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The spatial and temporal structure of neural
activity across the fly brain

Evan S. Schaffer 1,8 , Neeli Mishra 1,8, MatthewR.Whiteway 1,2, Wenze Li1,3,
Michelle B. Vancura1, Jason Freedman1, Kripa B. Patel1,3, Venkatakaushik Voleti1,3,
Liam Paninski1,2, ElizabethM. C. Hillman 1,3,4, L. F. Abbott1,5 & Richard Axel 1,6,7

What are the spatial and temporal scales of brainwide neuronal activity? We
used swept, confocally-alignedplanar excitation (SCAPE)microscopy to image
all cells in a large volume of the brain of adult Drosophila with high spatio-
temporal resolution while flies engaged in a variety of spontaneous behaviors.
This revealed neural representations of behavior on multiple spatial and
temporal scales. The activity of most neurons correlated (or anticorrelated)
with running and flailing over timescales that ranged from seconds to a min-
ute. Grooming elicited a weaker global response. Significant residual activity
not directly correlated with behavior was high dimensional and reflected the
activity of small clusters of spatially organizedneurons thatmay correspond to
genetically defined cell types. These clusters participate in the global dynam-
ics, indicating that neural activity reflects a combination of local and broadly
distributed components. This suggests thatmicrocircuits with highly specified
functions are provided with knowledge of the larger context in which they
operate.

What are the spatial and temporal scales of activity in the brain? In
nematodes, flies, zebrafish, and mice1, the exogenous activation of
defined clusters of neurons can drive behavioral sequences, providing
a causal link between the activity of small groups of cells and specific
behaviors. In Drosophila melanogaster, defined clusters of genetically
identified neurons can elicit innate behaviors, including aggression2,3,
courtship4–6, and egg laying7. The identification of these circuits has
suggested a view of the fly brain as a collection of specialized micro-
circuits. On the other hand, several locomotor behaviors seem to be
associatedwith extensive activity in theflybrain beyond thoseneurons
that are directly involved in the behavior. For example, locomotive
behavior in the fly is associated with activity not only in motor
circuits8–10 but also in primary sensory areas11–15 and downstream sen-
sory structures such as the mushroom body16,17. These are similar to

observations in mouse primary sensory cortices18–20. Thus, locomotor
behaviors are often associatedwithmore extensive patterns of activity
than are required to elicit the specific behavior.

Brainwide recording of neural activity in multiple organisms
reveals global activity associated with behavior21–35 as well as cognitive
tasks36–38. Recent studies in Drosophila have demonstrated extensive
activity throughout most neuropil in the fly brain during
running25,26,39,40. Similarly, both calcium imaging and electro-
physiological recordings in the mouse have revealed distributed
activity correlated with behavior across the cortex30–32,34. However,
studies that employ neuropil imaging in the fly and widefield imaging
in the mouse do not distinguish whether behavior results in the acti-
vation of all neurons or the activation of more limited but distributed
clusters of neurons.
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Why does neural activity extend well beyond those neurons
responsible for the behavior? Distributed activity may provide circuits
that control specific behaviors with information relevant to the loco-
motor state of the organism. In this manner, sensory representations
may also reflect behavioral state. For example, in visual systems,
locomotion enhances gain and elicits activity in area V1 ofmice18,20 and
in the optic lobe of flies12,14,15. Distributed activity associated with
behavior may reflect efference copies that enable the cancellation of
self-generated sensory input41. For example, locomotor state on the fly
combines with self-generated visual feedback to control posture42. If a
majority of neurons are indeed active during behavior, this would
imply that the neural ensembles that are capable of eliciting specific
behaviors (e.g., mating, aggression, or egg laying), will also be active
during unrelated behaviors. This further implies that the ability of
clusters of neurons to elicit specific behaviors must be modulated by
behavioral context.

The fly brain offers a unique opportunity to examine the rela-
tionship between broadly distributed activity and the activity of spa-
tially localized genetically identified neurons. Analysis of neural
activity at both a global and local scale requires that we observe the
activity of neurons distributed throughout the brain at sufficient
temporal resolution to reveal correlations between neurons. We used
SCAPE microscopy43,44 to record activity in a significant fraction of the
neurons across a large and contiguous portion of the brainof behaving
Drosophila. The principal patterns of neural activity (“flygenvectors”)
comprisemultiple spatial and temporal scales.We observe that signals
related to some but not all behaviors engage the majority of imaged

neurons, including genetically defined neurons that control specific
behaviors. Moreover, although the activity of most neurons is corre-
lated with current behavior, a significant fraction exhibit activity cor-
related with behavioral dynamics on longer timescales, perhaps
reflecting the animal’s arousal state. The neural activity not explained
by behavior is complex and high-dimensional, comprised of a large
number of patterns distinguishable from noise. Most of these activity
patterns are sparse and spatially organized, suggesting that each
dimension corresponds to the localized activity of specific cell types.
These groups of cells exhibiting unique local dynamics also participate
in the global behavioral state, affording the opportunity for local
computations to be state-dependent. Thus, neural activity in the
behaving fly reflects the coordination of broadly distributed and spa-
tially localized dynamics, and neurons with highly specified functions
are provided with information about the larger behavioral context.

Results
Large-scale functional imaging at single-neuron resolution
We used SCAPE microscopy43,44, a single-objective form of light-sheet
microscopy that permits high-speed volumetric imaging, to examine
activity across a large volume of the central brain of behaving adult
Drosophila. This enabled dual-color imaging of the dorsal third of the
central brain in the behaving fly at more than 10 volumes per second
with a voxel size of 1.0 × 1.4 × 2.4μm (See Methods for details), greatly
surpassing the spatiotemporal resolution of commonmethods such as
two-photon imaging (Fig. 1a–b, g). We imaged flies expressing the
nuclear calcium reporter nls-GCaMP6s and the static nuclear dsRed

Fig. 1 | Brainwide neural activity correlates with behavior. a Illustration of
SCAPE’s imaging geometry. b The head of a fly viewed from a dorsal perspective
(Top = posterior), with the approximate imaging window denoted by a black rec-
tangle. c Points on the fly’s limbs and body are tracked with Deep Graph Pose
(DGP)48. Running, grooming, and abdomen bending exhibit distinct patterns of
limb dynamics, observed in trajectories of DGP points. d A semi-supervised
sequence model49 extracts a timeseries of discrete behavioral states from DGP
points. Example trajectories of the 8 tracked points shown in black above, ordered
from anterior to posterior (fb: front bottom, ft: front top, mb: middle bottom, mt:
middle top, hb: hind bottom, ht: hind top, ab: abdomen bottom, at: abdomen top).
Inferred probability of each behavioral state is shown below, showing a transition
from running to back grooming. The argmax of these state probabilities is shown in
the ethogram above and hereafter. e The autocorrelation of running (black) is best-
fit by the sum of two exponentials, with time constants of 1s and 40s (gold). Error

bars indicate ± SEM,N = 18. f Fraction of time spent in eachbehavioral state for each
fly. Colors as ind. g Sample volume of raw imaging data in a brain with panneuronal
expression of both nuclear-localized GCaMP6s and nuclear dsRed. Shown are
maximum-intensity projections of the dsRed channel over the approximate dorsal/
ventral (top right), anterior/posterior (bottom right), and medial/lateral dimen-
sions (top left). Pseudocolor indicates depth in dorsal/ventral dimension. Scale bar
in spatial map is 50 μm. Cartoon at bottom left shows the approximate location of
the imaged volume on a reference brain from a dorsal (top) and anterior (bottom)
perspective. h Top, raster of ratiometric fluorescence for all neurons from one fly
(Fly 1 in f). Bottom, behavioral state, color coded as in d. i Average ratiometric
fluorescence from all neurons (gold) and running smoothed with an exponential
filter (black, time constant = 6s) are highly correlated (r =0.90). j Maximum cross-
correlation with running for every cell from the same fly as in h, versus the corre-
sponding lag. Each point is one cell. a–b created with BioRender.com.
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under control of the panneuronal driver nSyb-Gal4. Nuclear calcium
reporters have been shown to be faithful readouts of neural
activity45,46; theymay preclude seeing fast dynamics and small changes
in neural activity but offer the substantial benefit of easily resolving
individual neurons. We therefore reasoned that any increase in low-
pass filtering introduced by using a nuclear-localized indicator was
greatly offset by the advantage of allowing cellular-level spatial reso-
lution.We imaged aparallelepiped-shaped volumespanning thedorsal
third of the central brain, achieving single-cell resolution through the
majority of this imaged volume (Fig. S1). Kenyon cells were omitted
from our analyses because nls-GCaMP6s expressionwas poor (Fig. S1).
On the basis of cell counts from electronmicroscopy47, we expected to
resolve on the order of a few thousand cells (See Supplemental
Information). We used the fluorescence of the static red channel to
extract on average 1631 ± 109 ROIs per animal. After refinement to
exclude ROIs with large motion artifacts, we obtained 1419 ± 78 stable,
single-cell ROIs per animal (Methods). By visual inspection, we con-
firmed that this count contained nearly all neurons within 70μm of
the dorsal surface and a sample of neurons residing at greater
depths (Fig. S1).

Broad-scale neural activity is highly correlated with behavior
We examined neural activity while flies behaved freely on a spherical
treadmill (Methods). The different behaviors exhibited by the fly were
identified by tracking points on the fly’s body with Deep Graph Pose48.
We used a semi-supervised approach described in a companion
manuscript49 to infer the behavioral states of running, front and back
grooming, abdomen bending, and quiescence (Fig. 1c–d, Methods).
The average time flies spent in each behavioral state varied con-
siderably (Quiescent: 50%, running: 19%, front grooming: 6%, back
grooming: 15%, abdomen bending: 10%, undefined: 0.2%), and differ-
ent flies exhibited these behaviors with varying frequencies (Fig. 1f).
We also imaged the fly without a spherical treadmill, where it primarily
exhibited a flailing behavior. When off the ball, flies flailed 12% of the
time.On the treadmill,flies performedbouts of running punctuatedby
either grooming or quiescence. Autocorrelation of the running state
decayed on time scales of 1s and 40s (Fig. 1e), because running
occurred in bouts that lasted a few seconds but the tendency to run
persisted for considerably longer times. The other annotated beha-
viors exhibited only a single fast correlation time (Fig. S1). Long-
timescale changes in the tendency to run suggest that an underlying
state, such as arousal, fluctuated over the course of our experiments.

Strikingly,mostof the imagedneurons throughout thebrain show
a pattern of activity that is correlated with running. This is in accord
with previous studies demonstrating that most of the neuropil in the
fly brain is active when the fly runs25,26,39,40 and demonstrates that these
earlier neuropil recordings are not the consequence of a sparse
ensemble of active neurons with extensive projections. Rather, run-
ning is represented by the vast majority of neurons in the fly brain
(Fig. 1h). The mean activity across all the imaged neurons is highly
correlated with running smoothed with an exponential filter with a
decay time of 6s (r = 0.90, Fig. 1i). This correlation cannot be accoun-
ted for by motion artifacts; motion artifacts are negligible after regis-
tration, and movement of the brain before registration is not
correlated with running (r =0.02, Fig. S1). Cross-correlation of indivi-
dual neurons with running is high, and the activity of most neurons
follows running with a small lag (Fig. 1j).

Distinct neural populations represent locomotion over different
timescales
We fit a regressionmodel to extract the components of neural activity
correlated with all identifiable behaviors (running, front and back
grooming, abdomen bending, and quiescence). Quiescence was char-
acterized by a lack of movement of all tracked points on the body
(Methods). Our tethered preparation prevented flies from exhibiting

other behaviors such as proboscis or wing extension. To reflect
moments of uncertainty in a fly’s behavioral state, we used the beha-
vioral state probability (Methods, Fig. 1d, bottom) rather than the
binary behavioral state in our regression model. The observation that
the autocorrelation of running exhibited two decay times (Fig. 1e)
suggested that different neuronsmight be correlatedwith behavior on
different timescales. Therefore, we regressed each neuron’s activity
against all behaviors filtered using a different fitted time constant (τi)
for each cell (i). We allowed for both potentially causal and acausal
relationships between behavior and neural activity using a cell-specific
temporal shift (ϕi) of neural activity relative to the annotated beha-
viors (Methods). We assessed the significance of the fit to each cell by
randomly shifting regressors in time (Methods).

Regressing neurons across behaviors and filtering each neuron
with its own time constant considerably increased correlations
between the activity of individual neurons and the annotated beha-
viors (Fig. 2a). Thismodel accounted for proportionally more variance
in flies that spent more time running (CC = 0.73, Fig. 2b), as expected
from the widespread representation of running (Fig. 1h). The majority
of neurons are positively correlated with running, although a smaller
population show strong negative correlation with running (Fig. 2c).
Negatively correlated neurons are highly concentrated in the Pars
Intercerebralis (PI) (Fig. 2d–f). This region is comprised of a hetero-
geneous population of peptidergic neurons with a wide range of
functions50. Although many PI neurons are anticorrelated with run-
ning, some PI neurons are positively correlated, suggesting that the
release of a set of peptides is higher during running while release of
others is higher during quiescence. Notably,many of these peptidergic
PI neurons project to the same neuropil50, meaning that this biologi-
cally meaningful heterogeneity in adjacent neurons would likely be
masked in neuropil imaging.

Cells exhibited a remarkably broad range of preferred filter time
constants (Fig. 2a, g). 41% of cells had small time constants (τ < 4 sec-
onds), reflecting the similarity of the dynamics of behavior and mean
neural activity (Fig. 1e). However, 31% of all cells have τ greater than
20 seconds, and the overall distribution is bimodal (Fig. 2g). Thus, the
neural relationship to behavior has two timescales that approximate
the timescales of running itself (Figs. 1e and 2g). The median r2 does
not decrease as τ increases, indicating that behavior explains a similar
fraction of neural activity in cells with small and large behavioral time
constants (Fig. 2g). The temporal shifts in thefilterswere almost always
positive and similar to the filter time constants, such that cells with
large time constants also had large shifts (Fig. 2h). The locations in the
brain of cells with a given behavior time constant exhibit spatial
organization (Fig. 2i): some brain regions exhibit predominantly small
τ and other regions exhibit large τ. Neuronswith large τ cluster in the PI
region and in lateral areas on the posterior and anterior surfaces
(Fig. 2i). Neurons with small τ are distributed throughout the brain but
most concentrated near the midline on the dorso–posterior surface
(Fig. 2i). This region is primarily composed of neurons innervating the
protocerebral bridge and fan-shaped body of the central complex and
descending neurons innervating the ventral nerve cord ("CX, DN”,
Fig. 2i, Fig. S2). This is consistent with the observation that neurons in
these brain regions are involved in orienting and locomotion51,52.

To explore whether neural activity might be related to aspects of
behavior beyond those already considered, we refit the activity of
everycell using the spatial coordinates of every trackedbodypoint as a
regressor, allowing for a unique behavior time constant (τi) and tem-
poral shift (ϕi) for every cell as before (Methods). On average, the
neural variance explained by this ‘markers’model was higher than that
of our original ‘states’model, as expected given the significantly larger
number of regressors (16 marker coordinates versus 4 active states,
Fig. S2). However, the fraction of variance explained that exceeded
expectation (from temporally shifted regressors. See Methods.) was
similar for both models (Fig. S2), suggesting that our original model
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using behavioral states captures a relatively complete and more par-
simonious relationshipbetweenneural activity andbehavior. For these
reasons, as we proceeded to examine relationships between neural
activity and behavior, we exclusively focused on the more parsimo-
nious ‘states’ model.

Brainwide neural activity correlates with vigorous but not sub-
dued behaviors
Do all behaviors engage the entire dorsal brain, or is running unique?
Grooming and running are both precise directed behaviors but differ
in the number of limbs they engage, whereas flailing and running both
engage all limbs. We define behaviors engaging all limbs as ‘vigorous’
and behaviors engaging fewer limbs as ‘subdued’. Most neurons are
noticeably less active during grooming than running (Fig. 3a). During
front and back grooming, only 3.0% and 2.1% of all cells, respectively,
have τ < 4s and a regression weight > 0.02 (Fig. 3b–c). Only 8 cells
across all flies were highly correlated with front grooming (CC >0.5,
τ < 4s), and only two flies hadmultiple such cells (Fig. 3d). In both flies,
these cells were near the periphery of the imaged volume, potentially
accounting for their absence in other flies. Flies engage in each beha-
vior for different amounts of time, meaning that the variance
explained by each behavior in neural data reflects both the duration
and the influence of that behavior. Thus, to quantify brainwide influ-
ence of each behavior, we normalize the variance explained by each
behavior by the total time each fly exhibited that behavior, relative to
running. Front and back grooming account for only 18% and 9% as
much variance per unit time as running in the neural activity of cells
with τ < 4s (Fig. 3e, Fig. S3). Our observation that the dorsal brain is not
broadly engaged during grooming is qualitatively in agreement with
prior work proposing that small ensembles of cells are responsible for
grooming53,54.

We elicit flailing by removing the treadmill from beneath the fly.
The representation of flailing is brainwide and qualitatively similar to
that of running (Fig. 3f). 59% of neuronswith regressionweights > 0.02
and τ < 4s during running had equally large regression weights during
flailing (Fig. 3g, h). This suggests that global activity does not encode
the precisemodality of locomotion but rathermay encode locomotive
vigor or arousal more generally. This is further supported by the
observation that unlike grooming, flailing accounts for more variance
per unit time than running (218% and 262% for τ > 4s and τ > 20s,
respectively. Figure 3e). Collectively, our results suggest that vigorous
behaviors activate global representations, whereas more subdued
behaviors such as grooming do not.

Residual neural activity reveals ensembles of neurons with cor-
related activity
We next examined the nature of the neural activity not accounted for
by our regression model, and thus not easily explained by any of the
identified behaviors. After large-scale locomotion- and other behavior-
related activity has been regressed out, the residual activity exhibits
rich dynamics across both space and time (Fig. 4a), with all neurons
exhibiting significant residual dynamics across timescales, from sec-
onds tominutes (p < 1e-10, Ljung-Box test. SeeMethods). This residual
activity likely includes both activities unrelated to behavior as well as
activity related to behavior but in a manner more complex than the
regression model permits. For example, the residual activity of some
cells appears to include dynamics related to transitions between states
(Fig. 4a–b).Weexamined this by comparing neural activity preceding a
state transition to activity earlier in a bout of a given behavior. On
average, transitions from quiescence to running were preceded by a
slight increase in residual neural activity (Fig. S4). However, we did not
find evidence for a subpopulation of neurons that reliably encode state

Fig. 2 | Correlatesof runningaremultimodal and spatiallyorganized. a Example
traces from two cells, with regression fit overlaid in blue and ethogram below.
b Average model fit across cells for each fly versus fraction of time spent running
(Mean ± SEM, N = 16). Fly with highest time spent running shown in Fig. 1h–j.
c Correlation with running for all cells and all flies (N = 18), cells significantly active
during behavior in blue, all other cells in gray, total in black. d Downsampled
composite spatial map of running correlation for all flies, viewed in the sagittal
(left), transverse (right), and coronal (bottom) planes. e Location of an example cell
(blue) in each of two flies (top and bottom, respectively) negatively correlated with

running. f Corresponding activity traces for cells indicated in e for each fly. Etho-
grams shown below for reference. g Distribution of behavior time constants (τ) vs
model r2 for all flies (N = 18, cells significantly active during behavior in blue, all
other cells in gray). Blue line indicates median r2 as a function of τ for all cells
significantly active during behavior.hDistribution of τ vs distribution of time shifts
(ϕ) for all flies (N = 18), all cells significantly active during behavior. iDownsampled
composite spatialmapof τ for allflies, with large values in yellowand small values in
red, viewed in the sagittal (left), transverse (right), and coronal (bottom) planes.
Scale bar for all maps is 50μm.
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transitions; any neuron is equally likely to exhibit a large response
during the transition from one behavior bout to another (Fig. S4). For
simplicity, hereafter we refer to activity accounted for and unac-
counted for by the regression model as behavior-related and residual,
respectively. On average, the fraction of variance explained by beha-
vior (mean r2 = 0.39) is similar in magnitude to that of the residual
dynamics (1−r2). These residual dynamics include neurons that are
highly active during running (Fig. 4b, red), and the variance explained
by its leading PCs and behavior were negligibly correlated (Fig. S4).
This implies that behavior-related and residual activity coexist in the
same population of neurons.

We examined the structure of residual activity by performing a
principal component analysis (PCA). On average, the first 10 modes
explain 62% of the residual variance, and subsequent modes each
account for no more than 2% of the variance (Fig. 4c). We quantified
the dimensionality of this residual activity as the number of PCA
modes that maximize the log-likelihood on held-out data. Higher-
order PCA modes that do not improve the log-likelihood are not pre-
dictive of held-out data and therefore are defined as noise. Surpris-
ingly, many modes can be distinguished from noise (41.5 ± 4.6 modes,
Fig. 4d, Methods), despite the fact that many of these modes account
for very little variance. ThesePCAmodes are very sparse, in some cases
involving as few as 4 neurons (Fig. 4e, Methods). The average sparse-
ness of the first two modes is 1.3%, meaning that a typical mode
involves 18 neurons (Fig. 4f). Thus, modes that explain a small fraction
of the total variance nevertheless describe reliable patterns present in
neural activity. Counterintuitively, dominant modes are sparser than

less dominant modes (Fig. 4f). This suggests that the most reliable
patterns in the data tend to contain fewer neurons.

Each PCAmode is sparse and therefore dominated by the activity
of a small group of neurons with idiosyncratic yet similar dynamics
(Fig. S4). These modes show spatial organization; for example, small
groups of bilaterally symmetric neurons dominate the largest PCA
modes (Fig. 4g–i). Thesemodes are similar across flies, although there
is variability in which mode explains the most variance in a given fly
(Fig. 4g–i). To quantify this spatial organization, we first approximate
each mode as a binary pattern in which only large outliers in the ori-
ginal mode are set to 1 (Methods). We then analyzed the spatial
organization by calculating the distance between nonzero cells in the
binary pattern after superimposing the left and right hemisphere by
reflecting at the midline. Across all flies, modes were more spatially
organized than expected by chance (Fig. 4j). The dominant modes
identified by this analysis correspond to ensembles of ~20 cells that
may comprise functional units. The ensembles often display symmetry
across hemispheres. Each functional group is likely to be made up of
multiple clusters with even smaller numbers of neurons, perhaps
corresponding to specific cell types.

Residual activity is similar in running and quiescent states
What is the relationship between global behavior-related activity and
the sparser residual patterns of activity? One possibility is that residual
dynamics could depend on behavioral state so that, for example, a
particular residual dynamic pattern only appears during running
(Fig. 5a, model 1). Alternatively, residual dynamics could be present in

Fig. 3 | Large-scale neural activity correlates with vigorous but not subdued
behaviors. a Example raster of z-scoredΔF/F for all cells fromone fly in a short time
window, showing individual bouts of many behaviors. Cells ordered by ascending
ϕ. b Regression weights for running vs. back grooming, for all flies (N = 16), all cells
significantly active during at least one behavior colored by behavior time constant.
Cells not significantly modulated during either behavior shown in gray.
c Regression weights for front grooming vs. back grooming, for all flies (N = 16).
d Left, location of pairs of cells in two flies (gold and cyan, respectively) correlated
with front grooming. Scale bar is 50μm. Right, corresponding activity traces for
cells indicated at left for each fly. Ethograms shown below for reference. e Relative

rate of varianceexplained for eachbehavior, normalized to running, for all cells and
all flies (For running and grooming: 17,404 large τ and 9812 small τ cells from 16
flies; For flailing: 8236 large τ and 4187 small τ cells from 10 flies). Error bars
indicate ± SEM. f Raster of z-scored ΔF/F for all neurons from a fly running on a
spherical treadmill (left) and then flailing in the absence of a spherical treadmill
(right), with the timeseries of bouts of activity (running/flailing) shown below.
g Activity from four example neurons (red) from the same fly as f, with regression
model fits overlaid in blue and behavioral state (running/flailing/quiescent state)
shown below. h Distribution of regression weights for running and flailing for all
cells and all flies (N = 10).
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different forms in each of themultiple behavioral states (Fig. 5a,model
2). Finally, residual activity could be independent of behavioral state,
and therefore similar, for example, in the running and the quiescent
states (Fig. 5a, model 3). We find that the third of these possibilities
most accurately accounts for our data; residual activity shows no
obvious relationship to behavioral state (Fig. 4a).

We examined the residual neural activity during a behavioral state
(a “subspace”) and compared the subspaces of the running and
quiescent states. The amount of variance explained by each mode
appeared virtually identical in the two states (Fig. 5b). The dimen-
sionality of these two subspaces is qualitatively similar, but on average
the quiescent state is higher dimensional (37.9 ± 6.1) than the running

state (20.5 ± 2.0, Fig. 5c). This implies that the running and quiescent
states are both complex.

We next asked if the residual activity during the running and
quiescent states are not only similar in their complexity but also
contain similar dynamics. We therefore determined whether the
PCA modes defined in one state explain appreciable variance in the
other state. PCA modes defined by activity during the quiescent
state explain approximately 75% as much variance in the running
state, and PCA modes of the running state explain 75% of the
quiescent state (Fig. 5d). This implies that the subspaces occupied
by the dynamics in each state are highly overlapping. Furthermore,
the dimensionality of this overlap is similar to the dimensionality of

Fig. 4 | Neural activity not accounted for by behavior is high-dimensional.
a Example residual of the behavioral regression model reveals rich dynamics and
groups of neurons with similar activity (z scored ΔF/F, N = 100 cells, ordered by
iteratively selecting the neuron most correlated with the previous neuron). Beha-
vior ethogram shown below. b Example traces from two selected cells (red, gold,
respectively) either before (top, middle) or after (bottom) subtracting the beha-
vioral regression fit, with ethogram shown below. c The fraction of total variance
explained in the regression residual as a function of the number of PCA modes
(mean ± SEM, N = 18). d Dimensionality (number of modes) of the regression resi-
dual for all flies (N = 18), calculated as the peak in log-likelihood. Error bars indi-
cate ± 1%. eWeights of all cells in a single representative PCA mode (fly 3, mode 2).
Sparseness = 0.004, corresponding to 4.58 participating neurons. f Sparseness of

each PCA mode, averaged across all flies (Methods, median ± SEM, N = 18). Dashed
line represents Gaussian zero-mean patterns. g–i Example maps of weights from
leading PCA modes are sparse, approximately symmetric, and exhibit common
patterns across flies (scale bar = 50μm). Shown are examples dominated by Pars
Intercerebralis (PI) neurons (g), dorso-posterior neurons (i), and anticorrelations
between neurons from the two regions (h). Upper-right in i (Fly 3, Mode 2) is the
samemode as shown in e. j Euclidean distance between cells with large magnitude
PC components (red) for modes with 4, 6, or 8 such cells (left, middle, right,
respectively) versus random groupings of cells of the same size (gray). Distance is
computed after superimposing the left and right hemisphere by folding at the
midline.
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the activity (Quiescent-to-Running = 22.6 ± 5.1, Running-to-Quies-
cent = 20.8 ± 2.2, Fig. 5e). Moreover, projections of the residual
dynamics from both states onto the first two modes of the running
state are highly intermingled (Fig. 5f, also see Fig. S5). Collectively,
these results indicate that the temporal and spatial structure of the
residual activity is similar in the running and quiescent states.

PCA identifies patterns in the correlations across the full popula-
tion of neurons. To look for state-dependent effects in small groups of
cells, we compared correlations between the residual activity of all
pairs of cells in the quiescent and running states. These correlations
are similar with no large outliers (Fig. 5g, h). Thus, behavioral state and
the global pattern of activity associated with it appears to have only a
modest effect on the structure of residual activity. This is true not only
for the residual dynamics of large populations of neurons but also for
the residual correlations between all pairs of neurons (Fig. 5g, h). Thus,
behavioral state and residual dynamics appear remarkably indepen-
dent (Fig. 5a, model 3).

Cluster analysis reveals spatially segregated groups of neurons
with correlated activity
PCA revealed ensembles of spatially organized and functionally related
neurons in the residual activity. We identified smaller clusters of cor-
related neurons by performing hierarchical clustering analysis on the
residual activity (Fig. 6a). This procedure builds a tree of similarity
between the activity patterns of all cells, where at each branch point
the ‘children’ describe potentially meaningful subsets of a given ‘par-
ent’. To look for structure in the data at all spatial scales without
defining arbitrary parameters for the number of expected clusters, we

identified significant clusters using cross-validation (Methods). Speci-
fically, we determined whether the variance of each child cluster was
significantly smaller than the variance of random samples of the same
size extracted from the parent cluster (Methods). In this way, we
determined whether a given small group of neurons defined a cluster
unique from other members of the parent cluster. Both a child and its
parent cluster can be significant, and therefore neurons may partici-
pate in dynamics organized on multiple spatial scales.

Figure 6a shows the full clustering tree for one fly, with each
branch colored according to whether the parent was a significant
cluster (not significant in black, all other colors significant). We
observed significant clusters of many sizes, including one cluster
comprised of more than half of all neurons but also many clusters
comprised of only two neurons (Fig. 6a–b). We next asked whether
significant clusters are spatially organized. A subset of Pars Inter-
cerebralis neurons located near the midline form a spatially compact
cluster that is identifiable across flies (Fig. 6c–d, white). Significant
clusters that share a parent with the Pars Intercerebralis cluster are
predominantly in posterolateral regions (Fig. 6c–d, yellow). Thus,
there is spatial organization and stereotypy at multiple spatial scales.
The full distributionof sizes for all significant clusters (Fig. 6e) reveals a
large number of significant clusters with 2 members. These clusters
exhibit diverse residual dynamics, but each cluster consists of pairs of
cells with similar dynamics (Fig. 6g). Despite these clusters being de-
fined by residual dynamics, neurons in the same cluster have a similar
relationship to global activity and behavior (Fig. S6). As a population,
cellswithin a cluster exhibit a distributionof behavioral time constants
and correlations indistinguishable from the distributions across all
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Fig. 5 | Residual neural activity is largely independent of behavioral state.
a Possible relationships between residual activity and behavioral state for two
cartoon neurons. Model 1: Residual dynamics only exist during one behavioral
state. Model 2: Both raw and residual dynamics depend on behavioral state. Model
3: Residual dynamics are independent of behavioral state. b Fraction of total var-
iance explained, as in Fig. 4c, but fitting and testing exclusively on times the fly was
quiescent or running (gray and green, respectively). c Estimated dimensionality for
the quiescent and running states, calculated as in Fig. 4d. d Using PCA modes

calculated as inb but evaluating themon the opposite behavioral state. Cumulative
variance explained in the opposite behavioral state is dividedby variance explained
in the fitted behavioral state. e Shared dimensionality of the quiescent and running
states, calculated as in Fig. 4d. f Projection of residual dynamics during the running
(green) or quiescent (gray) states onto the first two PCs of the running state for an
example fly. g Residual pairwise correlation during either the quiescent or running
state, for all cells from one fly. h Distribution of differences of residual pairwise
correlations between the quiescent and running states for all flies (N = 10).
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cells (Fig. 6f, S6). Thus, clusters are highlydiverse andparticipate in the
global behavioral state.

By visual inspection, many small clusters appear to be either
bilaterally symmetric or spatially localized (Fig. 6h). To quantify this
observation, we analyzed the spatial organization by calculating the
distance between cells in a cluster after superimposing the left and
right hemisphere by folding at the midline (Methods, Fig. S6). Most
clusters with two members were more spatially organized than
expected by chance (Fig. 6i, S6). The presence of small clusters that
are predictive of both activity patterns and spatial location is con-
sistent with the association of cluster identity with function—cells
with similar dynamics and similar function are likely to be in similar
locations. These observations suggest that the fly brain is composed
of many small subpopulations that collectively account for the high
dimensionality of the brainwide data. Two-member clusters are
embedded in larger ensembles of neurons, implying that the func-
tional relationship between neurons is hierarchical. This is

consistent with known classes of cells in the fly brain—for example,
Kenyon cells can be subdivided into α/β,α0/β0, and γ subclasses;
similarly, dopaminergic neurons can not only be divided into sub-
classes such as the PPL1 cluster but the PPL1 cluster can be further
divided into single identified neurons that innervate distinct
mushroom body compartments55.

Our functional profiling of the brain offers a novel and com-
plementary method of identifying cell types throughout the brain.
The vast majority of cells in the central brain can be tran-
scriptionally characterized as consisting of a few thousand dis-
tinct cell types that come in clusters of 1-10 neurons per
hemibrain56. Histograms of the number of cells within each
cell type from genetic and connectomic cell-typing56 show an
exponential shape similar to that revealed by our activity-based
analysis (Fig. 6e). Thus, the smallest spatially organized sub-
populations we identified functionally may correspond to
genetically defined cell types.

Fig. 6 | Residual neural activity is composed of organized clusters on multiple
spatial scales. aThe relationship between all cells in onefly, definedby hierarchical
clustering on residual neural activity. Vertical axis reflects relative Euclidean dis-
tance in activity space, with the exception of the topmost dashed line, which is not
to scale. Significance of each cluster was assessed by comparing the variance of the
child cluster to the variance of samples from the parent cluster on held-out time
points. Branches from non-significant clusters colored black, branches from sig-
nificant clusters inother colors. Cyanbracket under the tree indicates region shown
in b, and yellow andwhitemarkers under the tree indicate clusters highlighted in c.
b Magnification of the portion of the tree indicated by a cyan bracket in a.
c Example map of cluster identity for PI cluster (white) and neighboring clusters

(yellow), with identity indicated by markers in a. d Same as c for additional flies,
with fly 1 repeated for clarity. e Distribution of the size of all significant clusters
(dark gray) and significant clusters that have no significant children (light gray).
fDistributionof correlationswith running for all cells (gray) and cells belonging to a
significant two-cell cluster (green). g Residual neural activity from three example
clusters each comprising two neurons. h Cells belonging to clusters shown in g in
red and gold, with non-member cells in gray. Scale bar is 50μm. i Euclidean dis-
tance between cells belonging to a 2-member cluster (blue), versus randomly
assigned cluster labels (gray). Distance computed after superimposing the left and
right hemisphere by folding at the midline. Each row shows a different fly and bar
height is capped at 30.
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Egg-laying command neurons correlate with running
In the fly, small identified circuits that control specific behaviors have
been elucidated.Our observation thatmost neurons in the fly brain are
active during running and flailing suggests that neurons engaged in
specific behaviors, such as mating, aggression, or egg-laying, are also
active during spontaneous running. To test this, we asked whether the
recently identified oviDN egg-laying command neurons7 are active
during locomotion. We imaged flies expressing the nuclear calcium
reporter nls-GCaMP6s and the static nuclear dsRed under control of
the split-GAL4 oviDN-SS17, which cleanly labels two of the three oviDN
neurons in each hemisphere (Fig. 7a). We did not observe egg-laying
behavior while flies were on the ball and thus, as expected, oviDN
neurons exhibited little activity while flies were in the quiescent state.
Neural activity was reliably higher during bouts of running (Fig. 7b),
and running accounted for substantially more variance in the neural
data than expected by chance (p < 0.05), consistent with previous
work57. As observed in our panneuronal imaging data, total variance
explained was highly correlated with time spent running (Fig. 7c),
suggesting that heterogeneity in the neural data is accounted for by
heterogeneity in the behavior. Thus, as predicted by our panneuronal
data, neurons with highly specified function are provided with
knowledgeof the larger context inwhich they operate. This knowledge
is reflected in the activation of egg-laying neurons, and therefore
gating mechanisms are required to ensure that behaviors occur at the
right time and place.

Genetically defined subpopulations of PI neurons are inversely
correlated with running
Clusters of cells with similar activity may correspond to genetically
defined cell types in the fly brain. To explore this, we focused on cell
types within the PI region. Panneuronal imaging revealed neurons in
this region anticorrelated with running, in sharp distinction to the
majority of imaged neurons (Fig. 2d, e). We examined the activity of
two peptidergic cell types within PI, Dilp and Dh44, the latter a subset
of the former58. Consistent with expectation from panneuronal

imaging, many Dilp and Dh44 neurons showed an inverse relationship
with running (Fig. 7d–f). Indeed, analysis of the distribution of running
correlations observed in different parts of the brain confirmed that
Dilp andDh44 exhibit running correlations that onewould only expect
to find in PI (Fig. S7). Thus, these cell types are likely to correspond to
unique clusters of neurons we identified in PI with panneuronal
imaging.

Discussion
We used SCAPE microscopy to record from a large volume of the
dorsal brain with cellular resolution, complementing large-scale stu-
dies of neuropil regions in the fly brain25–27,36,39,40,59. To achieve cellular
resolution, we used nuclear calcium as an indicator of neural activity.
Trafficking of calcium into the nucleus is regulated by neural activity
and influences gene expression60. SCAPE imaging permitted us to
record from all neurons in a contiguous and large brain volume at high
speed, providing an extensive picture of the neural correlates of
behavior with cellular resolution. When placed on a ball, flies run,
groom, or are quiescent. When suspended, flies often flail. Running
and flailing engage a large fraction of the neurons in the imaged
volume. A much smaller fraction of the neurons exhibit activity cor-
related with grooming. These behaviors unfolded over seconds and
minutes (Fig. 1e), giving us the opportunity to resolve the neural cor-
relates of these timescales. A regression model reveals neural activity
correlated with running on both short and long-time scales. This sug-
gests that most neurons are correlated with the act of running, and a
significant fraction are correlated with the tendency to run. Moreover,
cells with a given behavioral time constant are spatially organized, in
some cases aligning with areas known to be involved inmetabolism or
locomotion. For example, a region we observed to have activity most
highly correlatedwith behavior alignedwith boundaries of specific cell
types innervating the central complex (Fig. 2i, S2). More generally, the
identity of neurons in each functionally defined region is unknown but
can be loosely constrained by cell body locations in existing anatomy
databases47,61.

Fig. 7 | Activity of defined cell types correlates with running. a oviDN-SS1 (split-
GAL4) labels a pair of neurons in each hemisphere. Scale bar is 50μm. b Activity of
oviDN neurons for two example flies, with bouts of running indicated in green.
c Model fit for each fly versus fraction of time spent running (N = 7), as in Fig. 2b.
d Activity of a Dilp neuron, with bouts of running indicated in green. e Activity of a

Dh44 neuron, with bouts of running indicated in green. f Distribution of behavior
time constants and correlations with running for all Dilp (57 neurons, 7 flies) and
Dh44 (20 neurons, 5 flies) neurons whose behavior time constant was less than 60s
(57 of 77 and 20 of 24, respectively).
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Subtracting the dominant activity correlated with behavior
reveals additional rich dynamics across time and space. This residual
activity likely includes both activity unrelated to the exhibited beha-
viors as well as activity related to behavior but in a manner more
complex than our regressionmodel permits. Interestingly, this activity
shows little dependence on locomotive state: residual activity exhibits
similar spatiotemporal patterns in running and quiescent states. Thus,
local computations appear to be superimposed upon a global beha-
vioral state but not strongly state-dependent. This is similar to the
observations that behavior-related activity is widespread but ortho-
gonal to other dynamics in dorsal cortex of the mouse31, and that
preparatory andmuscle-related activity are orthogonal to one another
in the primary motor cortex of the monkey62.

Neural activity not accounted for by behavior is high dimensional
and sparse. Hierarchical clustering reveals small groups of neurons
with highly correlated activity, at the extreme comprised of only 2
cells. These functionally defined clusters may correspond to geneti-
cally defined cell types in the fly brain. Consistent with this expecta-
tion, genetically defined cell types can account for the clusters we
observed with panneuronal imaging in the Pars Intercerebralis
(Fig. 7d–f). These small circuits do not operate in isolation. Clusters
defined by the residual activity also participate in the global behavior-
related dynamics. Thus, global patternsmay inform local computation
and in turn, local computations may influence global patterns.

The global scale of neural activity correlated with locomotion in
flies is consistent with findings in worms21,22,33, zebrafish23,24,35 and
mice30–32,34. Studies in flies25–28,36,39,40 and those in other organisms pose
the question of the mechanism and function of broadly distributed
brainwide activity. In the fly, small identified circuits that control
specific behaviors have been elucidated. However, we have shown that
most neurons in the fly brain are active during running and flailing,
either as actors or observers. This suggests that neurons engaged in
specific behaviors, such as mating, aggression, or even egg laying, are
also active during spontaneous running, without the act of running
triggering these other behaviors. Indeed, we find that egg-laying
command neurons7 increase their activity during running without eli-
citing egg-laying. Downstream circuits must therefore be gated by
behavioral state.

The brainwide behavioral state could arise from a variety of
sources. For example, global activity could arise from widespread
neuromodulation. Alternatively, the recurrent connectivity of the fly
nervous system couldprovide a pathway for this global activity. One of
the most plausible sources is the extensive afferent input to the brain
from the ventral nerve cord—~2500 neurons originating in the ventral
nerve cord project diffusely to the central brain52. Subsets of these
neurons have recently been shown to encode behavioral states63.

We observe a small but substantial fraction of neurons that cor-
relate with locomotion on timescales longer than the duration of
individual running bouts. These neurons may represent a locomotor
state, the tendency to run. Many of these neurons reside in large
posterolateral clusters and in thedorsomedial Pars Intercerebralis. The
PI is a predominantly peptidergic domain, and neurons in this region
are poised to have influence over extended durations50. Recent work
has implicated a relationship between brainwide behavior-related
activity and metabolism27. Our observation that neurons involved in
regulating metabolism are also modulated by running, albeit in a
manner distinct from most other neurons, suggests that the causality
of this relationship may be bidirectional.

Why does locomotor behavior have privileged access to virtually
all neurons in the fly brain?Neurons inmultiple neural pathwayswould
likely benefit from knowledge of current behavior64. This activity may
modulate ongoing behavior, recapitulate past, or even predict future
behavioral action. In artificial intelligence, the utility of proprioceptive
feedback to higher-order networks has been demonstrated—in artifi-
cial agents trained to solve a variety of tasks, subnetworks charged

with representing abstract quantities such as value benefit from
knowledge of the agent’s behavior65,66. Interestingly, artificial neurons
in such subnetworks also tend to have activity correlated with the
behavior itself65. Therefore, locomotor state may provide a useful
behavioral context for other computations throughout the brain and it
is perhaps not surprising that it elicits the most prominent activity
throughout the brain. In short, it is good to know what you are doing.

Methods
Genetics and fly rearing
We imaged female 4–7 day-old flies of the following genotype: w/+;
UAS-nls-GCaMP6s/+; nSyb-Gal4/UAS-nls-DsRed. UAS-nls-GCaMP6s
was a gift from Barry Dickson. We imaged egg-laying command neu-
rons using the split-GAL4 oviDN-SS17. We imaged Dilp neurons using
Dilp5-GAL4, and Dh44 neurons using Dh44-GAL4.

SCAPE light-sheet imaging
Imaging was performed on a SCAPE 2.0 system44. In brief, the laser
sheet was directed through an upright mounted 20x/1.0NA water
immersion objective. Emitted light from the sample was separated
into two channels by an image splitter outfitted with two dichroic
filters and the detected red and green channels were recorded side-
by-side on the camera chip. The imaging speed for these experiments
was between 8 and 12 volumes per second, typically covering a
volume of ~450 × 340 × 150 μm3. Variability in size of visible brain
volume determined scan speed. In raw data, the voxel size along two
dimensions is isotropic and defined by the camera chip, while voxel
size in the third dimension is the step size of scanning. Here, the scan
dimensionwas anterior to posterior. Because the light-sheet accesses
the brain from an oblique angle, we orthogonalize the coordinate
system before further processing, resulting in a typical voxel size of
1.0 × 1.4 × 2.4 μm.

Mount and preparation
We mounted flies to a customized holder consisting of a 3D-printed
holder and a laser-cut stainless-steel headplate. We use a spherical
treadmill similar to prior designs67. We monitor the behavior of the fly
at 70 Hz, illuminated by 750 nm LEDs using a Basler acA780 camera
outfittedwith a VZM-450i lens (EdmundOptics) and a near-IR longpass
filter (Midwest Optical LP780-22.5, Graftek Imaging). Depictions of the
preparation made in BioRender (Fig. 1a, b).

Our mounting and dissection procedure was very similar to
prior work67 but with a larger dissected window to accommodate
SCAPE (Fig. 1b); all dissections that opened up a window similar to
Fig. 1b without damaging the brain were deemed successful. After
dissection, flies were tested for robust behavior on the spherical
treadmill - we defined robust behavior as exhibiting bouts of
walking totaling at least oneminute in a 5-minute span. All flies that
exhibited robust behavior post-dissection were imaged. Most flies
that passed these criteria continued to exhibit robust behavior for
many minutes, but we only analyzed data from flies that exhibited
bouts of walking totaling at least one minute in the first five min-
utes of imaging. Imaging continued for up to 30 minutes, termi-
nating when a fly no longer exhibited bouts of walking. The mean
experiment duration over all flies included in the analysis was
18.1 minutes.

Motion correction
To perform image registration of our volumetric imaging dataset,
we used the NoRMCorre algorithm68 augmented with an annealing
procedure in which the grid size and the range of permitted local
displacements gradually decrease with each iteration. At each step,
we computed displacements using the activity-independent DsRed
channel and applied the inferred displacements to the GCaMP
channel.
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Source extraction and deconvolution
ROIs are defined using watershed segmentation applied to the red
channel of a temporally averaged volume, resulting in 1631 ± 109 ROIs
per animal. Aftermotion correction,most cells have negligible residual
motion, but in some data sets a small fraction of cells havemotion that
is too nonlinear to be addressedwith NoRMCorre. To quantify residual
motion and eliminate non-stationary cells, we compute the squared
coefficient of variation,CV2 = Var[ΔF/F]/Mean[F]2 from the red channel.
Most ROIs (>95%) have CV2 << 1, while some have CV2 >> 1 and are
discarded. No cells exhibit CV2 ≈ 1 (Fig. S1). This refinement of ROIs
yields 1419 ± 78 stable, single-cell ROIs per animal.

Although this procedure typically reduces motion artifacts to less
than 1 voxel for most cells, we further minimize the impact of residual
motion by defining the activity of each cell as the ratio of green and
red, F = green/red. We then define baseline ratiometric fluorescence,
F0 as the best-fit exponential using least absolute deviation (LAD)
regression applied to the derivative of F, dFt = Ft+1 − Ft. Specifically, for
each cell, â,b̂= argmina,b

P
t jdFt � dF0ðt,a,bÞj, where

dF0ðt,a,bÞ= � ða=bÞ exp½�t=b�. We then define ΔF/F = (F − F0)/F0,
where F0 =m+a expð�t=bÞ and m= min½F �. LAD regression confers
robustness to outliers, and working with the derivative of F confers
robustness to long-timescale nonstationarity. We find similar but
slightly noisier activity using simple ΔF/F defined on the green
channel alone.

Anatomical alignment across animals
We create a standardized reference frame by coarsely aligning cell
locations across flies. Treating every cell as a point, we align the point
sets for each brain to a common reference volume using the Gaussian
mixture model method developed here: https://github.com/bing-jian/
gmmreg.

Analysis of behavior
Wemonitor themovement of the spherical treadmill bymeasuring the
total pixel variance between successive frames from the region con-
taining the ball. This unitless estimate of motion-aided behavior seg-
mentation, is described below. In some datasets, the spherical
treadmill was removed after 10minutesof imaging.Here,wemeasured
pixel variance in an ROI around the fly’s legs, which provided a mea-
sure of behavior we called flailing, consisting of bouts of rapid leg
movements.

We analyze fly behavior both by directly tracking motion of the
treadmill (described above) and by tracking eight points on the body
of the fly using Deep Graph Pose48 (DGP; Fig. 1c). We hand-labeled the
eight selected points in 1771 frames from 26 videos (50–137 frames per
video) using the DeepLabCut (DLC)69 GUI. We then trained DGP on
these frames, which augments the supervised loss of DLC with a semi-
supervised loss that incorporates additional, unlabeled frames; we
found that this significantly improved the pose estimation, even after
post hoc smoothing of the DLC markers.

We further segment discrete behaviors from the DGP markers
using a semi-supervised sequence model49. We chose to label five
salient behaviors commonly observed across all flies: running, front
and back grooming, abdomen bending, and a quiescent state. We
labeled up to 1000 frames for each of the five behaviors for each of 20
flies using the DeepEthogram GUI70, resulting in a total of 33,756 hand
labels (quiescent = 6250, run = 4950, front groom= 5700, back
groom= 5480, abdomen bend = 11,376). We supplemented this small,
high-quality set of hand labels with a large, lower-quality set of “weak”
labels computed using a simple set of heuristics (see details below).

Semi-supervised behavioral segmentation. We train a semi-
supervised behavioral segmentation model that classifies the DGP
markers into one of the five available behavior classes for each time
point. The model’s loss function contains three terms: (1) a standard

supervised loss that classifies a sparse set of hand labels; (2) a weakly
supervised loss that classifies a set of easy-to-compute heuristic labels;
and (3) a self-supervised loss that predicts the evolution of the DGP
markers. Let xt denote the DGPmarkers at time t, and let yt denote the
one-hot vector encoding the hand labels at time t such that the kth

entry is 1 if behavior k is present, else the entry is 0.We assume that the
hand labels are only defined on a subset of time points T � f1,2,:::Tg.
The cross-entropy loss function then defines the supervised objective
(Lsuper) to optimize:

Lsuper =
X
t2T

Lxent yt ,f ðxtÞ
� �

,

where f() denotes the sequence model mapping the DGP markers to
behavior labels. We now introduce a set of heuristic labels eyt , defined
at each timepoint. Computing the cross-entropy lossonall timepoints
that do not already have a corresponding hand label defines the
heuristic objective:

Lheur =
X
t=2T

Lxent eyt ,f ðxtÞ
� �

.

The self-supervised loss requires the sequencemodel to predictxt
+1 from xt. To properly do so we now expand the definition of the
sequencemodel f() to include two components: an encoder e(), which
maps the behavioral features xt to an intermediate behavioral
embedding zt; and a linear classifier c() whichmaps zt to the predicted
labels (ŷt = cðeðxtÞÞ. We can now incorporate the self-supervised loss
through the use of a predictor function p(), which maps zt to xt+1, and
match xt+1 to the true behavioral features p(e(xt+1)) through a mean
square error loss LMSE computed on all time points:

Lpred =
XT�1

t = 1

LMSE xt + 1,pðeðxtÞÞ
� �

.

Finally, we combine all terms into the full semi-supervised loss
function:

Lsemi = λsLsuper + λhLheur + λpLpred,

where the λ terms are hyperparameters that control the contributions
of their respective losses. Note that setting λh = λp =0 results in a fully
supervised model, while λs = λh =0 results in a fully
unsupervised model.

For the encoder and predictor networks e() and p() we use a
dilated Temporal Convolutional Network (dTCN)71, which has shown
good performance across a range of sequence modeling tasks. Both
networks use a two-layer dTCN with a filter size of 9 time steps and 32
channels for each layer, with leaky ReLU activation functions, and
weight dropout with probability p = 0.1. We use 10 fly videos for
training and 10 for testing. All models are trained with the Adam
optimizer using an initial learning rate of 1e-4 and a batch size of 2000
time points. For the training flies, 80% of frames are used for training,
20% for validation. Training terminates once the losson validationdata
begins to rise for 20 consecutive epochs; the epoch with the lowest
validation loss is used for testing. To evaluate themodels, we compute
the F1 score - the geometric mean of precision and accuracy - on the
hand labels of the 10held-out testflies.We average the F1 score over all
behaviors and choose the hyperparameters λh and λp based on the
highest score. We then retrain the model with those hyperparameter
settings using all 20 flies to arrive at our final segmentationmodel. We
also performed a small hyperparameter search across the number of
layers, channels per layer, filter size, and learning rate, and found that
our results are robust across different settings (data not shown).
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To construct an ethogram of behavioral state, we use the argmax
of predicted behavioral state labels ðŷtÞ at every time point. Time
points in which max ŷt

� �
<0:75 are labeled as “undefined" in the

ethogram.

Heuristic labels. The addition of a large set of easily computed
heuristic labels improves the accuracy of the behavioral
segmentation49. Below, we provide more detail on these heuristics.
Note that we choose conservative values for the thresholds in order to
decrease the prevalence of false positives. A consequence of this
choice is that some time points are not assigned a heuristic label;
nevertheless this procedure adds enough high-quality information to
substantially improve the models.

Run. We first estimate the time points at which a fly is running by
utilizing the treadmill motion energy (ME).We transform the treadmill
ME to lie in the range [0, 1], then assign the ‘run’ label to time points
when the treadmill ME is above a threshold (0.5).

Quiescent. We compute the average ME over all DGP markers for
each time point, then denoise this one-dimensional signal with a total
variation smoother (the denoise_tv_chambolle filter from the sklearn72

Python package).We then transform this signal to approximately lie in
the range [0, 1] (the 99th percentile is mapped to 1 in order to make
this process robust to outliers). We assign the ‘quiescent’ label to time
points when this signal is below a threshold (0.02) and the fly is not
running (according to the previous heuristic).

Abdomen bend. We compute the average ME over the abdomen
markers, then denoise this signal and transform it to approximately lie
in the range [0, 1]. We assign the ‘abdomen bend’ label to time points
when this signal is above a threshold (0.9) and the fly is not still or
running according to the previous heuristics.

Front and back groom. We compute the average ME over the
forelimb markers, then denoise this signal and transform it to
approximately lie in the range [0, 1]. We assign the ‘front groom’ label
to time points when this signal is above a threshold (0.05), the corre-
sponding back groom signal (computed from the hindlimbmarkers) is
below a threshold (0.02), and the fly is not still, running, or bending its
abdomen according to the previous heuristics. We assign the ‘back
groom’ label in an analogous manner.

Regression model
We regressed each neuron’s activity against all behavioral states
(B={running, front grooming, back grooming, flailing}) filtered using a
fitted time constant (τi) and temporal shift (ϕi) unique for each cell (i).
To reflect moments of uncertainty in a fly’s behavioral state, we used
the behavioral state probabilities (ŷbt) rather than the binary beha-
vioral states (argmax

b
½ŷbt �) as regressors. Thus, we model the activity f

of cell i at time t as

f it ∼
X2
j =0

αij t
j +

X
b2B

γbiŷbti, where ŷbti =bt ⊛ κτiϕi
:

We fit all parameters simultaneously using Sequential Least Squares
Quadratic Programming. The γ coefficients describe the relative
importance of each behavior in accounting for the activity of each cell,
while the α coefficients capture drift independent of behavior. The
convolution kernel is κτiϕi

= ð2τiÞ�1 exp½�ðjt � ϕjÞ=τi�. This symmetric
kernel avoids presuming a causal direction between behavior and
neural activity. A cell with a broad kernel should have ∣ϕ∣ ≥ τ, with the
sign of ϕ determining the direction of potential causality (neural
activity that precedes behavior may or may not be causal to the
behavior, but neural activity that follows behavior cannot be causal). A
lag of ∣ϕ∣ ≈ τ should not be interpreted as a true lag, but rather a
reflection of putative causality with smoothness constraints.

The alternative regression model used the principal components
of DGP marker position. Specifically, we used the principal compo-
nents of the normalized andmean subtracted x and y coordinates of all
8 tracked points. This set of 16 orthogonal regressors were then fed
into the same regression model described above in place of the
behavioral states.

To test the significance of the fit of each cell by either regression
model, we compared variance explained to that from a model that
used behavior regressors that were randomly shifted in time. Specifi-
cally, we randomly shifted all regressors in time by the same fraction of
the total experiment duration, ranging from 33% to 66%, with time
points shifted past the end of the experiment wrapping around to the
beginning. We generated five instances of this shifted fit and required
that the original fit produced larger r2 than all of them. The regression
fit for cells that failed this test were treated as not significant, regard-
less of their r2 value.

Significance of residual dynamics
To ascertain the degree of temporal structure in the residual activity
after subtracting the regression model fit, we performed a Ljung-Box
test of autocorrelation in the residual dynamics. For every cell, we
performed this test on all lags between 10 and 610 frames
(approximately corresponding to 1 second and 1 minute, respec-
tively). Every lag and every cell from every fly yielded a p-value lower
than 10−10.

Dimensionality reduction
We performed PCA on the residual activity after subtracting the
regression model fit. We quantified the dimensionality of this residual
activity as the number of PCAmodes that maximize the log-likelihood
of the lower dimensional subspace on held-out data. We fit the prin-
cipal components on 80% of all time points and evaluate the log-
likelihood on the remaining 20%.

To quantify the degree of approximate sparseness of PCA modes
without selecting a threshold, we calculate the participation ratio of
each principal component vector v!j as

Sj =

P
kv

2
jk

� �2

P
k v4jk
� � .

Intuitively, this gives an estimate of how many elements of each
mode are large (significantly nonzero), without having to choose an
arbitrary threshold. The participation ratio of a zero-mean Gaussian
vector is ~0.33, which is a useful null hypothesis for the existence of
either sparse or dense structure in the PCA modes. We define the
number of active neurons (n) in eachmode as sparseness (S)multiplied
by the total number of neurons.

We sorted residual activity by behavior label and then per-
formed PCA separately on each behavior’s set of time points to
quantify the residual subspace (Xb) of each behavior b. To compare
the subspaces of two behaviors, for example running and the
quiescent state, we quantified the common variance explained and
the common dimensionality. We defined common variance
explained (Emb) for m modes as

Emb =

Pm
j =0 Xb0

v!jbPm
j =0 λjb

,

where b is the behavior on which the PCAmodes were defined, and b0
is the other behavior. Similarly, we define common dimensionality by
cross validating the projection of one subspace onto the modes of the
other (Xb0

v!jb). See ‘Spatial Organization’ section for explanation of
calculating intra-mode distances and spatial organization.
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Clustering
Weperformedagglomerative hierarchical clusteringon residualneural
activity using Euclidean affinity and ward linkage.

To look for structure in the data at all spatial scales without
defining arbitrary parameters for the number of expected clusters or
an affinity threshold, we identified significant clusters using cross-
validation. We performed clustering on 80% of the time points, and
evaluated the validity of the identified clusters on the remaining 20%.
Specifically, we evaluated the intra-cluster variance on held-out time
points for each cluster and for size-matched samples from its parent
cluster. The number of selected samples was

Nsamples = min
Np

Nc

� 	
,100


 �
,

where Np and Nc are the number of neurons in the parent and child
cluster, respectively. A child cluster was deemed significant if its test
variance was less than that of the samples (p <0.05). Both a child and
its parent cluster can be significant. See ‘Spatial Organization’ section
for explanation of calculating intra-cluster distances and cluster
organization.

Spatial organization
We analyzed the spatial organization of sparse binary patterns. For our
analysis of cluster organization, these patterns directly corresponded
to cluster labels. For the corresponding analysis of organization of PCA
modes, an intermediate binarization step was required. To approx-
imate each PCAmode as a binary pattern, we set large outliers (greater
than five standard deviations from the mean) in the original mode to 1
and all other cells to 0.

We defined the Euclidean distance for each binary pattern by first
reflecting the brain along the midline—thus, the lateral coordinate of
each cell was equal to its distance from themidline (Fig. S6F). We then
compute the Euclidean distance between the coordinates of each cell
in a binary pattern. We performed this analysis on both the identified
and randomly shuffled patterns of the same size to validate our results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The datasets generated dur-
ing the current study are publicly available in NWB format in a Figshare
database at https://doi.org/10.6084/m9.figshare.23749074. An accom-
panying source data file is named “datasets_for_each_figure.xlsx”.

Code availability
Datawas collected using customMatlab software (https://github.com/
schafferEvan/VIP) interfacing with Andor acquisition system (andor.-
oxinst.com). Analyses were performed using custom Python and
Matlab code that can be found in the following Github repositiories
(package versions are specified in the respective requirements.txt files
in each repository): Behavioral data processing: https://github.com/
themattinthehatt/daart (DOI: 10.5281/zenodo.8277452), Neural data
processing: https://github.com/schafferEvan/VIP (ref. 73, DOI:
10.5281/zenodo.8263548), Analysis: https://github.com/schafferEvan/
flygenvectors (ref. 74, DOI: 10.5281/zenodo.8263524).
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