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The complexity of NISQ

Sitan Chen1,6 , Jordan Cotler 2 , Hsin-Yuan Huang 3,4 & Jerry Li5

The recent proliferation of NISQ devices hasmade it imperative to understand
their power. In this work, we define and study the complexity class NISQ,
which encapsulates problems that can be efficiently solved by a classical
computer with access to noisy quantum circuits. We establish super-
polynomial separations in the complexity among classical computation,NISQ,
and fault-tolerant quantum computation to solve some problems based on
modifications of Simon’s problems. We then consider the power of NISQ for
three well-studied problems. For unstructured search, we prove that NISQ
cannot achieve a Grover-like quadratic speedup over classical computers. For
the Bernstein-Vazirani problem, we show that NISQ only needs a number of
queries logarithmic in what is required for classical computers. Finally, for a
quantum state learning problem, we prove that NISQ is exponentially weaker
than classical computers with access to noiseless constant-depth quantum
circuits.

Fault-tolerant quantum computing promises to offer speed-ups to
various computational problems, including simulating quantum
systems1–5, factoring large numbers6,7, performingoptimization8–11, and
solving linear systems of equations12. While a fault-tolerant quantum
computer has not yet been built, recent technological advancements
have resulted in the development of new quantum devices that can
outperform the best classical supercomputers for certain artificial
computational tasks13. The opportunities offered by these devices and
the challenges they engender have invigorated theorists and experi-
mentalists alike, ushering in a new age of research into quantum
computation and information often referred to as the NISQ (noisy
intermediate-scale quantum) era14.

Computation in the NISQ era is modeled by hybrid computation
consisting of a classical computer and a noisy quantum device.
Most currently available noisy quantum devices, such as those built
from superconducting qubits13,15–17, trapped ions18–21, nuclear spins in
silicon22–24, or other solid-state systems25–27, are restricted to preparing
a noisy initial state, performing noisy quantum gates, and executing a
noisy measurement on all qubits to generate a random bitstring. In
most circumstances these noisy quantum devices are too weak to
perform useful computation on their own. Generally, useful compu-
tation is facilitated by a classical computer that repeatedly runs the
noisy quantum device with various gate sequences to obtain different

classical output bit strings, and then performs classical post-
processing on those strings. Algorithms within this computational
model are referred to as hybrid quantum-classical algorithms28,29 or
NISQ algorithms14,30.

The excitement around NISQ algorithms has led to a plethora of
new near-term algorithms targeting different applications, including
quantum chemistry3,28,31–33, machine learning17,34–39, combinatorial
optimization40–43, linear system solvers44–46, and experimental data
analysis47–52. However, to the best of our knowledge, no existing works
have rigorously examined the class of all possible NISQ algorithms and
studied their inherent computational power. As a result, many
important and fundamental questions remain unanswered. In parti-
cular, how powerful are NISQ algorithms compared to classical algo-
rithms? Are NISQ algorithms inherently weaker than fault-tolerant
quantum algorithms?

In this work, we formalize and study these basic questions
through the lens of computational complexity theory. To do so rig-
orously, we define a complexity class which we believe encapsulates
what is possible on the vast majority of existing quantum devices. Our
definition is intended to capture the following capabilities of noisy
quantum devices, which we alluded to above:
1. Noisy quantum gates: The device can execute noisy two-qubit

logic gates. Using quantum logic gates (as opposed to, say,
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more general non-unitary CPTP maps) is standard in existing
quantum devices, and it is well-understood that in real-world
settings, they will be subject to noise. For concreteness, we
consider the standard model of local depolarizing noise per
qubit. However, our results extend to more general noise
models (see Remarks 2.4, 4.19 and 6.5) in the Supplementary
Information.

2. Noisy state preparation at the start: The quantum devices have a
fixed number of qubits and as such cannot bring in fresh qubits
during the computation. Thismeans that the devicemust prepare
all qubits at the start. Notably, since we assume all quantum gates
are subject to noise, this means all qubits will accrue entropy
throughout the computation.

3. Noisy measurement at the end: The quantum devices are limited
to perform noisy measurements only at the end of the computa-
tion, which means the measurement is performed on all qubits
simultaneously. Fromaphysical perspective, this constraint arises
due to the difficulty of isolating subsets of qubits and measuring
them without decohering the residual qubits.

Finally, we consider a classical computer that can repeatedly run
the noisy quantum device and analyze the output from the noisy
quantum device.

These constraints are chosen to encapsulate the gap between the
physical limitations of what we can achieve with existing quantum
computers and general quantum computation. We note these con-
siderations preclude the implementation of all known general fault-
tolerant quantum computation schemes53–59, but that removing any
one of these constraints would already allow for some form of non-
trivial quantum fault tolerance53,57,58. The obstruction to fault tolerance
can be understood intuitively. The noisy quantum gates cause all
qubits to accrue entropy, which cannot be pumped out until the
measurement at the end. Since too much entropy would destroy all
useful quantum correlations, it is not possible for the noisy quantum
devices under the above constraints to perform an arbitrarily long
quantum computation. Note that in contrast, if we consider more
benign noise which does not increase entropy, such as dephasing or
amplitude-damping noise, then there are already schemes for achiev-
ing fault-tolerant quantum computation57 within the above three
constraints.

Motivated by the above considerations, in Section “Definition of
NISQ”we formally define theNISQ complexity class to be the set of all
problems that can be efficiently solved by a classical computer with
access to a noisy quantum device that can (i) prepare a noisy poly(n)-
qubit all-zero state, (ii) execute noisy quantum gates, and (iii) perform
a noisy measurement on all of the poly(n) qubits. We subsequently
show how the NISQ complexity class is situated relative to classical
computers, and full-fledged quantum computers with quantum error
correction.

Results
In Section “Definition of NISQ”we give an overview of the definition of
NISQ. Then, in Section “Super-polynomial separations”, we give two
modifications of Simon’s problem which respectively yield a super-
polynomial separation between BPP and NISQ, and an exponential
separation between NISQ and BQP. In Section “NISQ in three well-
studied problems”, we study the NISQ complexity of three well-known
problems: unstructured search, Bernstein-Vazirani problem, and sha-
dow tomography. We defer all technical details to the Supplementary
Information.

Definition of NISQ
We begin with the definition of the NISQ complexity class, which is
visually depicted in Fig. 1. The formal mathematical definition is given
in Supplementary Note 2.A. In Supplementary Note 2.B, we recall the
standard definition of oracle access in classical and quantum compu-
tation – when the oracle is classical, we extend the definition to NISQ
by giving oracle access to both the classical computer and the noisy
quantum computer.

Definition 2.1. (NISQ complexity class, informal) NISQ contains all
problems that can be solved by a polynomial-time probabilistic clas-
sical algorithm with access to a noisy quantum device. To solve a
problem of size n, the classical algorithm can access a noisy quantum
device that can:
1. Prepare a noisy poly(n)-qubit all-zero state;
2. Apply arbitrarily many layers of noisy two-qubit gates;
3. Perform noisy computational basis measurements on all the

qubits simultaneously.

All quantum operations are subject to a constant amount of
depolarizing noise per qubit.

The definition of a noisy quantum device given above forbids the
implementation of all known fault-tolerant quantum computation
schemes53–56,59. Hence, it is plausible that there are problems that could
be solved efficiently by a fault-tolerant quantumalgorithmbut not by a
NISQ algorithm, i.e. that NISQ⊊BQP.

The definition of NISQ immediately gives us that

BPP � NISQ � BQP : ð1Þ

The inclusion BPP⊆NISQ follows from the fact that aNISQ algorithm
is a hybrid quantum-classical algorithm that can also run any classical
computation. The latter inclusion NISQ⊆BQP holds because a
quantum computer can simulate any noisy quantum device. However,
it remains an open question whether BPP⊊NISQ and also if NISQ⊊
BQP. The strict inclusion BPP⊊NISQ would imply that NISQ
algorithmshave a super-polynomial speedupover classical algorithms.
The second strict inclusion NISQ⊊BQP would imply that NISQ

Fig. 1 | Illustration of the NISQ complexity class. a Complexity classes: NISQ
contains problems that can be solved by classical computation (BPP), and some
problems that canbe solvedbyquantumcomputation (BQP).bNISQ algorithm: An
algorithm in the complexity class NISQ is modeled by a hybrid quantum-classical

algorithm, where a classical computer can specify the circuit to run on a noisy
quantumdevice and the devicewould run a noisy versionof the circuit and return a
random classical bitstring obtained from noisy measurement.

Article https://doi.org/10.1038/s41467-023-41217-6

Nature Communications |         (2023) 14:6001 2



algorithms are not as powerful as fault-tolerant quantum algorithms.
Establishing either one of the strict inclusions would imply that
BPP⊊BQP, which is a long-standing open problem in computational
complexity theory. In this work, we follow the well-established
approach inquantumcomplexity theoryofprovingoracle separations.
That is, we consider various oracles, which are black boxes
implementing certain functions or preparing some states, and show
that NISQ algorithms accessing these oracles with noisy queries are
strictly stronger orweaker thanBPPorBQP algorithms that canaccess
these boxes noiselessly. We consider widely studied oracles like the
one for Grover search or for Bernstein-Vazirani problem, as well as
variants of oracles like the one for Simon’s problem.

Super-polynomial separations
We begin with a set of results involving two modified versions of
Simon’s problem60. Simon’s problem is one of the earliest examples of
a computational problem demonstrating exponential quantum
advantage in query complexity: given a function f : {0, 1}n↦ {0, 1}n, the
goal is to decide if f is 2-to-1 (with a promise that f(x) = f(x⊕ s) for a
secret string s∈ {0, 1}n) or 1-to-1. In the language of computational
complexity theory, it exhibits a classical oracle O for which there is a
relativized complexity separation between BPP and BQP, denoted by
BPPO⊊BQPO.

In this work, we give two modifications of Simon’s problem that
yield relativized separations amongBPP,NISQ, andBQP. ForNISQ, we
consider noisy oracle access with local depolarizing noise occurring
both before and after the oracleO. We first construct amodification of
Simon’s problem that requires at least a super-polynomial number of
oracle queries forBPP andonly a linearnumber forNISQ.We then give
another modification of Simon’s problem that requires at least an
exponential number of queries for NISQ and only a linear number of
queries for BQP. These two results can be summarized as follows:

Theorem 2.2. There is a classical oracle O1 such that BPPO1 ⊊NISQO1 .

Theorem 2.3. There is a classical oracleO2 such that NISQO2 ⊊BQPO2 .
Theorem 2.2 is established by constructing a robust version of the

classical function f : {0, 1}n↦ {0, 1}n in Simon’s problem. We denote the
robust version as ef : f0,1gn0 7!f0,1gn with more input bits: n0≫n. Each
input x∈ {0, 1}n corresponds to a large set of inputs Ax � f0,1gn0

, such
that every z∈Ax produces the same output ef ðzÞ= f ðxÞ. The new func-
tion ef is robust to noise, which allows a NISQ algorithm to achieve a
super-polynomial speed-up.

The proof of Theorem 2.3 is essentially the opposite of that of
Theorem 2.2. We construct a highly non-robust version ef of the clas-
sical function f in Simon’s problem. Any noisy access to ef provides
exponentially little information, hence any NISQ algorithm would
require exponentially more queries than a noiseless quantum algo-
rithm. In fact, the separationwe show is even stronger: notonly isNISQ
exponentially weaker than BQP relative to this oracle, but it is in fact
even exponentially weaker than BPPQNC0

, that is, classical computa-
tion assisted by noiseless bounded-depth quantum computation (see
Supplementary Note 2.C for definitions).

Our findings give evidence that the computational power ofNISQ
lies somewhere strictly betweenBPP andBQP. The detailed proofs are
given in Supplementary Note 4. Of course, separations relative to
oracles come with the usual provisos inherent in relativized separa-
tions, like the fundamental complexity-theoretic barriers to deducing
unconditional separations from relativized separations61,62. Another
challenge is to instantiate the oracle in practice. While it is impossible
to implement the relevant oracles perfectly on NISQ devices, if the
oracle can be instantiated with cryptographic functions based on
shallow circuits63, then the techniques for proving Theorem 2.2 allow
one to implement a robust version of the oracle inNISQ. Despite these

limitations, we view our results as promising evidence that NISQ may
be truly intermediate between BPP and BQP.

NISQ in three well-studied problems
Since the modified Simon’s problems in Theorems 2.2 and 2.3 are
tailored for proving super-polynomial separations, we would also like
to study NISQ for more natural problems. We explore three well-
known problems in quantum computing: unstructured search, the
Bernstein-Vazirani problem, and shadow tomography.

For unstructured search, it is well-known thatGrover’s algorithm64

canachieve a quadratic quantumspeedupover any classical algorithm.
Tofinda singlemarked element amongN elements,Grover’s algorithm
only requires Oð

ffiffiffiffi

N
p

Þ queries, whereas any classical algorithm requires
at least Ω(N) queries in the worst case. A natural open question is
whether a NISQ algorithm can also achieve such a quadratic speedup.
We resolve this open question in the negative by proving the following
theorem. The proof is given in Supplementary Note 5.

Theorem 2.4. (Unstructured search) To find a single marked element
among N elements, any NISQ algorithm with access to poly(N) qubits
requires at least eΩðNÞ queries.

The eΩð�Þ neglects logarithmic factors. We stress that the above
theorem implies not only that noisy implementation of Grover’s
algorithm fails to achieve a quadratic speedup but, in fact, that any
NISQ algorithmwill fail to do so. The intuition behind the proof is that
noisy quantum devices can only run for so long before noise over-
whelms the system, so it would suffice to prove the lower bound for
hybrid quantum-classical algorithms with access to a noiseless quan-
tum device that can run any bounded-depth circuit. While a single run
of any noiseless bounded-depth circuit cannot achieve Grover
speedup65, hybrid quantum-classical algorithms can perform many
runs of noiseless bounded-depth circuits that depend adaptively on
previous measurement outcomes. We prove that Grover speedup is
impossible with hybrid quantum-classical algorithms using tools
developed recently in the context of lower bounds for learning
quantum states and processes using adaptive single-copy
measurements47–50,66–68.

For the second task, theBernstein-Vazirani problem,wefind that a
large quantum advantage still remains for NISQ algorithms. Given an
unknown n bit string s∈ {0, 1}n, the Bernstein-Vazirani problem asks
how many queries to a function f(x) = x ⋅ s are required to learn s. Any
classical algorithm requires at least Ω(n) queries to learn s. However,
the Bernstein-Vazirani quantum algorithm can learn the unknown bit
string s with just 1 query. We show that the query complexity of this
problem in NISQ remains much smaller than the classical query
complexity:

Theorem 2.5. (Bernstein-Vazirani) There is a NISQ algorithm that
solves the Bernstein-Vazirani problem over n bits in at most OðlognÞ
queries.

Perhaps surprisingly, our analysis shows that a simple modifica-
tion of the original Bernstein-Vazirani algorithm is already sufficiently
noise-robust. This result provides optimism that there may be other
natural problems for which quantum advantage can be obtained in the
NISQ era. The detailed proof of Theorem 2.5 is presented in Supple-
mentary Note 6.

Finally, we consider the problem of predictingmany properties in
an unknown quantum system, also known as shadow tomography69–72.
In particular, we restrict to predicting absolute values of Pauli obser-
vables {I, X, Y, Z}⊗n: Given many copies of an unknown n-qubit state ρ,
the goal is to learn jtrðPρÞj for all P∈ {I, X, Y, Z}⊗n up to a constant error
by processing the quantum state copies. This task has received con-
siderable attention in recent works37,48,50,71 which have demonstrated,
both theoretically and experimentally, that very simple BQP algo-
rithms can solve this task using only O(n) copies, while any classical
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algorithm that can obtain classical data by performing measurements
on individual copies of ρ requiresΩ(2n) copies. Here we show that this
large quantum advantage is damped by the presence of noise. Speci-
fically, we show the following exponential separation between NISQ
and BQP. The proof of the following theorem is given in Supplemen-
tary Note 7.

Theorem 2.6. (Shadow tomography) Any NISQ algorithm with noise
rate λ per qubit requires at leastΩ((1−λ)−n) copies of ρ to learn jtrðPρÞj,
for all P∈ {I, X, Y, Z}⊗n up to a constant error. In contrast, at most OðnÞ
copies are needed for BQP.

Theorem 2.6 demonstrates that a fault-tolerant quantum algo-
rithm can be exponentially more powerful than anyNISQ algorithm in
learning quantum systems. On the other hand, for small noise rate λ,
the exponential scaling in the lower bound for NISQ algorithms has a
base which is close to one. In49 it was shown that NISQ algorithms can
achieve (1−λ)−Θ(n) even for more general noise models. This suggests
that NISQ algorithms can still perform well for learning quantum sys-
tems with a few hundred qubits50.

Discussion
By abstracting hybrid quantum-classical computation in the NISQ era
into a computational complexity class, our work offers amathematical
framework for reasoning about the potential for noisy quantum
advantage. We used tools from quantum query complexity to char-
acterize how NISQ lies between BPP and BQP. On the one hand, the
fact that NISQ can be more powerful than BPP provides optimism for
the NISQ era and the computational advances it may precipitate. On
the other hard, NISQ being less powerful than BQP portends that we
will have towait until the advent of fault-tolerant devices toharness the
richest features of quantum computation. Our results for the NISQ
complexity of three well-known problems in quantum computing
punctuate our outlook by demonstrating specific promises and pitfalls
of computation in the NISQ era.

There are many future directions to pursue with the NISQ
complexity class. A main open problem is to understand if we could
show a separation between BPP,NISQ, and BQP under a standard
complexity-theoretic assumption. It would be desirable to have an
exponential oracle separation between BPP andNISQ, as opposed to
one that is merely super-polynomial. Moreover, one could ask if a
similar oracle separation exists between BPP and NISQ with the
additional restriction that our quantum gates are spatially local, e.g.,
the gates are restricted to a two-dimensional geometry. Perhaps
under this additional restriction of geometric locality on NISQ, it is
possible to better understand the computational complexity ofNISQ
without relying on oracle separations. Additionally, it would be
valuable to analyze the NISQ complexity of other natural quantum
algorithms, beyond the ones we studied. Natural targets include the
original Simon’s problem (as opposed to our variations thereof, see
Supplementary Note 10 for one approach in this direction),
Forrelation73, Shor’s algorithm6,7, linear system solving12, the recent
random oracle result of74, and topological data analysis75, among
many others.

Taking a broader view, our work suggests a roadmap for investi-
gating future quantumdeviceswhichmaygo beyond theNISQ era, but
fall short of fault-tolerance. The approach is to formulate a computa-
tional complexity class which encapsulates the salient features of
whichever quantum devices are contemporary, and then to study
that complexity class to make statements about the capabilities of
those devices with great generality. In such a future, there should be
complexity classes beyond NISQ, but still intermediate to BQP.
Whichever generalizations of NISQ prove fruitful in the future, they
will have much to tell us about what computation is possible in that
future world.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary.
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