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Epigenome-wide association analysis of
infant bronchiolitis severity: a multicenter
prospective cohort study

Zhaozhong Zhu 1 , Yijun Li 2, Robert J. Freishtat 3,4,5, Juan C. Celedón 6,
Janice A. Espinola 1, Brennan Harmon3, Andrea Hahn 3,5,7,
Carlos A. Camargo Jr 1, Liming Liang 2,8,9 & Kohei Hasegawa 1,9

Bronchiolitis is the most common lower respiratory infection in infants, yet its
pathobiology remains unclear. Here we present blood DNA methylation data
from625 infants hospitalizedwithbronchiolitis in a 17-centerprospective study,
and associate them with disease severity. We investigate differentially methy-
lated CpGs (DMCs) for disease severity. We characterize the DMCs based on
their association with cell and tissues types, biological pathways, and gene
expression. Lastly, we also examine the relationships of severity-related DMCs
with respiratory and immune traits in independent cohorts. We identify 33
DMCs associated with severity. These DMCs are differentially methylated in
blood immune cells. These DMCs are also significantly enriched in multiple
tissues (e.g., lung) and cells (e.g., small airway epithelial cells), and biological
pathways (e.g., interleukin-1-mediated signaling). Additionally, these DMCs are
associated with respiratory and immune traits (e.g., asthma, lung function, IgE
levels). Our study suggests the role ofDNAmethylation in bronchiolitis severity.

Bronchiolitis—the most common lower respiratory infection among
infants—is an important health problem1. While 30%–40% of infants
develop clinical bronchiolitis, its severity ranges from a minor nui-
sance to a fatal infection2,3. Bronchiolitis is also the leading cause of
hospitalization in U.S. infants, accounting for ~110,000 hospitali-
zations annually4. Approximately 5% of these infants undergo
mechanical ventilation4. However, traditional risk factors (e.g.,
prematurity) do not sufficiently explain the differences in bronch-
iolitis severity3, and its pathobiology remains to be elucidated. Our
limited understanding of the disease mechanisms has hindered
efforts to develop targeted treatment strategies in this large patient
population.

Although bronchiolitis is caused by a viral infection, emerging
evidence about its pathobiology suggests a complex interrelationship

of environmental (e.g., viruses), genetic, and host immune factors5–7.
Indeed, studies have reported associations of the transcriptome8–10,
proteome9,11, metabolome12–15, and microbiome10,15–18 profiles with dis-
ease severity. However, these findings were unable to uncover the
integrated contribution of infant’s genetic makeup and environmental
factors to the pathobiology of bronchiolitis. DNAmethylation—amajor
type of epigenetic regulation—addresses this knowledge gap via
characterizing cytosine-phosphate-guanine (CpG) sites that are a
function of genetic-environmental interplay19.

To address the knowledge gap in the literature, we aimed to
investigate the role of the epigenome in bronchiolitis severity by
applying epigenome-wide association study (EWAS) approaches to
blood DNAmethylation data from amulticenter prospective cohort of
infants hospitalized for bronchiolitis.
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Results
Of the 1016 infants hospitalized for bronchiolitis enrolled into the 35th
Multicenter Airway Research Collaboration (MARC-35) cohort, the
current study examined 625 infants with high-quality blood DNA
methylation data (Fig. 1 and Supplementary Fig. 1). The analytic and
non-analytic cohorts did not differ in most patient characteristics
(P ≥0.05; Supplementary Table 2), except for several variables

(e.g., age, race/ethnicity, respiratory syncytial virus (RSV) infection).
Among the analytic cohort, the median age was 3 (interquartile range
[IQR], 2–6) months, 38% were female, 46% were non-Hispanic White,
29% were Hispanic, and 22% were non-Hispanic Black. During hospi-
talizations for bronchiolitis, 5% of participants underwent positive
pressure ventilation (PPV) (Table 1 and Supplementary Table 3). For
DNA methylation profiling, a total of 863,904 CpGs were measured.

Fig. 1 | StudyDesign andAnalyticWorkflow.The analytical cohort consists of 625
infants hospitalized for bronchiolitis in amulticenter prospective cohort study—the
35th Multicenter Airway Research Collaboration (MARC-35). Blood Infinium
MethylationEPIC array (850K) DNA methylation data underwent quality control,
leading to a total of 794,177 high-quality CpGs for the downstream analysis. In Aim
1, the association of 794,177 CpGs with the risk of PPV use was examined. A total of
33 severity-related DMCs and 22 DMRs were identified. In Aim 2, seven blood
immune cell typeswere deconvoluted using the epigenome-wideDNAmethylation
data. The association of the DMCs with each cell type was examined. The ENCODE
DHS tissue- and cell-specific signal from the DMCs was also determined. The bio-
logical pathway analysis using the GO, KEGG, and Reactome databases was per-
formed. The association of blood DNA methylation and gene expression was

investigated by cis-eQTM (HELIX Project) analysis. In Aim 3, by leveraging inde-
pendent and publicly available EWAS (Project Viva) and GWAS (GoDMC and
UK Biobank) data, the association of bronchiolitis severity-related DMCs with
respiratory and immune traits was examined. Some components of this figure
were created with BioRender.com. CpG, cytosine-phosphate-guanine; DHS, DNase
hypersensitivity site; DMC, differentially methylated CpG; DMR, differentially
methylated region; ENCODE, Encyclopedia of DNA Elements; eQTM, expression
quantitative trait methylation; EWAS, epigenome-wide association study; GO, Gene
Ontology;GoDMC,Geneticsof DNAMethylationConsortium;GWAS, genome-wide
association study; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPV, positive
pressure ventilation.
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Among these, 794,177 CpGs passed stringent quality control and were
included in the subsequent analysis (Supplementary Figs. 2 and 3).

Epigenome-wide analysis demonstrated associations of CpGs
and methylated regions with bronchiolitis severity
The EWAS results showed that the confounding and batch effects were
well-controlled with minimal inflation (λgenomic control = 1.02, Fig. 2A). A
total of 33 differentially methylated CpGs (DMCs) were significantly
associated with the risk of PPV use (false discovery rate [FDR] < 0.05),

with 27 (82%) being hypomethylated and six (18%) being hyper-
methylated (Table 2 and Fig. 2B). Of these DMCs,most were annotated
to gene body (e.g., cg01680062 on RUNX1), transcription-start site
(e.g., cg24346915 on TMPRSS6), or untranslated region (e.g.,
cg02936755 on LRP5L). In the stratified analysis within infants with RSV
infection, 15 DMCs were significantly associated with PPV use (FDR <
0.05), with 13 being hypomethylated and two being hypermethylated
(Supplementary Fig. 4A). Among infantswith rhinovirus (RV) infection,
three DMCs were significantly associated with PPV use (FDR <0.05)
and all beinghypomethylated (Supplementary Fig. 4B). Additionally, in
the region-based analysis, a total of 22 differentially methylated
regions (DMRs) were significantly associated with the risk of PPV use
(Šidák p-value < 0.05; Supplementary Table 4).

Severity-related DMCs were associated with cell types, tissue
types, biological pathways, and gene expression
Seven blood cells types were deconvoluted and inferred. The pro-
portions of four cell types (helper T cells [(TH)], monocytes, natural
killer (NK) cells, and neutrophils) were significantly associatedwith the
risk of PPV use (FDR <0.05; Supplementary Table 5). Among them,
neutrophils were the most strongly associated with the risk of PPV use
(effect estimate = 0.13, FDR= 7.80 × 10−5). The severity-related DMCs
were also differentially methylated across blood immune cell types.
There are a total of 51 significant DMC-cell pairs (FDR <0.05), with 35
(69%) being hypomethylated, and 16 (31%) being hypermethylated
(Fig. 3A). For example, cg02936755 on LRP5L was hypomethylated in
cytotoxic T (TC) cells (effect estimate =�0.72, FDR <0.05) and TH cells
(effect estimate =�0.36, FDR <0.001); cg24346915 on TMPRSS6 was
hypermethylated in eosinophils (effect estimate = 1.00, FDR <0.001;
Fig. 3A). Among seven immune cell types, neutrophils had greatest
number of associations with severity-related DMCs (23 out of 33).
Integrative epigenomic analyses for PPV use highlighted the enrich-
ment of DMCswithDNasehypersensitivity site (DHS) in various tissues
(e.g., blood, lung) and related cell types (e.g., small airway epithelial
cells, fetal lung fibroblasts; Fig. 3B). Finally, the gene-set enrichment
analysis identified 5 pathways that were differentially enriched and
related to respiratory and immune systems (FDR <0.05; Fig. 3C), such
as the T cell receptor signaling, interleukin-1 (IL-1)-mediated signaling,
negative regulation of immune response and Fc epsilon receptor sig-
naling pathways. Among the severity-related DMCs, we have identified
173 CpG-gene pairs from the blood-based cis-expression quantitative
trait methylation (eQTM) data from the Human Early Life Exposome
(HELIX) Project20, of which one pair showed a significant association
(cg12896170 and TRIM27, log2FC =�0.07, FDR= 2.39 × 10−4; Supple-
mentary Data 1).

Severity-related DMCs were associated with respiratory and
immune traits
Of 33 DMCs, fifteen were nominally-significantly associated with six
respiratory and four immune traits in the independent and publicly
available Project Viva study. For example, cg02534167 on KLF7 was
associated with allergic asthma, total immunoglobulin E (IgE) levels,
specific IgE levels, and fractional exhaled nitric oxide (FeNO) level with
a consistent direction of the effect. Additionally, cg07475825 on
CYB5R4 was associated with bronchodilator response (Fig. 4).

Based on the instrumental variable selection criteria, 26 inde-
pendent SNPs for cg09541576, 43 SNPs for cg12547959, 244
SNPs for cg12896170, and 21 SNPs for cg15848159 were identified
and used for Mendelian randomization analysis. The Mendelian
randomization analysis suggested a significant relationship of
four DMCs with asthma or lung function traits (FDR <0.05). For
example, cg12547959 was significantly associated with a higher risk of
asthma (ORIVW = 1.02, 95% CIIVW, 1.01−1.03, FDRIVW= 3.75 × 10−6),
reduced FEV1 level (effect estimateIVW =�0.014, 95% CIIVW, �0.017,
�0.012, FDRIVW = 1.43 × 10−31), and reduced FVC level (effect

Table 1 | Baseline characteristics and clinical course of 625
infants hospitalized for bronchiolitis

Characteristics Overall (n = 625)

Demographics

Age (month), median (IQR) 3 (2–6)

Female sex 240 (38)

Race/ethnicity

Non-Hispanic white 287 (46)

Non-Hispanic black 136 (22)

Hispanic 180 (29)

Other or unknown 22 (4)

Prematurity (32–36.9 weeks) 107 (17)

Birth weight (kg), median (IQR) 3.28 (2.90–3.60)

Mode of birth (cesarean delivery) 210 (34)

Previous breathing problems before the index hospitalizationa

0 488 (78)

1 106 (17)

2 31 (5)

Previous ICU admission 8 (1)

History of eczema 102 (16)

Lifetime antibiotic use 201 (32)

Ever attended daycare 153 (25)

Cigarette smoke exposure at home 101 (16)

Maternal smoking during pregnancy 101 (17)

Parental history of asthma 204 (33)

Parental history of eczema 122 (20)

Clinical presentation

Weight at presentation (kg), median (IQR) 6.20 (4.90–7.92)

Respiratory rate at presentation (per minute),
median (IQR)

48 (40–60)

Oxygen saturation at presentation

<90% 56 (9)

90–93% 99 (16)

≥94% 455 (75)

Blood eosinophilia (≥4%) 60 (11)

IgE sensitization (%) 128 (21)

Length of hospitalization (day), median (IQR) 2 (1–3)

Corticosteroid use during hospitalizationb 82 (13)

Respiratory virus

RSV infection 473 (76)

RV infection 110 (19)

Acute clinical outcome

Positive pressure ventilation useb 30 (5)

Data are no. (%) of infants unless otherwise indicated. Percentages may not equal 100, because
of rounding and missingness.
ICU intensive care unit, IgE immunoglobulin E, IQR interquartile range, RSV respiratory syncytial
virus, RV rhinovirus.
aDefined as an infanthaving a cough thatwakeshimorher at night or causes emesis, orwhen the
child has wheezing or shortness of breath without cough.
bDefined as the use of continuous positive airway pressure ventilation and/or mechanical ven-
tilation during the hospitalization.
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Fig. 2 | Epigenome-wide Association of CpGs with Bronchiolitis Severity.
A Association test quantile–quantile plot shows a departure from the null
hypothesis of no association. Confounding and batch effects were well-controlled
with minimal inflation (λgenomic control = 1.02). The λgenomic control was calculated
using QCEWAS package with default setting, which is based on one-sided Chi-
Square test. B Manhattan plot for the epigenome-wide association test of

bronchiolitis severity. The EWAS showed that a total of 33 DMCs were identified
across 22 autosomal chromosomes and two sex chromosomes. The epigenome-
wide significance level after accounting formultiple testing (FDR<0.05) is denoted
by the red line. DMC, differentially methylated CpG; EWAS, epigenome-wide
association study; FDR, false discovery rate.
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estimateIVW=�0.014, 95%CIIVW,�0.017,�0.011, FDRIVW= 9.66 × 10−23;
Fig. 5). Most of the associations were consistent across three Mende-
lian randomization methods (Fig. 5).

Discussion
By applying the EWAS approach to data from a multicenter pro-
spective cohort of infants hospitalizedwith bronchiolitis, we identified
33 CpGs differentially methylated in relation to the risk of PPV use.
Furthermore, we observed that these DMCs were differentially
methylated in blood immune cells—e.g., TC cells, TH cells, and neu-
trophils. These DMCs were also significantly and differentially enri-
ched across multiple tissues (e.g., blood, lung) and cells (e.g., small
airway epithelial cells, fetal lung fibroblasts), and biological pathways—
e.g., T cell receptor signaling, IL-1-mediated signaling, and Fc epsilon
receptor signaling pathways. Moreover, by leveraging publicly avail-
able EWAS data, the severity-related DMCs were associated with
respiratory and immune traits (e.g., asthma, total IgE levels). Finally, we
identified that four DMCs that were associated with asthma risk and
lung function. Our EWAS study that has demonstrated the potential
role of DNA methylation in the pathobiology of infant bronchiolitis—a
major health problem.

Concordant with the present study, a growing body of evidence
supports the relationship of DNA methylation with respiratory out-
comes, such as asthma21–31, chronic obstructive pulmonary disease
(COPD)32–35, idiopathic pulmonary fibrosis36, lung function32,33,37,38, and
respiratory viral infection39–42. For example, a post hoc analysis from
the MAKI study—a randomized, placebo-controlled trial of RSV
immunoprophylaxis in preterm infants in the Netherlands—has
reported three differentially methylated CpGs in nasal cells at age 6
years40. Furthermore, in a cohort study of 77 infants with RSV infection
in Spain, bloodDNAmethylation signatures at infancywere associated
with a higher risk of chronic respiratory sequelae, such as recurrent
wheeze and asthma41. In addition, patients who developed respiratory
sequelae showed a significantly higher proportion of TC and NK cells41.
The current study—with a sample sizemany times larger than anyother
prior study on acute respiratory infection among infants—corrobo-
rates these earlier findings and extends them by demonstrating novel
blood DNA methylation signatures in infants hospitalized with
bronchiolitis and their relationship with acute disease severity and
additional respiratory and immune related traits.

There are several potential mechanisms linking DNA methyla-
tion with bronchiolitis severity and its respiratory sequelae. First,

Table 2 | Thirty-three severity-related CpG probes differentially methylated in infant hospitalized with bronchiolitis

CpG probe Chromosome Position Effect estimate P-value FDR Gene/nearest gene Gene region feature category

cg03361294 14 57051003 −0.58 1.14 × 10−12 9.08 × 10−7 TMEM260 Body

cg09541576 2 44873248 −0.31 5.83 × 10−12 2.31 × 10−6 C2orf34 Body

cg15135194 6 133070524 0.44 1.57 × 10−10 4.15 × 10−5 VNN2 Body

cg04175911 10 99172893 −0.17 6.70 × 10−10 1.33 × 10−4 RRP12a 5’UTRb

cg05639088 2 208176244 −0.33 9.14 × 10−10 1.45 × 10−4 LINC01802a TSS1500b;3’UTRb

cg02936755 22 25771833 −0.28 1.79 × 10−9 2.37 × 10−4 LRP5L 5’UTR

cg17555274 20 39122378 −0.33 2.58 × 10−9 2.93 × 10−4 SNORD112a Unknown

cg25238420 12 47552760 −0.29 2.98 × 10−9 2.96 × 10−4 PCED1B 5’UTR

cg20292908 5 172203421 −0.42 4.19 × 10−9 3.70 × 10−4 DUSP1a 5’UTRb

cg27167895 4 88818173 0.29 7.36 × 10−9 5.85 × 10−4 MEPEa Unknown

cg16222694 13 29657404 −0.29 2.36 × 10−8 1.70 × 10−3 MTUS2 Body

cg24346915 22 37506589 −0.45 3.25 × 10−8 2.15 × 10−3 TMPRSS6 TSS1500

cg12547959 5 14326153 0.40 3.60 × 10−8 2.20 × 10−3 TRIO Body

cg09432792 16 56352311 0.45 1.21 × 10−7 6.88 × 10−3 GNAO1 Body

cg13132442 2 97464277 −0.29 1.40 × 10−7 7.20 × 10−3 CNNM4 Body

cg15002347 1 186590321 −0.26 1.45 × 10−7 7.20 × 10−3 PTGS2a Unknown

cg07475825 6 84577581 −0.37 1.95 × 10−7 9.13 × 10−3 CYB5R4 Body

cg05790772 X 144114285 −0.75 2.25 × 10−7 9.47 × 10−3 SPANXN1a Unknown

cg27459630 17 28019440 −0.33 2.27 × 10−7 9.47 × 10−3 SSH2 Body

cg12896170 6 28890069 −0.29 2.54 × 10−7 1.01 × 10−2 TRIM27 Body

cg00052684 6 35694245 −0.37 2.73 × 10−7 1.03 × 10−2 FKBP5 5’UTR

cg08370869 1 193648305 −0.28 3.35 × 10−7 1.21 × 10−2 CDC73a 5’UTRb

cg08552853 2 102875372 −0.23 4.33 × 10−7 1.50 × 10−2 IL1RL2a Unknown

cg15848159 4 85791643 0.29 4.98 × 10−7 1.65 × 10−2 WDFY3 5’UTR

cg03574890 1 151284129 −0.20 5.46 × 10−7 1.67 × 10−2 PI4KB Body;5’UTR

cg22885409 11 102470832 −0.21 5.40 × 10−7 1.67 × 10−2 MMP20 3’UTRb

cg15920942 2 70743881 −0.15 5.78 × 10−7 1.70 × 10−2 TGFA Body

cg01680062 21 36185960 −0.23 7.66 × 10−7 2.17 × 10−2 RUNX1 Body

cg20361768 3 156819083 −0.27 9.76 × 10−7 2.67 × 10−2 LINC00880 Body

cg01363387 5 95938059 −0.20 1.02 × 10−6 2.71 × 10−2 LOC101929710 Body

cg02534167 2 207987951 0.13 1.44 × 10−6 3.68 × 10−2 KLF7 Body

cg03489069 2 228236715 −0.26 1.56 × 10−6 3.75 × 10−2 TM4SF20 Body

cg09412707 4 26085653 −0.24 1.55 × 10−6 3.75 × 10−2 RBPJa Unknown

CpG cytosine-phosphate-guanine, FDR false discovery rate, TSS transcription-start site, UTR untranslated region.
aNo gene is mapped based on CpG location, nearest genes are shown.
bAnnotated based on the GENCODE v12 database. All others are annotated based on University of California, Santa Cruz (UCSC) RNA reference sequences collection (RefSeq).
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the literature has suggested the role of host immune response—e.g.,
type I interferons (IFN), neutrophils—in the bronchiolitis patho-
biology and viral respiratory infection. DNA methylation, as med-
iator between respiratory virus infections and disease severity,
modulate airway and systematic inflammatory processes42,43. For
example, a recent study has identified that blood DNA methylation
signatures were associated with the activation of TC cells, neu-
trophils, and IFN signaling pathway in patients with severe SARS-
CoV-2 infection42. Concordant with these findings, the current study
found that the severity-related DMCs were differentially methylated
in circulating immune cells, especially in TC cells, TH cells and
neutrophils. Such differential methylation supported the hetero-
genous effect of the severity-related DMCs across blood immune
cells. For example, cg02936755 on LRP5L was hypomethylated in TC

cells, TH cells, and monocytes; however, it was hypermethylated in
B cells and eosinophils. Furthermore, the DMCs were also sig-
nificantly enriched in the T cell receptor signaling and type I IFN
production pathways. Of note, previous research has reported that
these pathways have been associated with bronchiolitis severity10

and asthma development5,44–46. These studies have also shown that
the regulation of these pathways is being mediated by epigenetic
changes at the promoter level of the implicated genes47.

The enrichment of DMCswith DHS regulatory elements in various
tissues (e.g., blood, lung) and related cell types (e.g., small airway
epithelial cells, fetal lung fibroblasts) supports that our findings in the
blood can inform functional implications in the respiratory system. For
example, a recent EWAS meta-analysis study of blood samples has
identified that 1267 CpGs (1042 implicated genes) in blood were dif-
ferentially methylated in relation to lung function38. Multiple impli-
cated genes from the EWAS meta-analysis study are also identified
from our study, such as FKBP5 and TGFA, indicating the common role
of blood DNA methylation in the respiratory system. Furthermore,
some of our severity-related DMCs implicated genes (both within and
nearby) play important roles in inflammation and immunity in the
lung. For example, an in vitro study has found that dual-specificity
phosphatase 1 (DUSP1) promotes virus-induced apoptosis and sup-
presses cell migration in RSV-infected epithelial cells. These processes
further prevent dephosphorylation of c-Jun N-terminal kinase (JNK)
and p38 mitogen-activated protein kinase (MAPK) as well as down-
stream cytokine production48.

Lastly, the role of severity-related DMCs on respiratory sequelae
warrants clarification. The current study has identified that
cg01680062 on RUNX1 and cg08552853 near IL1RL2 are significantly
associatedwith bronchiolitis severity. A previous study has shown that

Fig. 3 | Association of Severity-related Differentially Methylated CpGs with
Different Tissue Types, Cell Types, and Biological Pathways. A Blood cell type
deconvolution analysis inferred seven blood immune cell types, including B cells,
TH cells, TC cells, eosinophils, monocytes, neutrophils, and NK cells. After esti-
mating cell type fractions, we identified that the DMCs were differentially methy-
lated (hypermethylation or hypomethylation) in these cell types. The first column
“PPVuse” represents theoverall effect size forPPVuse (i.e., non-deconvoluted). The
size of the dot denotes the magnitude of the associations. One asterisk denotes
FDR <0.05; two asterisks denote FDR<0.001. B Enrichment of DMCs in DHS ele-
ments from the ENCODE Project. The DMCs showed significant enrichment in a

total of 73 cell types from 33 tissue types (FDR <0.05). C Biological pathway ana-
lysis using GO, KEGG, and Reactome databases. We identified 5 respiratory or
immune related differentially enriched pathways associated with bronchiolitis
severity (FDR<0.05). Blue color denotes Reactome pathways, orange color
denotes KEGG pathways, and green color denotes GO biological process pathways.
DHS DNase hypersensitivity site, DMC differentially methylated CpG, ENCODE
Encyclopedia of DNA Elements, FDR false discovery rate, GO Gene ontology, KEGG
Kyoto encyclopedia of genes and genomes, NK natural killer, PPV positive pressure
ventilation, TC cytotoxic T, TH helper T.
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Fig. 4 | Association of Severity-related Differentially Methylated CpGs with
Respiratory and Immune Traits. EWAS summary statistics for six respiratory
(asthma, allergic asthma, FEV1, FVC, FEV1/FVC, and BDR) and four immune (allergic
rhinitis, FeNO, total IgE, and specific IgE) traits from the independent and publicly
available Project Viva study have been retrieved. The first column has shown the 33
DMCs’ effect size fromPPVuse inMARC-35 study, wehave calculated the effect size
based on β-value to match the magnitude of effect sizes from Project Viva since
they were also calculated based on β-value. This column will be helpful to compare

the direction of effects for PPV use and the other traits. All other columns are from
Project Viva study. Of 33 DMCs, 15 were nominally significant across ten traits
(P <0.05). The analysis was not adjusted for multiple comparison. The size of the
dot denotes the magnitude of the associations. One asterisk denotes P <0.05; two
asterisks denote P <0.001. BDR bronchodilator response, FeNO fractional exhaled
nitric oxide, FEV1 forced expiratory volume in one second, FVC forced vital capa-
city, IgE immunoglobulin E, PPV positive pressure ventilation.
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intrauterine smoke exposure decreased RUNX1 expression during
postnatal period49. Genetic variation inRUNX1 is associatedwith airway
responsiveness in children with asthma, and the association is mod-
ified by intrauterine smoke exposure49. Our previous large-scale gen-
ome-wide association study (GWAS) has identified IL1RL2 as a
pleotropic gene that is shared between allergic diseases and asthma50.
IL1RL2 encodes a cytokine receptor that belongs to the IL-1 receptor

family51. Studies have shown a lower expression of IL1RL2 in asthma
causing increased IL-1 activity due to the lack of adequate anti-
inflammatory regulation52. Finally, our Mendelian randomization ana-
lysis has found that four DMCs were associated with asthma risk and
lung function, which potentially shows bronchiolitis severity and
respiratory sequelae being common consequences of epigenetic reg-
ulatory impacts of the genetic variants. Of note, the results from
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Mendelian randomization were also consistent with the results from
the independent Project Viva study—e.g., cg12547959 on TRIO was
associated with higher asthma risk and reduced FEV1. Consistently, a
recent large-scale GWAS of asthma and COPD overlap has identified a
highly significant chromatin interaction in fetal lung fibroblasts over-
lapping with TRIO53. Notwithstanding the complexity of these
mechanisms, the identification of the relationship between DNA
methylation and bronchiolitis severity is important. Evidence has
suggested that DNA methylation can be targeted for epigenetic
therapy54. Our findings, in conjunction with the existing literature,
should advance research into the development of DNA methylation-
based strategies for bronchiolitis treatment and primary prevention of
its respiratory sequelae.

Our study has several potential limitations. First, the cross-
sectional design limited us to investigate the exact causal link between
the DNA methylation signature and bronchiolitis severity. Second,
although our Mendelian randomization analysis showed the associa-
tion of severity-related DMCs in infancy with respiratory outcomes in
later life (e.g., asthma and lung function), it is important to investigate
the association of these CpGs in infancy with respiratory outcomes in
later life in a longitudinal design27,37. Third, blood samples were used
for DNA methylation profiling, which limited our inference to other
tissue types (e.g., airway). Fourth, althoughwe have used the cis-eQTM
data from the HELIX Project to investigate the association of CpGs and
gene expression, the current study lacks paired transcriptome data in
blood to investigate the effect ofDNAmethylationongene expression.
Fifth, the results of DMCs in each cell type need to be interpreted with
caution since “CellDMC” function in the EpiDISH package assumes all
other cell types are 0%when it estimates a specific cell type driving the
methylation change, where our data contain mixed cell types. Sixth,
while nearly half of the identified CpGs were associated with respira-
tory and immune traits in an independent study, our inferences war-
rant external replication using the same bronchiolitis severity
outcome. However, to our best knowledge, DNAmethylationdatawith
the same outcome are not currently available. Seventh, the current
study did not have mechanistic experiments to validate the identified
CpG functions. Yet, this study derives well-calibrated hypotheses that
facilitate future experiments. Lastly, despite the study sample con-
sisting of racially/ethnically- and geographically-diverse infants, our
inferencesmust be cautiously generalized beyond infants hospitalized
with bronchiolitis. Nonetheless, our data remain directly relevant for
the 110,000 infants hospitalized yearly in the U.S4.

In conclusion, by applying EWAS approach to a multicenter
cohort of infants hospitalized with bronchiolitis, we identified that
blood DNA methylation signatures were associated with bronchiolitis
severity and played important roles in tissues, cells, pathways, and
gene expression. For example, the severity-related CpGs were differ-
entially methylated in blood immune cells, including TC cells, TH cells
and neutrophils; and enriched in T cell receptor signaling pathway and
IL-1-mediated signaling pathways. Additionally, these CpGs were
associated with additional respiratory and immune traits, such as
asthma, lung function, FeNO, and total IgE levels in an independent

and publicly available study. Our findings should facilitate further
research into the interplay between environmental factors, epige-
netics, host response, and diseasepathobiology of infant bronchiolitis.
This will, in turn, advance the development of targeted therapeutic
measures (e.g., modification of DNA methylation-related immune
response) and help clinicians manage this population with a large
morbidity burden.

Methods
Study design, setting, and participants
The study design and analytic workflow are summarized in Fig. 1. We
analyzed data from a multicenter prospective cohort study of infants
hospitalized for bronchiolitis—the MARC-35 study15,16. Details of the
study design, setting, participants, data collection, testing, and statis-
tical analysis may be found in the Supplementary Methods. At 17
medical centers across 14 U.S. states (Supplementary Table 1), MARC-
35 enrolled infants (age <1 year) who were hospitalized with an
attending physician diagnosis of bronchiolitis during three bronchio-
litis seasons in 2011–2014. The diagnosis of bronchiolitis was made
according to the American Academy of Pediatrics bronchiolitis
guidelines, defined as an acute respiratory illness with a combination
of rhinitis, cough, tachypnea, wheezing, crackles, or retraction55. We
excluded infants with preexisting heart or lung disease, immunodefi-
ciency, immunosuppression, or gestational age of <32 weeks. All
infants were managed at the discretion of the treating physicians. Of
1016 infants enrolled in the MARC-35 cohort, the current study inves-
tigated 625 infants with high-quality blood DNA methylation data
(Supplementary Fig. 1). The institutional review board at each partici-
pating hospital approved the study with written informed consent
obtained from the parent or guardian.

Data collection and exposure
Clinical data (study participants’ demographic characteristics, family,
environmental, medical history, and details of the acute illness) were
collected via structured interview and chart reviews using a standar-
dized protocol55,56. After the index hospitalization for bronchiolitis,
trained interviewers began interviewing parents/legal guardians by
telephone at 6-month intervals in addition tomedical record reviewby
physicians. All datawere reviewed at the EmergencyMedicineNetwork
Coordinating Center at Massachusetts General Hospital (Boston, MA,
USA)56. Whole blood specimens were collected within 24 h of hospi-
talization using a standardized protocol14. The details of the data col-
lection andmeasurementmethods are described in the Supplementary
Methods.

Blood DNAmethylation profiling and quality control. The details of
DNA extraction, DNA methylation profiling, and quality control are
described in Supplementary Methods. Briefly, after DNA extraction, we
performed DNA methylation profiling using the Illumina Infinium
MethylationEPIC BeadChip (Illumina, San Diego, CA). To ensure the
quality of the DNA methylation data, we followed the existing data
preprocessing pipeline in the minfi package57. We applied multiple

Fig. 5 | Mendelian Randomization Analysis of Severity-related Differentially
Methylated CpGs . Mendelian randomization analysis was performed to investi-
gate the relationships between four CpGs (cg09541576, cg12547959, cg12896170,
and cg15848159) and four respiratory traits (A: asthma;B: FEV1;C: FVC, andD: FEV1/
FVC). The vertical arrow on the left side of each CpG represents the direction of
effect for PPV use. The arrowswill be helpful to compare the direction of effects for
PPV use and the four respiratory traits. Red arrow denotes hypermethylation (i.e.,
CpGwas positively associatedwith PPV use). Aqua arrow denotes hypomethylation
(i.e., CpG was negatively associated with PPV use). The meQTL data were retrieved
from the GoDMC and respiratory traits. The GWAS data were retrieved from UK

Biobank. ThreeMendelian randomization approacheswere used, including inverse
variance-weighted method, MR–Egger regression method, and weighted median
method. One asterisk denotes FDR<0.05 after accounting for the multiple testing
in the Mendelian randomization analysis. The center for the error bars denotes
effect estimate. CpG, cytosine-phosphate-guanine; FEV1, forced expiratory volume
in one second; FVC, forced vital capacity; GoDMC, Genetics of DNA Methylation
Consortium; meQTL, methylation quantitative trait loci; GWAS, genome-wide
association study; MR, Mendelian randomization; PPV, positive pressure
ventilation.
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sample-level and probe-level quality control filters (Supplementary
Figs. 1 and 2 and Supplementary Methods). Following the quality con-
trol steps, we applied the single-sample normal-exponential normal-
ization using the out-of-band probes (ssNoob) procedure to conduct
background correction and dye bias correction58.

Outcome
The outcomeof interest was higher disease severity defined by the use
of PPV (i.e., continuous positive airwaypressure and/or intubationwith
mechanical ventilation) during the hospitalization for bronchiolitis12.

Statistical analysis
The analytic workflow is summarized in Fig. 1. First, to investigate the
relationship of the CpGs with the risk of PPV use, we performed EWAS
analysis using linear regression models implemented by the Meffil
package59. We used the empirical Bayes approach to obtain a robust
estimation of standard error for the coefficients. To fit the linear
regression model with normally distributed dependent variable (i.e.,
CpGs), we logit-transformed β-values to M-values. We used M-values
for each CpG as the dependent variable in the association model. To
account for the effects of technical batch and unknown confounding
effect, we conducted a surrogate variable analysis by using SmartSVA
package60. In the EWAS analysis, we adjusted for potential con-
founders, including age, sex, race/ethnicity, number of previous
breathing problems,RSV infection, prematurity, sevenblood cell types
(B cells, TC cells, TH cells, eosinophils, monocytes, neutrophils, and NK
cells), and the derived surrogate variables based on a priori knowledge
and clinical plausibility3,10. Based on a priori-defined hypothesis3, we
also repeated the EWAS analysis stratified by RSV and RV infection.We
corrected multiple testing using the Benjamini-Hochberg FDR
method61. We defined DMCs as those CpGs significantly associated
with PPV use at an FDR <0.05. To identify the DMRs associated with
PPV use, we applied the comb-p method62 to the EWAS result. Speci-
fically, the following parameters were used in the comb-p method to
identify DMRs: (1) window size of 1 kb (--dist 1000); (2) minimum p-
value of 0.01 to start a region (--seed 0.01); (3) Šidák p-value less than
0.05; and (4) at least 3 CpGs in the region. The annotations of the
DMRs, including the nearest gene and transcript, were obtained from
the UCSC genome browser (hg19).

Second, we performedblood cell type deconvolution analysis.We
inferred seven blood cell types, including B cells, TC cells, TH cells,
eosinophils, monocytes, neutrophils, and NK cells from our DNA
methylation data using EpiDISH package63. We used β-value as the
input for this analysis based on the package default settings. After
estimating cell type fractions, we investigated the association of seven
cell types with the risk of PPV use and whether the DMCs are differ-
entially methylated (i.e., hypermethylation or hypomethylation) in
these cell types. We also investigated the enrichment of the DMCs in
DHS regulatory elements from the Encyclopedia of DNA Elements
(ENCODE) Project64 across 33 tissue types and 117 cell types using
eFORGE 2.065. We performed biological pathway analysis based on
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Reactome pathways by using methylGSA package66. We
investigated the association of the DMCs with transcription of nearby
genes using publicly available blood-based cis-eQTM data from 823
European ancestry children in the HELIX Project20. The detail of this
dataset is described in Supplementary Methods.

Third, by leveraging publicly available EWAS and GWAS data, we
investigated the association of severity-related DMCs with respiratory
and immune traits. We retrieved the EWAS summary statistics of six
respiratory (asthma, allergic asthma, FEV1, FVC, FEV1/FVC, and
bronchodilator response) and four immune (allergic rhinitis, FeNO,
total IgE levels, specific IgE levels) traits from the an independent and
publicly available Project Viva study by Cardenas and colleagues25, and
examined the association of the DMCs with these traits. The Project

Viva study collected nasal swabs from the anterior nares of 547 chil-
dren (mean age 12.9 year) and measured DNA methylation with the
Infinium MethylationEPIC BeadChip25. We also examined the methy-
lation quantitative trait loci (meQTL) for the DMCs using a publicly
available dataset from Genetics of DNA Methylation Consortium67.
Finally, we performedMendelian randomization analysis to investigate
the potential causal relationships of severity-related DMCs (meQTL
data from the Genetics of DNA Methylation Consortium) with four
respiratory traits (GWAS data from the UK Biobank), including
asthma50,68–71, FEV172, FVC72, and FEV1/FVC72. The details of these data-
sets and MR analysis are described in Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The EWAS summary statistics generated in this study are available
at http://lianglab.rc.fas.harvard.edu/BronchiolitisSeverityEWAS/. In
addition, the raw data that support the findings of this study will be
available on the NIH/NIAID ImmPort under Accession ID: SDY2306
through controlled access to be compliant with the informed consent
forms of MARC-35 study and the genomic data sharing plan. All other
data are publicly available through the original studies’ website. Project
Viva data are available at https://figshare.com/articles/dataset/The_
Nasal_Methylome_as_a_Biomarker_of_Asthma_and_Airway_Inflammation_
in_Children/8285612/1. GoDMC data are available at http://mqtldb.
godmc.org.uk/. UK Biobank data are available at https://www.ebi.ac.uk/
gwas/. GENCODE data are available at https://www.gencodegenes.org/.
UCSC RefSeq data are available at https://genome.ucsc.edu/cgi-bin/
hgTrackUi?g=refGene.

Code availability
The EWAS analysis was performed using linear regression models
implemented using the Meffil package https://github.com/perishky/
meffil. The region-based analysis was performed using comb-pmethod
https://github.com/brentp/combined-pvalues. The blood cell type
deconvolution analysis was performed using the EpiDISH package
https://bioconductor.org/packages/release/bioc/html/EpiDISH.html.
The DHS enrichment analysis was performed using eFORGE 2.0
https://eforge.altiusinstitute.org/. The pathway analysis was per-
formed usingmethylGSA package https://bioconductor.org/packages/
release/bioc/html/methylGSA.html. TheGWAS analysiswas performed
using BOLT-LMM v2.3 https://alkesgroup.broadinstitute.org/BOLT-
LMM/BOLT-LMM_manual.html. The Mendelian randomization analy-
sis was performed using TwoSampleMR package https://mrcieu.
github.io/TwoSampleMR/.
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