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2-Oxabicyclo[2.2.2]octane as a new
bioisostere of the phenyl ring

Vadym V. Levterov1, Yaroslav Panasiuk1, Kateryna Sahun1,
Oleksandr Stashkevych1, Valentyn Badlo1, Oleh Shablykin1,2, Iryna Sadkova1,
Lina Bortnichuk1, Oleksii Klymenko-Ulianov1, Yuliia Holota1, Leonid Lachmann3,
Petro Borysko1, Kateryna Horbatok1, Iryna Bodenchuk1, Yuliia Bas4,
Dmytro Dudenko1 & Pavel K. Mykhailiuk 1

The phenyl ring is a basic structural element in chemistry. Here, we show the
design, synthesis, and validation of its new saturated bioisostere with
improved physicochemical properties − 2-oxabicyclo[2.2.2]octane. The design
of the structure is based on the analysis of the advantages and disadvantages
of the previously used bioisosteres: bicyclo[1.1.1]pentane, bicyclo[2.2.2]
octane, and cubane. The key synthesis step is the iodocyclization of
cyclohexane-containing alkenyl alcohols with molecular iodine in acetonitrile.
2-Oxabicyclo[2.2.2]octane core is incorporated into the structure of Imatinib
and Vorinostat (SAHA) drugs instead of the phenyl ring. In Imatinib, such
replacement leads to improvement of physicochemical properties: increased
water solubility, enhanced metabolic stability, and reduced lipophilicity. In
Vorinostat, such replacement results in a new bioactive analog of the drug.
This study enhances the repertoire of available saturated bioisosteres of
(hetero)aromatic rings for the use in drug discovery projects.

The phenyl ring is a basic structural element in chemistry. It is one of
the most common structural motifs in natural products1 and bioactive
compounds2,3. Moreover, more than five hundred drugs contain a
fragment of para-substituted phenyl ring (Fig. 1a, b)4, including the
well-known to everyone Paracetamol. However, organic compounds
with more than two phenyl rings often suffer from poor solubility5–7.

In 2012, however, Stepan and colleagues showed that a replace-
ment of the central phenyl ring in a γ-secretase inhibitor with the
bicyclo[1.1.1]pentane improved its physicochemical properties and
retained bioactivity8–11. Later, analogous replacements were under-
taken with cubane12–19, and bicyclo[2.2.2]octane (Fig. 1a, b)20–22.
Therefore, during the past decade, these scaffolds proved to be useful
in drug discovery, medicinal chemistry, and supramolecular
chemistry23–31. Replacement of the ortho- andmeta-substituted phenyl
rings in bioactive compounds with saturated bioisosteres was also
recently achieved26–31. Recent studies, however, showed that all three

bioisosteres had drawbacks. In bicyclo[1.1.1]pentane, themost popular
among them today32–40, the distance between two bridgehead carbon
atoms (C-C) is 1.8 Å, which is ca. 35% shorter than that in the para-
substituted phenyl ring (2.8Å). Bicyclo[2.2.2]octane has a closer C-C
distance (2.6 Å), but higher lipophilicity41. Cubane, in turn, was recently
demonstrated to be unstable under contact with transition metals42,43,
under mechanochemical treatment or heating44.

In this work, we have rationally designed, synthesized, and char-
acterized the new bioisostere of the phenyl ring – 2-oxabicyclo[2.2.2]
octane (Fig. 1c).

Interestingly, 2-oxabicyclo[2.2.2]octane core has been known in
the literature, but not in the context of phenyl bioisostere. Chemists
used it as a starting material in organic synthesis;45,46 and in medicinal
chemistry47–49 as an analog of 4-aminopiperidine50–53 or
cyclohexane54,55. Also, 2-oxabicyclo[2.2.2]octane containing molecules
exhibited a broad range of biological activities: estrogen receptor-beta
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agonists47, myeloperoxidase inhibitors48, antibacterial agents49–53,
DGAT1 Inhibitors54, and RORγt agonists55.

Results
Design
In the design of the improved phenyl bioisostere, we first needed to
keep the advantages of the previously used cores: their conforma-
tional rigidity, metabolic stability, non-chirality, and collinearity of
vectors (φ = 180°). At the same time, we needed to address their
drawbacks: C-C distance, and lipophilicity. Considering the possible
saturated structures (for the details of the design, please, see Supple-
mentary Iinformation, page 5, Supplementary Fig. 1.), we decided to
select the bicyclo[2.2.2]octane scaffold, because of its appropriate C-C
distance, and decorate it with an oxygen atom. In particular, replacing
one carbon atom with oxygen would give 2-oxabicyclo[2.2.2]octane
with similar geometry and reduced lipophilicity (Fig. 1c). Also, this
structure should be chemically stable as a simple derivative of
tetrahydropyran.

Optimization
Synthesis of the 2-oxabicyclo[2.2.2]octane core has been previously
reported. In 2014, Singh and Fukuda obtained compound 1 from die-
thyl malonate (2) in 15 steps using alkylation as a key reaction
(Fig. 1d)50. In 2019, Harrison synthesized compound 3 from ester 4 in
six steps employing an intramolecularMichael addition (Fig. 1d)54. The
latter approach was limited only to aromatic substituents. We, how-
ever, needed a general modular method that would give 2-oxabicy-
clo[2.2.2]octanes with one or two functional groups that could be
subsequently modified to obtain a wide variety of derivatives - bioi-
sosteres of the mono- and para-substituted phenyl rings.

Previously, we showed that smaller 2-oxabicyclo[2.1.1]hexane
could be assembled via the iodocyclization reaction of the corre-
sponding cyclobutane alkenyl alcohols56. The reaction proceededwith
I2/NaHCO3 in the mixture of water and MeOtBu at room temperature.
We hoped that similar cyclization would also take place with cyclo-
hexane 5 (please, see its preparation below). However, under

analogous conditions the expected product6was not formed (Table 1,
entry 1). We repeated the reaction several times varying the time and
the temperature, however, with the same negative outcome (Table 1,
entries 2-4). The addition of the iodine molecule to the double C=C
bond did take place, but the cyclization failed to occur.

Subsequently, we realized that in contrast to the already con-
formationally preorganized small cyclobutane, the larger and more
flexible cyclohexane ring should adopt the highly energetic boat
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Fig. 1 | The para-substituted phenyl ring and its saturated bioisosteres. a The
para-substituted phenyl ring is a part of >500 drugs and agrochemicals. Bicy-
clo[1.1.1]pentanes, bicyclo[2.2.2]octanes, and cubane as saturated bioisosteres of
the para-substituted phenyl ring. b Bioactive derivatives of bicyclo[1.1.1]pentanes,

bicyclo[2.2.2]octanes, and cubane are described in >3000 patents. c Aim of this
work: replacement of the para-substituted phenyl ring in bioactive compounds
with 2-oxabicyclo[2.2.2]heptane. d Previous syntheses of 2-oxabicyclo[2.2.2]hep-
tane by Singh, Fukuda (2014)50 and Harrison (2019)54.

Table 1 | Optimization of the synthesis of compound 6

Entry Conditions Yield (%)a

1 I2, NaHCO3, MeOtBu, H2O, rt, 12 h n.d.

2 I2, NaHCO3, MeOtBu, H2O, rt, 48 h n.d.

3 I2, NaHCO3, MeOtBu, H2O, rt, 1 h n.d.

4 I2, NaHCO3, MeOtBu, H2O, reflux, 12 h n.d.

5 I2, NaHCO3, Et2O, H2O, rt, 12 h n.d.

6 I2, NaHCO3, dioxane, H2O, rt, 12 h n.d.

7 I2, NaHCO3, dioxane, rt, 12 h n.d.

8 I2, NaHCO3, MeOtBu, rt, 12 h n.d.

9 I2, NaHCO3, DMF, rt, 12 h <10

10 I2, NaHCO3, DMSO, rt, 12 h <10

11 I2, NaHCO3, NMP, rt, 12 h <10

12 I2, NaHCO3, CH3CN, rt, 12 h 56

13 I2, NaHCO3, CH3CN, reflux, 12 h 45

14 Br2, NaHCO3, CH3CN, rt, 12 h 30

N.d. not determined.
aIsolated yield.
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conformation first (Table 1). The resulting entropic penalty seems to
prevent the cyclization from occuring. We also tried other combina-
tions of solventswith no success, however (Table 1, entries 5-8). Finally,
we used solely dipolar aprotic solvents. Indeed, in dimethyl for-
mamide, the formation of traces of the needed product was finally
seen (Table 1, entry 9). A similar result was observed in dimethyl sulf-
oxide andN-methyl pyrrolidone (Table 1, entries 10, 11). In acetonitrile,
the transformation proceeded cleaner, and iodide 6 was obtained in a
56% yield (Table 1, entry 12). Performing the reaction under heating
(Table 1, entry 13) or employing bromine (Br2; Table 1, entry 14) did not
improve the yield.

Scalable synthesis
Having a working procedure in hand, we studied its scalability. The
whole synthesis scheme commenced from the commercially available
ketoester 7 (ca. 3€/g, Fig. 2). Wittig reaction gave alkene 8 in 59% yield.
Treatment of the latter with LDA/methyl formate followed by the
reduction of the intermediate aldehyde with NaBH4 gave alcohol 5 in
86% combined yield. Finally, the key iodocyclization was attempted on
a multigram scale. Pure iodide 6 was obtained as a white crystalline
solid after column chromatography with a 36% yield. Despite a rather
moderate yield, this protocol allowed us to obtain 135 g of the product
in a single run.

Scope
Next, we studied the generality of the developed protocol. Treatment
of alkene 8 with LDA/acetaldehyde gave the intermediate alcohol that
was used in the subsequent iodocyclization under the developed
conditions. The expected iodide 9 was isolated in 50% yield after col-
umn chromatography (Fig. 3a). Initially, we isolated the intermediate
alcohol, but subsequently, we understood that performing the two-
stepprocedurewith a simple solvent swapensured a better yield of the
final product.

The reaction with aliphatic (10–12), aromatic (13–17), and het-
erocyclic (18–27) aldehydes gave the corresponding 2-oxabicy-
clo[2.2.2]octanes in good yields. Functional groups such as nitro,
trifluoromethoxy, trifluoromethyl, nitrile, andhalogen atoms tolerated
the reaction conditions. The protocol was not without limitations,
however. We could not obtain products 28, and 29 with thiazole and
triazole heterocycles, due to the formation of complex mixtures
(Fig. 3a). Ketones could also be used as electrophiles instead of alde-
hydes. As a representative example, the reaction of alkene 8with LDA/
acetone followed by iodocyclization gave dimethyl-substituted pro-
duct 30 in 81% yield. The structure of 30 was confirmed by X-ray
crystallographic analysis (Fig. 3b, Supplementary Data 1). A reduction
of 8 followed by iodocyclization gave iodide 31 in 58% yield. Interest-
ingly, the cyclization was not efficient at room temperature, and
required heating. Alkylation of 8 with MeI or BnOCH2Cl followed by
reduction and iodocyclization gave the disubstituted products 32, 33
in 59-64% yield (Fig. 3b).

Trisubstituted exocyclic alkenes also afforded the desired 2-oxa-
bicyclo[2.2.2]octane skeleton. For example, the iodocyclization of
alkene 34 under the standard conditions gave iodide 35 in 67% yield
(Fig. 3c). Alkene 36 provided iodide 37 in 50% yield. Endocyclic alkene
38, however, gave the isomeric core - 6-oxabicyclo[3.2.1]octane 3957.

We also tried to assemble a 2-azabicyclo[2.2.2]octane skeleton
using the developed strategy. An attempted iodocyclization of alkene
40did not lead to the formation of the cyclic iodide 41 neither at room
temperature nor under heating (Fig. 3d). However, the analogous
reaction of the bridgehead-substituted alkene 42 at room temperature
did give the needed product 43 in 31% yield. Under heating, the yield
was improved to 41%.

Modifications
Several representative modifications of the obtained iodides were
undertaken to obtain various mono- and bifunctional 2-oxabicy-
clo[2.2.2]octanes ready for direct use in medicinal chemistry projects.
Treatment of iodide 31 with potassium thioacetate followed by oxi-
dation with NCS gave aliphatic sulfonyl chloride 44 in 85% yield. The
reaction of 31 with potassium acetate and the subsequent alkali
hydrolysis provided valuable alcohol 45. Oxidation of the latter
afforded carboxylic acid 46 in 89% yield (Fig. 4).

Hydrogenative reduction of the C-I bond in iodide 6 followed by
saponification of the ester group gave methyl acid 47. The Curtius
reaction of the latter resulted in amine 48. The reaction of iodide 6
with LiAlH4 gave alcohol 49 in 90% yield. O-Mesylation and the sub-
sequent reaction with LiBr provided bromide 50. Swern oxidation of
alcohol 49 gave aldehyde 51 in 63% yield. Isomeric methyl-substituted
2-oxabicyclo[2.2.2]octanes were obtained from iodide 32. Its reaction
with sodium azide followed by the reduction formed amine 52. The
reaction of iodide 32 with potassium acetate and hydrolysis gave
alcohol 53 - isomer of alcohol 49. Oxidation of 53 formed carboxylic
acid 54 - isomer of acid47. Sulfonyl chloride 55was also obtained from
iodide 32 via a two-step procedure (Fig. 4).

From iodide 6we also synthesized various bifunctional linkers for
incorporation into bioactive compounds instead of the para-sub-
stituted phenyl ring. Saponification of ester 6 provided carboxylic acid
56 in 90% yield. The subsequent Curtius reaction afforded N-Boc
iodide 57 in 87% yield. The structure of 57 was confirmed by X-ray
crystallographic analysis (Supplementary Data 2). The reaction of the
latter with potassium acetate, followed by ester hydrolysis (via 58) and
N-Boc acidic deprotection gave amino alcohol 59. Oxidation of the
alcohol group in 58 gave N-Boc protected amino acid 60 – a saturated
analog of the para-aminobenzoic acid. The reaction of iodide 57 with
NaN3 (via azide 61) followed by reduction of the azide group formed
diamine 62. The reaction of iodide 6 with NaN3 (via azide 63), the
subsequent reduction (via 64), N-Boc protection, and saponification
gave another N-Boc protected amino acid 65. The Curtius reaction of
the latter provided N-Boc diamine 66 – isomer of diamine 62. The
reactionof iodide6with sodiumazide followedby extensive reduction
of the intermediate azide with LiAlH4 gave amino alcohol 67. The
structure of 67 was confirmed by X-ray crystallographic analysis
(Supplementary Data 3). The reaction of iodide 6 with potassium
acetate (via 68) followed by saponification of the ester group and
oxidation gave linker 69. Its structure was also confirmed by X-ray
crystallographic analysis (SupplementaryData 4).Worth noting that all
the above-described syntheses depicted in Fig. 4 were realized on a
multigram scale.

Alkylation of 4-bromothiophenol with iodide 32 followed by oxi-
dationof the intermediate sulfidegave sulfone 70 in 54%yieldover two
steps (Fig. 4). Sulfonamide 71wasobtained in44%yield fromamine48.
Cu-catalyzed click reaction between azide 63 and 3-ethynylquinoline
smoothly provided triazole 72. Condensation of acid 73 with N-
hydroxyphthalimide (NHPI) in the presence of N,N’-diisopro-
pylcarbodiimide (DIC) gave the activated ester 74 (Fig. 4). Ni-mediated
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Barton decarboxylation58 of the latter with PhSiH3 was performed next
to provide ester 75.

Ni-Mediated C-C cross-coupling of iodide 31 with PhMgBr
gave 2-oxabicyclo[2.2.2]octane 76 in 67% yield. The reaction of
aldehyde 51 with p-toluenesulfonyl hydrazide gave the

intermediate hydrazone that upon treatment with the cyclopro-
pylboronic acid and pinacol provided organoboron derivative
7759. Condensation of acid 47 with N-hydroxyphthalimide gave
the activated ester 78. Its structure was confirmed by X-ray
crystallographic analysis (Supplementary Data 5). Cu-Catalyzed
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decarboxylative borylation60 of ester 78 gave organoboron deri-
vative 79 (Fig. 4).

Chemical stability
We also examined the thermal and chemical stability of the synthe-
sized 2-oxabicyclo[2.2.2]octanes. As representative examples, we
selected three molecules: isomeric acids 47, 54, and amine 52. All 2-

oxabicyclo[2.2.2]octanes were crystalline solids that were stable in air.
We stored them in stock at room temperature in closed vials and
observed no changes according to 1H NMR after one year. Also, the
compounds remained stable even under heating at 100 °C for five
minutes. Treatment of the selected 2-oxabicyclo[2.2.2]octaneswith aq.
1M HCl, or aq. 1M NaOH at room temperature for 1 h resulted in no
decomposition either.

Crystallographic analysis
Next, we compared the geometric properties of 2-oxabicyclo[2.2.2]
octanes with those of the para-substituted phenyl ring, and the pre-
viously used bioisosteres - bicyclo[2.2.2]octanes. For this purpose, we
measured two C-C distances r and d to see the overall similarity of
cores; and two angles φ1 and φ2 to estimate the collinearity of exit
vectors (Fig. 5a).

We calculated the values of r, d, φ1, and φ2 of 2-oxabicyclo[2.2.2]
octanes from the X-ray data of compounds 30, 69. The related para-
meters for bicyclo[2.2.2]octanes 8061, 8162, and 8263 were calculated
from their X-ray data published in the literature (Fig. 5b). The corre-
sponding parameters for the para-substituted phenyl ring were cal-
culated from the reported crystal structure of the anticancer drug
Imatinib64. Analysis of this data revealed that the geometric properties
of 2-oxabicyclo[2.2.2]octanes were indeed very similar to those of the
para-substituted phenyl ring. The distance r in 2-oxabicyclo[2.2.2]
octanes was ca. 0.3 Å shorter than that in the para-phenyl ring:
2.54–2.56Å vs 2.88–2.89Å (para-phenyl). The distance d between
substituents in 2-oxabicyclo[2.2.2]octanes was also ca. 0.3 Å shorter
than that in the para-phenyl ring: 5.56–5.58Å vs 5.90–5.93 Å (para-
phenyl). The difference in collinearity of vectors was insignificant, as
angles φ1 and φ2 were almost identical in both scaffolds: 176-177° vs
178-179° (para-phenyl). Interestingly, even in the para-substituted
phenyl ring in Imatinib in the crystal phase, the observed anglesφ1 and
φ2 deviated from the ideal value of 180°: 176-179°. It must be noted,
that all parameters, - r, d,φ1 andφ2, - were also almost identical in both
bicyclo[2.2.2]octanes (80–82) and 2-oxabicyclo[2.2.2]octanes (30,
69) (Fig. 5b).

In short summary, the replacement of themethylene group for an
oxygen atom in the bicyclo[2.2.2]octane core did not affect its three-
dimensional geometry. Moreover, the formed 2-oxabicyclo[2.2.2]
octane core resembled well the para-substituted phenyl ring, as the
geometric parameters r, d, φ1, and φ2 remained very similar (please,
see SI, page 277, Supplementary Fig. 8).

The acidity of functional groups
We also studied the influence of the replacement of the methylene
group for an oxygen atom in the bicyclo[2.2.2]octane skeleton on the
electronic properties. Towards this goal, we measured experimental
pKa values of isomeric 2-oxabicyclo[2.2.2]octane carboxylic acids 47
and 54, bicyclo[2.2.2]octane carboxylic acid 84, and para-methyl
benzoic acid (83) as a reference (Fig. 6). Replacement of themethylene
group in 84 for the oxygen atom at the distal γ-position notably
increased its acidity from pKa = 5.6 to 4.4 (47). However, analogous
replacement at the β-position increased the acidity even more to
pKa = 4.1 (54).

Important to mention that the acidity of aromatic carboxylic acid
83 and 2-oxabicyclo[2.2.2]octane 47were almost identical (Fig. 6). The
replacement of the phenyl ring in acid 83with the bicyclo[2.2.2]octane
core reduced the acidity: pKa = 4.5 (83) vs 5.6 (84). However, incor-
poration of the β-oxygen atom into the latter ideally restored it:
pKa = 4.4 (47). Because the acidity/basicity of functional groups is
often responsible for the potency, selectivity, and toxicity of bioactive
compounds65, the fine-tuning of the pKa by replacing the phenyl ring
with isomeric 2-oxabicyclo[2.2.2]octanes could become a preferred
solution.
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Fig. 5 | Сrystallographic analysis of 2-oxabicyclo[2.2.2]octanes. a Definition of
distances r, d and angles φ1, φ2 (2-oxabicyclo[2.2.2]octane core is shown as exam-
ple). b Geometric parameters r, d and φ1, φ2 for para-substituted phenyl ring
(Imatinib drug), its known saturated bioisosteres 80–82 and the new saturated
bioisosteres 30, 69. aData is taken from ref. 64. bData is taken from ref. 61. cData is
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54 Me
O

CO2H 4.1 ± 0.1

Fig. 6 | Experimental pKa values of carboxylic acids 47, 54, 83, and 84. Data is
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Incorporation into drugs
To demonstrate the practical utility of the 2-oxabicyclo[2.2.2]octane
scaffold, we incorporated it into the structure of anticancer drugs
Imatinib, and Vorinostat (SAHA) instead of the para- and mono-sub-
stituted phenyl rings, correspondingly (Figs. 7 and 8).

The reaction of iodide 56withN-methyl piperazine, followed by
acylation with the substituted aniline gave compound 85 – a satu-
rated analog of Imatinib (Fig. 7). For comparison, we also synthe-
sized compound 86 with the bicyclo[2.2.2]octane core (please, see
SI, pages 52-54). The commercialized drug Imatinib is used in
practice as a mesylate salt. However, to estimate the impact of the
replacement of the phenyl ring with bioisosteres on the physico-
chemical properties, we prepared and studied all three compounds,
- 85, 86, Imatinib, - as free bases.

From amine 87, in three steps we synthesized compound 88 - a
saturated analog of Vorinostat (Fig. 8). For comparison, we also
obtained analog 89with the bicyclo[2.2.2]octane skeleton (please, see
SI, pages 56, 57).

Physicochemical properties
Replacement of the para-substituted phenyl ring in Imatinib by bicy-
clo[2.2.2]octane (86) decreased thewater solubility bymore than three
times (Fig. 7). However, the incorporation of the 2-oxabicyclo[2.2.2]
octane (85) in Imatinib increased the solubility close to the original
values: 351 µM (Imatinib) vs 113 µM (86) vs 389 µM (85).

To study the replacement of the phenyl ring with saturated bioi-
sosteres on lipophilicity, we used two characteristics: calculated
(clogP)66 and experimental (logD) lipophilicities. Incorporation of
bicyclo[2.2.2]octane in sted of the phenyl ring resulted in a decrease of
clogP: 4.5 (Imatinib) vs 3.6 (86). The incorporation of 2-oxabicy-
clo[2.2.2]octane led to an even further decrease of clogP: 2.6 (85). A
somewhat similar trend was observed with the experimental lipophi-
licity, logD. While the incorporation of the bicyclo[2.2.2]octane core
into Imatinib did not significantly affect it; incorporation of the 2-
oxabicyclo[2.2.2]octane core reduced it by ca. one unit, logD: 2.6
(Imatinib) vs 2.7 (86) vs 1.8 (85).

The effect of saturated bioisosteres on metabolic stability was
studied next. The incorporation of both bicyclo[2.2.2]octane (86) and
2-oxabicyclo[2.2.2]octane (85) into Imatinib, increased the metabolic
stability in human liver microsomes: CLint (mg/(min•μL)) = 28 (Imati-
nib) vs 16 (86) vs 19 (85) (Fig. 7). Moreover, incorporation of the 2-
oxabicyclo[2.2.2]octane core (85) into Imatinib increased the life half
time by almost 50%: t1/2 (min) = 60 (Imatinib) vs 87 (85).

In summary, the replacement of the para-substituted phenyl ring
in Imatinib with common bicyclo[2.2.2]octane core (86) led to an
undesired three-times decrease in water solubility. At the same time,
analogous replacement with 2-oxabicyclo[2.2.2]octane (85) resulted in
an improvement of all measured physicochemical parameters:
increased solubility, enhanced metabolic stability, and reduced
lipophilicity.

Biological activity
Finally, to answer a key question, - whether the 2-oxabicyclo[2.2.2]
octane core could indeed mimic the phenyl ring in bioactive com-
pounds, we measured the biological activity of Imatinib versus its
analogs 85, 86; and Vorinostat versus its analogs 88, 89.

We studied the inhibitory effect of Imatinib, Staurosporine, and
compounds 85, 86 on the catalytic activity of ABL1 kinase. While the
expected activity of Imatinib and Staurosporinewas confirmed; we did
not observe any significant inhibitory effect of compounds 85, 86 on
the ABL1 kinase (please, see SI, pages 294, 295; Supplementary
Figs. 13–15). The observed results correlate well with the previous
studybyNicolaou, Vourloumis, andStepanwhodemonstrated that the
replacement of the para-substituted phenyl ring in Imatinib with var-
ious saturated cyclic cores, including bicyclo[1.1.1]pentane and
cubane, led to a dramatic loss of potency against the ABL1 kinase67.

To study the biological activity of Vorinostat and its analogs 88,
89, we evaluated their effect on human hepatocellular carcinoma cells
HepG2 by fluorescent microscopy (please, see SI, pages 296-300;
Supplementary Figs. 16–19). The cells were incubated with the com-
pounds for 48 hours. Staining with specific dyes revealed that all three
compounds promoted caspase-dependent cell death, - apoptosis, -
that further precipitated in necrosis when the cellular membrane lost
its integrity. Vorinostat treatment resulted in 7.2% and 12.2% of apop-
totic cells upon incubation at concentrations 5 μΜ and 50 μΜ
respectively (Fig. 9). Analogs 88 and 89 demonstrated similar efficacy
only at 50 μΜ.

These primary biological results (Fig. 9) suggested that Vorinostat
and both its analogs 88, 89 could have similar cytotoxic and cytostatic
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activities in cells (for a more comprehensive comparison of Vorinostat
and its analogs 88, 89, additional experiments on the enzyme potency
and selectivity are needed).

Virtual libraries
To analyze how the replacement of the para-substitued phenyl ring
with 2-oxabicyclo[2.2.2]octane affects 3D-shape of organic com-
pounds, we generated two virtual libraries based on C- andN-terminus
modifications of para-aminobenzoic acid and its 2-oxabicyclo[2.2.2]
octane-containing analog. Each library contained 5000 molecules
(SupplementaryData 6, Supplementary Data 7). According to principal
moments of inertia (PMI) plots, both libraries occupied essentially the
same region in 3D-chemical space. The same was true for FDA-
approved drugs Aminopterin, Conivaptan, Deferasifox, Tetracaine,
and their 2-oxabicyclo[2.2.2]octane-containing analogs (for details,
please see SI, pages 301–304; Supplementary Table 8, Supplementary
Figs. 20 and 21).

In conclusion, we have designed, synthesized, and characterized a
new saturated bioisostere of the phenyl ring - 2-oxabicyclo[2.2.2]
octane. In the design of the structure, we kept all advantages of the
previously used cores (bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane,
cubane): conformational rigidity, metabolic stability, non-chirality,
and collinearity of the exit vectors (Fig. 1c). In addition, we addressed
their disadvantages: C-C distance and lipophilicity (Fig. 1c). Thus the 2-
oxabicyclo[2.2.2]octane scaffold designed here was synthesized from
available starting materials on a multigram scale (Table 1) - up to 135 g
in one run (Fig. 2). The key synthesis step was the iodocyclization of
cyclohexane-containing alkenyl alcohols with molecular iodine in
acetonitrile (Figs. 2 and 3). Crystallographic analysis revealed its high
similarity with the para-substituted phenyl ring (Fig. 5). 2-Oxabicy-
clo[2.2.2]octane core was incorporated into the structure of Imatinib
and Vorinostat drugs instead of the para-substituted and the mono-

substituted phenyl rings, correspondingly (Figs. 7 and 8). In the case of
Imatinib, the formed saturated analog 85 possessed improved physi-
cochemical properties over the drug: increased water solubility,
enhanced metabolic stability, and reduced lipophilicity (Fig. 7). In the
case of Vorinostat (SAHA), the formed saturated analog 88 exhibited a
similar biological activity compared to that of the drug (Fig. 9).

This study enhances the repertoire of available saturated bioi-
sosteres of (hetero)aromatic rings for use in drug discovery projects.

Methods
General procedure for the iodocyclization
To a solution of alkene 5 (222.64 g, 1.21 mol, 1.00 equiv) in MeCN
(4000mL) were added NaHCO3 (243.94 g, 2.90mol, 2.40 equiv) in
one portion and I2 (736.60 g, 2.90mol, 2.40 equiv) in four portions.
The resulting mixture was stirred for 12 h at room temperature.
Then sodium thiosulfate pentahydrate (900.24 g, 3.63mol, 3.00
equiv) and distilled water (2000 mL) were added to the mixture.
The colorless mixture was extracted with MeOtBu (10 × 400mL).
The combined organic layers were concentrated under reduced
pressure to dryness. The residue was dissolved in MeOtBu
(1000mL), washed with brine (1 × 400mL), a saturated solution of
Na2S2O3 (3 × 400mL), dried over Na2SO4, filtered through a plug of
SiO2 (0.5 L glass filter filed with 3 cm in high with silica gel) and
concentrated. The final product was purified by column chroma-
tography (SiO2, hexane:EtOAc = 1:5, Rf = 0.7) to provide pure iodide
6. Yield: 135.16 g, 0.436mol, 36%, white solid.

NMR spectra were analyzed with MestreNova (11.0.3-18688).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Experimental data as well as characterization data for all new com-
pounds prepared during these studies are provided in the Supple-
mentary Information of this manuscript. The X-ray crystallographic
coordinates for compounds30, 57,67,69, and 78havebeendeposited
at the Cambridge Crystallographic Data Centre (CCDC) with accession
codes 2226162 (30), 2226164 (57), 2226872 (67), 2226163 (69),
2266656 (78). These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
structures/. A source data file is available for the biological activity of
Imatinib with analogs 85, 86; and Vorinostat with analogs 88,
89. Source data are provided with this paper.
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