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Realistic fault detection of li-ion battery via
dynamical deep learning

Jingzhao Zhang1,2,10, Yanan Wang3,10, Benben Jiang 4,10, Haowei He 1,
Shaobo Huang5, Chen Wang 6, Yang Zhang5, Xuebing Han3, Dongxu Guo 3,
Guannan He 7,8,9 & Minggao Ouyang3

Accurate evaluation of Li-ion battery (LiB) safety conditions can reduce
unexpected cell failures, facilitate battery deployment, and promote low-
carbon economies. Despite the recent progress in artificial intelligence,
anomaly detection methods are not customized for or validated in rea-
listic battery settings due to the complex failure mechanisms and the lack
of real-world testing frameworks with large-scale datasets. Here, we
develop a realistic deep-learning framework for electric vehicle (EV) LiB
anomaly detection. It features a dynamical autoencoder tailored for
dynamical systems and configured by social and financial factors. We test
our detection algorithm on released datasets comprising over 690,000
LiB charging snippets from 347 EVs. Our model overcomes the limitations
of state-of-the-art fault detection models, including deep learning ones.
Moreover, it reduces the expected direct EV battery fault and inspection
costs. Our work highlights the potential of deep learning in improving LiB
safety and the significance of social and financial information in design-
ing deep learning models.

Achieving net-zero emissions entails transportation electrification1,2

and decarbonization3. Electric vehicles (EVs) with lithium-ion batteries
(LiBs) are the most widely adopted devices due to their rapid perfor-
mance improvements and cost reductions4–6. Onemajor concern to EV
owners and manufacturers is battery safety7,8. EV fires last longer and
are more unpredictable, requiring frequent costly inspections for EV
manufacturers. Therefore, early prediction of battery failure events
could save significant social costs and promote EV adoption. However,
as EV batteries are highly complex nonlinear systems, designing
algorithms that understand the failure mechanisms—including short
circuit, physical damage, overcharge/overdischarge, thermal abuse,
etc.9–12—remains challenging.

Existing studies on battery safety have explored both physics-
based13–17 and data-driven18–25 approaches to address issues caused by
defective battery cells. However, applying these methods in real life
still has a long way to go for two reasons. First, existing algorithms
require further testing, as validations are only done in small-scale
experimental/lab settings. In contrast, the success of data science in
many other fields, such as video games, vision, translation and protein
structure predictions, were developed and evaluated on large-scale,
real-world datasets26–29. Second, many existing algorithms rely on
information that is unavailable in real-world settings. Designing an EV
battery fault detection algorithm that is implementable and effective
for both EV manufacturers and owners needs to take practical social
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factors into account30,31, such as the data availability, economic trade-
offs, sensor noise, and model privacy. In short, existing studies do not
reveal the power of deep learning for EV battery fault detection with
large-scale publicly available EV charging datasets, nor do they dis-
cover how practical factors should inform algorithm design and
deployment.

In this work, we release three EV charging datasets with over
690,000 charging snippets from 347 EVs. Our datasets enable us to
benchmark known deep learning models and compare them against
the more conventional data-driven approaches. We found that
although all models can achieve nontrivial detection power (as mea-
sured by accuracy and recall) by learning from the data, their perfor-
mances could incur high economic costs, which are around 103

Chinese Yuan (CNY) per vehicle according to our computation.
To address the problem, we further develop a deep learning

model termed dynamical autoencoder for anomaly detection (DyAD)
with a privacy-friendly and communication-efficient design. Our pro-
posed model is the first deep learning model tailored for large-scale
real-world EV LiBs data. It exploits the hiddenMarkovmodel of battery
data in designing the neural network training pipeline and balances EV
LiB accident costs against inspection costs based on empirical statis-
tics. Our model differs from existing deep anomaly detection models
in two aspects. First, it adopts a dynamical system formulation and
partitions thedata features into system inputs and system responses. It
then detects the abnormality in the input-to-response mappings. In
contrast, most existing deep learning algorithms for fault detection
treat each dimensionof the data features equally and is not tailored for
dynamical systemwith external inputs. Second, ourmodel exploits the

structure in EV fault labels by bridging the predictions between the
vehicle system level and the LiB charging snippet level with a robust
scoring procedure. We test our proposed algorithm on the three
datasets with 55 abnormal vehicles (vehicles with LiB fault) and 292
normal vehicles (vehicles without LiB fault). Compared with conven-
tional physics-based methods and the state-of-the-art deep learning
models, our algorithm produces a dominating average receiver oper-
ating characteristic (ROC) curve for predicting LiB anomalies, and it
lowers the overall costs (33–50% savings) of EV battery accidents and
inspections. This work highlights the effectiveness of deep-learning
algorithms in predicting EV LiB faults with limited anomaly samples
and the practicality of our algorithm design.

Results
Challenges in real-world EV battery fault detection
Real-world anomaly detection models can only make use of observa-
tional data from existing battery management systems (BMSs). To
facilitate model development, we release three large-scale datasets
collected from the EV data platform hosted by Tsinghua University.
Vehicles in each of our three released datasets are of the same make.
We generate a random code name for each manufacturer and sum-
marize the data statistics in Fig. 1a. Each charging snippet of a vehicle
stores current, voltage and temperature as time series (Fig. 1b).
Vehicle-level fault labels are generated from drivers’ reports and con-
firmed by engineers based on the identification of lithium plating, low
electric range, over-high temperature or unexpected voltage changes
(too low, inconsistent among cells, etc.). These labels are created case-
by-case and cannot be described by rule-based expressions on data.

Fig. 1 | EVdataset andchallenges in faultdetection. aThedata used in this study
contains vehicles from three manufacturers, aliased Dahu, Socea and Naobop.
Each dot represents the amount of data between the first charging record and
the last charging record of a single vehicle. The x-value and y-value of a dot
indicate the distance traveled and the time elapsed in records. b Sampled
charging segments show that real-world charging patterns are diverse and
irregular. Charging modes can be categorized into fast charging and regular

charging based on the level of the current. c Normal and abnormal EVs are
poorly differentiated with canonical features such as the variance in cell vol-
tage, current, or temperature, as an AUROC (area under receiver operating
characteristic) around 0.5 can be achieved by random guesses. Higher AUROC
value indicates greater prediction power. d A detailed view of LiB charging
snippets from two sampled EVs. The comparison suggests that there is no
simple feature to detect EV fault.
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The abnormal data at or near battery failures are removed so that
successful predictivemodels need to identify batteryproblems at least
days ahead based on historical data. They may also be used for tasks
beyond anomaly detection such as battery capacity degradation
prediction.

Given the available data, fewknown faultdetectionalgorithms can
be directly applied due to the limited available information of the
vehicle. Indeed, in realistic setups, model parameters such as open
circuit voltage or internal resistance are veryoftenmissing. Hence, one
common approach to fault detection is based on the variance within
temperature or voltage. However, in Fig. 1c, we see that such approach
provides weak predictions. In Fig. 1d, we further plot the variations of
charging records across time for one normal vehicle and one vehicle
with fault. The plots confirm that fault detection based on simple
features or variation analysis is difficult because of the complex fault
mechanism. To address this problem, we propose a practical deep
learning framework customized for large-scale LiB fault detection.

A deep learning framework with a dynamical autoencoder
Our deep learning framework is designed to be compatible with real-
world deployment, as in Fig. 2a. The deep learning model features an
encoder-decoder structure and trains on EV BMS data without

requiring additional sensors. Social and financial statistics such as fault
and inspection costs, fault rate are used to optimally configure the
fault detection model for the best economic performance. After
training, our model can be deployed in a two-way privacy-preserving
manner due to the encoder-decoder structure32,33. The encoder net-
work is deployed at charging stations, whereas the fault detection
module is cloud-based. Such a deployment design brings threefold
advantages: (i) a service producer can maintain possession of their
model details and thus avoid adversarial attacks or model leakage; (ii)
EV customerspreserve sensitive information such asmileage, charging
time, and location; (iii) data communication is reduced by sending
over encoded partial data.

Our framework and datasets enable us to adopt and train the
latest anomalydetectionmodels. However,we found thatwhile several
existing deep models can be adapted to our datasets of EV charging
snippets, they fail to exploit the EV LiB dataset structure for the two
challenges below, towhichwe strategically designedour deep learning
model, respectively.

First, existing deep learning algorithms detect anomalies by
learning a distribution over the dataset and reject infrequent data
points. However, such logic could falsely detect a normal battery (LiB
without any faults) if the battery is charged with a rare current pattern
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Fig. 2 | Illustrations of the model deployment and the dynamical autoencoder
model. aThemodel deployment involves communication among three parties: the
charging station, the EV fleet and the cloud server. The charging stations first
collect BMS data and transmit encoded privacy-friendly battery data to the cloud
server. The cloud server generates a fault score via reconstruction. The cloud
detector then computes the economically optimal prediction based on social and
financial statistics from EV data platforms. b The encoder in our model does not
encode the system inputs/outputs, but encodes the mapping between the system
inputs and outputs. The decoder reflects the physical system. It translate the

system input into the system response based on the parameters generated by the
encoder. c An illustration of the neural network training procedure. The input BMS
data are split into two groups: system input (SOC and current) and system
response(voltage and temperature). The battery, as the dynamical system, takes in
the system input and generates the system response. The model parameters are
updated by minimizing a total training loss consisting of three data pipelines,
corresponding to the encoder-decoder reconstruction, the mileage supervision
and the Kullback-Leibler (KL) regularization.
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(specific charging state with a certain current). To address this issue,
we propose the dynamical autoencoder for anomaly detection custo-
mized for anomaly detection on dynamical systems. Our model also
adopts an encoder-decoder structure (see Fig. 2b) but the decoder,
rather than constructing the entire data from the latent variables, now
decodes the system response from the system input (see Supple-
mentary Fig. 1 for an example). This intuition can be formalized by
viewing the LiB data as collected from random nonlinear dynamical
systems described by hidden Markov models (see Supplementary
Note 1). Exploiting this structure customizes the general deep learning
model for the LiB data. The dynamical autoencoder model is shown in
Fig. 2c. The system control inputs include state of charge (SOC) and
current, and system response include voltage and temperature. The
encoder maps inputs (SOC, current) and outputs (voltage, tempera-
ture) into the latent variables that represent system parameters. Our
model then detect system anomaly based on the discrepancy between
the reconstructed and the observed system responses. In addition,
auxiliary losses are added to achieve latent space regularization as in
variational autoencoder and to provide weak supervision via mileage
data (adding vehicle range as input).

A second problem for EV LiB data is that abnormal vehicle labels
are sparse and made at the vehicle level; therefore, the labels may not
truthfully reflect the condition of each data point corresponding to a
particular charging snippet. To address this, we developed a robust
scoring procedure (seeMethods) to generate vehicle-level predictions
from charging snippet predictions. The designed robust scoring pro-
cedure is parametrized by two hyperparameters τ and p, which pre-
dicts whether a charging snippet is abnormal by thresholding the
reconstruction error at value τ and then predicts whether a vehicle is
abnormal by averaging the top p percentile errors. The training pipe-
line is summarized in Fig. 2c.

Comparison against state-of-the-art algorithms
Wecompare our proposed algorithmagainst thewidelyusedbaselines
including the graph deviation network (GDN), vanilla autoencoder
(AE), support vector data description (SVDD), Gaussian processmodel
(GP) and a data-driven battery fault detection algorithm (variation
evaluation, VE) on the releaseddatasets. The implementation details of
the methods are provided in the Supplementary Note 2 and Supple-
mentary Fig. 5. The detection performance, which is measured by the
area under receiver operating curve (AUROC) based on the true
positive rate and false positive rate, is provided in Fig. 3 and Table 1.
The results show that the proposed dynamical autoencoder approach
achieves the best detection results by a 16–33% AUROC boost (Fig. 3a)
and a smaller variance compared to other algorithms (Table 1). The
results also show that the auxiliary loss can further improve the
detection performance (Fig. 3b). In addition, as depicted in Supple-
mentary Fig. 2, the charging snippets from a normal vehicle and a
faulty vehicle are rather difficult to bedifferentiated and are frequently
falsely classified by the baselines. In contrast, the dynamical formula-
tion in dynamical autoencoder can correctly pinpoint the charging
snippets from both the normal and faulty vehicles.

The enhanced detection performance of the proposed dynamical
autoencoder approach can lead to large economic advantages. We
obtain the ranges of LiB fault rate based on the reported battery inci-
dents provided to Tsinghua by EV manufacturers which we cannot
disclose due to anonymization requests. The fault rate is estimated
from 1.2 million EVs across major cities including Beijing, Shanghai,
Guangzhou and Shenzhen. We further estimate fault cost, and
inspection cost estimated from Circue’s data obtained via partnership
with insurancecompanies inChina. Basedon the average fault rate, the
cost information and the ROC curves, we compute the expected direct
costs of LiB fault and inspection (seeMethods), as shown in Fig. 3c. The
results show that optimally configuring the algorithm along the ROC
curve has significant impacts on the overall costs. For all deep learning

algorithms (DyAD, GDN, AE, and SVDD), the expected direct costs first
decrease and then increase. The best true positive rate of DyAD is
~50%. The minimum cost of the six algorithms (DyAD, GDN, AE, SVDD,
GP and VE) is also provided by optimizing the true positive rate, as
shown in Fig. 3d. In average, our DyAD reduces the expected direct
costs by 33% when compared with the state-of-the-art deep learning
algorithms, and 50% when compared with VE, a non-deep-learning
method.

In high fault rate scenarios, the inspection scale would have an
impact on the reputation of the EV manufacturer and in turn the sales
revenues, which we do not yet have solid data to analyze. Such social
andfinancial values (fault rate, fault cost, direct and indirect inspection
costs etc.) varyby regions, andwe arenot trying toprovide anaccurate
model configuration for every region or company here. Rather, we
highlight the significance of such practical factors in algorithm con-
figuration, as proposed in our deep learning framework (Fig. 2).

Knowledge learned by the dynamical autoencoder model
Amore transparent interpretation of themodel prediction can provide
advice for EV maintenance or even guide the LiB manufacturing pro-
cess. To this end,we interpret the internalmechanismof thedynamical
autoencoder model by visualizing the distributions of embedded
snippets at three different layers: the input layer, the latent layer
between the encoder and the decoder, and the output layer computed
as the difference between the prediction and the observation. To this
end, we visualize how the neural network activation values for each
data point (a charging snippet in a vehicle) change across different
layers of the deep model. The activation values serve as a high level
representation for each data, but is high-dimensional. Therefore, we
use t-distributed stochastic neighbor embedding, a nonlinear dimen-
sion reduction technique, to project each charging snippet onto a 2D
plane for each layer, as shown in Fig. 4.

More specifically, we choose an arbitrary vehicle and highlight the
dimension-reduced representations of its LiB charging snippets in red
and blue (indicating that the snippets are abnormal and normal,
respectively), as in Fig. 4a–c. Snippets of other vehicles are colored
gray. In Fig. 4c, the same red and blue points are plotted at the output
layer, and other data points are further labeled based on whether they
are normal (green) or not (purple). Data points that are closer together
has similar semanticmeaning to the neural network. We observed that
while the snippets of different colors are jumbled in the input and
latent layers (Fig. 4a, b), the deep model can successfully separate
normal snippets from abnormal snippets in the output layer (Fig. 4c).

To illustrate the aboveobservationwith amore concrete example,
three LiB charging snippets are picked and marked as ▴, ⋆, and •. In
Fig. 4d, we plot the predicted and observed curves of these three data
points. In particular, two quantities, the LiB temperature and voltage,
are presented to illustrate the errors between the predicted and
observed curves. As shown in the right bottom figure of Fig. 4d, the
two abnormal snippets (▴, ⋆) have larger prediction errors. The
embeddings of the data points are labeled in Fig. 4a–c. We note that
the abnormal snippets are far apart in the input and latent layers, but
become adjacent in the last output layer, which indicates that the
designed prediction errors are good features for clustering abnormal
snippets. Hence, based on the prediction errors, our DyAD model can
determine an adaptive threshold intelligently, filter the abnormal
snippets by ranking reconstruction errors, and accurately detect
potential battery faults.

Discussion
In summary, the research work presented here aims to address the LiB
fault detection problemby proposing a realistic deep learning pipeline
and releasing a large-scale EV fault datasets with more than 690,000
charging snippets. Our model runs on existing BMS data, and can be
readily deployed in real-world settings. Our model adopts dynamical
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formulation and robust scoring, and can improve the detection per-
formance upon existing procedures. It also reduces the expected
direct fault and inspection costs by 33–50%.

We highlighted the role of social and financial statistics, specifi-
cally the fault rate and the direct costs of EV battery fault and
inspection, in configuring our deep learningmodel. Such statisticsmay

vary by region, battery chemistry and manufacturer, thus the learning
framework should be adaptive to the heterogeneity in these factors.
While indirect costs may be hard to accurately capture, they are
functions of the base fault rate, inspection scale, market share, etc.
Each EV company might strategically project the indirect costs into
their models and update them dynamically.

The data privacy of the EV owner and manufacturer is central to
the large-scale application of EV fault detection. By deploying enco-
ders and decoders separately at EV charging stations and the cloud,
data are automatically encrypted and privacy-friendly. In addition to
consumer data protection, this deployment structure also enables EV
manufacturers to cooperatively train the encoder without direct data
sharing and design a decoder that is adaptive to their own social and
financial statistics.

We believe that our dataset and pipeline can serve as a first step
for the artificial intelligence and the energy communities to jointly
address the safety of EVs, especially given that many problems remain
unsolved. One open ended and important problem is model inter-
pretation. Amore transparent interpretation in the language provided
by battery mechanism research could provide advice for EV main-
tenance or even guide the battery manufacturing process. For exam-
ple, besides SOC, current, voltage, and temperature used in this work,

Fig. 3 | Evaluating prediction accuracy and EV battery cost. a The average ROC
curves for the five algorithms. The solid curves indicate the average values out of
five cross validation runs, and the shaded regions indicate the standard deviations
of the trials. Our proposed procedure (orange) significantly outperforms other
deep learning baselines (green, blue, yellow) and the standard variation evaluation
method (gray). b The five-fold average AUROC of our proposed DyAD with dif-
ferent weights of the auxiliary training losses (KL regularization and mileage label
loss). The variation of the averageAUROC indicates that the auxiliary training losses

can nontrivially improve our model performance. The cost ranges can be found in
Methods. c The sum of direct fault cost and inspection cost for EV batteries based
on the statistics (battery fault rate, battery fault cost and vehicle inspectioncost)we
collected from an EV platform. The horizontal axis indicates the true positive rate
achieved by each model for the corresponding cost value. d The minimum cost
achieved for each algorithm by optimizing the total cost against the true positive
rate. The confidence range is evaluated fromour estimationof the vehicle fault rate
(from 0.038% to 0.075%).

Table 1 | Mean and standard variance of AUROC (%) values of
considered algorithms

Algorithm AUROC (%) Average Direct Cost
(104 CNY)

DyAD 88.6 ± 2.9 0.085

GDN 70.3 ± 5.5 0.126

AE 72.8 ± 13.4 0.133

SVDD 51.5 ± 8.26 0.152

GP 66.6 0.162

VE 55.6 0.169

Our proposedmethod is highlighted in bold. The average direct costs of fault and inspection are
in the unit of 104 CNY/vehicle/year and calculatedusing themean of the cost ranges. TheVE and
GP method has little internal randomness and hence no variance is reported.
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the dynamics of more physics-informed battery parameters, such as
capacity and internal resistance, could be estimated34 or embedded in
ourmodel for battery safety with real-world data. Another challenging
problem is to quantify the forecast horizon, as it would be beneficial to
know for how long themodel can predict batteryproblems in advance.
We show in Supplementary Figs. 3 and 4 that the anomalies were
detected through out the records, and hence it is difficult to determine
the forecast horizon. Moreover, while this work has focused on the
application of dynamical deep learning with robust scoring for EV LiB
fault detection, such deep learning framework is promising for other
fault detection tasks, particularly those for dynamical systems such as
photovoltaic panels35, robotic navigation36, water treatment physical
test-bed systems37, and spacecraft38.

Methods
Dynamical autoencoder
We provide more details on applying the dynamical autoencoder
model to detecting battery anomalies. The dynamical autoencoder
contains three groups of parameters: the parameters for the encoder
θ, the parameters for the decoder ζ and the parameters for the mul-
tiperceptron head ξ. The encoder and the decoder are parameterized
by GCN networks39. All parameters are optimized with minibatch sto-
chastic gradients to reduce a total training losswith three components:
the reconstruction loss, the regularization loss and the mileage

supervision loss, as illustrated below,

lðξ , ζ , θÞ= lrecon:ðζ ,θÞ+ lreg:ðθÞ+ lmileageðξ ,θÞ: ð1Þ

More formally, the reconstruction loss for a single data snippet
(x0, x1) is defined as

lrecon:ðθ, ζ , x0, x1Þ=MSEðDecoderθðz, x0Þ, x1Þ,where z =Encoderζ ðx0, x1Þ: ð2Þ

In the above equation, x0 denotes the input signal (i.e., the current
and the SOC), x1 denotes the system response (e.g., min voltage, max
voltage, average voltage, min temperature and max temperature), z
denotes the latent variable that represents the state of the dynamical
system and MSE stands for the mean squared error.

In addition, as in the case for variational autoencoders40, KL reg-
ularization is used to the latent space to avoid overfitting41,

lreg:ðθ, x0, x1Þ= k zμk2 + trðz2σÞ � logðjz2σ jÞ, where z =Encoderζ ðx0, x1Þ : = ½zμ, zσ �:
ð3Þ

Note that the latent variable is partitioned into [zμ, zσ] and repre-
sents the parameters of the distribution of the random dynamical
system. We refer the reader to the supplementary material for a more
detailed discussion.

a

c

b

d

EV1, Normal EV1, Abnormal Other EVs, Normal Other EVs, Abnormal

All Snippets of Other EVs ( = Other EVs, Normal + Other EVs, Abnormal)

Fig. 4 | The evolution of embeddings of all fifteen abnormal vehicles in Dataset
Dahu from the input layer to the output layer of the dynamical autoencoder
model with t-distributed stochastic neighbor embedding visualization. Each
subplot visualizes the dimension-reduceddata of (a) the data input, (b) the inferred
latent variable, and (c) the reconstructed observation. All snippets are identified as
either abnormal or normal ones, marked as purple or green points in the output

layer, respectively. One EV (named EV1) is highlighted. Its snippets are marked as
red and blue points according to their abnormality determined by the dynamical
autoencoder model. The predicted and observed curves of the three snippets
(marked as ▴, ⋆, and •) selected from EV1 include two dimensions: maximum bat-
tery temperature, and minimum cell voltage. d The predicted, observed, and cor-
responding error curves of three charging snippets marked as ▴, ⋆, and •.
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Last, a mileage supervision is also added to guide learning.

lmileageðθ, , x0, x1Þ=MSEðMLPξ ðDecoderθðz, x0ÞÞ,mileageÞ,
where z =Encoderζ ðx0, x1Þ:

ð4Þ

The impact of the mileage supervision is illustrated in Fig. 3b and
it shows that asking the encoder to keep the mileage information can
boost performance.

In our proposed deep learning pipeline, the encoder and decoder
models adopt the GRU42 model with three layers and 32 hidden
dimensions. The latent space between the encoder and decoder has 32
dimensions. The model is trained with the Adam43 optimizer, in which
the learning rate is set to be 0.001 and each minibatch contains
128 samples.

Robust scoring technique. In particular, we predict whether a char-
ging snippet is abnormal by thresholding the reconstruction error at
value τ and thenpredictwhether a vehicle is abnormal by averaging the
top p percentile errors. Both τ and p are finetuned on the training
dataset. In particular,

Lvehicle = ðl1ðθ, ζ , x0, x1Þ, :::, lmðθ, ζ , x0, x1ÞÞ, where m= number of snippets ,

Vehicle Error =
Xn

i= 1

LvehicleðiÞ
 !

=n, where n=p×m:

A vehicle is abnormal, if Vehicle Error > τ:

ð5Þ
Lvehicle denotes all the reconstruction loss of snippets ranking in one
vehicle, m denotes the amount of snippets of this vehicle, and Vehicle
Error denotes the averaged reconstruction error in the top p percentile.

Expected direct cost calculation. The expected direct costs of EV
battery fault and inspection are calculated as:

yðp, cf , cr, qTP, qFPÞ=pð1� qTPÞcf + ½pqTP + ð1� pÞqFP�cr ð6Þ

where, p is the fault rate of an EV battery; cf is the direct cost of an EV
battery fault; cr is thedirect costof EVbattery inspection; qTP is the true
positive rate of an EV battery fault detection algorithm; and qFP is the
false positive rate.

According to information from EV battery monitors/operators,
the EV battery fault rate p ranges from 0.038% to 0.075%; the direct
cost of an EV battery fault cf ranges from 1 to 5million CNY per vehicle;
and the direct cost of an EV battery inspection cr ranges from 8 to 55
thousand CNY per vehicle. We use the lower and upper bounds of the
above ranges to calculate the expected direct costs in scenarios with
high/low fault rates, fault costs, and inspection costs, respectively.

Data availability
The rawEVdata are protected and are not availabledue to data privacy
laws. Theprocessed EVdata are availablewith https://doi.org/10.6084/
m9.figshare.23659323 at the link https://figshare.com/articles/dataset/
Realistic_fault_detection_of_Li-ion_battery_via_dynamical_deep_
learning_approach/23659323.

Code availability
The code can be downloaded from https://github.com/962086838/
Battery_fault_detection_NC_github. We also provide an additional
backup for both the code and the data together at https://disk.pku.
edu.cn:443/link/37D733DF405D8D7998B8F57E4487515A.
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