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Decarboxylation of β-boryl NHPI esters
enables radical 1,2-boron shift for the
assembly of versatile organoborons

Yu Guo1, Xiaosha Wang1, Chengbo Li1, Jianke Su1, Jian Xu1 &
Qiuling Song 1,2,3

In recent years, numerous 1,2-R shift (R = aliphatic or aryl) based on tetra-
coordinate boron species have been well investigated. In the contrary, the
corresponding radical migrations, especially 1,2-boryl radical shift for the
construction of organoborons is still in its infancy. Given the paucity and
significance of such strategies in boron chemistry, it is urgent to develop other
efficient and alternative synthetic protocols to enrich these underdeveloped
radical 1,2-boron migrations, before their fundamental potential applications
could be fully explored at will. Herein, we have demonstrated a visible-light-
induced photoredox neutral decarboxylative radical cross-coupling reaction,
which undergoes a radical 1,2-boron shift to give a translocated C-radical for
further capture of versatile radical acceptors. The mild reaction conditions,
good functional-group tolerance, and broad β-boryl NHPI esters scope as well
as versatile radical acceptors make this protocol applicable in modification of
bioactive molecules. It can be expected that this methodology will be a very
useful tool and an alternative strategy for the construction of primary orga-
noborons via a novel radical 1,2-boron shift mode.

Boron-containing compounds are important linchpins in organic
synthesis1–6 and also play an important role in material science and
pharmaceuticals7. As the key intermediates, organoborons have been
extensively employed in various cross-coupling reactions8–12. Among
them, 1,2-metallate migration reactions and transmetallations of tet-
racoordinate boron species are the most prevalent and well-
recognized reaction modes11,13–18. In fact, stereospecific 1,2-migrations
of alkenylboronate complexes have been known for many decades. In
1967, Zweifel and co-workers reported the first 1,2-alkyl/aryl migra-
tions of vinylboron “ate” complexes (e.g. alkenyl tetracoordinate
boron species) induced by electrophilic halogenation19. In 2016, Mor-
ken and co-workers disclosed an enantioselective palladium-induced
1,2-alkyl/aryl migration of the same substrates20–24. More recently,
Studer25–31, Aggarwal32–40, and Renaud41 developed radical–polar

crossover reactions, in which 1,2-alkyl/aryl migrations of alkenyl tet-
racoordinate boron species are induced by alkyl radical additions
(Fig. 1A). In recent years, radical borylations under transition-metal-
free conditions, especially alkyl radical-involved borylations dramati-
cally promote the expansion of organoborons. Although numerous
1,2-R shift (R = aliphatic or aryl) based on tetracoordinate boron spe-
cies havebeenwell investigated, the corresponding radicalmigrations,
especially 1,2-boryl radical shifts are underdeveloped and elusive.
There are only very few cases describing such migrations42. For
instance, in 1999, Batey and Smil disclosed that boron-tethered radical
cyclizations could undergo a 1,2-boryl radical shift (Fig. 1B, eq. a)43,
however, no significant progress has been achieved until 2019, in that
year Aggarwal and coworkers reported a photoredox catalysis-
promoted activation of 1,2-bis-boronic esters to lead to primary
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β-boryl radicals, which further undergo rapid 1,2-boron shift to form
thermodynamically favored secondary radicals, finally affording sig-
nificant functionalized boronic esters (Fig. 1B, eq. b)44–46. Later on,
alkynyl triflones as CF3-radical precursors as well as the subsequent
alkynylation reagents are employed for the trifunctionalization of
allylic boronates, which represents a new 1,2-boryl radical migration
strategy was disclosed by Studer and co-workers (Fig. 1B, eq. c)47,48.
Despite these achievements, efficient 1,2-boryl radical migration for
the construction of organoborons is still in its infancy. Given the

paucity and significance of such strategies in boron chemistry, it is
urgent to develop other efficient and alternative synthetic protocols to
enrich these underexplored radical 1,2-boron migrations from readily
accessible starting materials, before their fundamental potential
applications can be fully explored at will.

N-Hydroxyphthalimide (NHPI) esters, which could be readily
accessible from the corresponding carboxylic acids, have emerged
as efficient alkyl radical precursors to be coupled with radical
acceptors, nucleophiles (such as amines, alcohols, borons, etc) or
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electrophiles49–64. Therefore, wedecided touseboron-containingNHPI
esters named β-boryl NHPI esters as radical precursors, presumably,
decarboxylation of such boron compounds under the action of light
would produce β-boryl alkyl radicals, which could be used for further
investigations of the elusive radical 1,2-boron migration reactions.

According to retrosynthetic analysis, β-boryl NHPI esters could
be readily accessible from β-boryl esters, which are the result of Cu-
catalyzed β-boration of various α,β-unsaturated carbonyl
compounds65. After extensive efforts, we found that β-boryl NHPI ester
1a could be practically obtained on a 10-gram scale with a 66% overall
yield. The structure of 1a is confirmed by X-ray crystal structure ana-
lysis (Fig. 1C, left). Furthermore, we were intrigued as to whether our
approach could be extended to the selective functionalization of β-
gem-diboryl NHPI esters. In this proposed strategy, a radical 1,2-boron
migration would enable a thermodynamically favored boron-bearing
tertiary alkyl radical, thus resulting in 1,2-diboron compounds.
Remarkably, the β-boryl NHPI esters and β-gem-diboryl NHPI esters are
white solids and are stable in air for months. Thus, the advantages of
such compounds make them practical and accessible to synthetic and
medicinal researchers. In the presenceof photo-catalysis, theseβ-boryl
NHPI esters could undergo facile single-electron transfer followed by
rapid decarboxylative fragmentation to lead to a β-boryl alkyl radical,
which thenmight engage in a radical 1,2-boron shift. Themigrationwill
be steeredby thermodynamiceffectswith the increased stability of the
rearranged C-radical. Trapping of the translocated rearranged radical

via cross-coupling reactions could render versatile mono primary
boronic esters with β-boryl NHPI esters (Fig. 1D). Of note, besides
various secondary β-boryl NHPI esters, β-gem-diboryl NHPI esters are
well toleratedunder this transformation aswell, thus rendering various
aliphatic 1,2-diborons. The mild reaction conditions, good functional-
group tolerance, and broad β-boryl and β-gem-diboryl NHPI esters
scope as well as versatile radical acceptors make this protocol
applicable in the modification of bioactive molecules.

Results
To validate our hypothesis, we initiated an optimization study of a
model reaction between 1,3-dioxoisoindolin-2-yl 4,4-dimethyl-3-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanoate (1a) and
((phenylethynyl)sulfonyl)benzene (2a) in the presence of a photo-
catalyst and a base under a blue LED lamp (Table 1). The desired cross-
coupling product 3a was obtained in 52% isolated yield when using
Ir(ppy)3 as a photocatalyst, diisopropylethylamine (DIPEA)/Hantzsch
ester (HE) as the reductants, DCM as a solvent, and under the irradia-
tion of a 40W blue LED lamp (entry 1, Table 1). A screening of pho-
tocatalysts, such as [Ir(dtbppy)(ppy)2]PF6, [Ir{dFCF3ppy}2(bpy)]PF6,
4CzIPN, and so on, demonstrated that Ir(ppy)3 was the most effective
catalyst, yielding 3a in 52% yield (entries 2–7, Table 1. Also see Sup-
plementary Information (SI) for details). Solvent examinations showed
that DCE was the optimal one to deliver the target product 3a in 74%
yield (entries 8–11, Table 1). Further assessment on the amount of

Table 1 | Optimization of the reaction conditionsa

Entry PC HE (x equiv) DIPEA (y equiv) Solvent Yield (%)b

1 Ir(ppy)3 1.5 2 DCM 52

2 [Ir(dtbppy)(ppy)2]PF6 1.5 2 DCM 48

3 [Ir{dFCF3ppy}2(bpy)]PF6 1.5 2 DCM 40

4 4CzIPN 1.5 2 DCM 41

5 Ru(bpy)3Cl2 1.5 2 DCM 33

6 Ru(bpy)3Cl2·6H2O 1.5 2 DCM 26

7 Ru(bpy)3(PF6)2 1.5 2 DCM 24

8 Ir(ppy)3 1.5 2 THF 45

9 Ir(ppy)3 1.5 2 CH3CN 39

10 Ir(ppy)3 1.5 2 DCE 74

11 Ir(ppy)3 1.5 2 toluene 29

12 Ir(ppy)3 1 2 DCE 61

13 Ir(ppy)3 2 2 DCE 56

14 Ir(ppy)3 1.5 1 DCE 48

15 Ir(ppy)3 1.5 3 DCE 52

16 – 1.5 2 DCE Trace

17 Ir(ppy)3 – 2 DCE Trace

18 Ir(ppy)3 1.5 – DCE 38

19c Ir(ppy)3 1.5 2 DCE Trace

HE (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate), DIPEA (N, N-diisopropylethylamine), DCM (dichloromethane), DCE (1,2-dichloroethane), THF (tetrahydrofuran)
aReactionconditions: 1a (0.2mmol),2a (1.5 equiv, 0.3mmol), photocatalyst (1mol%, 0.002mmol),HE (1.5 equiv,0.3mmol), DIPEA (2equiv,0.4mmol), solvent (2mL) at roomtemperature, 40Wblue
LEDs, 12 h in argon.
bIsolated yield.
cWithout light.
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reductants indicated that 1.5 equiv. HE and 2 equiv. DIPEA were the
best combination (entries 12–15, Table 1). Finally, control experiments
demonstrated that the visible light, photocatalyst and HE were all
necessary for this transformation, as no desired product 3a was
obtained in the absence of any of the above reaction promoters
(entries 16–19, Table 1).

Substrate scopes
With the optimum conditions in hand (entry 10, Table 1), the scope of
this decarboxylative alkynylation of β-boryl NHPI esters was explored
and the results were shown in Fig. 2. This protocol was applicable to a
wide range of alkynyl arylsulfones with either electron‐donating or
electron‐withdrawing substituents on the benzene rings, affording the
corresponding products 3a–3g in moderate to good yields (61–76%).
Next, various secondary β-boryl NHPI esters were prepared and sub-
jected to the standard conditions, to our delight, they could react
smoothly with alkynyl arylsulfone 2 and delivered the target products

3h–3s in decent yields. For instance, in terms of β-boryl NHPI esters
bearing a secondary carbon on α-position, both cyclic (including five-
membered and six-membered cyclic rings) and acyclic alkyl groups
were compatible and converted into corresponding alkynylation pro-
ducts in moderate yields (3h–3k). For β-boryl NHPI esters bearing a
primary carbon on α-position, phenylethyl (1l) and isopropyl ethyl (1o)
were also suitable candidates for this transformation and the corre-
sponding products 3l and 3o were obtained in 66% and 68% yields,
respectively. To understand the impact of the stability of radicals on
the reactivity and selectivity, substrates (1m, 1n) containingmethylene
tethers with different lengths were exposed to the reaction as well, it
was found that the length of the chain does not affect the formation of
the desired products. Moreover, for the tertiary alkyl group in β-boryl
NHPI esters (1p), the corresponding target product 3p could also be
obtained successfully albeit in a lower yield. To showcase the applic-
ability and practicality of thismethod, we also employed the late-stage
modifications of some bioactive compounds or drug molecules. For
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example, a series of natural products (dodecyl aldehyde, Cyclamen
aldehyde, Lily aldehyde) were also successfully introduced into the
β-boryl NHPI esters, and they all reacted well with alkynyl arylsulfones
and produced the corresponding products (3q, 3r and 3s) without loss
of efficiency. Moreover, we have examined β-boryl NHPI esters (using
B2neop2 as the boron source for 1,2-boron shift). The substrate was
also compatible with our reaction system to deliver the desired pro-
duct 3t in decent yield. After establishing the approach for the con-
struction of Csp3–Csp bonds, we were especially interested in forging
Csp3–Csp2 bonds by using vinyl sulfones as coupling partners. As
expected, these substrates were equipotent to afford the corre-
sponding coupling products (3u–3z) with Csp2–Csp3 bond formation
inmoderate yields under the standard conditions just like with alkynyl
arylsulfones as substrates.

Encouraged by the aforementioned results, we subsequently
evaluated the scope of allyl sulfones (Fig. 3). It turned out that allyl
sulfones were suitable radical acceptors as well, and these substrates
demonstrated good reactivities, and the corresponding coupling
products were rendered in moderate to excellent yields (5a–5ab)
under reoptimized conditions as follows: using fluorescein as photo-
catalyst, HE andDIPEA as the reductants,DCE as solvent, andunder the

irradiation of a 40W blue LED lamp base at rt for 12 h under argon
atmosphere (see SI for details). The results were summarized in Fig. 3.
We found that a broad range of allyl sulfones were compatible sub-
strates for this decarboxylative allylation of β-boryl NHPI esters, and
the correspondingdesiredproductswereprocuredwith yields ranging
from 50% to 83% (5a–5p). Both electron-donating and electron-
withdrawing substituents on the para and meta positions of the ben-
zene rings (5b–5h) worked well in our catalytic system to afford the
corresponding allylation products inmoderate to excellent yields. This
catalytic system was also amenable to naphthalene and heterocycles,
and the corresponding products 5i–5j were isolated in good yields. In
addition to aryl-substituted substrates, other allyl sulfones, such as
halogenated and ester-substituted allyl sulfones, have also been con-
firmed to participate in the reactions well to obtain the corresponding
homoallylic boronates (5k–5p). Allyl sulfones derived from structu-
rally complicated natural products such as nerol, DL-menthol and
citronellol, all reacted well and produced the corresponding products
in synthetically useful yields (5n–5p). It is indicated that various sub-
stituted β-boryl NHPI esters and ethyl 2-((phenylsulfonyl)methyl)
acrylate were also well-suited for this transformation (5q–5ab). For
boron sources containing other substituents (using B2neop2 as the
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boron source for 1,2-boron shift), it was also compatible with this
reaction system to render the target product 5ac in good yield.

To further extend the scope of the present method, our interest
subsequently shifted to investigation of other radical acceptors
(Fig. 4). Radical conjugate addition to a range of electron-deficient
alkenes afforded the desired products (7a–7m) in good to excellent
yields. In addition to ethyl acrylates, a series of alkyls, suchas tert-butyl,
benzyl, phenyl acrylates and other substituent groups were viable
substrates to give the corresponding products (7a–7d, 7k–7m) as well.
Furthermore, this photoredox system could enable decarboxylative
alkylation of the β-boryl NHPI esters with other electron-deficient
alkenes such as acrylonitrile, vinyl phosphonates, vinyl amides, vinyl
sulfones with good efficiency (7e–7j). For β-boryl NHPI esters, various
substrates could furnish the desired products (7n–7x) smoothly.

Interestingly, with our current strategy, when β-gem-diboryl NHPI
esters were employed as the substrates, the reaction worked perfectly
to lead to the corresponding new 1,2-diboron products. As summar-
ized in Fig. 5, allyl sulfones regardlessof aromatic ringor chlorine atom
substituents all proved to be suitable substrates, leading to the desired
products in good yields (8a–8l). Of note, alkynyl phenylsulfones
were well tolerated to afford the desired products in moderate
yields (8m–8o).

Downstream applications and transformations
To demonstrate the synthetic utility of this coupling protocol, several
scale-ups and transformationswereperformed, shown in Fig. 6. First of
all, the scalabilities were performed by gram-scale reactions on 3a, 5a,
and 7a, without significant erosion of efficiency (Fig. 6A). In order to

showcase practical values of this strategy, then a series of transfor-
mations on 3awere conducted. For example, firstly, the boronmoiety
could be oxidized into hydroxyl groups to lead to 9 in 85% yield
(Fig. 6B, eq. a). Then, the boronmoiety could also be retained through
conversion to the corresponding potassium trifluoroborate salt 10,
which can be conveniently isolated (Fig. 6B, eq. b). Next, carbon
homologations were achieved through the incorporation of an alkene
group 11 at theC-B terminuswithGrignard reagents (Fig. 6B, eq. c). The
3a was smoothly converted to aryl groups via Suzuki–Miyaura cou-
plings under the identified conditions, rendering the product 12 in 68%
yield and the product 13 in 53% yield (Fig. 6B, eq. d). The introduction
of (hetero)aryl motifs was within reach by treatment with organo-
lithium reagents (14 and 15, Fig. 6B, eq. e and eq. f). And the alkyne 4a
could undergo complete hydrogenation with Pd/C catalyst, providing
16 in 90% yield (Fig. 6B, eq. g), which features a saturated alipha-
tic chain.

Mechanism investigations
To gain more insights into this transformation, we carried out some
control experiments and mechanistic studies. The reaction was com-
pletely suppressed in the presence of radical scavengers such as
TEMPO, BHT, or 1,1-diphenylethylene, and the radical trapping pro-
ducts 17–19 could be detected by HRMS (Fig. 7a). The above results
revealed that this process might proceed via a radical pathway. We
subsequently turned our attention to the radical-clock experiments.
Compound 20 undertook decarboxylation to produce a radical, which
participated in our transformation through the way of intramolecular
cyclization, thus confirming the radical process (Fig. 7b).

Fig. 4 | Substrate scope and functional group compatibility of the decarboxylative alkylation. Reaction conditions: 1 (0.2mmol),6 (1.5 equiv, 0.3mmol), Ru(bpy)3Cl2
(1mol%, 0.002mmol), HE (1.5 equiv, 0.3mmol), THF (2mL) at room temperature, 40W blue LEDs, 12 h in argon.
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Based on the above control experiments, a possible reaction
mechanism is proposed as outlined in Fig. 8. Photocatalyst Ir(ppy)3
is excited to photoexcited Ir(III)* via single-electron transfer under
visible light, the latter is then reduced by Hantzsch ester to Ir(II).
Single-electron transfer from visible light-excited photocatalyst Ir(III)
to the N-hydroxyphthalimide 1 generates a radical anion A, which
then undergoes homolytic cleavage of the N–O bond to deliver alkyl
radicalB by decarboxylation and the release of phthalimide anion. The
alkyl radical B thus engages in a 1,2-boron shift to form C. After α-
addition to the alkynyl sulfone 2 and the sulfonyl radical elimination,
the alkyne product 3 is obtained. With the proton transfer from the
Hantzsch ester radical cation, β-boryl alkyl radical then adds either
to the allyl sulfone 4 to obtain the allylation adduct 5 after desulfo-
nation or to the Michael acceptor to obtain the Michael addition
adduct 7.

Discussion
In conclusion, we have demonstrated a visible-light-induced photo-
redox neutral radical decarboxylative cross-coupling reaction,
which undergoes a radical 1,2-boron shift to give a translocated
C-radical for further capture of versatile radical acceptors. The
method features mild conditions and simple operations, avoids the
use of highly active organometallic reagents, and enriches the
diversity of substrates. Given the ready accessibility of the starting
materials, the operational simplicity, and the valuable products, it can
be expected that this methodology will be a very useful tool and an
alternative strategy for the construction of organoborons via a novel
radical 1,2-boron shift mode. Furthermore, β-gem-diboryl NHPI esters
undergo a 1,2-boron shift to give 1,2-dibrons or 1,2-diols after
oxidation.

Methods
General procedure for synthesis of primary boronates from
alkynyl arylsulfones or vinyl sulfones
A mixture of 1 (0.2mmol), 2 (0.3mmol), Ir(ppy)3 (1% mmol), and HE
(0.3mmol) were charged into a Schleck tube, then the air was
removed, argon was filled of Schleck tube and DIPEA (0.2mmol), DCE
(2mL) is added the mixture. The mixture was stirred under irradiation
from 40W Blue LEDs. After the solvent was removed under reduced
pressure, the residue was purified by silica gel chromatography using
PE/EA (50:1) to afford the corresponding product.

General procedure for synthesis of primary boronates from allyl
sulfones
A mixture of 1 (0.2mmol), fluorescein (1% mmol), and HE (0.4mmol)
was charged into a Schleck tube, then the air was removed, argon was
filled in a Schleck tube and 4 (0.3mmol), DIPEA (0.2 mmol), HCOOH
(0.2mmol), DCM (2mL) is added themixture. Themixture was stirred
under irradiation from 40WBlue LEDs. After the solvent was removed
under reduced pressure, the residue was purified by silica gel chro-
matography using PE/EA (50:1) to afford the corresponding product.

General procedure for synthesis of primary boronates from
electron-deficient alkenes
A mixture of 1 (0.2mmol), Ru(bpy)3Cl2 (1% mmol), and HE (0.3mmol)
was charged into a Schleck tube, then the air was removed, argon was
filled in a Schleck tube and 6 (0.3mmol), THF (2mL) is added
themixture. Themixture was stirred under irradiation from 40WBlue
LEDs. After the solvent was removed under reduced pressure, the
residuewaspurified by silica gel chromatography using PE/EA (30:1) to
afford the corresponding product.
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Data availability
The data that support the findings of this study are available within the
article and its Supplementary Information files. All other data are
available from the corresponding author upon request. The X-ray
crystallographic coordinates for structures 1a and 3e reported in this
article have been deposited at the Cambridge Crystallographic Data
Centre (CCDC), under deposition numbers CCDC 2247689 (1a) and
2242317 (3e). These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.
uk/data_request/cif.
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