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Real-space observation of ergodicity
transitions in artificial spin ice

Michael Saccone 1 , Francesco Caravelli 1, Kevin Hofhuis2,3, Scott Dhuey4,
Andreas Scholl5, Cristiano Nisoli1 & Alan Farhan 6

Ever since its introduction by Ludwig Boltzmann, the ergodic hypothesis
became a cornerstone analytical concept of equilibrium thermodynamics and
complex dynamic processes. Examples of its relevance range from modeling
decision-making processes in brain science to economic predictions. In con-
densed matter physics, ergodicity remains a concept largely investigated via
theoretical and computational models. Here, we demonstrate the direct real-
space observation of ergodicity transitions in a vertex-frustrated artificial spin
ice. Using synchrotron-based photoemission electron microscopy we record
thermally-driven moment fluctuations as a function of temperature, allowing
us to directly observe transitions between ergodicity-breaking dynamics to
system freezing, standing in contrast to simple trends observed for the
temperature-dependent vertex populations, all while the entropy features
arise as a function of temperature. These results highlight how a geometrically
frustrated system, with thermodynamics strictly adhering to local ice-rule
constraints, runs back-and-forth through periods of ergodicity-breaking
dynamics. Ergodicity breaking and the emergence of memory is important for
emergent computation, particularly in physical reservoir computing.Ourwork
serves as further evidenceof how fundamental laws of thermodynamics can be
experimentally explored via real-space imaging.

Artificial spin ice is a term that summarizes a range of nanoscalemodel
magnetic systems that feature various forms of geometrical
frustration1. They consist of single-domain Ising-, Potts- and XY-type
nanomagnets lithographically defined onto various two-dimensional
geometries2–6. While initial realizations mimicked the geometrical
frustration in naturally occurring pyrochlore spin ice7–10, advancement
in fabrication and characterization allowed for creative systemdesigns
and the realization of a variety of artificial frustrated systems to exhibit
emergent phenomena often not seen in natural materials. These
include emergent magnetic charge screening3,4, emergent reduced
dimensionality11, spin glass transitions12, or the direct observation of

phase transitions13. Artificial spin ice systems, combined with appro-
priate magnetic imaging techniques, are now situated as ideal plat-
forms to generate and visualize emergent phenomena and
fundamental laws and concepts of thermodynamics that would
otherwise rely on simplified theoretical models.

For example, the ergodic hypothesis introduced by Boltzmann
presupposes that thermodynamic systems explore all allowed states of
given energy in proportion weighted by their multiplicity, bringing
averages over repeated ensembles quickly into agreement with
averages over time. However, exceptions are predicted to occur as
ergodicity tends to be broken around phase transitions, freezing
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transitions, or spin glass phases14. Furthermore, local constraints in
quantum systems can also lead to ergodicity-breaking dynamics15.
Geometrically frustrated systems such as artificial spin ice exhibit
frustration and strong local constraints in formof a strict adherence to
the so-called ice-rules16 while exploring their energy landscape via
thermally-driven moment fluctuations17. Violations of the ice-rule
come with an energy cost and the emergence of topological defects,
such as emergent magnetic monopoles8,9.

In this work, we aim to directly visualize ergodicity transitions in
a vertex-frustrated artificial spin ice,whichwedub theApamea lattice
(Fig. 1a, b), as it features similarities to Roman ornaments recovered
in the region surrounding the city of Apamea. The lattice features
both four-nanomagnet and three-nanomagnet vertices as seen in
previous studies of the decimated square lattice11. These vertex-
frustrated systems such as the Tetris lattice11, the aforementioned
Shakti lattice4, or the so-called Cairo- and Santa Fe lattices18,19 have
proven particularly interesting, as they feature a strict adherence to
ice-rule constraints at the four- and three-nanomagnet vertices but
not all vertices can be placed simultaneously in the lowest energy
configuration.

Results
The dipolar Apamea spin ice
The Apamea lattice organizes three-nanomagnet vertices into square-
shaped windows, which are then connected via four-nanomagnet
vertices and two-nanomagnets vertices (Fig. 1a). Moment configura-
tions (see example in Fig. 1b) can then be characterized by looking at
the so-called vertex types, which are listed in Fig. 1c with increasing
dipolar energies. From an emergent magnetic charge
representation3,8,10, four-nanomagnet vertices obeying the ice-rule
(Type I and Type II vertices) will feature zero magnetic charge at the
vertex, while a Type III and Type IV vertices will exhibit non-zero
magnetic charge defects (Fig. 1c). In the three-nanomagnet vertices,
the ice-rule obeying vertices are energetically split into Type A and
Type B vertices, with Type B being higher in energy due to the asym-
metry in interactions between collinear and perpendicular nano-
magnets. These ice-rule vertices of odd coordination are necessarily
charged, with magnetic charge Q = ±q, q representing the charge of a
single nanomagnet pointing into a vertex. These types of four- and
three-nanomagnet vertices are expected to show a strong, if not strict,
adherence to their respective ice-rules4,11,18. In other words, we are

Fig. 1 | Apamea lattice. a Scanning electron microscopy image of the Apamea
lattice consisting of nanomagnets with lengths L = 360nm, width W = 120 nm, and
thickness d = 2.6 nm with a lattice parameter a = 500nm. The yellow scale bar
indicates a length of 600nm. b XMCD image of low-energy moment configuration
recorded after thermal annealing. While ground state domains emerge, we see
sporadic clockwise and anti-clockwise moment loops forming on the irregular

hexagonal plaquettes. c Vertex types at two-, three-, and four-nanomagnet vertices
listed with increasing dipolar energy. For example, the order is from 1 through 4, A
through B, etc. Magnetic charges at each vertex, Q, are listed in terms of multiples
of the dipole’s fundamental magnetic charge q. Positive Q values are depicted as
red and negative values are blue.
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studying a magnetically frustrated system with strong constraints on
local dynamics, in the form of ice-rule obeying dynamics. Similar to
other vertex-frustrated systems11,18,20, the Apamea lattice exhibits a
predicted ground state when considering a dominance of nearest-
neighbor couplings (see Supplementary Fig. 1), but which requires a
staggered presence (25% population) of so-called unhappy Type B
vertices that, despite fulfilling the ice-rule, are higher in energy than
the happy Type A vertices (Fig. 1c).

Temperature-dependent thermal fluctuations
With this a priori knowledge about the system, we now turn our focus
to our temperature-dependent magnetic imaging experiments2,3. For
this, we patterned Ising-type nanomagnets, arranging them onto an
Apamea lattice (Fig. 1a). The total system comprises over 28000
nanomagnets which, though not a thermodynamic limit in that it does
not approach Avogadro’s number, is consistent with system sizes of
nanomagnets that avoid significant edge and boundary effects, as
previously reported in literature3,8,9,12,21–23. Following sample fabrica-
tion, the sample is kept at room temperature for several weeks before
being transferred into the photoemission electron microscope

(PEEM)24 for magnetic imaging. Employing x-ray magnetic circular
dichroism (XMCD) at the Fe L3 edge25 (see “Methods” section), we are
able to record XMCD image sequences at various temperatures with a
temporal resolution of roughly 10 s per image (see Supplementary
Movies 1 and 2).

Looking at the recorded XCMD sequences, we first count vertex-
type populations as a function of temperature (Fig. 2a, c, d). While the
plots appear unspectacular on a first glance, showing no dramatic
change with temperature, they reveal two important conclusions. The
unhappy Type B vertices maintain a fraction close to 0.4, higher than
the predicted nearest-neighbor ground state fraction of 0.25
(see Supplementary Material), while the rest of three-nanomagnet
vertices occupy TypeA vertices. TypeC arenever observed, as they are
too energetically unfavorable (Fig. 2c). Second, Type I vertices dom-
inate the four-nanomagnet vertex sites at all temperatures, with over a
0.9 fraction throughout all accessible temperature ranges. Type II
vertices fluctuate consistently around 0.1 with small error bars
(Fig. 2d), as Type II and Type I vertices keep converting between each
other via Type III creation and annihilation, in analogy to square ice
dynamics26. The strict constraint within the three-nanomagnet vertices

Fig. 2 | Thermodynamics of the dipolar Apamea lattice. a, c, d Vertex-type
populations plotted as a function of temperature for two-, three-, and four-
nanomagnet vertices, respectively. Error bars, calculated from the standard
deviation of themeanover everyXMCDframe, are present but smaller than the size
of the markers. b Magnetic moment and charge configurations extracted from a
single frame within an XCMD image sequence recorded at 290K. Red shapes are
positive charges, blue are negative, open circles are Type A vertices, higher energy
Type B vertices are shown by closed circles, and pluses denote Type b vertices.

e Schematic of a geometrically useful pair of plaquettes in a low-energy config-
uration. Under the conditions that only Type I and Type α vertices may exist, this
pair of plaquettes is impossible to fill with entirely Type A vertices. Specifically, at
least two of six of the coordination 3 vertices must be Type B. One of the Type B
vertices is colored purple to denote that its sign will be determined by an undrawn
spin. The dotted arrows indicate spins which are shared by paired plaquettes,
making the total number of spins per paired plaquette 10.
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only allowing back-and-forth conversions between Type A and Type B
vertices serves as a significant barrier for the system to find an easy
pathway towards long-range ground state ordering. In other words,
the system is stuck in a low-energy configuration that does not pass
through higher energy states to find the ground state, for both charge-
and moment degrees of freedom (Fig. 2b).

Interestingly, while vertices with two and four islands are very
close to their ground state, three island vertices are excited to their
Type B state in much higher frequencies than the low-energy config-
uration reported in Supplementary Material. Note, however, that the
long-range nature of the dipolar interaction would favor the closure of
fluxes around L-Shaped plaquettes. Closing their flux around square
and irregular hexagonal polygons formed by the nanomagnets, here-
after referred to asplaquettes, decreases long-rangedipolar energetics
as highlighted in Figs. 1b or 2e. On the other hand, maximizing Type A
vertices works against moment loop formations in the plaquettes
(Fig. 2e). In other words, the state that minimizes the number of
unhappy vertices might not be the real ground state of the system. To
gain a deeper understanding, we turn to measures of entropy to
characterize this behavior.

Direct entropy determination
We extract an upper bound on the observed entropy from moment
configurations recorded as a function of temperature using local
conditional entropy2,27 (see “Methods” section). To do so, following
ref. 24, we consider subsets of the lattice, coordination two, three, and
four island vertices (Fig. 3a), and ask the question: How much infor-
mation is hidden by only observing a part of this subset? If the rest of
themicrostate is determined byonly the part of the subsetwith perfect
probability, the entropy per bit is zero, but if the rest of the subset is
entirely random, the entropy per bit is one. The details of the inter-
mediate probabilities are determined by Bayes’ theorem and basic
information theory2,27 (see “Methods” section). Calculating the entropy
for each temperature and coordination of vertex, as well as the
appropriate weighted average to determine the total entropy, we see
that the entropy bound generally decreases with decreasing tempera-
ture as expected (Fig. 3b), but with a stark jump downward between
300 and 290K for the coordination two and four vertices while the
bound from the coordination three vertices remains nearly constant.

As a first step towards understanding this observed entropy, we
compute theoretical thresholds for comparison. Consider a model
system that obeys the following rules. In agreement with energetic
minimization and the visible spin configurations, we assume that four-
nanomagnet and two-nanomagnet vertices are in their Type I andType
α configurations respectively. The number of ways in which Type B
vertices may be configured determines the entropy of this model via
counting the microstates permitted. We assume an average of two
Type B vertices per paired plaquettes (Fig. 2e). Counting this is non-
trivial as four of the six Type B sites per paired plaquettes are shared
with neighboring sets of paired plaquettes, and therefore the multi-
plicity of configurations depends on the configuration of their neigh-
bors. The first estimate and highest bound of this counting is the so-
called Pauling upper-bound, where the dependence on neighbors is
simply ignored, while the second threshold and stricter upper-bound
is calculated by a brute-force placement of Type B vertices as shown in
Fig. 2e and Supplementary Fig. 2 and in the “Methods” section.

These bounds are compared to the experimental bitwise
entropy2,27, s (see “Methods” section), which is extracted by consider-
ing various block types (Fig. 3a), weighted for their frequency of
occurrence, and plotted as a function of temperature (Fig. 3b). Inter-
estingly, the entropy bound from four-nanomagnets vertex sites is
close to zero, dropping below 0.05 entropy per bit at 250K (red
squares in Fig. 3b, described in Supplementary Fig. 2), which speaks to
the high level of Type I vertex ordering these sites. This is consistent
with the proposed nearest-neighbor ground state (Supplementary
Fig. 1) asmany coordination twoand all coordination four verticesmay
order independently. The situation changes dramatically when con-
sidering nanomagnets involved in three-nanomagnets vertex sites,
where entropy fluctuates around the Pauling estimate (green squares
in Fig. 3b). This corresponds to the type A and B vertices occurring at
similar rates at interchangeable locations. Essentially, moment con-
figurations strictly adhere to the ice-rule constraints while long-range
order is absent. This stands in contrast to the ordered Type I vertices at
the four-nanomagnet vertices.

It is possible that the nearly immovable Type I and Type α ver-
tices block ergodicity, but also that long-range order begins to pro-
hibit some local configurations despite the vertex populations
remaining about the same. We compare these two factors by

Fig. 3 | Conditional entropy as a functionof temperature. aConditional schemes
used to estimate the entropy of different subsets of the system. For example, the
green coordination three vertices have their entropyestimated by first determining
what the entropy of all three spins is when information from the first two is known.
b Entropies plotted as a function of temperature compared to the theoretical

predictions. The total bitwise entropy, s, is the average of the three typesof entropy
weighted for their frequencyof occurrence in the system. This total entropyquickly
drops beneath both theoretical estimates. These entropies were calculated with
every XMCD image and their error bars result from standard deviation of themean
over the images at each temperature.
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calculating an appropriate measure of ergodicity from the time-
resolved data.

Stress metric and ergodicity
The general recipe to measure a dynamical system’s ergodicity is to
define an appropriate coordinate and see if it randomizes rapidly
enough over time. In an ergodic system, the time average of a coor-
dinate is equivalent to the spatial average of the coordinate given a
large enough sample of system behavior. A stress metric28, ΩðtÞ, is
defined as the difference between the spatial average and the time
average as the sample is observed for time t29 (Methods). This metric
typically decays as a power law,Ω tð Þ / t�z , and ergodic systems decay
with z = 1while ergodicity breaking systemshave values for zbetween 1
and 0 due to their getting caught in a subset of all possible states. We
calculate the stress metric of our system by considering the “spatial”
average to be the Ising spin coordinates over each frame while the
“temporal” average is the Ising coordinate average over all images
successively captured (Methods). We calculated the stress metric at
each time step of every recorded temperature (Fig. 4a) to extract the
decay power z via an ordinary least squares linear regression of the
quantity log Ω tð Þð Þ vs. the log of time, log (t), deriving the standard
error of fitting parameters in the process, and plot its behavior over
temperature (Fig. 4b). The value of z fluctuates around zero at both
high and low temperatures as the system appears to reject relaxation
beyond certain regions of phase space. That is, the system quickly
returns from brief fluctuations, seen as abrupt rises in the stress
metric. Low temperature freezing is common in artificial spin ice as the
fluctuation rate of permalloy diminishes, but the high temperature

systems remaining in the same basin is peculiar. Because the system is
well annealed after over 4weeks at 300K, it is likelydeepwithin a basin
of attraction and limited in the moves it can make to escape.

By reaching an intermediate temperature, 270–290K, the system
fluctuates towards a new equilibrium ensemble. Since thermodynamic
systems are forced towards free energy minima, and lowering the
temperature shifts them, the system evolves anew to follow a new
minimum. Lower temperature targets favor lower energy above mul-
tiplicity of states, pressing the Apamea lattice to seek long range order
despite the kinetic barriers. This behavior hides in the fast relaxation of
traditional materials, but the invisible is made visible in artificial
nanomagnets.

The inverse stress metrics at the intermediate temperatures rise
quickly then stabilize again, meaning that they quickly reach a weak
ergodicity breaking state. The timeaverage asymptoticallydiffers from
the spatial average, proof of an ergodicity-breaking transition. That is
consistent with the measured fluctuation rates of individual islands.
Figure 4c–e shows that fluctuation rates are generally higher for
intermediate temperatures and there is a discrepancy of fluctuation
rates between individual islands, seemingly due to both what quen-
ched disorder they exhibit andwhat vertex coordination towhich they
belong.

Generally, coordination two and four vertices are less active and
islands belonging to coordination three vertices are more active
(consistent with their higher entropy), especially at intermediate
temperatures. Regarded in combinationwith the drop in total entropy
at 290K and high coordination three entropy, we can conclude that
the system at intermediate temperatures rearranges Type B vertices

Fig. 4 | Analyzing ergodicity via the stress metric. a Inverse stress metric Ω�1ðtÞ
plotted for each temperature as a function of time on a log-log scale. b Exponent z
describing the stress metrics’ decays extracted by ordinary linear least squares fits
of the stress metrics. Error bars emerge from the standard error of fit.

c–e Heatmaps depicting the frequency of nanoisland evolutions at (c) 250 K, (d)
270K, and (e) 300K. Nanoislands that are purely red fluctuate at ten times ormore
during the experiment duration while those that are purely black do not fluc-
tuate at all.
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but is still dynamically constrained, a feature of weak ergodicity
breaking. Looking at Fig. 4c–e, we can see that when the exponent is
higher, the fluctuating spins represent a percolating sublattice, while
when the exponent is closer to zero, only a non-percolating sublattice
fluctuates. This is consistent with the behavior of the stress metric,
from which we can conclude that subdiffusivity arises from the
inability of the defects to completely explore the lattice.

To seek the microscopic mechanism of ergodicity breaking, we
count the transition rates of vertex types fromone to another (Fig. 5) at
each temperature. A ratewas calculated for four equalwindowsof time
so that the error of the transition rates could be estimated via their
standard deviation of themean. Irrespective of temperature, the three
island vertex transitions that cost no energy, vA $ vB, were most
common at all temperatures but 300K and 310K (f =0:08� 0:6hz,
Fig. 5b, e), followed by vα $ vβ conversions (f =0:7� 0:12hz, and
Fig. 5a, d) that dominate at higher temperatures, with infrequent
transitions of the four island vertices (f =0:0005� 0:008hz, Fig. 5c, f).
Excursions to the higher energy vertices for three- and four-island
vertices (vC and vIIII respectively) were essentially prohibited. Rates
backwards and forwards between states were typically the same
within error.

In the weak ergodicity breaking regime (T = 270–290 K), a cou-
ple of interesting kinetic pathways are present. Foremost, the rate of
vA $ vB and vI $ vIII transitions greatly increase, supporting the
notion that energy equivalent fluctuations are occurring to reduce
the entropy of the system. Additionally, there is the possibility of vII
vertices becoming vI via short-lived Type III vertices. The increase in
transitions involving the four-nanomagnet vertices becomes parti-
cularly strong at 290 K (Fig. 5f), before all such transitions dramati-
cally fall in frequency and the system emerges out of the weak
ergodicity-breaking regime at 300K and above.

Overall, it appears that the increasing activation of transitions
within the four-nanomagnet vertices together with an increase in
transitions within two- and three-nanomagnet vertices, coupled with a
strict ice-rule adherence at three-nanomagnet vertices is the main
factor leading weak ergodicity breaking. Once fluctuations at four-
nanomagnet vertices slow down, dynamics return to frozen behavior.
Figure 6 features examples of both dynamical regimes, first at

T = 290K (Fig. 6a), where transitions within the four-nanomagnets
vertices occur regularly, while three-nanomagnet vertices keep fluc-
tuating under strict ice-rule obedience. In contrast, at T = 300K
(Fig. 6b), transitions within four nanomagnets become far less fre-
quent, corresponding to a return to frozen behavior.

Discussion
Unlike natural magnets, artificial spin ice systems can allow for the
direct visualizations and quantification of their degrees of freedom.
We have used PEEM characterization to directly extract stress metrics,
computed on the elementary degrees of freedom, to characterize
ergodicity. We have also microscopically identified kinetic pathways
for ergodicity transitions in the Apamea spin ice, which we have pre-
sented here for the first time.

This provides a route to explore system size and boundary
effects30, not only on vertex-populations, but on ergodicity itself.
Despite a limited viewport into a system short of the thermodynamic
limit, the nanomagnets failed to explore their more limited phase
space. Other causes of ergodicity breaking must have been at fault.
When combined with simulations, potential effects of intrinsic
disorder31 on the observed transitions can be characterized. Emerging
characterization methods such as x-ray photon correlation spectro-
scopy (XPCS)32 will be ideal to shed light into relaxation processes and
the potentially glassy state the Apamea lattice settles into at lower
temperatures, which might also be accessed indirectly using SQUID
magnetometry33. Furthermore, our work will allow for direct compar-
isons to other complex systems in nature where ergodicity transitions
are predicted to play a major role in the reorganization of the free
energy landscape, from electron transfer processes in biological
systems34, neural networks35, and fluctuations in quantum
systems15,36,37. It is also important to stress that over the last few years
device applications of spin ice materials have emerged, including
collective computation38,39 and in particular reservoir computing, a
framework formachine learning prone to physical implementation38,39.
Nanomagnetic islands with multiple magnetic states38,39 have risen in
interest because they enhanced the so-called computational memory
capacity (CMP)38,39. Ergodicity breaking is indeed important in this
respect, as memory arises in situations in which a physical system

Fig. 5 | Transition frequencies between vertex types. a–cHeatmaps of transition
frequencies from one vertex type to another at 270K for a two-nanomagnet ver-
tices, b three-nanomagnet vertices, and c four-nanomagnet vertices. d–f Select
transition frequencies as a function of temperature ford two-nanomagnet vertices,

e three-nanomagnet vertices, and f four-nanomagnet vertices. Error bars are the
standard deviation of the mean when averaging the rates over four separate time
intervals.
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maintains a proximity to its initial state. Our work is thus a first
important milestone for the design of optimal nanomagnetic systems
able to enhance the CMP in physical systems.

Methods
PEEM imaging
Magnetic imaging was performed at the PEEM3 beamline of the
Advanced Light Source, Lawrence Berkeley National Lab24. We employ
x-raymagnetic circular dichroism (XMCD) at the Fe L3 edge25. A typical
XMCD image is a result of dividing two images, one obtained with
circular left and the other with circular right polarized x-rays. The dark
and bright contrast in an XMCD image is a direct measure of the
relative orientation of the local magnetization with respect to polar-
ization vector of the incoming x-rays. Moments pointing towards the
incoming x-rays will appear dark, while moments opposing the

incoming x-ray direction will appear bright. To record XMCD image
sequences, we set the exposure time at 1 s at each polarization, while
the time needed for switching the polarization is about 4 s. As a result,
10 s are needed for an individual XMCD image. We recorded 70–100
images at each temperature set as 250K, 260K, 270K, 280K, 290K,
300K, and 310K.

Sample fabrication
Lift-off assisted electron beam lithography was used to generate
dipolar Apamea lattices. A 1 × 1 cm2 Silicon (100) substrate is first spin-
coated with a 70 nm thick layer of polymethylmethacrylate (PMMA,
950k) resist. Then, a VISTEC VB300 e-beam writer is used to place
Apamea lattice patterns onto the substrate. After the exposed resist
layer is developed, a 2.6 nm thin Permalloy (Ni80Fe20) film is deposited
on the substrate at a base pressure of 1.2 × 10−7 torr, together with an
Aluminum capping layer of 2 nm, to avoid fast oxidation. Finally, the
sample is then placed in an Acetone bath for lift-off. The resulting
structures consisted of nanomagnets with lengths L = 360nm and
widths W = 120 nm. The dimensions of nanomagnets are chosen, to
ensure thermally-driven moment reorientations in the nanomagnets
to occur at a timescale of a few seconds, perfectly matching temporal
resolution of our PEEM imaging (10 s per image). The samplewas left in
a vacuum box at room temperature for over 4 weeks, to ensure
annealing and relaxation towards low-energy configurations2,3,12,
before the sample was transferred to PEEM for imaging.

Entropy determination
Since artificial spin ice typically only samples thousands of configura-
tions from 2N potential configurations and temperature resolution is
limited, the sampling is inadequate to directly tabulate entropy. Pre-
vious studies of artificial spin ice have shown that the conditional
entropy of local configurations can effectively upper bound experi-
mental entropy2,27. The process is as follows: a subset of all spins, σΛ, is
chosen to sample the entropy. Within that set, another subset, σΓ , is
selected and will be used as the spins that “reveal” information and
provide tighter boundson the entropy. The conditional entropy, or the
“surprise factor” of revealing new information from σΓ , is defined as

S σΛjσΓ

� �
= �

X
σΛ ,σΓ

PðσΛ,σΓ Þ log2PðσΛjσΓ Þ: ð1Þ

The experimental spin configurations estimate all probabilities by
counting: the probabilities of existing in each of the subset states,
PðσΛ, σΓ Þ, the probability when the inner subset, σΓ , is in a specific
state, PðσΓ Þ, and the conditional probability that the bigger subset
state exists given the smaller subset state,PðσΛjσΓ Þ. The conditional
probability is calculable via Bayes’ theorem, PðσΛjσΓ Þ= PðσΛ,σΓ Þ=PðσΓ Þ.
Information theory connects conditional entropywith an upper bound
on entropy per spin. Specifically, the entropy per bit is upper bounded
by the conditional entropy “revealed” by the additional spins in the
larger subset divided by the number of additional spins. That is, for the
correct σΛ and σΓ, nΓs ≤ S(σΛ|σΓ) where nΓ is the number of spins in the
inner subset. With this lattice, we elected to choose each vertex as
sampling subsets and spin subsets, σΛ, and sub-subsets σΓ shown in
Fig. 3a. The sampling sets individual entropy densities are plotted in
Fig. 3b as well as the average of all the entropy densities. Conditional
probabilities and the resulting entropy estimations were computed
from experimental spin configurations at all temperatures recorded.

Configurational Entropy estimation
The entropy per bit due to the combinatorics of Type B vertex place-
ment is calculated for the purpose of comparison with experimental
entropy. The first and uppermost bound comes from the equivalent of
a Pauling estimate: assume each unit (in this case, paired plaquettes as
illustrated in Fig. 2e and Supplementary Fig. 2a) is uncoupled from its

Fig. 6 | Temporal evolution of moment reorientations in the dipolar Apamea
lattice. a XMCD image sequence (recorded at T = 290K) highlighting vertex tran-
sitions within a weak ergodicity-breaking regime, which involves moment reor-
ientations in all vertex types. Arrows of different colors (magenta, blue and yellow)
indicate sequential changes of moment configurations at corresponding time-
frames (10 s, 20 s, and 30 s). Dynamics within this regime involve increased fre-
quencies of vertex-type transitions within all vertices, be it two-, three- and four-
nanomagnet vertices. b XMCD image sequence (recorded at T = 300K) high-
lighting vertex transitions within an ergodic regime, which largely excludes tran-
sitions within four-nanomagnet vertices.
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neighbors and multiplicity of states are enumerated without con-
sideration the state of other plaquettes. Two Type B vertices may
occupy six possible sites on these set of two plaquettes. The multi-
plicity for two Type B vertices forced onto paired plaquettes with six
possible sites is simply (62), which is then multiplied by two in con-
sideration of spin reversal symmetry. The bitwise entropy is then

s =
1
10

log
2
2

6
2

� �
, ð2Þ

noting the division by the 10 spins that comprise paired plaquettes.
This figures to s≈0:4907.

Neighboring sites will reduce this entropy by occasionally fixing
the position of a Type B vertex, so a brute force estimate was con-
ducted to further bound the entropy. Consider a finite-sized Apamea
lattice with N nanomagnets andΩB possible Type B configurations. To
visualize the valid Type B configurations, one may consider a graph
where each node is a pair of plaquettes, there are four edges that
connect the nodes in a square lattice corresponding to shared Type B
vertices, and two self-connections at each node to represent the
potential Type B sites that are not shared (Supplementary Fig. 2b). All
valid configurations select exactly two edges per node to contain a
Type B vertex. The exact bitwise entropy we are trying to estimate is

s =
1
N
log22ΩB, ð3Þ

the factor of 2 in the argument accounting for the spin flip symmetry
associated with each Type B configuration. We assume that we may
sample a random set of TypeB configurations,ωT , and equate the ratio
of valid configurations,ωB, those without overlapping Type B vertices,
to the ratio of ΩB to the total possible states, ΩT . That is,

ΩB

ΩT
≈
ωB

ωT
ð4Þ

for a sufficiently large sample of the phase space. As the scale of these
multiplicities were quite different for growing system size, the bitwise
entropy was calculated numerically as follows:

s =
1
N

1 + log2ΩT + log2ωB � log2ωT

� �
: ð5Þ

Practically speaking, this was calculated by repeatedly placing a
set of the correct number of Type B vertices on sites at random and
recording the number of total attempted configurations, ωT , until
ωB = 100. Sampling in this way was repeated several times at multiple
system sizes so that the entropy’s standard deviation of the mean was
adequately small (Figure S2). The estimated entropy converges a little
above 0.45, lower than the Pauling estimate.

Ergodicity and the stress metric
The stress metric29 is the difference between the time average and
ensemble average of a system. In the context of a binary variable sys-
tem this metric is defined as

Ω tð Þ= 1
N

X
j

1
t

Z t

0
Sj sð Þds � 1

N

X
r

Sr tð Þ
 !2

: ð6Þ

N is the number of spins and Sj tð Þ is the time-dependent Ising spin
configuration. This metric decays to zero as the time and space
averages become equivalent. We calculated the time evolution ofΩ tð Þ
at every temperature and fit its decay to a power law with power z.

Data availability
The coordinate files of the nanomagnets generated in this study have
been deposited in the Zenodo database under accession code
8250892.

Code availability
The code used to analyze the data in this study is available upon
request.
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