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Transfer Learning with Kernel Methods

Adityanarayanan Radhakrishnan1,2,3, Max Ruiz Luyten1,3, Neha Prasad1 &
Caroline Uhler 1,2

Transfer learning refers to the process of adapting amodel trained on a source
task to a target task. While kernel methods are conceptually and computa-
tionally simple models that are competitive on a variety of tasks, it has been
unclear how to develop scalable kernel-based transfer learning methods
across general source and target taskswithpossibly differing label dimensions.
In this work, we propose a transfer learning framework for kernel methods by
projecting and translating the source model to the target task. We demon-
strate the effectiveness of our framework in applications to image classifica-
tion and virtual drug screening. For both applications, we identify simple
scaling laws that characterize the performance of transfer-learned kernels as a
function of the number of target examples. We explain this phenomenon in a
simplified linear setting, where we are able to derive the exact scaling laws.

Transfer learning refers to the machine learning problem of utilizing
knowledge from a source task to improve performance on a target
task. Recent approaches to transfer learning have achieved tre-
mendous empirical success in many applications, including in com-
puter vision1,2, natural language processing3–5, and the biomedical
field6,7. Since transfer learning approaches generally rely on complex
deep neural networks, it can be difficult to characterize when and why
they work8. Kernel methods9 are conceptually and computationally
simple machine learning models that have been found to be compe-
titive with neural networks on a variety of tasks, including image
classification10–12 and drug screening12. Their simplicity stems from the
fact that training a kernel method involves performing linear regres-
sion after transforming the data. There has been renewed interest in
kernels due to a recently established equivalence between wide neural
networks and kernel methods13,14, which has led to the development of
modern, neural tangent kernels (NTKs) that are competitive with
neural networks. Given their simplicity and effectiveness, kernel
methods could provide a powerful approach for transfer learning and
also help characterize when transfer learning between a source and
target task would be beneficial.

Yet, developing scalable algorithms for transfer learning with
kernel methods for general source and target tasks with possibly dif-
fering label dimensions has been an open problem. In particular, while
there is a standard transfer learning approach for neural networks that
involves replacing and re-training the last layer of a pre-trained net-
work, there is no known corresponding operation for kernels. Prior

works on transfer learning with kernels focus on applications in which
the source and target tasks have the same label sets15–20. Examples
include predicting stock returns for a given sector based on returns
available for other sectors16 or predicting electricity consumption for
certain zones of the United States based on the consumption in other
zones17. Thesemethods are not applicable to general source and target
tasks with differing label dimensions, including classical transfer
learning applications such as using amodel trained to classify between
thousands of objects to subsequently classify new objects. There are
also various works on using kernels for multi-task learning
problems21–23, which, in the context of transfer learning, assume that
source and target data are available at the time of training the source
model. These methods can be computationally expensive since they
involve computing matrix-valued kernels, where the number of rows/
columns is equal to the number of labels. As a consequence, for a
kernel trained on ImageNet3224 with 1000 possible labels, a matrix-
valued kernel would involve 106 times more compute than a classical
kernel method. Prior works also develop kernel-based methods for
learning a re-weighting or transformation that captures similarities
across source and target data distributions25–27. Such a transformation
is typically learned by solving an optimization problem that involves
materializing the full training kernel matrix, which can be computa-
tionally prohibitive (e.g., for a dataset with a million samples, this
would require more than 3.5 terabytes of memory).

In this work, we present a general, scalable framework for per-
forming transfer learning with kernel methods. Unlike prior work, our
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framework enables transfer learning for kernels regardless of whether
the source and target tasks have the same or differing label sets. Fur-
thermore, like for transfer learning methodology for neural networks,
our framework allows transferring to a variety of target tasks after
training a kernel method only once on a source task.

The key components of our transfer learning framework are: Train
a kernel method on a source dataset and then apply the following
operations to transfer the model to the target task.

• Projection.We apply the trained source kernel to each sample in
the target dataset and then train a secondary model on these
source predictions to solve the target task; see Fig. 1a.

• Translation. When the source and target tasks have the same
label sets, we train a correction term that is added to the source
model to adapt it to the target task; see Fig. 1c.

We note that while these two operations are general and can be
applied to any predictor, we focus on using them in conjunction with
kernel methods due to their conceptual simplicity, effectiveness, and
flexibility, in particular given that they include infinite-width neural
networks13 as a subclass. Moreover, the closed-form solutions pro-
vided by kernel methods also enable a theoretical analysis of transfer
learning. Projection and translation are motivated by operations that
are standardly used for transfer learning using neural networks.
Namely, projection corresponds to adding layers at the end of a neural
network trained on a source task and then training theweights in these
new layers on the target task. And when approximating a neural net-
work by its linearization around the initial parameters13,28, transfer
learning by tuning theweights of the sourcemodel on the target task is
equivalent to performing translation. Our formulation of projection
and translation makes these operations compatible with recent pre-
conditioned gradient descent kernel regression solvers such as

EigenPro29, thereby allowing our framework to easily scale to datasets
such as ImageNet32 with over one million samples.

Projection is effectivewhen the sourcemodel predictions contain
information regarding the target labels. We will demonstrate that this
is the case in image classification tasks in which the predictions of a
classifier trained to distinguish between a thousand objects in
ImageNet3224 provides information regarding the labels of images in
other datasets, such as street view house numbers (SVHN)30; see
Fig. 1b. In particular, we will show across 23 different source and target
task combinations that kernels transferred using our approach achieve
up to a 10% increase in accuracy over kernels trained on target tasks
directly.

On the other hand, translation is effective when the predictions of
the source model can be corrected to match the labels of the target
task via an additive term. We will show that this is the case in virtual
drug screening in which amodel trained to predict the effect of a drug
on one cell line can be adjusted to capture the effect on a new cell line;
see Fig. 1d. In particular, we will show that our transfer learning
approach provides an improvement to prior kernel method
predictors12 even when transferring to cell lines and drugs not present
in the source task.

Interestingly, we observe that for both applications, image clas-
sification and virtual drug screening, transfer learned kernel methods
follow simple scaling laws; i.e., how the number of available target
samples effects the performance on the target task can be accurately
modelled. As a consequence, our work provides a simple method for
estimating the impact of collecting more target samples on the per-
formance of the transfer learned kernel predictors. In the simplified
setting of transfer learning with linear kernel methods we are able to
mathematically derive the scaling laws, thereby providing a mathe-
matical basis for the empirical observations. To do so, we obtain exact

Fig. 1 | Our framework for transfer learningwith kernelmethods for supervised
learning tasks. After training a kernel method on a source task, we transfer the
source model to the target task via a combination of projection and translation
operations. a Projection involves training a second kernel method on the predic-
tions of the source model on the target data, as is shown for image classification
between natural images and house numbers. b Projection is effective when the
predictions of the source model on target examples provide useful information
about target labels; e.g., a model trained to classify natural images may be able to

distinguish the images of zeros from ones by using the similarity of zeros to balls
and ones to poles. c Translation involves adding a correction term to the source
model, as is shown for predicting the effect of a drug on a cell line. d Translation is
effective when the predictions of the source model can be additively corrected to
match labels in the target data; e.g., the predictions of a model trained to predict
the effect of drugs onone cell linemaybe additively adjustable topredict the effect
on new cell lines.
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non-asymptotic formulas for the risk of the projected and translated
predictors. Our non-asymptotic analysis is in contrast to a large num-
ber of prior works analyzing multitask learning algorithms31–34 and
meta-learning algorithms35,36, which provide generalization bounds
establishing statistical consistency of these methods but do not pro-
vide an explicit form of the risk, which is required for deriving explicit
scaling laws. Overall, our work demonstrates that transfer learning
with kernel methods between general source and target tasks is pos-
sible and demonstrates the simplicity and effectiveness of the pro-
posed method on a variety of important applications.

Results
In the following, we present our framework for transfer learning with
kernel methodsmore formally. Since kernel methods are fundamental
to this work, we start with a brief review.

Given training examples X = ½xð1Þ, . . . , xðnÞ� 2 Rd ×n, corresponding
labels y= ½ yð1Þ, . . . , yðnÞ� 2 R1 ×n, a standard nonlinear approach to fit-
ting the training data is to train a kernel machine9. This approach
involves first transforming the data, fxðiÞgni = 1, with a featuremap,ψ, and
then performing linear regression. To avoid defining and working with
feature maps explicitly, kernel machines rely on a kernel function,
K : Rd ×Rd ! R, which corresponds to taking inner products of the
transformed data, i.e., K(x(i), x( j)) = 〈ψ(x(i)),ψ(x( j))〉. The trained kernel
machine predictor uses the kernel instead of the feature map and is
given by:

f̂ ðxÞ = αKðX , xÞ, where α = argmin
w2R1 ×n

ky�wKnk22, ð1Þ

and Kn 2 Rn×n with ðKnÞi, j =KðxðiÞ, xð jÞÞ and KðX , xÞ 2 Rn with
K(X, x)i =K(x(i), x). Note that for datasets with over 105 samples, com-
puting the exact minimizer α is computationally prohibitive, and we
instead use fast, approximate iterative solvers such as EigenPro29. For a
more detailed description of kernel methods see SI Note 1.

For the experiments in this work, we utilize a variety of kernel
functions. In particular, we consider the classical Laplace kernel given
by Kðx, ~xÞ= exp �L k x � ~xk2

� �
, which is a standard benchmark kernel

that has been widely used for image classification and speech
recognition29. In addition,we consider recently discovered kernels that
correspond to infinitely wide neural networks. While there is an
emerging understanding that increasingly wider neural networks
generalize better37,38, such models are generally computationally dif-
ficult to train. Remarkably, recent work identified conditions under
which neural networks in the limit of infinite width implement kernel
machines; the corresponding kernel is known as the Neural Tangent
Kernel (NTK)13. In the following, we use the NTK corresponding to
training an infinitely wide ReLU fully connected network13 and also the
convolutional NTK (CNTK) corresponding to training an infinitely wide
ReLU convolutional network14. We chose to use the CNTK without
global average pooling (GAP)14 for our experiments. While the CNTK
model with GAP as well as the models considered in39 give higher
accuracy on image datasets, they are computationally prohibitive to
compute for our large-scale experiments. For example, a CNTK with
GAP is estimated to take 1200 GPU hours for 50k training samples11.

Unlike the usual supervised learning setting where we train a
predictor on a single domain, we will consider the following transfer
learning setting from40, which involves two domains: (1) a source with
domain X s and data distribution Ps; and (2) a target with domain X t

and data distribution Pt . The goal is to learn a model for a target task
f t : X t ! Yt by making use of a model trained on a source task
f s : X s ! Ys. We let cs and ct denote the dimensionality of Ys and Yt

respectively, i.e. for image classification these denote the number of
classes in the source and target. Lastly, we let ðXs, ysÞ 2 Xns

s ×Yns
s and

ðXt , ytÞ 2 Xnt
t ×Ynt

t denote the source and target dataset, respectively.

Throughout this work, we assume that the source and target domains
are equal (X s =X t), but that the data distributions differ (Ps ≠Pt).

Our work is concerned with the recovery of ft by transferring a
model, f̂ s, that is learned by training a kernel machine on the source
dataset. Toenable transfer learningwith kernels, wepropose theuseof
two methods, projection and translation. We first describe these
methods individually and demonstrate their performance on transfer
learning for image classification using kernel methods. For each
method, we empirically establish scaling laws relating the quantities
ns, nt, cs, ct to the performance boost given by transfer learning, andwe
also derive explicit scaling laws when ft, fs are linear maps. We then
utilize a combination of the twomethods to perform transfer learning
in an application to virtual drug screening.

Transfer learning via projection
Projection involves learning a map from source model predictions to
target labels and is thus particularly suited for situations where the
number of labels in the source task cs is much larger than the number
of labels in the target task ct.

Definition 1. Given a source dataset (Xs, ys) and a target dataset (Xt, yt),
the projected predictor, f̂ t , is given by:

f̂ tðxÞ = f̂ pðf̂ sðxÞÞ, where f̂ p : = argmin
ff :Ys!Yt g

kyt � f ðf̂ sðXtÞÞk2, ð2Þ

where f̂ s is a predictor trained on the source dataset. When there are
infinitely many possible values for the parameterized function f̂ p, we
consider the minimum norm solution.

While Definition 1 is applicable to any machine learning method,
we focus on predictors f̂ s and f̂ p parameterized by kernel machines
given their conceptual and computational simplicity. As illustrated in
Fig. 1a and b, projection is effective when the predictions of the source
model already provide useful information for the target task.

Kernel-based image classifier performance improves with pro-
jection. We now demonstrate the effectiveness of projected kernel
predictors for image classification. In particular, we first train kernels
to classify among 1000 objects across 1.28 million images in Ima-
geNet32 and then transfer these models to 4 different target image
classification datasets: CIFAR1041, Oxford 102 Flowers42, Describable
Textures Datasets43, and SVHN30.We selected these datasets since they
cover a variety of transfer learning settings, i.e. all of the CIFAR10
classes are in ImageNet32, ImageNet32 contains only 2 flower classes,
and none of DTD and SVHN classes are in ImageNet32. A full descrip-
tion of the datasets is provided in Methods.

For all datasets, we compare the performance of 3 kernels (the
Laplace kernel, NTK, and CNTK) when trained just on the target task,
i.e. the baseline predictor, and when transferred via projection from
ImageNet32. Training details for all kernels are provided inMethods. In
Fig. 2a, we showcase the improvement of projected kernel predictors
over baseline predictors across all datasets and kernels. We observe
that projection yields a sizeable increase in accuracy (up to 10%) on the
target tasks, thereby highlighting the effectiveness of thismethod. It is
remarkable that this performance increase is observed even for
transferring to Oxford 102 Flowers or DTD, datasets that have little to
no overlap with images in ImageNet32.

In SI Fig. S1a, we compare our results with those of a finite-width
neural network analog of the (infinite-width) CNTK where all layers of
the source network arefine-tunedon the target taskusing the standard
cross-entropy loss44 and the Adam optimizer45. We observe that the
performance gap between transfer-learned finite-width neural net-
works and the projected CNTK is largely influenced by the perfor-
mance gapbetween thesemodels on ImageNet32. In fact, in SI Fig. S1a,
we show that finite-width neural networks trained to the same test
accuracy on ImageNet32 as the (infinite-width) CNTK yield lower
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performance than the CNTK when transferred to target image classi-
fication tasks.

The computational simplicity of kernel methods allows us to
compute scaling laws for the projected predictors. In Fig. 2b, we
analyze how the performance of projected kernel methods varies as
a function of the number of target examples, nt, for CIFAR10 and
Oxford 102 Flowers. The results for DTD and SVHN are presented in
SI Fig. S2a and b. For all target datasets, we observe that the accu-
racy of the projected predictors follows a simple logarithmic trend
given by the curve a lognt +b for constants a, b (R2 values on all
datasets are above 0.95). By fitting this curve on the accuracy cor-
responding to just the smallest five values of nt, we are able to
predict the accuracy of the projected predictors within 2% of the
reported accuracy for large values of nt (see Methods, SI Fig. S4).
The robustness of this fit across many target tasks illustrates the
practicality of the transferred kernel methods for estimating the
number of target examples needed to achieve a given accuracy.
Additional results on the scaling laws upon varying the number of
source examples per class are presented in SI Fig. S3 for transferring
between ImageNet32 and CIFAR10. In general, we observe that the
performance increases as the number of source training examples
per class increases, which is expected given the similarity of source
and target tasks.

Lastly, we analyze the impact of increasing the number of classes
while keeping the total number of source training examples fixed at
40k. Figure 2c shows that having few samples for each class can be
worse than having a few classes with many samples. This may be
expected for datasets such as CIFAR10, where the classes overlap with
the ImageNet32 classes: having few classes with more examples that
overlap with CIFAR10 should be better than having many classes with
fewer examples per class and less overlapwithCIFAR10. A similar trend
can be observed for DTD, but interestingly, the trend differs for SVHN,
indicating that SVHN images can be better classified by projecting
from a variety of ImageNet32 classes (see SI Fig. S2).

Transfer learning via translation
While projection involves composing amapwith the sourcemodel, the
second component of our framework, translation, involves adding a
map to the source model as follows.

Definition 2. Given a source dataset (Xs, ys) and a target dataset (Xt, yt),
the translated predictor, f̂ t , is given by:

f̂ tðxÞ = f̂ sðxÞ+ f̂ cðxÞ, where f̂ c = argmin
ff :X t!Yt g

kyt � f̂ sðXt Þ � f ðXtÞk2, ð3Þ

where f̂ s is a predictor trained on the source dataset. When there are
infinitely many possible values for the parameterized function f̂ c, we
consider the minimum norm solution.

Translated predictors correspond to first utilizing the trained
source model directly on the target task and then applying a correc-
tion, f̂ c, which is learned by training a model on the corrected labels,
yt � f̂ sðXtÞ. Like for the projected predictors, translated predictors can
be implemented using any machine learning model, including kernel
methods. When the predictors f̂ s and f̂ c are parameterized by linear
models, translatedpredictors correspond to training a target predictor
with weights initialized by those of the trained source predictor (proof
in SI Note 4). We note that training translated predictors is also a new
form of boosting46 between the source and target dataset, since the
correction term accounts for the error of the source model on the
target task. Lastly, we note that while the formulation given in Defini-
tion 2 requires the source and target tasks to have the same label
dimension, projection and translation can be naturally combined to
overcome this restriction.

Kernel-based image classifier performance improves with trans-
lation. We now demonstrate that the translated predictors are parti-
cularly well-suited for correcting kernel methods to handle
distribution shifts in images. Namely, we consider the task of trans-
ferring a source model trained on CIFAR10 to corrupted CIFAR10

Fig. 2 | Analysis of transfer learning with kernels trained on ImageNet32 to
CIFAR10, Oxford 102 Flowers, DTD, and a subset of SVHN.All curves in (b, c) are
averaged over 3 random seeds. a Comparison of the transferred kernel predictor
test accuracy (green) to the test accuracy of the baseline kernel predictors trained
directly on the target tasks (red). In all cases, the transferred kernel predictors
outperform the baseline predictors and the difference in performance is as high as

10%. b Test accuracy of the transferred and baseline predictors as a function of the
number of target examples. These curves, which quantitatively describe the benefit
of collecting more target examples, follow simple logarithmic trends (R2 > . 95).
c Performance of the transferred kernel methods decreases when increasing the
number of source classes but keeping the total number of source examples fixed.
Corresponding plots for DTD and SVHN are in SI Fig. S2.
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images in CIFAR10-C47. CIFAR10-C consists of the test images in
CIFAR10, but the images are corrupted by one of 19 different pertur-
bations, such as adjusting image contrast and introducing natural
artifacts such as snow or frost. In our experiments, we select the 10k
images of CIFAR10-C with the highest level of perturbation, and we
reserve 9k images of each perturbation for training and 1k images for
testing. In SI Fig. S5, we additionally analyze translating kernels from
subsets of ImageNet32 to CIFAR10.

Again, we compare the performance of the three kernel
methods considered for projection, but along with the accuracy of
the translated predictor and baseline predictor, we also report the
accuracy of the source predictor, which is given by using the source
model directly on the target task. In Fig. 3a and SI Fig. S6, we show
that the translated predictors outperform the baseline and source
predictors on all 19 perturbations. Interestingly, even for corrup-
tions such as contrast and fog where the source predictor is worse
than the baseline predictor, the translated predictor outperforms
all other kernel predictors by up to 11%. In SI Fig. S6, we show that
for these corruptions, the translated kernel predictors also out-
perform the projected kernel predictors trained on CIFAR10. In SI
Fig. S1b, we additionally compare with the performance of a finite-
width analog of the CNTK by fine-tuning all layers on the target
task with cross-entropy loss and the Adam optimizer. We observe
that the translated kernel methods outperform the corresponding
neural networks. Remarkably kernels translated from CIFAR10 can
even outperform fine-tuning a neural network pre-trained on
ImageNet32 for several perturbations (see SI Fig. S1c). In SI Fig. S7,
we additionally demonstrate the effectiveness of our translation
methodology over prior transfer learning methods using multiple
kernel learning (see Methods for further details).

Analogously to our analysis of the projected predictors, we
visualize how the accuracy of the translated predictors is affected by
the number of target examples,nt, for a subset of corruptions shown in
Fig. 3b. We observe that the performance of the translated predictors
is heavily influenced by the performance of the source predictor. For
example, as shown in Fig. 3b for the brightnessperturbation,where the

source predictor already achieves an accuracy of 60.80%, the trans-
lated predictors achieve an accuracy of above 60% when trained on
only 10 target training samples. For the examples of the contrast and
fog corruptions, Fig. 3b also shows that very few target examples allow
the translated predictors to outperform the source predictors (e.g., by
up to 5% for only 200 target examples). Overall, our results showcase
that translation is effective at adapting kernel methods to distribution
shifts in image classification.

Transfer learning via projection and translation in virtual drug
screening
We now demonstrate the effectiveness of projection and translation
for the use of kernel methods for virtual drug screening. A common
problem in drug screening is that experimentally measuring many
different drug and cell line combinations is both costly and time-
consuming. The goal of virtual drug screening approaches is to com-
putationally identify promising candidates for experimental valida-
tion. Such approaches involve training models on existing
experimental data to then impute the effect of drugs on cell lines for
which there was no experimental data.

The CMAP dataset48 is a large-scale, publicly available drug screen
containing measurements of 978 landmark genes for 116,228 combi-
nations of 20,336 drugs (molecular compounds) and 70 cell lines. This
dataset has been an important resource for drug screening49,50. CMAP
also contains data on genetic perturbations; but in this work, we focus
on imputing the effect of chemical perturbations only. Prior work for
virtual drug screening demonstrated the effectiveness of low-rank
tensor completion and nearest neighbor predictors for imputing the
effect of unseen drug and cell line combinations in CMAP51. However,
these methods crucially rely on the assumption that for each drug
there is at least one measurement for every cell line, which is not the
case when considering new chemical compounds. To overcome this
issue, recent work12 introduced kernel methods for drug screening
using the NTK to predict gene expression vectors from drug and cell
line embeddings, which capture the similarity between drugs and
cell lines.

Fig. 3 | Transferring kernel methods from CIFAR10 to adapt to 19 different
corruptions in CIFAR10-C. a Test accuracy of baseline kernel method (red), using
source predictor given by directly applying the kernel trained on CIFAR10 to
CIFAR10-C (gray), and transferred kernel method (green). The transferred kernel
method outperforms the other models on all 19 corruptions and even improves on

the baseline kernel method when the source predictor exhibits a decrease in per-
formance. Additional results are presented in SI Fig. S6. b Performance of the
transferred and baseline kernel predictors as a function of the number of target
examples. The transferred kernelmethod canoutperformboth source andbaseline
predictors even when transferred using as little as 200 target examples.
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In the following, we demonstrate that the NTK predictor can be
transferred to improve gene expression imputation for drug and cell
line combinations, even in cases where neither the particular drug nor
the particular cell line were available when training the source model.
To utilize the framework of12, we use the control gene expression
vector as cell line embedding and the 1024-bit circular fingerprints
from52 as drug embedding. All pre-processing of the CMAP gene
expression vectors is described in Methods. For the source task, we
train the NTK to predict gene expression for the 54,444 drug and cell
line combinations corresponding to the 65 cell lineswith the least drug
availability in CMAP. We then impute the gene expression for each of
the 5 cell lines (A375, A549, MCF7, PC3, VCAP) with the most drug
availability.We chose these data splits in order to have sufficient target
samples to analyzemodel performance as a function of the number of
target samples. In our analysis of the transferred NTK, we always
consider transfer to a new cell line, andwe stratify bywhether a drug in
the target task was already available in the source task. For this
application we combine projection and translation into one predictor
as follows.

Definition 3. Given a source dataset (Xs, ys) and a target dataset (Xt, yt),
the projected and translated predictor, f̂ pt , is given by:

f̂ pt ðxÞ = f̂ f̂ sðxÞ j x
h i� �

,where f̂ = argmin
f :Ys ×X t!Ys

yt � f f̂ sðXtÞ j Xt

h i� ���� ���2,
ð4Þ

where f̂ s is a predictor trained on the source dataset and f̂ sðxÞ j x
h i

2
Ys ×X t is the concatenation of f̂ sðxÞ and x.

Note that if we omit x, Xt in the concatenation above, we get the
projected predictor, and if f is additive in its arguments, i.e., if

f ð½ f̂ sðxÞ j x�Þ= f̂ sðxÞ+ x, we get the translated predictor. Generally, f̂ sðxÞ
and x can correspond to different modalities (e.g., class label vectors
and images), but in the case of drug screening, both correspond to
gene expression vectors of the same dimension. Thus, combining
projection and translation is natural in this context.

Figure 4 a and b show that the transferred kernel predictors
outperform both, the baseline model from12 as well as imputation by
mean (over each cell line) gene expression across three different
metrics (R2, cosine similarity, and Pearson r value) on both tasks (i.e.,
transferring to drugs that were seen in the source task as well as
completely new drugs). All metrics and training details are presented
in Methods. Interestingly, the transferred kernel methods provide a
boost over the baseline kernelmethods evenwhen transferring to new
cell lines and new drugs. But as expected, we note that the increase in
performance is greater when transferring to drug and cell line com-
binations for which the drug was available in the source task. Figure 4c
and d show that the transferred kernels again follow simple logarith-
mic scaling laws (fitting a logarithmic model to the red and green
curves yields R2 > 0.9). We note that the transferred NTKs have better-
scaling coefficients than the baseline models, thereby implying that
the performance gap between the transferred NTK and the baseline
NTK grows as more target examples are collected until the perfor-
mance of the transferredNTK saturates at itsmaximumpossible value.
In Fig. 4e and f, we visualize the performance of the transferred NTK in
relation to the top 2 principal components of gene expression for drug
and cell line combinations.We generally observe that the performance
of the NTK is lower for cell and drug combinations that are further
from the control, i.e., the unperturbed state. Plots for the other 3 cell
lines are presented in SI Fig. S8. InMethods and SI Fig. S9, we show that
this approach can also be used for other transfer learning tasks related
to virtual drug screening. In particular, we show that the imputed gene
expression vectors can be transferred to predict the viability of a drug
and cell line combination in the large-scale, publicly available Cancer
Dependency Map (DepMap) dataset53.

Theoretical analysis of projection and translation in the linear
setting
In the following, we provide explicit scaling laws for the performance
of projected and translated kernel methods in the linear setting,
thereby providing a mathematical basis for the empirical observations
in the previous sections.

Fig. 4 | Transferring the NTK trained to predict gene expression for given drug
andcell line combinations inCMAP tonewdrugandcell line combinations. a,b
The transfer learned NTK (green) outperforms imputation by mean over cell line
(gray) and previous NTK baseline predictors from12 across R2, cosine similarity, and
Pearson r metrics. All results are averaged over the performance on 5 cell lines and
are stratified by whether or not the target data contains drugs that are present in
the source data. Error bars indicate standard deviation. c, d The transferred kernel
method performance follows a logarithmic trend (R2 > . 9) as a function of the

number of target examples and exhibits a better scaling coefficient than the
baselines. The results are averaged over 5 cell lines. e, f Visualization of the per-
formance of the transferred NTK in relation to the top two principal components
(denoted PC1 and PC2) of gene expression for target drug and cell line combina-
tions. The performance of the NTK is generally lower for cell and drug combina-
tions that are further from the control gene expression for a given cell line.
Visualizations for the remaining 3 cell lines are presented in SI Fig. S8.

Article https://doi.org/10.1038/s41467-023-41215-8

Nature Communications |         (2023) 14:5570 6



We derive scaling laws for projected predictors in the following
linear setting.We assume thatX =Rd ,Ys =R

cs ,Yt =R
ct and that fs and

ft are linear maps, i.e., f s =ωs 2 Rcs ×d and f t =ωt 2 Rct ×d . The fol-
lowing results provide a theoretical foundation for the empirical
observations regarding the role of the number of source classes and
the number of source samples for transfer learning shown in Fig. 2 as
well as in54. In particular, we will derive scaling laws for the risk, or
expected test error, of the projected predictor as a function of the
number of source examples, ns, target examples, nt, and number of
source classes, cs. We note that the risk of a predictor is a standard
object of study for understanding generalization in statistical learning
theory55 and defined as follows.

Definition4. LetPbe aprobability density onRd and let x, xðiÞ ∼ i:i:d:P
for i = 1, 2,…n. Let X = ½xð1Þ, . . . , xðnÞ� 2 Rd ×n and y= ½w*xð1Þ, . . .w*xðnÞ� 2
Rc×n for w* 2 Rc×d . The risk of a predictor ŵ trained on the samples
(X, y) is given by

RðŵÞ=Ex,X ½kw*x � ŵxk2F �: ð5Þ

By understanding how the risk scales with the number of source
examples, target examples, and source classes,we can characterize the
settings in which transfer learning is beneficial. As is standard in ana-
lyses of the risk of over-parameterized linear regression56–59, we con-
sider the risk of the minimum norm solution given by

ŵ= argmin
w

ky�wXk2F , i:e:, ŵ= yX y, ð6Þ

where X† is the Moore-Penrose inverse of X. Theorem 1 establishes a
closed formfor the riskof theprojectedpredictor ω̂pω̂s , thereby giving
a closed form for the scaling law for transfer learning in the linear
setting; the proof is given in SI Note 2.

Theorem 1. Let X =Rd ,Ys =R
cs ,Yt =R

ct , and let ω̂s = ysX
y
s and

ω̂p = ytðω̂sX tÞy. Assuming that Ps and Pt are independent, isotropic
distributions on Rd , then the risk Rðω̂pω̂sÞ is given by

Rðω̂pω̂sÞ= C1 +C2K1

� �
1� nt

d

� �
+ 1� C1 � C2

� �h i
jjωt jj2F +C2K2ε, ð7Þ

where ε= jjωtðId ×d � ωy
sωsÞjj2F and

C1 =
nscsðd � nsÞ

dðd � 1Þðd +2Þ , C2 =
ns dðns + 1Þ � 2
� �

dðd � 1Þðd +2Þ ,

K1 = 1�
ntðd � csÞ

ðd � 1Þðd +2Þ , K2 =
nt

d
+

ntðd � ntÞ
ðd � 1Þðd +2Þ :

The ε term in Theorem 1 quantifies the similarity between the
source and target tasks. For example, if there exists a linear map ωp

such that ωpωs =ωt, then ε = 0. In the context of classification, this can
occur if the target classes are a strict subset of the source classes. Since
transfer learning is typically performed between source and target
tasks that are similar, we expect ε to be small. To gain more insights
into the behavior of transfer learning using the projected predictor,
the following corollary considers the settingwhere d→∞ in Theorem 1;
the proof is given in SI Note 3.

Corollary 1. Let S= ns
d ,T = nt

d ,C = cs
d and assume ∥ωt∥F =Θ(1). Under the

setting of Theorem 1, if S, T,C <∞ as d→∞, then:
a. Rðω̂pω̂sÞ is monotonically decreasing for S∈ [0, 1] if

ε < (1 −C)∥ωt∥F.
b. If 2S − 1 − ST <0, then Rðω̂pω̂sÞ decreases as C increases.
c. If S = 1, then Rðω̂pω̂sÞ= ð1� T +TCÞRðω̂tÞ+ εTð2� TÞ.
d. If S = 1 and T,C =Θ(δ), then Rðω̂pω̂sÞ= ð1� 2TÞ k

ωtk2F +2Tε+Θ ðδ2Þ:

Corollary 1 not only formalizes several intuitions regarding
transfer learning, but also theoretically corroborates surprising
dependencies on the number of source examples, target examples,
and source classes that were empirically observed in Fig. 2 for kernels
and in54 for convolutional networks. First, Corollary 1a implies that
increasing the number of source examples is always beneficial for
transfer learning when the source and target tasks are related (ε ≈0),
whichmatches intuition. Next, Corollary 1b implies that increasing the
number of source classeswhile leaving the number of source examples
fixed can decrease performance (i.e. if 2S − 1 − ST >0), even for similar
source and target tasks satisfying ε ≈0. This matches the experiments
in Fig. 2c, where we observed that increasing the number of source
classes when keeping the number of source examples fixed can be
detrimental to the performance. This is intuitive for transferring from
ImageNet32 to CIFAR10, sincewewould be adding classes that are not
as useful for predicting objects in CIFAR10. However, note that such
behavior is a priori unexpected given generalization bounds for multi-
task learning problems31–33, which show that increasing the number of
tasks decreases the overall risk. Our non-asymptotic analysis demon-
strates that such decrease in risk only holds as the number of classes
and the number of examples per class increase. Corollary 1c implies
that when the source and target task are similar and the number of
source classes is less than the data dimension, transfer learning with
theprojectedpredictor is always better than trainingonly on the target
task. Moreover, if the number of source classes is finite (C =0), Cor-
ollary 1c implies that the risk of the projected predictor decreases an
order ofmagnitude faster than the baselinepredictor. Inparticular, the
risk of the baseline predictor is given by (1− T)∥ωt∥2, while that of
the projected predictor is given by (1−T)2∥ωt∥2. Note also that when the
number of target samples is small relative to the dimension, Corollary
1c implies that decreasing the number of source classes has minimal
effect on the risk. Lastly, Corollary 1d implies that when T and C are
small, the risk of the projected predictor is roughly that of a baseline
predictor trained on twice the number of samples.

We derive scaling laws for translated predictors in the linear
setting. Analogously to the case for projection, we analyze the
risk of the translated predictor when ω̂s is the minimum norm
solution to k ys � ωXsk2F and ω̂c is the minimum norm solution
to k yt � ω̂sX t � ωXtk2F .

Theorem 2. Let X =Rd ,Ys =R
cs ,Yt =R

ct , and let ω̂t = ω̂s + ω̂c where
ω̂s = ysX

y
s and ω̂c = ðyt � ω̂sX tÞXy

t . Assuming that Ps and Pt are inde-
pendent, isotropic distributions onRd , then the riskRðω̂tÞ is given by

Rðω̂tÞ=
kωs � ωtk2F

kωtk2F
+ 1� ns

d

� �
1� kωs � ωtk2F

kωtk2F

 !" #
Rðω̂bÞ, ð8Þ

where ω̂b = ytX
y
t is the baseline predictor.

The proof is given in SI Note 5. Theorem 2 formalizes several
intuitions regarding when translation is beneficial. In particular, we
first observe that if the source model ωs is recovered exactly (i.e.
ns = d), then the risk of the translated predictor is governed by the
distance between the oracle source model and target model, i.e.,
∥ωs −ωt∥. Hence, the translated predictor generalizes better than the
baseline predictor if the source and target models are similar. In par-
ticular, by flattening the matrices ωs and ωt into vectors and assuming
∥ωs∥ = ∥ωt∥, the translated predictor outperforms the baseline pre-
dictor if the angle between the flattenedωs andωt is less than π

4. On the
other hand,when there areno source samples, the translatedpredictor
is exactly the baseline predictor and the corresponding risks are
equivalent. In general, we observe that the risk of the translated pre-
dictor is simply a weighted average between the baseline risk and the
risk in which the source model is recovered exactly.

Comparing Theorem 2 to Theorem 1, we note that the projected
predictor and the translated predictor generalize based on different
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quantities. In particular, in the case when ns = d, the risk of the trans-
lated predictor is a constant multiple of the baseline risk while the risk
of the projected predictor is a multiple of the baseline risk that
decreases with nt. Hence, depending on the distance between ωs and
ωt, the translated predictor can outperform the projected predictor or
vice-versa. As a simple example, consider the setting where
ωs =ωt, ns = d, and nt, cs < d; then the translated predictor achieves 0
risk while the projected predictor achieves non-zero risk. When
Ys =X t , we suggest combining the projected and translated pre-
dictors, as we did in the case of virtual drug screening. Otherwise, our
results suggest using the translated predictor for transfer learning
problems involving distribution shift in the features but no difference
in the label sets, and the projected predictor otherwise.

Discussion
In this work, we developed a framework that enables transfer learning
with kernel methods. In particular, we introduced the projection and
translation operations to adjust the predictions of a sourcemodel to a
specific target task: While projection involves applying a map directly
to the predictions given by the source model, translation involves
adding a map to the predictions of a source model. We demonstrated
the effectiveness of the transfer learned kernels on image classification
and virtual drug screening tasks. Namely, we showed that transfer
learning increased the performance of kernel-based image classifiers
by up to 10% over training such models directly on the target task.
Interestingly, we found that transfer-learned convolutional kernels
performed comparably to transfer learning using the corresponding
finite-width convolutional networks. In virtual drug screening, we
demonstrated that the transferred kernel methods provided an
improvement over prior work12, even in settings where none of the
target drug and cell lines were present in the source task. For both
applications, we analyzed the performance of the transferred kernel
model as a function of the number of target examples and observed
empiricallly that the transferred kernel followed a simple logarithmic
trend, thereby enabling predicting the benefit of collecting more tar-
get examples on model performance. Lastly, we mathematically
derived the scaling laws in the linear setting, thereby providing a the-
oretical foundation for the empirical observations. We end by dis-
cussing various consequences as well as future research directions
motivated by our work.

Benefit of pretraining kernel methods on large datasets
A key contribution of our work is enabling kernels trained on large
datasets to be transferred to a variety of downstream tasks. As is the
case for neural networks, this allows pre-trained kernel models to be
saved and sharedwith downstreamusers to improve their applications
of interest. A key next step to making these models easier to save and
share is to reduce their reliance on storing the entire training set, such
as by using coresets60. We envision that by using such techniques in
conjunction with modern advances in kernel methods, the memory
and runtime costs could be drastically reduced.

Reducing kernel evaluation time for state-of-the-art convolu-
tional kernels
In this work, we demonstrated that it is possible to train convolutional
kernelmethodsondatasetswith over 1million images. In order to train
such models, we resorted to using the CNTK of convolutional net-
works with a fully connected last layer.While other architectures, such
as the CNTK of convolutional networks with a global average pooling
last layer, have been shown to achieve superior performance on
CIFAR1014, training such kernels on 50k images from CIFAR10 is esti-
mated to take 1200 GPU hours61, which is more than three orders of
magnitude slower than the kernels used in this work. The main com-
putational bottleneck for using such improved convolution kernels is
evaluating the kernel function itself. Thus an important problem is to

improve the computation time for such kernels, which would allow
training better convolutional kernels on large-scale image datasets,
which could then be transferred using our framework to improve the
performance on a variety of downstream tasks.

Using kernel methods to adapt to distribution shifts
Our work demonstrates that kernels pre-trained on a source task
can adapt to a target task with distribution shift when given even
just a few target training samples. This opens novel avenues for
applying kernel methods to tackle distribution shift in a variety of
domains, including healthcare or genomics in whichmodels need to
be adapted to handle shifts in cell lines, populations, batches, etc. In
the context of virtual drug screening, we showed that our transfer
learning approach could be used to generalize to new cell lines. The
scaling laws described in this work may provide an interesting
avenue to understand how many samples are required in the target
domain for more complex domain shifts, such as from a model
organism like mouse to humans, a problem of great interest in the
pharmacological industry.

Methods
Overview of image classification datasets
For projection, we used ImageNet32 as the source dataset and
CIFAR10, Oxford 102 Flowers, DTD, and a subset of SVHN as the target
datasets. For all target datasets, we used the training and test splits
given by the PyTorch library62. For ImageNet32, we used the training
and test splits provided by the authors24. An overviewof the number of
training and test samples used from each of these datasets is out-
lined below.
1. ImageNet32 contains 1, 281, 167 training images across 1000

classes and 50k images for validation. All images are of
size 32 × 32× 3.

2. CIFAR10 contains 50k training images across 10 classes and 10k
images for validation. All images are of size 32 × 32 × 3.

3. Oxford 102 Flowers contains 1020 training images across 102
classes and 6149 images for validation. Images were resized to
32 × 32× 3 for the experiments.

4. DTD contains 1880 training images across 47 classes and 1880
images for validation. Images were resized to size 32 × 32 × 3 for
experiments.

5. SVHN contains 73257 training images across 10 classes and 26302
images for validation. All images areof size 32 × 32 × 3. In Fig. 2, we
used the same 500 training image subset for all experiments.

Training and architecture details
Model descriptions.
1. LaplaceKernel: For samples x, ~x, andbandwidth parameter L, the

kernel is of the form:

exp �kx � ~xk2
L

	 

:

For our experiments, we used a bandwidth of L = 10 as in63, selected
through cross-validation.
2. NTK: We used the NTK corresponding to an infinite width ReLU

fully connected networkwith 5 hidden layers.We chose this depth
as it gave superior performance on image classification task
considered in64.

3. CNTK: We used the CNTK corresponding to an infinite width
ReLU convolutional network with 6 convolutional layers followed
by a fully connected layer. All convolutional layers used filters of
size 3 × 3. The first 5 convolutional layers used a stride size of 2 to
downsample the image representations. All convolutional layers
used zero padding. The CNTK was computed using the Neural
Tangents library61.
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4. CNN: We compare the CNTK to a finite-width CNN of the same
architecture that has 16 filters in the first layer, 32 filters in the
second layer, 64 filters in the third layer, 128 filters in the fourth
layer, and 256filters in thefifth and sixth layers. In all experiments,
the CNN was trained using Adam with a learning rate of 10−4. Our
choice of learning rate is based on its effectiveness in prior
works65,66.

Details for projection experiments. For all kernels trained on Ima-
geNet32, we used EigenPro29. For all models, we trained until the
training accuracywas greater than 99%, whichwas atmost 6 epochs of
EigenPro. For transfer learning to CIFAR10, Oxford 102 Flowers, DTD,
and SVHN, we applied a Laplace kernel to the outputs of the trained
source model. For CIFAR10 and DTD, we solved the kernel regression
exactly using NumPy67. For DTD and SVHN, we used ridge regulariza-
tion with a coefficient of 10−4 to avoid numerical issues with solving
exactly. The CNN was trained for at most 500 epochs on ImageNet32,
and the transferred model corresponded to the one with highest
validation accuracy during this time. When transfer learning, we fine-
tuned all layers of the CNN for up to 200 epochs (again selecting the
model with the highest validation accuracy on the target task).

Details for translation experiments. For transferring kernels from
CIFAR10 to CIFAR-C, we simply solved kernel regression exactly (no
ridge regularization term). For the corresponding CNNs, we trained
the sourcemodels on CIFAR10 for 100 epochs and selected themodel
with the best validation performance. When transferring CNNs to
CIFAR-C, we fine-tuned all layers of the CNN for 200 epochs and
selected themodel with the best validation accuracy.When translating
kernels from ImageNet32 to CIFAR10 in SI Fig. S5, we used the fol-
lowing aggregated class indices in ImageNet32 to match the classes in
CIFAR10:
1. plane = {372, 230, 231, 232}
2. car = {265, 266, 267, 268 }
3. bird = {383, 384, 385, 386}
4. cat = {8, 10, 11, 55}
5. deer = {12, 9, 57}
6. dog = {131, 132, 133, 134}
7. frog = {499, 500, 501, 494}
8. horse = {80, 39}
9. ship = {243, 246, 247, 235}
10. truck = {279, 280, 281, 282}.

Details for virtual drugscreening.We used theNTK corresponding to
a 1 hidden layer ReLU fully connected networkwith an offset term. The
same model was used in12. We solved kernel ridge regression when
training the source models, baseline models, and transferred models.
For the sourcemodel,weused ridge regularizationwith a coefficient of
1000. To select this ridge term, we used a grid search over
{1, 10, 100, 1000, 10000} on a random subset of 10k samples from the
source data. We used a ridge term of 1000 when transferring
the source model to the target data and a term of 100 when training
the baseline model. We again tuned the ridge parameter for these
models over the same set of values but on a random subset of 1000
examples for one cell line (A549) from the target data. We used 5-fold
cross validation for the target task and reported themetrics computed
across all folds.

Comparison with multiple kernel learning approaches. In SI Fig. S7,
we compare our translation approach to the approachof directly using
multiple kernel learning algorithms such as Centered Kernel Align-
ment (CKA)68, EasyMKL69, FHeuristic70, and Proportionally Weighted
Multiple Kernels (PWMK)71 to learn a kernel on the source task and
train the target model using the learned kernel. Due to the computa-
tional limitations of these priormethods, we only consider the subtask

of classifying cars and deer in CIFAR10 (source) and transferring to the
19 corruptions in CIFAR10-C (target). The source task contains 10, 000
training samples and 2000 test samples, while the 19 target tasks each
contain 1000 training samples and 1000 test samples. The multiple
kernel learning algorithms learn combinations of a Laplace kernel with
bandwidth 10, a Gaussian kernel of the form
KGðx,zÞ= exp �γ k x � zk2� �

with γ = 0.001, and the linear kernel
KL(x, z) = xTz. We choose the bandwidth for the Laplace kernel from29

and the value of γ for the Gaussian kernel so that the entries of the
Gaussian kernel are on the same order of magnitude as the Laplace
kernel for this task. For each kernel learning algorithm, we train a
source model and then compare the following three models on the
target task: (1) the baseline model in which we use the kernel learning
algorithm directly on the target task; (2) the transfer learned kernel
model in which we use the weights from the source task to combine
the kernels on the target task; and (3) translating the learned kernel on
the source task using our translation methodology. As shown in SI
Fig. S7, the transfer learned kernel outperforms the baseline kernel for
almost all multiple kernel learning algorithms (except FHeuristic), and
it is outperformed by our translation methodology in all cases.

Remark. We presented a comparison on this simple binary classifica-
tion task for the following computational reasons. First, we considered
binary classification, since prior multiple kernel learning approaches
implemented in MKLPy scale poorly to multi-class problems. While
there is no computational price to be paid for our method for multi-
class classification, prior methods build one kernel per class and thus
require 10 times more compute andmemory when using all 10 classes
in CIFAR10. Secondly, we compared with only translation and not
projection sincepriormultiple kernel learningmethods scalepoorly to
the ImageNet32 dataset used in our projection experiments. Namely,
multiple kernel learning methods require materializing the kernel
matrix,which for ImageNet32would takeupmore than3.5 terabytesof
memory as compared to 128 gigabytes for our method.

Projection scaling laws
For the curves showing the performance of the projected predictor as
a function of the number of target examples in Fig. 2b and SI Fig. S2a, b,
we performed a scaling law analysis. In particular, we used linear
regression to fit the coefficients a, b of the function y=alog2x + b to
the points from each of the curves presented in the figures. Each curve
in these figures has 50 evenly spaced points and all accuracies are
averaged over 3 seeds at each point. The R2 values for each of the fits is
presented in SI Fig. S4. Overall, we observe that all values are above
0.944 and are higher than 0.99 for CIFAR10 and SVHN, which
have more than 2000 target training samples. Moreover, by fitting the
same function on the first 5 points from these curves for CIFAR10, we
are able to predict the accuracy on the last point of the curvewithin 2%
of the reported accuracy.

Preprocessing for CMAP data
While CMAP contains 978 landmark genes, we removed all genes that
were 1 upon log2ðx + 1Þ scaling the data. This eliminates 135 genes and
removes batch effects identified in50 for each cell line. Following the
methodology of 50, we also removed all perturbations with dose less
than 0 and used only the perturbations that had an associated sim-
plified molecular-input line-entry system (SMILES) string, which
resulted in a total of 20, 336 perturbations. Following50, for each of the
116, 228 observed drug and cell type combinations we then averaged
the gene expression over all the replicates.

Metrics for evaluating virtual drug screening
Let ŷ 2 Rn×d denote the predicted gene expression vectors and let
y* 2 Rn×d denote the ground truth. Let �yðiÞ = 1

d

Pd
j = 1 y

ðiÞ
j . Let ŷv, y

*
v 2

Rdn denote vectorized versions of ŷ and y*. We use the same three
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metrics as those considered in12,51. All evaluation metrics have a max-
imum value of 1 and are defined below.
1. Pearson r value:

r =
h ŷv, y*vi

kŷvk2ky*vk2
:

2. Mean R2:

R2 =
1
n

Xn
i= 1

1�
Pd

j = 1 ð ŷðiÞj � y*j
ðiÞÞ

2

Pd
j = 1 ð y*j

ðiÞ � �yðiÞÞ
2

0
B@

1
CA:

3. Mean Cosine Similarity:

c =
1
n

Xn
i = 1

hŷðiÞ,y*ðiÞi
kŷðiÞk2ky*ðiÞk2

:

We additionally subtract out the mean over cell type before
computing cosine similarity to avoid inflated cosine similarity
arising from points far from the origin.

DepMap analysis
To provide another application of our framework in the context of
virtual drug screening, we used projection to transfer the kernel
methods trained on imputing gene expression vectors in CMAP to
predicting the viability of a drug and cell line combination in
DepMap53. Viability scores in DepMap are real values indicating how
lethal a drug is for a given cancer cell line (negative viability indicates
cell death). To transfer from CMAP to DepMap, we trained a kernel
method to predict the gene expression vectors for 55, 462 cell line
and drug combinations for the 64 cell lines from CMAP that do not
overlap with DepMap.We then used projection to transfer themodel
to the 6 held-out cell lines present in both CMAP and DepMap, which
are PC3, MCF7, A375, A549, HT29, and HEPG2. Analogously to our
analysis of CMAP, we stratified the target dataset by drugs that
appear in both the source and target tasks (9726 target samples) and
drugs that are only found in the target task but not in the source task
(2685 target samples). For this application, we found that Mol2Vec72

embeddings of drugs outperformed 1024-bit circular fingerprints.
We again used a 1-hidden layer ReLU NTK with an offset term for
this analysis and solved kernel ridge regression with a ridge coeffi-
cient of 100.

SI Fig. S9a shows theperformanceof the projected predictor as a
function of the number of target samples when transferring to a
target task with drugs that appear in the source task. All results are
averaged over 5 folds of cross-validation and across 5 random seeds
for the subset of target samples considered in each fold. It is apparent
that performance is greatly improved when there are fewer than
2000 samples, thereby highlighting the benefit of the imputed gene
expression vectors in this setting. Interestingly, as in all the previous
experiments, we find a clear logarithmic scaling law: fitting the
coefficients of the curve y =a log2 x + b to the 76 points on the graph
yields an R2 of 0.994, and fitting the curve to the first 10 points
lets us predict the R2 for the last point on the curve within 0.03.
SI Fig. S9b shows how the performance on the target task is affected
by the number of genes predicted in the source task. Again perfor-
mance is averaged over 5 fold cross-validation and across 5 seeds per
fold. When transferring to drugs that were available in the source
task, performance monotonically increases when predicting more
genes. On the other hand, when transferring to drugs that were
not available in the target task, performance begins to degrade
when increasing the number of predicted genes. This is intuitive,
since not all genes would be useful for predicting the effect of an
unseen drug and could add noise to the prediction problem upon
transfer learning.

Hardware details
All experiments were run using two servers. One server had 128GB of
CPU random access memory (RAM) and 2 NVIDIA Titan XP GPUs each
with 12GB of memory. This server was used for the virtual drug
screening experiments and for training the CNTK on ImageNet32. The
second server had 128GB of CPU RAM and 4 NVIDIA Titan RTX GPUs
each with 24GB of memory. This server was used for all the remaining
experiments.

Data availability
All datasets considered in this work are publicly available. The stan-
dard image classification datasets considered in this work are available
directly through the PyTorch library62. CMap data is available through
the following website https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE92742, and we used the level 2 data given in the file
GSE92742_Broad_LINCS_Level2_GEX_epsilon_n1269922x978.gctx. Dep-
Map data is available through the following website https://depmap.
org/repurposing/, and we used the primary screen data.

Code availability
All code is available at https://github.com/uhlerlab/kernel_tf73.
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