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Proportional hazards models have been proposed to analyse time-to-event
phenotypes in genome-wide association studies (GWAS). However, little is
known about the ability of proportional hazards models to identify genetic
associations under different generative models and when ascertainment is
present. Here we propose the age-dependent liability threshold (ADuLT)
model as an alternative to a Cox regression based GWAS, here represented by
SPACox. We compare ADuLT, SPACox, and standard case-control GWAS in
simulations under two generative models and with varying degrees of ascer-
tainment as well as in the iPSYCH cohort. We find Cox regression GWAS to be
underpowered when cases are strongly ascertained (cases are oversampled by
a factor 5), regardless of the generative model used. ADuLT is robust to
ascertainment in all simulated scenarios. Then, we analyse four psychiatric
disorders in iPSYCH, ADHD, Autism, Depression, and Schizophrenia, with a
strong case-ascertainment. Across these psychiatric disorders, ADuLT identi-
fies 20 independent genome-wide significant associations, case-control GWAS
finds 17, and SPACox finds 8, which is consistent with simulation results. As
more genetic data are being linked to electronic health records, robust GWAS
methods that can make use of age-of-onset information will help increase
power in analyses for common health outcomes.

Over the last decade, genome-wide association studies (GWAS) have
successfully identified thousands of genetic variants associated with
humandiseases1,2.Most of theseGWASshavemodelled the outcomeas
a binary case-control variable in a logistic (or linear) regression while
accounting for covariates such as age, sex, and genetic principal
components. However, these models are generally not suited for
modelling time-to-event data, as they do not account for certain types
of missing or censored data. Time-to-event models are commonly
used in epidemiology and many other fields, and have proven useful
for both accounting for censoring, changes in disease incidence over

time (cohort effects), and age-of-onset3. Time-to-eventmodels canalso
be used to estimate absolute time-dependent risk (i.e. the probability
of developing the disease as a function of time) conditional on indi-
vidual features, and are therefore widely used to estimate disease risk
in clinical settings4.

Although time-to-event models have been proposed for GWAS5–8,
their adoption has been limited in practice. One reason is that age-of-
onset (AOO) information is often not made available. However, time-
to-event data is becoming more readily available as more genotyped
data are being linked to health records. Another reason is that fitting

Received: 31 August 2022

Accepted: 28 August 2023

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: emp@ncrr.au.dk; bjv@ncrr.au.dk

Nature Communications |         (2023) 14:5553 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3257-5269
http://orcid.org/0000-0002-3257-5269
http://orcid.org/0000-0002-3257-5269
http://orcid.org/0000-0002-3257-5269
http://orcid.org/0000-0002-3257-5269
http://orcid.org/0000-0003-0553-6480
http://orcid.org/0000-0003-0553-6480
http://orcid.org/0000-0003-0553-6480
http://orcid.org/0000-0003-0553-6480
http://orcid.org/0000-0003-0553-6480
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-6198-4953
http://orcid.org/0000-0001-6198-4953
http://orcid.org/0000-0001-6198-4953
http://orcid.org/0000-0001-6198-4953
http://orcid.org/0000-0001-6198-4953
http://orcid.org/0000-0002-8147-240X
http://orcid.org/0000-0002-8147-240X
http://orcid.org/0000-0002-8147-240X
http://orcid.org/0000-0002-8147-240X
http://orcid.org/0000-0002-8147-240X
http://orcid.org/0000-0002-5230-9865
http://orcid.org/0000-0002-5230-9865
http://orcid.org/0000-0002-5230-9865
http://orcid.org/0000-0002-5230-9865
http://orcid.org/0000-0002-5230-9865
http://orcid.org/0000-0002-4792-6068
http://orcid.org/0000-0002-4792-6068
http://orcid.org/0000-0002-4792-6068
http://orcid.org/0000-0002-4792-6068
http://orcid.org/0000-0002-4792-6068
http://orcid.org/0000-0003-2277-9249
http://orcid.org/0000-0003-2277-9249
http://orcid.org/0000-0003-2277-9249
http://orcid.org/0000-0003-2277-9249
http://orcid.org/0000-0003-2277-9249
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41210-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41210-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41210-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41210-z&domain=pdf
mailto:emp@ncrr.au.dk
mailto:bjv@ncrr.au.dk


these models on large data is computationally intensive. However,
several computationally efficient survival analysisGWASmethods have
been proposed recently for large population-scale data. These include
efficient Cox regression implementations9,10, and an efficient frailty
(random effects) model11. The frailty model inherits some of its
advantages from the mixed model12–15, and can both account for
population structure and relatedness, as well as improve statistical
power when sample sizes are large. A third reason is that time-to-event
models are generally not expected to provide significant gains in
power for rare health outcomes16. Indeed, the performance of Cox-
based regressions in a GWAS setting is poorly understood, and they
have only been viewed in comparison to other Cox-based regressions
or logistic regression5,8. Importantly, these benchmarks have focused
on the proportional hazards generative model and without significant
case ascertainment, which is common in GWAS. In practice, when
collecting data for GWAS it is common to oversample cases to increase
the effective sample size and statistical power in the genetic analyses,
leading to a case-control or case-cohort study design.

Herewe examine towhat extent case ascertainment in GWASdata
affects Cox regression GWAS and standard case-control GWAS.
Inspired by how robust liability threshold models17,18 (LTM) have
proved to be for ascertained data19, we propose ADuLT (age-depen-
dent liability threshold) as a computationally efficient time-to-event
model for GWAS, and examine how it performs in the presence of case
ascertainment. ADuLT is based on the liability threshold model and is
the underlying model for the recently proposed LT-FH++ method20.
ADuLT accounts for age-of-onset information, as well as sex and
cohort effects by personalising the thresholds used to infer the case-
control status for each individual. These thresholds are personalised
by using population-based cumulative incidence proportions (CIPs)
for the phenotype of interest as a function of age and additional
information, such as sex and birth year (to model sex and cohort
effects). We examine how ADuLT compares to SPACox and standard
linear regression GWAS in terms of both statistical power and com-
putational efficiency, using both simulations and real iPSYCH data,
which is a psychiatric disorder case-cohort data with a strong case
ascertainment bias where cases are about 20 times more likely to be
sampled21,22.

With an increasing integration between biobanks and electronic
health records, it is important to utilise additional information in the
best way possible, and we believe that knowledge about age-of-onset
will be a common and powerful piece of information to include.
Finally, ADuLT is implemented in an efficient R package called
LTFHPlus (github.com/EmilMiP/LTFHPlus), and is made highly scal-
able by relying onparallelization and the R package Rcpp, which offers
a seamless integration of R and C++23.

Results
Overview of method
The age-dependent liability threshold model presented here was first
introduced in our previous paper extending the LT-FH method to
account for family history as well as age-of-onset, sex, and cohort
effects among all individuals, including the familymembers20,24. In this
paper, we focus on the ADuLT model as an alternative to commonly
used time-to-event or linear regression GWAS methods, without con-
sidering any family history.

The ADuLT model modifies the LTM by assuming that the
threshold used to determine an individual’s case-control status
corresponds to the CIP at the age of diagnosis. Only individuals with
liabilities above their assigned liability threshold, which depends on
their age, sex, and birth year, become a case. In Fig. 1, we present the
CIPs for ADHD for individuals born in Denmark in the year 2000. The
CIPs increase as the population gets older, which in turn leads to a
decreased threshold. If additional information, such as sex and birth
year, is available, the population CIPs should be stratified according
to this additional information (as seen in Fig. 1), as this improves
estimation of the genetic liability20. In the first step, a personalised
threshold is assigned to each individual based on their current age or
the age-of-onset, as well as sex and birth year. In the second step, the
ADuLTmodel uses the liability-scale heritability to estimate a genetic
liability for each individual. The third step uses the ADuLT pheno-
type as a continuous outcome in a GWAS. There are no restrictions
on the choice of GWAS method as long as it accepts continuous
outcomes, allowing researchers to benefit from current and future
advances in GWASmethods. Note that Fig. 1 illustrates the use of CIP
for cases. If an individual is a control, the area of possible liabilities

GWAS

Φ(1 − )

Es�mate
gene�c liability 

Low High

Fig. 1 | Overview of the information used, and the different steps needed to
perform a GWAS based on the ADuLT phenotype. The cumulative incidence
proportions (CIPs) stratified by sex and birth year (here ADHD for individuals born
in Denmark in 2000) are converted to a threshold for the age-dependent liability
threshold model. Females are represented by the red line, while males are

represented by the blue line. The CIPs has been marked at the age of 10 and 15 for
both sexes (dotted lines). Finally, a genetic liability is estimated for each individual,
and this ADuLT phenotype can be used as the outcome in a GWAS. Parts of the plot
were created with BioRender.com.
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will instead be from negative infinity to the threshold identified from
the CIPs.

Simulation results
We used two generative models for the simulations, namely the LTM
and the proportional hazards model (see Methods). The performance
of a simple case-control GWAS, SPACox, and the ADuLT phenotype
used as the outcome in a linear regression-based GWAS was assessed
under both generative models. Sex and age or age-of-onset were
simulated for 1 million individuals, each with 20,000 independent
SNPs. To examine the effect of ascertainment of cases, which is com-
mon in GWAS data, similar analyses were performed where the total
number of individuals was randomly downsampling from 1 million to
20,000 individuals, leaving 10,000 controls and 10,000 cases in each
case ascertained dataset. The following simulation results are based on
10 replications of each parameter setup.

Figure 2 displays the power for each method under both gen-
erative models with 250 causal SNPs. A similar plot showing the power
of the samegenerativemodels butwith 1000 causal SNPs canbe found
in Supplementary Fig. 5. Without case ascertainment, the power of all

three methods is similar under both generative models (Fig. 2A). In
Fig. 2B, which is based on a case ascertained dataset, the power of all
threemethods decreased due to a reduced sample size, but the power
of SPACox was disproportionately affected by case ascertainment. For
simulated case ascertained traits that have a lifetime prevalence of 5%
or below, SPACox performs worse than linear regression for both the
case-control status and the ADuLT phenotype bymore than a factor of
10 in the worst case, and ~25% worse in the best case. Under the pro-
portional hazards model and a lifetime prevalence of 20%, and with
case ascertainment, SPACox has an average power on par with ADuLT.
The full simulation results can be found in Supplementary Data 1, with
all simulation results under both generative models and with and
without case ascertainment.

As several phenotypes are assigned to the same set of genotypes,
we will consider a paired power for comparison in the following sec-
tions. This means all calculations are done within each iteration when
possible, as the naїvemean value would not be able to account for one
method consistently identifying more SNPs. Without case ascertain-
ment, for both 250 and 1000 causal SNPs, and all considered popula-
tion prevalences, the power of all methods are within ~3% of one
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Fig. 2 | The power is shown for different population prevalence, varying from
1% to 20%. The generative model for Hazard is the proportional hazards model,
and for Liability it is the liability threshold model. The simulation results are

based on 10 replications. A The power, i.e. the fraction of causal SNPs detected for
each method, without case ascertainment. B The power with case ascertainment,
i.e. the number of individuals is subsampled to 10k cases and 10k controls.
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another, except for one parameter setup. The parameter setup with
the largest difference without case ascertainment was under the pro-
portional hazards model and with 1000 causal SNPs, where the ADuLT
phenotype had ~9% lower power and case-control status was 19%
lower. Under the proportional hazards model and without case
ascertainment, SPACox had the highest power for all considered pre-
valences, while case-control status had the lowest. Under the LTM and
without case ascertainment, ADuLT obtained the highest power for all
prevalences, while SPACox had the lowest power.

Under the LTM, with case ascertainment, and 1000 causal SNPs,
the average increase in power was 117% with ADuLT over SPACox
across all prevalences considered, and it was 97% for case-control
status over SPACox. With case ascertainment and 250 causal SNPs, we
observed an average increase of 34% in power over SPACox with
ADuLT, and a 29% increase in power with case-control status, showing
that SPACox has a comparatively low power for low effect sizes.

Under the proportional hazards model and with case ascertain-
ment, we were not able to use a paired power for comparisons, as
SPACox was unable to identify any genome-wide significant SNPs in
36 out of 80 simulations (29 out of 40 when simulating 1000 causal
SNPs, and 7 out of 40 when simulating 250 causal SNPs). The ADuLT
phenotype and case-control status were unable to identify genome-
wide significant SNPs in only 6 out of 80 simulations, all of which are
for 1000 causal SNPs. The following comparisons are based on the
average un-paired power. Under the proportional hazards model
simulations with case ascertainment and 1000 causal SNPs, ADuLT
had a 317% higher power than SPACox, whereas case-control status
had 256% higher power than SPACox. When simulating 250 causal

SNPs, ADuLT resulted in a 234% higher power and case-control status
had a 193% higher power compared to SPACox. Plots of the power as
a function of MAF and the true effect size can be found in Supple-
mentary Figs. 8–15.

In Supplementary Figs. 6 and 7, the average χ2-statistics for the
null SNPs is reported. The null SNPs are the SNPs with an effect size of
0(i.e. no effect). The expected average of these SNPs’ χ2-statistics is 1.
Plots were achieved for 250 and 1000 causal SNPs, respectively, and
each plot contains results for four different lifetime prevalences, with
and without case ascertainment, and for both generative models. All
models were well calibrated, since no inflation of the null statistics is
observed. All methods controlled for type-1 errors (false positives) at
varying significance levels. No false positives were observed for any
methodwith a significance level of 5 × 10−8. All false positive results can
be found in Supplementary Data 1.

Computation times
The computational time for estimating the ADuLTphenotype depends
solely on the number of individuals. The running time for the GWAS
step depends heavily on the implementation of the GWAS method
used. In Fig. 3, the combined running times of estimating the ADuLT
phenotype and performing a GWAS using the bigsnpr package25 are
reported. We used 4 CPU cores for both steps, which is a conservative
number of cores. The SPACox implementation does not support par-
allelization, which is why SPACox was run sequentially. We find that
ADuLT together with a linear regression is faster than SPACox, even
with only modest parallelization. Logistic regression of a binary phe-
notype is slower than linear regression of the samephenotype25, which
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SPACox uses a single CPU core, as no parallelization is available.We used 1, 2, and 4
CPU cores for estimating the ADuLT phenotype and performing the linear
regression GWAS for this phenotype. The means and corresponding standard
errors of the run times can be found in Supplementary Data 1.
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means ADuLT together with a linear regressionmay be faster and have
higher power to detect causal SNPs.

GWAS of psychiatric disorders in iPSYCH
The iPSYCH data has been linked to the Danish registers, whichmeans
that detailed information on age-of-onset, age, sex, and birth year can
be assessed for all genotyped individuals that are part of the iPSYCH
cohort22. This supplementary information was used to analyse four
psychiatric traits, namely ADHD, autism, depression, and schizo-
phrenia. For each of these phenotypes, population-based CIPs were
obtained by birth year and sex (see Supplementary Figs. 18, 22, 26 and
30 for plots of the CIPs used, and see Cumulative Incidence Propor-
tions for details). The prevalences were used to tailor the thresholds to
each individual under the ADuLT model (see Methods).

We performed GWASs for each of the four phenotypes and for
each of the methods considered, i.e. using either the case-control
status or the estimated genetic liability by ADuLT as the outcome in a
linear regression-based GWAS or SPACox (see Methods for details).
Figure 4 displays theManhattan plots for ADHD for allmethods, where

the case-control GWAS included age as a covariate, while the ADuLT
GWAS and SPACox did not. To report nearly independent findings, LD
clumping was performed on the summary statistics with a r2 threshold
of 0.1 and awindow size of 500kb, prioritising the SNPswith the lowest
p-values. This was done for each combination of phenotype and
method. The lowest p-value LD-clumped SNPs that are unique to
ADuLT and ADHD can be found in Supplementary Table 3 and the LD-
clumped snps that are unique to case-control status and ADHD can be
found in Supplementary Table 4. For ADHD, we found 12 independent
genome-wide significant associations when using the ADuLT pheno-
type as the outcome, while case-control status and SPACox found 11
and 5 associations, respectively. The ADuLT GWAS had two indepen-
dent associations that were not identified by case-control associations,
and case-control GWAS found one association that was not found by
the ADuLT GWAS. One of the associations unique to ADuLT is
rs4660756. The gene closest to this SNP is ST3GAL3, which has pre-
viously been associated with educational attainment26 and ADHD27.
SPACox also identified ST3GAL3, but through rs11810109 instead.
The association unique to case-control GWAS is rs8085882 on
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Fig. 4 | Manhattan plots for ADHD for all three methods. Case-control GWAS
uses the age of individuals as a covariate, whereas theADuLTGWASand SPACox do
not. The orange dots indicate suggestive SNPs with a p-value threshold of 5 × 10−6.
The red dots correspond to Bonferroni-adjusted genome-wide significant SNPs

with a p-value threshold of 5 × 10−8. The diamonds correspond to the lowest p-value
LD clumped SNP in a 500k base pair window with an r2 = 0.1 threshold. All tests
performed are two-sided.
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chromosome 18. The closest gene is ZNF521, whichhaspreviously been
associated with education attainment28, ADHD29, and smoking
initiation30. The association with the lowest p-value that is shared
among all methods is rs4916723 on chromosome 5 with LINC00461 as
the closest gene. This gene has also been reported as being associated
with educational attainment30 and ADHD31.

Across the four psychiatric disorders, ADuLT found 20 indepen-
dent genome-wide significant associations, while case-control status
found 17 and SPACox found 8. The Manhattan plots for each of the
methods, each of the remaining disorders (autism, depression, and
schizophrenia), andwith andwithout age asa covariate canbe found in
Supplementary Figs. 19, 20, 23, 24, 27, 28, 31 and 32. We also provide
the results of a GWAS with the ADuLT phenotype as the outcome and
with both sex and age excluded from the model. The Manhattan plot
can be found in Supplementary Figs. 21, 25, 29 and 33, and a summary
table of all performed analysis can be found in Supplementary Table 2.
Notably, SPACox consistently identified fewer associations than the
ADuLT and case-control status GWASs, and was the only method that
did not identify any significant association for major depression and
schizophrenia. We also performed GWAS with the ADuLT phenotype
where both sex and age were excluded from the phenotype. These
analysis did not differ substantially from the presented analysis and
can be found in Supplementary Figs. 20, 24, 28 and 32.

Finally, as SPACox does not provide effect sizes, we opted to plot
p-values for validation since they are the only way to directly compare
between GWAS models. We used the largest available summary sta-
tistics from PGC1,32–34 for the four considered phenotypes, used the
SNPs that were present in the iPSYCH data, and performed LD
clumping (using the same settings as before) and prioritising the SNPs
with the lowest p-values from the meta-analysed PGC summary sta-
tistics to keep only independent hits. Then, we took the SNPs thatwere
genome-wide significant in the LD-clumped PGC summary statistics
and plotted the p-values of the three consideredmethods against each
other. The plot can be found in Supplementary Figure 34 and shows
the p-values for ADuLT against case-control status and SPACox p-
values on the SNPs that are independent genome-wide significant from
the largest available PGC summary statistics, and they are therefore
not necessarily genome-wide significant for either of the methods
considered. The plot shows ADuLT has a slightly lower p-value than
case-control and SPACox on the external genome-wide
significant SNPs.

Discussion
With biobanks such as the UK biobank35, iPSYCH22, FinnGen36, or Bio-
bank Japan37 linking electronic health records to genetic data, there is
an increased incentive to develop methods that can fully utilise this
supplementary information. This includes details about age-of-onset,
which can be used in time-to-event analyses to improve power. In
epidemiology, time-to-event analyses are usually performed with a
Cox-based regression, whereas time-to-event GWAS are still relatively
uncommon. This has in part been due to computational challenges of
applying Cox regression to GWAS, but recent developments of effi-
cient Cox-based regression methods such as SPACox or GATE have
largely resolved this limitation9,11. However, the performance of Cox-
based regressions for GWAS has only been viewed in comparison to
other Cox-based or logistic regression5,8, and not when the case-
control cohort is sampled with ascertainment (e.g. where cases are
oversampled). Evaluating their performance in ascertained case-
control cohorts is important as such datasets are very common in
genetics, e.g. the iPSYCH and FinnGen data.

In this paper, we have examined the proportional hazards model
implemented in SPACox and found that in situations where cases are
ascertained (or oversampled; which is often the case in GWAS data-
sets), the proportional hazards based model was less powerful than a
simple linear regression. We proposed the age-dependent liability

threshold (ADuLT)model as an efficient and robust alternative to Cox-
based time-to-event GWAS. The ADuLTmodel is themodel underlying
the recently published LT-FH++ method20, as presented here it does
not incorporate information on family members. However, the main
focus of this paper was to compare the ADuLT model to a computa-
tionally efficient time-to-event GWAS method, SPACox, without
accounting for information such as family history. ADuLT incorporates
time-to-event information into the LTM by using liability thresholds
that vary with age and sex. These personalised thresholds are derived
from population-based estimates of the cumulative incidence pro-
portions. Using this information, ADuLT first estimates individual
posterior genetic liabilities, which are then used as a quantitative
phenotype in GWAS. This final step can be performed with any con-
tinuous outcome GWAS software, which allows for ADuLT to benefit
from using advanced GWASmethods, such as linearmixedmodels13–15.
The computational cost of estimating the individual posterior liabil-
ities is negligible when compared to the computational cost of per-
forming even a simple GWAS with linear regression.

Using simulations, we compared different GWAS methods, Cox
regression as implemented in SPACox and a linear regression with the
ADuLT phenotype and the case-control status. As expectedwe found a
Cox-based time-to-event GWAS to provide most power under the
proportional hazards generative model, however it was closely fol-
lowed by the ADuLT GWAS and case-control GWAS, especially when
disease prevalence is low. Conversely,when simulating under the LTM,
the ADuLT GWAS had the greatest power, followed by Cox regression
and case-control GWAS. However, when considering ascertainment of
cases, we found SPACox to have the lowest power of all considered
methods under both generative models and for all prevalences except
one (the least ascertained sample, i.e. the case ascertained data most
similar to the full population). Interestingly, the simulations also show
that Cox regression and ADuLT provide little or no benefit over stan-
dard case-control GWAS (linear or logistic regression) when the pre-
valence is small (e.g. <2%). We note that these results are in line with
previously reported comparison between Cox regression and linear
regression in case-cohort studies8. When we applied all three methods
to the iPSYCHdata, which has a high degree of case ascertainment, the
results were in agreement with the simulation results in that SPACox
identified fewer genome-wide significant variants than the case-
control or the ADuLT GWASs. Therefore, for identifying significant
genome-wide associated variants, a Cox-regression GWAS can have
less statistical power than linear regression with case-control status or
the ADuLT phenotype. As a result, we recommend using more robust
GWAS methods, such as on case-control status or the ADuLT pheno-
type when performing GWAS in ascertained samples, which includes
most case-cohort and case-control datasets.

Although Cox regression GWASmay not be robust to ascertained
samples, we note that it can still improve power in population cohorts
(i.e. population representative samples) for relatively prevalent out-
comes. In addition, the ability to estimate unbiased individual absolute
or relative risk over a time-period is also an important benefit of time-
to-event models. Furthermore, several adjustments have been pro-
posed to Cox regression when applied to ascertained data, such as
inverse probability weighting38 (IPW). IPW results in unbiased esti-
mates, but estimating their variance (and association p-values) can be
difficult39. Furthermore, to the best of our knowledge, IPW is currently
not implemented in computationally efficient Cox regression GWAS
methods (e.g. SPACox). Instead, we considered the proportional
hazards implementationavailable in thesurvivalpackage forR40.We
used the proportional hazards model as generative model and ascer-
tained the cases, but found no difference between the results from the
survival package and SPACox, even with IPW. The results of the IPW
can be seen in Supplementary Figs. 16 and 17. For time-to-event stu-
dies, where researchers are not able to design the study, one has to
consider how participants have been sampled/recruited. Depending
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on the sampling procedure, there are several potential biases present
in the data and certain models may not be suitable. For instance,
phenotypes in iPSYCH have been ascertained, and UKBB phenotypes
are subject to collider bias and immortal time bias41,42. The appropriate
model for either iPSYCH or UKBB is not a straightforward application
of the proportional hazards model without properly considering and
accounting for case ascertainment, collider bias, or immortal timebias.
Instead a method tailored to each biobank and their particular sam-
pling strategy as they each have different challenges. However, these
biobank-specific challenges are often ignored in favour of a one-size-
fits-all approach. With the sex and birth year stratified population-
representative CIPs, ADuLT is able to account for these biases.

In contrast, we find ADuLT to be a computationally efficient and
robust time-to-event GWAS method that in terms of statistical power
performs on par with or better than Cox-regression GWAS in simula-
tions. Moreover, using the LTM, it is possible to account for family
history information20,24, and it can be used in connection to risk
prediction43–45. GWAS individual-level data can also be used to build
polygenic scores based on efficient penalized regression models46; a
future direction of research for us is to investigate whether a penalized
linear regression using the ADuLT-inferred outcome would be pre-
ferable to using a Cox-based penalized regression as implemented in
e.g. snpnet-Cox47. As other possible future directions, the ADuLT
model may also provide an alternative framework for examining
interactions between age and genetic variants48, and provide insight
into the genetics underlying disease trajectory. Like LT-FH24 and LT-FH
++20, ADuLT also has the advantage that it produces quantitative
posterior liabilities which can be treated as quantitative phenotypes
and analysed with advanced GWAS method, such as BOLT-LMM14,
fastGWA13, or REGENIE15. However, ADuLT does have some limitations.
First, ADuLT requires population-representative CIPs to be available
for the disorder of interest, and preferably stratified by sex and birth
year.Recent efforts tomake suchdata publicly available for all diseases
is therefore of great interest49. If population-representative CIPs are
not available, it is possible to use CIPs from a similar population. An
example of this could be using population-representative CIPs from
the danish registers in UKBB or FinnGen. However, in such a case, we
would caution against fixing the full liability of a case, but rather only
setting the lower limit to be the individualised threshold and letting
the upper limit be infinite. Second, the assumption that early onset
cases have higher disease liability may not always be true. Although
age-of-onset tends to be negatively genetically correlated with case-
control status, the correlation is not always very strong50. Third, the
model does not account for possible interactions between genotype
(or environment) with age, but exploring methods that model this
relationship is a future direction. Fourth, similar to LT-FH24 and LT-FH+
+20, ADuLT assumes the narrow sense (additive) heritability is known a
priori for the outcome of interest. These can either be obtained from
literature or estimated in the data, e.g. using family-based heritability
estimates51. However, we have also previously shown that the model
we use is robust to misspecification of prevalence information and
heritability20. Finally, in this study we did not consider downsampling
of cases or ascertainment of healthy controls, whichmight be relevant
formany genetic datasets such as theUKbiobank35 or theDanishblood
donor study data52.

It is not necessary to include age as a covariate in a GWAS with
ADuLT as the outcome, since the effect of age is already accounted for
in the phenotype itself. Traditionally, age or some related variable is
included in the analysis to account for a person’s lifespan andperiodof
being at-risk. A common way to deal with such covariates in a regres-
sion is to project them out and consider only the univariate regression
with the regressed outcome and predictor. Therefore, projecting out
the covariates boils down to subtracting a value from theobservations.
This subtraction is not necessary with the ADuLT phenotype, as the
effect of age and sex can be accounted for through the sex and birth

year stratifiedCIPs. In fact, accounting for sex andage through theCIPs
provide a more nuanced way of accounting for this information, as
interactions are also considered. We have also performed the GWAS
analyses without sex and age as covariates for the ADuLT phenotype,
but it did not differ substantially from the other analysis.

Across the GWAS sample, the ADuLT phenotype is often bimodal
in practice. The bimodality is due to the underlying truncated normal
distributions leading to a gap between the resulting mean genetic
estimates of the cases and controls. It has been shown that binary
phenotypes when analysed with linear mixed models can suffer from
inflation when the in-sample prevalence is low15,53. The ADuLT pheno-
type is quantitative, and is therefore not suitable for logistic regression
(such as SAIGE or REGENIE), although it is often bimodal and may
result in a clear separation between cases and controls. A potential
solution is to employ rank-based inverse normal transformation to the
ADuLT phenotype54, but it may lead to a loss in power. Therefore, we
recommend not using the ADuLT phenotype for GWAS when the in-
sample prevalence is lower than roughly 1/80, which is in line with the
advice providedbyMbatchou et al.15 for the application ofmixed linear
models to binary outcomes.

As age information becomes more readily available, we expect
time-to-eventmethods for GWAS thatmake useof such information to
become more common. However, the benefit of these methods may
depend on how the data was collected, as well as their ability to
account for other confounders. We believe ADuLT provides both a
robust, computationally efficient, and a flexible approach for time-to-
event analyses of common diseases and outcomes in population-scale
datasets.

Methods
The ADuLT model
The ADuLT model is an extension of the classical LTM17,18, and is the
model underlying our previously proposed LT-FH++ method20. To
estimate an individual’s genetic liability, ADuLT utilises birth year, sex,
phenotype-specific age-of-onset for cases and current age for controls,
as well as population-based cumulative incidences (i.e. the probability
of having developed the disease at a given age). In contrast to LT-FH++,
the ADuLT model does not incorporate family history as presented
here. Instead,we focus on comparingADuLT to standard time-to-event
GWAS methods. ADuLT can account for cohort effects (changes in
disease incidence by birth year), as well as differences by sex. This
however requires population-based estimates to be available by age,
sex, and birth year for each phenotype of interest.

The ADuLT model extends the classical LTM by allowing the
threshold used to determine case-control status to depend on sex,
birth year, and (if available) age-of-onset for an individual. The LTM
assumes that each individual has a liability ℓ that follows a standard
normal distribution in the population. When this liability is larger than
a given threshold, ℓ ≥ T, where Pð‘≥TÞ=K and K is the trait’s lifetime
prevalence, then the individual is a case (z = 1), otherwise it is a control
(z =0).Under theADuLTmodel, the trait prevalenceK is substitutedby
the population-representative CIP stratified by sex and birth year, if
this information is available. If we let si denote the sex of the ith indi-
vidual and bi the birth year, then we can denote the sex and birth year
stratified CIP as K(t; si, bi). It has the interpretation of being the pro-
portion of individuals born in year bi and of sex si that have been
experienced the phenotype at time t. In Supplementary Fig. 26, an
example of a CIP stratified by sex and birth year can be seen for
depression. We can assign the personalised threshold in the following
way:

P ‘i >Ti

� �
=Kðt; si,biÞ ) Ti =Φ

�1 1� Kðt; si,biÞ
� �

, ð1Þ

where Φ denotes the CDF of the standard normal distribution. Ti is
then the ith individual’s threshold. It is a function of sex, birth year, and
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age or age-of-onset through the CIP, however this notation is
suppressed for ease of notation. Additionally, we assume that the
liability can be decomposed into two independent components, a
genetic component, ℓg, and anenvironmental component, ℓe, such that
ℓ = ℓg + ℓe. The genetic liability ℓg is normally distributed with mean 0
and variance h2, where h2 denotes the trait heritability on the liability
scale. The environmental component is normally distributed with
mean 0 and variance 1 − h2 and independent of ℓg.

ADuLT aims to estimate an expected genetic liability.Wedo this by
expressing the liability as a 2-dimensional normal distribution given by:

‘g ,‘
� �T

∼Nð0,ΣÞ, Σ=
h2 h2

h2 1

 !

The mean of the genetic component is given by

E ‘g jz,h2,Kðt; si,biÞ
h i

where the information we condition on, namely the case-control
status, heritability, and CIPs, result in an interval of (full) liabilities to
integrate over. The CIPs fix the threshold at Ti and excludes a range of
possible liabilities, essentially resulting in a truncated multivariate
normal distribution. The exclusion of liabilities can be thought of as
“lived through risk". The case status determines if the integration is
above or below the threshold. For a control, the interval ( −∞, Ti] is
considered. If an individual is a case and the full liability is fixed, then
the interval of interest is simply [Ti, Ti], i.e. a single value, and if the full
liability is notfixed,we consider the interval [Ti,∞). The genetic liability
estimated under the ADuLT model estimates the aggregated latent
genetic liability and will be referred to as the ADuLT phenotype.
Estimating the ADuLT phenotype does not require any genotype
information, as it relies solely on phenotypic information. In
Supplementary Fig. 4, the estimated genetic liability from ADuLT has
been plotted against the true genetic liability. Performing a GWASwith
the ADuLT phenotype is therefore a two-step procedure. First the
ADuLT phenotype is estimated from phenotypic information, sec-
ondly a GWAS is performed with the ADuLT phenotype as the
outcome. Any GWAS software that accepts continuous outcomes can
be used with the ADuLT phenotype.

Proportional hazards model
A proportional hazards model is commonly used to model the time to
an event for various outcomes. It models the changes in the hazard
function, which can be thought of as the instantaneous chance of
experiencing the event at some point in time, t. The model commonly
used for GWAS is given by

λðtjX ,GjÞ= λ0ðtÞ expðγX + βGjÞ ð2Þ

where λ0(t) is the baseline hazard, X denotes the covariates, γ is the
covariate effects, Gj is the genotype, and β is the SNP effect. We note
that a baseline hazard affects everyone, and the model can then
examine the influence of covariates and the SNP in comparison to the
baseline. The association test of interest is H0: β =0 vs HA: β ≠0. The
baseline hazard is rarely known, but a common way to perform an
association test in a proportional hazards model is with a likelihood
ratio test, where the unknown baseline cancel out. A partial likelihood
function is commonly used, which only maximises with respect to the
variable of interest, here β.

However, maximum likelihood estimating can be very computa-
tionally expensive, which has been a limiting factor for most previous
implementations of proportional hazards and mixed effects propor-
tional hazards GWAS10,55–57. Recently, an efficient implementation of
the proportional hazards model have been presented by Bi et al.9,
which allows for GWAS of large biobanks (>100.000 individuals). This

is achieved by use of the saddlepoint approximation. The null model
(with β =0) is determined only once, and the p-values are then effi-
ciently calculated across the entire genome using the saddlepoint
approximation on the null model’s score test statistic. A trade-off of
this approach is no effect sizes are available.

Simulation details
In our simulations we use two generative time-to-event models, namely
the Cox proportional hazards model and the age-dependent liability
threshold (ADuLT) model. In the simulation results, we refer to the Cox
proportional hazards as “Hazard", and the ADuLT as “Liability". We
consider both of these generative models in order not to favour one
time-to-event method over the other (i.e. SPACox and ADuLT GWAS).
When referencing simulation results under both of these models, we
will simply call them generative models, unless otherwise specified.

Initially, genotypes are simulated for N = 1,000,000 individuals
andM = 20,000 independent SNPs. The genotypes are sampled from a
binomial distribution Binom(2,AF) with the probability parameter set
to the allele frequency (AF) of a given SNP. The AFs are sampled from a
uniform distribution on the interval (0.01, 0.49). We chose not to
include any low-frequency variants because the power to detect them
in a GWAS setting is usually very small58. SNPs are standardised using
the true AF, and for the scaled SNPs, the effect sizes of causal SNPs
were drawn from the normal distribution N(0, h2/C), where C denotes
the number of causal SNPs and h2 denotes the liability-scale herit-
ability. Each SNP is simulated independently, which means we do not
consider linkage disequilibrium in these simulations, in order to have a
clear separation of causal and null SNPs. We used h2 = 0.5 and either
C = 250 or C = 1000 causal SNPs. For each choice of generative model
and number of causal SNPs, we simulate 10 genotype data sets, which
results in a total of 40 genotype data sets. With the simulated geno-
types and causal effect sizes, we then generated synthetic phenotypes
using the two generative models (details below). For each simulated
genotype data set, phenotypes are derived under both generative
models and for each disease prevalence considered. We consider four
prevalences, threemethods, andwith and without case ascertainment.

Under the LTM, we set the trait status zi equal to 1 if the liability
exceeds the threshold, i.e. if ℓi > T, and 0 otherwise, where
‘i =X

T
i β + ϵi = ‘gi

+ ϵi. The threshold T is determined by the lifetime
prevalence K. For instance, a lifetime prevalence of 5% and 10% results
in thresholds T = 1.64 and T = 1.28, respectively. The relationship
between the age-of-onset and the liabilities above the threshold T, is
given by the logistic function

tiðxÞ=
K

1 + exp �kðx � x0Þ
� � , ð3Þ

where K denotes the maximal attainable value, k denotes the growth
rate, and x0 denotes the median age-of-onset. Using the age of
controls, we know how long they have lived without being diagnosed.
This information allows us to exclude liabilities, i.e. the period of risk
lived through so far. For both cases and controls, the personalised
thresholds arecalculated asTi =Φ(1 −CIPi), whereTi is thepersonalised
threshold and CIPi is the CIP for individual i. The liabilities below the
personalised threshold are considered for controls and the liabilities
above the threshold are considered for cases. If the population-
representative CIPs are stratified by birth year and sex, the full liability
for cases can be fixed at Ti. Ages for controls are sampled from a
uniform distribution between 10 and 90. This resulted in 90% of
individuals having an age between 14 and 86.

For the proportional hazards model, we opted for a simulation
setup as similar as possible to the one used in SPACox9. First, we
simulated the censoring times, ci, for each individual i from an expo-
nential distribution with a scale parameter of 0.15. Next, we simulated
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onset times59, ~ti, using a Weibull distribution60 as follows

~ti =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logðUiÞ
λ expðηiÞ

s
ð4Þ

where λ is the event rate, Ui ~ Unif(0, 1), ηi =X
T
i β+ ϵi, with

ϵi ∼Nð0,1� h2Þ, and XT
i β are the scaled genotypesmultiplied by effect

sizes, corresponding to the genetic liability ℓg in the LTM. The case-
control status zi is then 1 if ~ti < ci, and 0 otherwise. The event time
ti = minð~ti,ciÞ is the observed time. The event rate λ was chosen such
that the lifetime prevalence is fixed at e.g. 1% or 5%. The simulation of
onset times depends on all causal SNPs, which deviates from the
simulations of onset times in the SPACox paper, where the onset times
depended on a single causal SNP only. This change was made in order
for the full genetic load of an individual to influence the onset times,
instead of just a single SNP. Next, we calculated the CIP of the
simulated event times, i.e. the fractionof casesobservedbefore a given
point in time, then the proportions were converted to the ages-of-
onset (in years) using the logistic function given by Eq. (3) withmedian
age-of-onset x0 = 50 and growth rate k = 0.2. Both age and age-of-onset
were used to calculate the cumulative incidence proportions, which in
turn defines the thresholds under the ADuLTmodel. For instance, with
a lifetime prevalence of 1%, 90% of all individuals had an age or age-of-
onset between 17 and 57 years. The density plots of the simulated
censoring and onset times can be found in Supplementary Figs. 1–3.

Case ascertainment is common in GWAS, as oversampling cases
can increase statistical power. We therefore examine the impact of
case ascertainment on each considered phenotype. In practice, we
simulate case ascertainment by first simulating a full population of 1
million simulated genotypes and liabilities and case-control status (for
different prevalences).We then apply case-ascertainment by drawing a
sample of 20,000 individuals with a fixed case-control ratio of 50%,
with 10,000 cases and 10,000 controls, regardless of what the popu-
lation prevalence is in the full population.

The ADuLT survival model
As we showed previously20, the age-dependent liability threshold
model can be considered a survival model. More specifically, consider
the survival function SiðtÞ=P ti > t

� �
, where ti represents age-of-onset

for cases or censoring time for the ith individual, whichever happens
first. Therefore, t represents time on the scale of years. The probability
that an individual has not become a case for a given t is equal to the
probability that the individual’s liability is below the (individualised)
liability threshold Ti, which is a shorthand notation for the age-
dependent threshold given by Eq. (1).

If we assume that the individual liability consists of a genetic and
an environmental component, ‘i = ‘gi

+ ‘ei , where ‘gi
and ‘ei are Gaus-

sian distributed with mean 0 and variance h2 and 1 − h2, respectively,
then we can write the survival function as follows

SiðtÞ=Pðti > tÞ=Pð‘i <TiÞ=Φ
Ti � ‘giffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
 !

, ð5Þ

whereΦ is the standardGaussian cumulative distribution function and
we assume that the genetic liability contribution is known. In the last
equality, we standardise the environmental contribution with the
known genetic contribution and the variance. From this we can derive
the event density, and the hazard function for the ith individual as

λiðageÞ=
�S0iðageÞ
SiðageÞ

ð6Þ

We note that this survival model is unusual in a couple of ways. First,
each individual has a slightly different parameterisation of the model,
which comes through the individualised liability threshold Ti from Eq.

(1). Second, the genetic effects affect the hazard rate by shifting the
individual liability. Third,Tidoes not have to approach negative infinity
as t (the age-of-onset or age) approaches positive infinity, but may
instead simply become fixed for all values Ti above some threshold,
e.g. if every individual in a cohort has died and no new event are
possible. This is not necessarily a problem for the interpretation as Ti
maystill bepiece-wisedifferentiable, and thehazard rate for all values t
above this threshold then becomes 0.

GWAS in iPSYCH
With the secondwaveof genotyped individuals, the iPSYCHcase-cohort
reached ~143,000 individuals, up from~80,00022. Bothwaveshavebeen
imputed with the RICOPILI imputation pipeline61, and were then com-
bined into a single dataset. We restricted the analysis to SNPs that
passed RICOPILI quality controls for both waves, resulting in a total of
8,785,478 SNPs for the GWAS. The analysis was restricted to a group of
individualswith European ancestry,whichwere identifiedby calculating
a robust Mahalanobis distance based on the first 20 PCs and restricting
to a log-distance below 4.562. We filtered for relatedness by removing
individuals (the second one in each pair) with a KING-relatedness above
0.088. Since the iPSYCH case-cohort has a population representative
subcohort and oversampled cases for six major psychiatric disorders
(here we focus on ADHD, autism, depression and schizophrenia), we
restricted each analysis to the individuals in the subcohort (which is a
random sample of the entire population) and the cases for the pheno-
type being analysed, i.e. oversampled cases from the other psychiatric
disorders were not used. The final number of individuals used for the
GWAS of each phenotype is presented in Supplementary Table 1. The
linear regression GWAS was performed using the bigsnpr package25 for
R and SPACox GWASwas performed using the original implementation
in the SPACoxpackage for R.Weused 20 PCs, sex, and imputationwave
as covariates for all analyses. We included age as a covariate when
analysing case-control status. Age was not included as a covariate when
using the ADuLTphenotype or SPACox. For SPACox, we did not include
age as a covariate, as age was the timeline used. The ADuLT phenotype
inherently accounts for age, which means it is not necessary to include
as a covariate. We chose not to use a mixed model approach for GWAS
with case-control status or ADuLT phenotypes, as SPACox did not have
a similar option for random effects.

Cumulative incidence proportions
The CIPs can be interpreted as the proportion of individuals diagnosed
with a certain disorder before a given age. As a result, the CIPs are
population and disorder specific and can be stratified by sex and birth
year. TheCIPs used herewere stratified by sex and birth year to account
for differences in incidences between sexes and for different birth years
(cohorts). The CIPs were estimated from Danish population-based
registers. The Danish Civil Registration System63 was used to identify
individuals and contains all 9,251,071 individuals that lived in Denmark
at somepoint betweenApril 2, 1968 andDecember 31, 2016. TheDanish
Civil Registration Systemhas continually recorded information since its
launch in 1968, and includes information about sex, date of birth, date
of death, and date of emigration, or immigration. Each individual has a
unique identifier that can be used to link information of several regis-
ters. Informationonpsychiatric disorderswasobtained fromtheDanish
Psychiatric Central Research Register64. It contains all admissions to
psychiatric inpatient facilities since 1969 and visits to outpatient psy-
chiatric departments and emergency departments since 1995. From
1969 to 1993, the International ClassificationofDiseases, eighth revision
(ICD-8) was used as the diagnostic system. From 1994 onwards, the
tenth revision (ICD-10) was used. The four disorders of interest were
identified by the following ICD-8 and ICD-10 codes: ADHD (308.01 and
F90.0), autism (299.00, 299.01, 299.02, 299.03 and F84.0, F84.1, F84.5,
F84.8, F84.9), depression (296.09, 296.29, 298.09, 300.49 and F32,
F33), and schizophrenia (295.x9 excluding 295.79 and F20). The age-of-
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onset was defined as the age of an individual at first contact with the
psychiatric care system, either inpatient, outpatient, or emergency
visits. In the analyses, each individual was followed from birth, immi-
gration, or January 1, 1969 (whichever happened last) until death, emi-
gration, or December 31, 2016 (whichever happened first). The
cumulative incidence function was estimated separately for each sex
and birth year, and the Aalen-Johansen approach was used with death
and emigration as competing events65.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
iPSYCH is approved by the Danish Scientific Ethics Committee, the
Danish Health Data Authority, the Danish Data Protection Agency,
Statistics Denmark, and the Danish Neonatal Screening Biobank
Steering Committee21. Owing to the sensitive nature of the iPSYCH
data, individual level data can only be accessed through secure servers
where downloading individual level information is prohibited. Inter-
national researchersmaygain data access through collaborationwith a
Danish research institution. More information about getting access to
the iPSYCH data can be obtained at https://ipsych.dk/en/about-ipsych.
All datasets that can be shared are made available. The summary
information from the simulations can be found in Supplementary
Data 1 and at https://doi.org/10.6084/m9.figshare.22586239. The
summary statistics for all performedGWAS in the project is available at
the GWAS Catalog under the accession number GCP000675 at https://
www.ebi.ac.uk/gwas/.

Code availability
Code used to generate simulation results, analyse iPSYCH, and gen-
erate plots and tables can be found at https://github.com/EmilMiP/
ADuLTCode. LT-FH++ can be found at https://github.com/EmilMiP/
LTFHPlus. Both ADuLTCode and LTFHPlus are based heavily on
packages such as dplyr and ggplot2 from the tidyverse packages found
at https://www.tidyverse.org/. The code used to run SPACox is pro-
vided by its authors at https://github.com/WenjianBI/SPACox.
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