folding of multiple align-
ments. Nucleic Acids Res. 36, 6355–6362 (2008).

34. Davis, I. W. et al. MolProbity: all-atom contacts and structure vali-
dation for proteins and nucleic acids. Nucleic Acids Res. 35,
W375–W383 (2007).

35. Eastman, P. et al. OpenMM 7: rapid development of high perfor-
mance algorithms for molecular dynamics. PLOS Comput. Biol. 13,
e1005659 (2017).

36. Case, D. A. et al. AMBER 14. University of California, San Fran-
cisco (2014).

37. Baek, M., McHugh, R., Anishchenko, I., Baker, D. & DiMaio, F.
Accurate prediction of nucleic acid and protein-nucleic acid com-
plexes usingRoseTTAFoldNA. Preprint atbioRxivhttps://doi.org/10.
1101/2022.09.09.507333 (2022).

38. Zhang, C., Zheng, W., Mortuza, S. M., Li, Y. & Zhang, Y. DeepMSA:
constructing deep multiple sequence alignment to improve con-
tact prediction and fold-recognition for distant-homology proteins.
Bioinformatics 36, 2105–2112 (2020).

39. Zhang, C., Zhang, Y. & Pyle, A. M. rMSA: a sequence search and
alignment algorithm to improve RNA structure modeling. J. Mol.
Biol. https://doi.org/10.1016/j.jmb.2022.167904 (2022).

40. Kryshtafovych, A. et al. New prediction categories in CASP15. Pro-
teins: Struct. Funct. Bioinformat. https://doi.org/10.1002/prot.
26515 (2023).

41. Das, R. in 15th Community Wide Experiment on the Critical Assess-
ment of Techniques for Protein Structure Prediction (2022).

42. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2016).

43. Aiken, J. G., Erdos, J. A. & Goldstein, J. A. On Löwdin orthogonali-
zation. Int. J. Quantum Chem. 18, 1101–1108 (1980).

44. Levinson, J. et al. An analysis of SVD for deep rotation estimation.
Adv. Neural Inf. Process. Syst. 33, 22554–22565 (2020).

45. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.
Preprint at https://arxiv.org/abs/1412.6980 (2014).

46. Paszke, A. et al. Pytorch: an imperative style, high-performance
deep learning library. Advances in Neural Information Processing
Systems Vol. 32 (2019).

47. Chen, T., Xu, B., Zhang, C. & Guestrin C. Training deep nets with
sublinear memory cost. Preprint at https://arxiv.org/abs/1604.
06174 (2016).

48. Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound-constrained optimiza-
tion. ACM Trans. Math. Softw. 23, 550–560 (1997).

49. Chandrasekaran, R. & Arnott, S. in Landolt‐BörnsteinNumerical Data
and Functional Relationships in Science and Technology, Group VII/
1b, Nucleic Acids (ed Saenger W) (Springer‐Verlag, 1989).

Acknowledgements
We thank Drs. Sha Gong and Xi Zhang for insightful discussions. This
work was supported in part by the National Institute of General Medical
Sciences (GM083107, GM116960, GM136422 to Y.Z.); the National
Institute of Allergy and Infectious Diseases (AI134678 to P.L.F. and Y.Z.);
theNational Institute ofHealthOfficeof TheDirector (OD026825 toY.Z.);
the National Science Foundation (DBI2030790 and IIS1901191 to Y.Z.,
MTM2025426 to P.L.F. and Y.Z.). Start-up Grants of the National Uni-
versity of Singapore (A-8001129-00-00, A-0001166-36-00, A-8000974-
00-00 to Y.Z.). This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported byNational Science
Foundation (ACI1548562).

Author contributions
Y.Z. conceived and designed the project and supervised the work. Y.L.
developed the methods and performed the benchmark. C.Z. prepared
the data, developed the full atom packing software, and performed the
benchmark. C.F. prepared the initial data and performed the bench-
mark. R.P. prepared data and participated in discussions. P.L.F. super-
vised the work. All authors wrote the manuscript and approved the final
version.

Competing interests
The authors declare no competing interests.

Article https://doi.org/10.1038/s41467-023-41303-9

Nature Communications |         (2023) 14:5745 12

https://arxiv.org/abs/2207.01586
https://arxiv.org/abs/2207.01586
https://doi.org/10.1101/2022.05.15.491755
https://doi.org/10.1101/2022.05.15.491755
https://doi.org/10.1101/2022.10.24.513506
https://doi.org/10.1101/2022.10.24.513506
https://doi.org/10.1101/2022.09.09.507333
https://doi.org/10.1101/2022.09.09.507333
https://doi.org/10.1016/j.jmb.2022.167904
https://doi.org/10.1002/prot.26515
https://doi.org/10.1002/prot.26515
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174


Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-41303-9.

Correspondence and requests for materials should be addressed to P.
Lydia Freddolino or Yang Zhang.

Peer review information Nature Communications thanks Marta Szach-
niuk and the other, anonymous, reviewers for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-41303-9

Nature Communications |         (2023) 14:5745 13

https://doi.org/10.1038/s41467-023-41303-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction
	Results
	DRfold outperforms previous RNA structure predictors
	End-to-end models provide complementary information to geometric restraints for RNA structure modeling
	Secondary structure prediction facilitates feature learning and model construction
	Structure refinement improves the physical realism of DRfold models
	DRfold produces competitive predictions to cutting-edge deep learning methods
	Blind RNA structure prediction in CASP15

	Discussion
	Methods
	Feature preparation and embedding
	RNA transformer network
	RNA structure module
	Loss function of the end-to-end models
	Prediction terms of geometry models
	Training process of the end-to-end and geometry models
	Gradient-based structure optimization with integrated end-to-end and geometry potentials
	Atomic-level structure refinement
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




