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Bacterial motility can govern the dynamics
of antibiotic resistance evolution

Vit Piskovsky 1,2 & Nuno M. Oliveira 1,3

Spatial heterogeneity in antibiotic concentrations is thought to accelerate the
evolution of antibiotic resistance, but current theory and experiments have
overlooked the effect of cell motility on bacterial adaptation. Here, we study
bacterial evolution in antibiotic landscapes with a quantitative model where
bacteria evolve under the stochastic processes of proliferation, death, muta-
tion andmigration. Numerical and analytical results show that cell motility can
both accelerate and decelerate bacterial adaptation by affecting the degree of
genotypic mixing and ecological competition. Moreover, we find that for
sufficiently high rates, cell motility can limit bacterial survival, and we derive
conditions for all these regimes. Similar patterns are observed in more com-
plex scenarios, namely where bacteria can bias their motion in chemical gra-
dients (chemotaxis) or switch between motility phenotypes either
stochastically or in a density-dependent manner. Overall, our work reveals
limits to bacterial adaptation in antibiotic landscapes that are set by cell
motility.

Activemotility is a defining feature of many cell types, governing their
ecology and physiological functions. Immune cells such as neutrophils
patrol multicellular organisms in their relentless search for invading
microbes. Sperm cells actively swim and search ovules to fuse with.
Growth cones of neurons seek their synaptic targets. Active motility is
also fundamental for many unicellular organisms ranging from bac-
teria to amoeba and algae. It allows them to find nutrients, light or a
host, and avoid toxic compounds, predators or parasites. In particular,
bacterial motility has been thoroughly studied once it became
understood as key for the reproductive success of bacteria and, more
specifically, for their ability to cause disease1–7. Despite these impor-
tant realizations, we know little about how cell motility contributes to
bacterial adaptation, namely to the evolution of antibiotic resistance,
which is a major public health concern8.

Laboratory experiments suggest that bacterial motility is impor-
tant for bacterial adaptation in antibiotic landscapes where cells can
move through different concentrations of antibiotics9–11. In particular,
it was found that in spatially heterogeneous environments, bacteria
evolve antibiotic resistance faster than in homogeneous conditions9.
However, cell motility was not controlled in these experiments, and its

precise contribution to the evolutionary dynamics found is not known.
Notably, other authors did not find an accelerated adaptation in their
antibiotic landscapes and argued that the discrepancy likely derived
from the ability of bacteria to experience the diverse antibiotic con-
centrations, which was different in their experiments10.

Arguably, the best understood link between cell motility and the
ability of bacteria to cope with antibiotics comes from bacterial
swarming, a form of group motility on surfaces where cells are parti-
cularly resilient to antibiotic stress12,13. More precisely, in swarming
conditions, cell motility is thought to reduce exposure of individual
cells to antibiotics, which leads to antibiotic tolerance14. While there
are many studies relating bacterial swarming and phenotypic
resistance12,14–21, the effect of swarming motility on the evolution of
genetic resistance has not been explored. In addition to swarming,
other links between bacterial motility and antibiotic landscapes have
been reported. In particular, it has been shown that antibiotics trigger
motile responses22–24. However, the impact of such bacterial behaviour
on the evolution of antibiotic resistance was not addressed. In short,
one can find works that study bacterial evolution in antibiotic land-
scapes, but these do not explore the role of cell motility explicitly; and
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one can find works that study bacterial motility upon antibiotic
exposure, but these do not explore evolutionary timescales.

In addition to these experimental works, several mathematical
models have been developed to understand how concentration gra-
dients of antibiotics and other drugs affect resistance evolution25–31,
and a key conclusion is that antibiotic gradients accelerate the evolu-
tion of antibiotic resistance25,26. These quantitative models consider
bacterial movement between environments with different antibiotic
concentrations, such as different organs or parts of the human body,
but the migration considered is essentially a passive and rare event.
This assumption is in sharp contrast with the migration rates of bac-
teria evolving in natural and experimental settings, where cells can
move at speeds up to ~ 50μm/s, and the fact that in these environ-
ments bacteria can experience steep and stable gradients of antibiotics
and other drugs9–11,22.

In this work, we build upon these quantitative models and
study how bacterial motility affects the evolution of antibiotic
resistance in spatially heterogeneous environments with different

concentrations of antibiotics. We find that bacterial motility can
govern the spatiotemporal dynamics of antibiotic resistance
evolution.

Results
Model overview and basic dynamics
We are interested to understand how bacterial motility shapes the
evolution of resistance in heterogeneous environments where cells
experience spatial gradients of antibiotics. We build upon the so-
called staircase model25, which was developed to understand bac-
terial evolution in drug gradients. The staircase model is a lattice
model, which considers cells of specified genotype g ϵ {1,…, L} (of
increasing resistance) and spatial compartments x∈ {1,…, L} (of
increasing antibiotic concentration), Fig. 1a. An initial population
of susceptible cells g = 1 at position x = 1 evolves via stochastic pro-
cesses of death (rate δ), movement to a neighbouring spatial com-
partment (rate ν), mutation (rates μf/μb for forward/backward), or
division (maximal rate r)25. In this model, antibiotics inhibit the
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Fig. 1 |Model overview andbasic evolutionary dynamics. aModel description. In
the staircase model, bacterial cells (blue and red dots) have a specified position x
(of increasing antibiotic concentration) and a genotype g (of increasing resistance).
The population adapts to a stable spatial antibiotic gradient as cells migrate,
mutate, die and divide at specified stochastic rates. Antibiotics prevent cell division
of susceptible genotypes g < x (shaded region under the staircase). b Adaptation
process. Bacterial adaptation in the staircase model can be conceptualised as a
series of random jumps between locally stable resistance states R that happen at an
adaptation rate aR. At a given time, R denotes the genotype of highest resistance in
the population, aswell as the highest spatial compartment where this genotype can

divide. Genotypes g ≤R are defined as wild-type (blue dots) and genotype g =R + 1
as mutant (red dots). Importantly, in the overlap region x =R + 1, mutant cells can
divide but wild-type cells cannot. c Snapshots of the population evolving antibiotic
resistance for different motility rates, ν =0.01/h (low motility) and 1/h (high moti-
lity). Shades of grey represent density of cells, where black represents highest
density. The adaptive dynamics of bacteria with low (top) and high (bottom)
motility is qualitatively different. d Population profiles and fitness along the anti-
biotic gradient. Different motility regimes affect the distribution of wild-type bac-
teria along the gradient (blue area), which shapes the fitness of resistant mutants
(red bars). Parameters: L = 8, K = 105, r = 1/h, δ =0.1/h, μb = 10−4/h, μf = 10−7/h.
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growth of susceptible genotypes g < x. Therefore, the diagonal of
position-genotype lattice in Fig. 1a defines a staircase which sepa-
rates areas where cells can divide (above the staircase, white) from
areas where they cannot (below the staircase, grey). Moreover, the
division rate of the Nx cells at position x is logistic with a carrying
capacity K:

rð1� Nx=KÞ, if x ≤ g andNx ≤K ,

0, otherwise:

�
ð1Þ

The processes of birth, death, mutation and migration drive
bacterial adaptation up the antibiotic gradient. Assuming low muta-
tion rates (μf≪ δ, ν, r) and a large carrying capacity (K≫ 1)25,26, this
adaptation corresponds to random jumps R→R + 1 between relatively
stable population states R∈ {1,…, L}, which we define as resistance
states (Fig. 1b).Wenote, however, thatR canbeunderstood asboth the
genotype g of highest resistance in the population and the compart-
ment of highest antibiotic concentration x where this genotype can
divide because the genotypic and spatial dimensions are inter-
changeable in thismodel. Genotypes g ≤R are defined aswild-type and
genotype g =R + 1 as mutant. Resistance R increases to R + 1 when
mutants outcompete the wild-type in the overlap region at a position
x =R + 1. The overlap region is the region where the population first
adapts because it is the only spatial compartment where the regions
wheremutant cells can grow and regions where wild-type cells cannot
grow overlap (Fig. 1b).

We start by studying how different motility rates ν affect the
evolutionary dynamics of bacteria in this model as previous work25,26

only considers situations where bacteria are unlikely tomove between
different antibiotic concentrations during their lifetime (ν < δ). In
particular, we start by describing and comparing bacterial adaptation
when cells rarely move during their lifespan (ν < δ) and situations
wheremotility is common (ν > δ). Unexpectedly, our simulations show
that bacterial adaptation is qualitatively different for low and high
motility (Fig. 1c, Supplementary Movie 1). To understand this differ-
ence, we first study the qualitative properties of the stable population
at a fixed resistance state R and, in the next section, we focus on the
adaptation rate aR at which the jump in resistance R→ R + 1
occurs (Fig. 1b).

Notably, we find that the low and high motility regimes differ in
the shape of thewild-type populationNx (SI Theorem 1), which impacts
themutant fitness landscape (Fig. 1d) that is defined by the net growth
rate of mutant cells:

rð1� Nx=KÞ � δ, if x ≤R + 1,

�δ, otherwise:

�
ð2Þ

Moreover, we find that at low motility (ν < δ, Supplementary Movie 1),
bacterial adaptation is limitedby themovement of thefirstmutant into
the overlap region, where mutant cells have low competition from
wild-type cells and high fitness to set up a mutant population (Fig. 1d).
In this case, bacterial adaptation is located at the population front (SI
Theorem 3), while the rest of the population forms a typical inclined
comet tail (Fig. 1c) corresponding to a diversity of strainswith different
antibiotic susceptibility (Fig. 1d). At highmotility (ν > δ, Supplementary
Movie 1), the wild-type is maintained even in regions where it cannot
grow by influx from compartments where it can (SI Theorem 3), and,
therefore, competes with mutants by contributing to the carrying
capacity. The fitness of mutants is decreased in the overlap region and
leveled across the region where mutants can divide (Fig. 1d). There-
fore, mutant cells grow slowly and outcompete the wild-type every-
where. In these conditions, the population is made of a single strain
that can grow in x ≤R (Fig. 1d) and the comet tail is now
horizontal (Fig. 1c).

Cell motility accelerates and decelerates bacterial adaptive
evolution
We have shown that bacterial adaptation in antibiotic gradients is
qualitatively different at low and high motility regimes. To gain
quantitative understanding about this difference, we now study how
motility affects the adaptation rate aR (Figs. 1b, 2a), which is defined by
two waiting times:
1. The evolutionary time TR

evo, defined as the earliest time when the
wild-type produces a first mutant in the overlap region (i.e.,
mutants reach a founder state in Fig. 2a).

2. The ecological timeTR
eco, defined as the earliest timewhen thefirst

mutant establishes amutant population that becomes larger than
the wild-type in the overlap region (i.e., mutants reach a winner
state in Fig. 2a).

We followHermsen et al.26 anddefine adaptation rate as the rate at
which mutants reach consecutive founder states in Fig. 2a:

aR =
1

ETR�1
eco +ETR

evo

, ð3Þ

where E denotes the expected value of the random waiting times. To
determine the adaptation rates, we record the times of founder states
in computer simulations (Fig. 2b and Methods), and compute the
waiting times by a combination of analytical and numerical techniques
that confirm and extend our simulations (Fig. 2b, 2c and Methods).
Alternatively, one can define adaptation rate considering consecutive
winner states instead of founder states (Supplementary Fig. 1a, b).
However, as we note below, this alternative definition of adaptation
rate does not affect our conclusions.

How does the adaptation rate aR vary in the two motility regimes
we identified earlier? Our simulations show that in the low motility
regime (ν < δ), increasing motility accelerates the adaptation rate of
bacteria (Fig. 2b, Supplementary Fig. 1c), in accordance with previous
theory25,26. Our analysis shows that in these conditions, the evolu-
tionary time is much larger than the ecological time (Fig. 2c), because
mutants have high fitness in the overlap region and can grow quickly
(Fig. 2d). For this reason, Hermsen et al.26 that considered lowmotility
only, neglected the ecological time (TR

eco≈0, Fig. 2a). Moreover,
Hermsen et al.26 noticed that the rate at which the population front
advances becomes constant (i.e., it is independent of R) and implicitly
identified all evolutionary times TR

evo =Tevo. Our work supports this
claim: the adaptation rate aR is identical for all R when motility is low
(Fig. 2b) and the shape of the population front is independent of R
(Fig. 1d, SI Theorem 3). Under these conditions, motility helps the first
mutant tomove from the population front into the overlap region and
decreases the dominant waiting time, the evolutionary time Tevo.
Therefore, in the low motility regime, there is a positive relationship
between cell motility and bacterial adaptation (i.e., cell motility
accelerates bacterial adaptation within this regime).

In contrast, at high motility (ν > δ), there is a negative correlation
between cell motility and bacterial adaptation (i.e., cell motility
decelerates bacterial adaptation within this regime), see Fig. 2b, Sup-
plementary Fig. 1c. In this regime, the ecological time becomes larger
than the evolutionary time (Fig. 2c) because mutant fitness is sig-
nificantly decreased, which results from the increased competition for
space with a large wild-type population in the overlap region. This
competition is amplified with increasingmotility ν and resistance state
R, which promote the spread and size of the population (Fig. 2c).

The reduction in adaptation rate with higher motility becomes
even more important if the wild-type has negative spatially-averaged
fitness, which is defined as f = rR=L� δ with r being the birth rate, δ
death rate, and R/L the proportion of space where wild-type cells can
divide. By definition, environments with this property, f<0, cannot
sustain the wild-type if the system is spatially homogeneous, and we
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call them sink-like (as opposed to source-like with f>0). This termi-
nology is inspired by the source-sink theory, which defines a source
(resp. sink) as an environment with positive (resp. negative) local
fitness32, as opposed to the average fitness in ourmodel that considers
fitness across all compartments. Notably, we find that cell motility
creates sufficient mixing in sink-like environments above a critical
motility threshold (ν > νc), and that in these conditions the wild-type
cannot survive and adapt (Fig. 2b, SI Theorem 1, SI Theorem 4, SI
Corollary 1). Therefore, wecall it a deadlymotility regime.Wenote that
the deadly motility regime would not occur if resistant cells were
present in the population from the beginning, which would increase

the average wild-type fitness from f<0 to f>0 due to higher R. In the
latter case, the same environment would become source-like, with
survival and adaptation possible for any motility (dashed lines in
Fig. 2b). We further note that the existence of the deadly motility
regime requires the system to be closed, with no external import of
wild-type cells.

In summary, our analysis identifies three distinct regimes of bac-
terial adaptation in antibiotic gradients that depend on the motility
rate of cells, which we call low motility, high motility and deadly
motility regimes (Fig. 2b). Notably, we find the same regimes when an
alternative definition of adaptation rate is considered (Supplementary
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Fig. 2 | Motility can accelerate and decelerate the rate of bacterial adaptation
to antibiotics. a Definitions. The adaptation process in the staircase model cor-
responds to jumps between resistance states R→ R + 1 that happen at rate aR. The
resistance statesR are characterised by founder states (afirstmutant appears in the
overlap region) and winner states (mutants outgrow wild-type cells in the overlap
region),whichare separatedby evolutionaryTR

evo and ecologicalTR
eco waiting times.

Following Hermsen et al.26, we define the adaptation rate aR as the rate at which
consecutive founder states appear, but we also consider an alternative definition
based on the winner states and show it does not affect our conclusions (Supple-
mentary Fig. 1). The evolutionary dynamics depends on the average wild-type fit-
ness that is defined as f = rR=L� δ with r being the birth rate, δ death rate, and R/L
the proportion of space where wild-type cells can divide. b Adaptation rate as a
function of motility rate. The lines represent analytical prediction and the symbols
represent averages over 50 simulations, with errors smaller than the symbols. The
adaptation rate increases with motility in the lowmotility regime, but decreases in
the high motility regime, i.e., motility accelerates adaptation in the low motility
regime, but decelerates adaptation in the highmotility regime. If thewild-typehas a
negative average fitness and motility above a critical motility νc, it cannot survive
and adapt (deadly motility regime). The current resistance state R does not affect
the adaptation rate when motility is low, but decreases the adaptation rate when

motility is high. We plot the predicted dynamics from the analytical theory of
Hermsen et al.26 (dashed line), which matches our results for lower motility only,
but note that this theory was developed under the assumption of lowmotility rates
and the interpolation for higher motility shown for completeness is not valid.
c Relative importance of evolutionary and ecological times. At low motility, bac-
terial adaptation is largely dependent on the evolutionary time TR

evo. At high
motility, however, the ecological time TR

eco becomes equally important due to
increased competition between strains. Near critical motility νc, bacterial adapta-
tion is again mainly limited by the evolutionary time TR

evo. At high motility, the
number of compartmentswhere thewild-type candivideR increases the ecological
time TR

eco and decreases the evolutionary time TR
evo. d The importance of wild-type

profiles. At lowmotility regimes,motility promotes themovement ofmutants from
the population front into the overlap region (TR

evo reduced), where mutants have
larger fitness than the wild-type and grow quickly (TR

evo≫TR0

eco). At high motility
regimes, motility promotes the spatial spread of the wild-type population with
genotypes g ≤R, so that the first mutant is produced quickly but mutant fitness is
decreased due to higher competition for space with the wild-type (TR

evo<T
R0

eco).
Parameters: L = 8, K = 105, r = 1/h, δ =0.1/h for source-like environment, δ =0.3/h for
sink-like environment, μb = 10−4/h, μf = 10−7/h.
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Fig. 1c),when antibiotic resistance carriesfitness costs (Supplementary
Fig. 2, Supplementary Note 4), when mutation rates are high (Sup-
plementary Fig. 3, Supplementary Note 4), when non-growing cells
compete with growing cells at a reduced rate (Supplementary Fig. 4,
Supplementary Note 4), and when instead of bacteriostatic antibiotics
we consider bactericidal antibiotics (Supplementary Fig. 5, Supple-
mentary Note 4). Unexpectedly, we find the same regimes even when
cell motility is biased (Supplementary Fig. 6, Supplementary Note 4,
Supplementary Movie 2). It has recently been shown that antibiotics
can trigger both positive22 and negative24 chemotaxis in bacterial cells,
but our results show that such biased motility does affect our key
findings (Supplementary Fig. 6). Overall, these different scenarios
highlight the robustness of our conclusions.

Evolutionary dynamics of phenotypically heterogeneous
populations
So far, we have considered evolving populations that are phenotypi-
cally homogenous and bacterial cells that always move at the same
rate. The same simplifying assumption has been made in previous

models of bacterial evolution in antibiotic gradients25–31. However, in
reality, bacteria can change their motility rate, and their communities
are phenotypically heterogeneous in terms of cell motility. For exam-
ple, one of themost important transitions in a bacterial life-cycle, from
free-living (plankton) to surface-attached communities (biofilms), is
associated with major changes in cell motility. Planktonic bacteria can
move at 45μm/s2, while biofilm bacteria can move at 1μm/min or
less33. The plankton-biofilm switch canoccur both stochastically34 or as
a response tomultiple factors, such as cell density35 or the presence of
other strains36. Another well-known transition in bacterial populations
that is associated with changes in cell movement is the swarming
phenotype, where bacteria move collectively on semi-solid surfaces
when a threshold of cell density is reached37. We found it important to
understand if this phenotypic heterogeneity could affect the evolu-
tionary dynamics we presented earlier.

To address this issue, we now consider populations harbouring
two motility phenotypes where cells can switch between phenotypes
either stochastically (Fig. 3) or as a response to local cell density
(Fig. 4). In practice, for stochastic switching, we add a new dimension

divide

r(1-(Mx+Nx)/K)+1

switch
phenotype

s s

die

-1

migrate

phenotypes
differ in

migration rates !P=1,2

P=1,2

μf μb

mutate

a

M1 M2 M3 M5 ...

Cells     on a lattice:

As time t passes, cells:

Two phenotypes:

faster
phenotype

slower
phenotype

space x

m
otility

phenotype P

ge
no

ty
pe

 g

1

1

L2
1

2
R+1

R+1

R

R

...

MLM4

N1 NLN2 N3 N5N4 ...

...
...

L

2

...

low motility

hi
gh

 s
w

itc
hi

ng
lo

w
 s

w
itc

hi
ng

high motilitymixed motilityc

m
ut

an
t 

fit
ne

ss

s      

min( 1, 2)

adapt as:
slower phenotype

 (  1+  2)/2

adapt as:
average phenotype

=1 2+ 2

mix.
mot.

mot.

s      

adaptation rate  aR

legend

Sink-like environmentb

original
staircase

Fig. 3 | Effect of switching betweenmotility phenotypes stochastically. aModel
description. Phenotypes of motility ν1,2 are added as an extra dimension to the
staircase model, with individual cells allowed to switch between these phenotypes
at rate s. b Adaptation rate heatmap on the (ν1, ν2) plane for different switching
rates s. The (ν1, ν2) plane can be partitioned into different combinations of adap-
tation regimes and its diagonal corresponds to a population of a single motility. In
this model, bacteria adapt as if all cells had the same effective motility, which
corresponds to the intersection of the level sets (white dashed lines) with the
diagonal. At low switching rate (s =0/h), the effective motility matches the slower
motility present in the population minðν1,ν2Þ. At high switching rate (s = 5/h), the
effective motility matches the averagemotility (ν1 + ν2)/2. When the environment is

sink-like, a deadly motility regime (grey) exists in the high motility combination,
and also appears in themixedmotility combinationwhen the switching rate is high.
cWild-type profiles for different switching rates s. At low switching rate (s = 10−3/h),
the wild-type profile is dominated by the slower phenotype. At high switching rate
(s = 5/h), the wild-type profile coincides with the profile of a single average-motility
phenotype. Therefore, the adaptation in low (resp. high) motility combinations
follows the low (resp. high) motility regime irrespective of switching rate s, but a
change of s in themixedmotility combination can change the adaptation regime. In
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ofmotility phenotypes to our position-genotype lattice and allow cells
to switch between phenotypes at a stochastic rate s, where each
phenotype is characterized by different motility rates, ν1 and ν2
(Fig. 3a). Density-dependent motility ν(Nx) is modelled differently,
and the switch between motility phenotypes is modelled by a step-
function that is controlled by the local number of cells Nx and a
switching density threshold S (Fig. 4a). If cell density Nx at position x
is below (resp. above) the switching threshold S, all cells at position x
move at low-density (resp. high-density) motility νL (resp. νH).
Density-dependent motility can also be modelled explicitly (Sup-
plementary Note 6), and we note below that it does not affect our
conclusions.

Interestingly, we find that in both models, phenotypically het-
erogeneous populations of bacteria generically behave as if all cells
had a single effective motility phenotype whose motility is controlled
by the switching rate s in stochastic switching, or the switching

threshold S if switching is density-dependent. Therefore, the pre-
viously described adaptation regimes exist in these models and are
governed by an effective motility that we characterize next. For sto-
chastic switching, the effective motility matches the motility of the
slower phenotype ν� = minðν1,ν2Þwhen the switching rate is low (s≪ δ,
Supplementary Movie 3) and it matches the average motility
ν+ = (ν1 + ν2)/2 when the switching rate is high (s≫ δ, Supplementary
Movie 3), see Fig. 3b and SI Theorems 6, 7, 8 and SI Corollary 2, 3. This
result stems from the fact that the slower phenotype is naturally
selected for in the absence of phenotypic switching, given that the
slower phenotype spends more time in regions of low antibiotic con-
centration where it can proliferate, and from the fact that large sto-
chastic switching quickly equilibrates the abundance of both
phenotypes (Fig. 3c). For density-dependent motility, the effective
motility matches the low-density motility phenotype ν− = νL at high
switching threshold (S >K(1 − δ/r)) and the high-density motility
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Fig. 4 | Effect of density-dependent motility. aModel description. In this model,
bacterial motility ν(Nx) depends on the local number of cells Nx. If the cell density
Nx at position x is below (resp. above) the switching threshold S, all cells at position
x move at low-density (resp. high-density) motility νL (νH). b Adaptation rate
heatmap on the (νL, νH) plane for different switching thresholds S. The (νL, νH)
plane canbe partitioned into different combinations of adaptation regimes and its
diagonal corresponds to a population of a single motility. The diagonal separates
slow-to-fast and fast-to-slow switching combinations. Bacteria generically adapt as
if all cells had the same effectivemotility, which corresponds to the intersection of
the level sets (white dashed lines) with the diagonal. This effective motility gen-
erically matches the low-density (resp. high-density) motility at high (resp. low)
threshold S = 9.5 × 104 (resp. S = 100). At low threshold S, this generic rule has three
exceptions. First, the adaptation rate is reduced in themixedmotility combination
of fast-to-slow switching. Second, the adaptation rate is reduced for slow-to-fast
switching when the environment is sink-like and the high-density motility

phenotypemoves above the criticalmotility. Third, a deadlymotility regime (grey)
can only occur if the initial population is of low density and the low-density
motility phenotype moves above the critical motility. c Wild-type profiles in the
mixed motility combination. Wild-type profiles match the low-density motility
phenotype at high threshold S = 9.5 × 104. At low threshold S = 104.5, the low-
density motility phenotype appears only at the front while the bulk of the popu-
lation is in the high-density motility phenotype. This composition of phenotypes
can reduce the antibiotic exposure of the bacterial population: in slow-to-fast
switching, the spatial expansion of the fast (yellow) high-density motility pheno-
type is reduced in sink-like environments, and in fast-to-slow switching, a very
slow (blue) and stable population occupies low antibiotic concentrations. In short,
density-dependent motility shapes bacterial adaptation by determining the
effective motility of bacterial populations and affecting their antibiotic exposure.
Parameters: L = 8, K = 105, r = 1/h, δ =0.3/h, μb = 10−4/h, μf = 10−7/h.
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phenotype ν+ = νH at low switching thresholds (S <K(1 − δ/r)), Fig. 4b.
This result stems from the fact that the population cannot reach suf-
ficient density for the high-density motility phenotype when the
threshold is high, while a lower threshold switches the population bulk
into the high-density motility phenotype.

Accordingly, if the population harbours phenotypic hetero-
geneity of the same motility regime, the adaptation regime corre-
sponding to the effectivemotility is not changed by the stochastic rate
s and the density threshold S. However, for populations that harbour
motility phenotypes fromdifferentmotility regimes (mixedmotility in
Figs. 3b and 4b), the level of switching shapes the adaptation regimeof
bacteria (Figs. 3 and 4c). For stochastic switching, such heterogeneous
populations have an effectivemotility in the lowmotility regime at low
switching (ν− < δ) and in the high (resp. deadly) motility regime at high
switching (ν+ > δ, resp. ν+ > νc). Put differently, a gradual increase
in switching rate changes the adaptation regimebetween the low, high
and deadly motility regimes (Fig. 3c, Supplementary Fig. 7a, SI Theo-
rems 6, 8). Similarly to phenotypically homogeneous populations, the
deadlymotility regime canonly occur if the averagewild-type fitness is
negative (sink-like environment, Fig. 3b, Supplementary Fig. 7c, SI
Theorem 8, SI Corollary 3).

For highly heterogenous populations with density-dependent
motility, the gradual change in switching threshold S also dictates the
effective motility and the corresponding adaptation regime, but
there are three exceptions when the density threshold S is low
(Fig. 4b). First, when cells switch from fast to slow above the

threshold S, the population becomes very stable as the fast cells at
the front quickly return to the slow population bulk (Fig. 4c). As a
result, the population has decreased antibiotic exposure and adap-
tation rate (Fig. 4b). Second, a deadly motility regime occurs if the
low-density motility (not the effective motility) is above the critical
motility (Fig. 4b). Third, if the high-density motility is above the
critical motility, the population does not go extinct but instead
decreases its range and antibiotic exposure (Fig. 4c, Supplementary
Movie 4), leading to a decreased adaptation rate (Fig. 4b). As the last
two exceptions are related to critical motility, they are only impor-
tant in sink-like environments where the wild-type has negative
average fitness (Supplementary Fig. 8b, c). Similar conclusions are
found when density-dependent motility is modelled explicitly (Sup-
plementary Fig. 8).

With the exception of the highly heterogeneous populations with
density-dependentmotility,we showed that bacterial populationswith
different motility phenotypes evolve antibiotic resistance as if all cells
had the same effective motility. Therefore, in these conditions, bac-
terial adaptation is characterised by the same adaptation regimes of
phenotypically homogeneous populations. Switching between moti-
lity phenotypes can shape the adaptation regime under which bacteria
evolve only if themotility of the different phenotypes is very different.
But even in these cases, we find that our general conclusions hold, low
effective motility accelerates bacterial adaptation while high effective
motility decelerates bacterial adaptation. For very high effective
motility, bacterial populations can perish.
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Fig. 5 | Cell motility as a factor that limits bacterial survival in sink-like envir-
onments. a Formation of the wild-type profile. The formation of a wild-type profile
corresponding to a fixed resistance state R is described by mean-field equations,
which explain the flow of the initial profile in the profile space of cell numbers
(N1,…,NL). This flow admits two fixed points: a trivial fixed point Nx =0 (red,
population extinction if stable) and a non-trivial fixed-point (yellow, population
survival if stable). b Phase portraits of the wild-type profile formation in the stair-
case model with L = 2, R = 1 (the so-called source-sink model25). Phase portraits are
shown for different motility rates ν and different environment types (source-like/
sink-like), depending on the average wild-type fitness f = r=2� δ. Only two topo-
logically distinct types of flow are possible: the non-trivial fixed point globally
attracts all possiblewild-type profiles withNx >0 (population survival), or the trivial
fixed point globally attracts all possible wild-type profiles with Nx >0 (population
extinction). Extinction occurs in sink-like environments (f<0) with motility above

the critical motility ν > νc. c Critical motility νc corresponds to a bifurcation of this
dynamical system. When motility ν is varied, the non-trivial fixed point moves
through the space of possible profiles. At lowmotility, the non-trivial fixed point is
stable and corresponds to a wild-type profile that predominantly occupies spatial
positions x ≤R where it can divide. As motility increases, the wild-type profile gets
increasingly levelled across all spatial compartments, and its dynamics becomes
governed by the average fitness f . Precisely when the environment is sink-like f<0,
the stable non-trivial fixed point (surviving wild-type) collides with the unstable
trivialfixed point (extinctwild-type), and they exchange their stability at the critical
motility νc. In short, highlymotile populations experience an average environment,
which can drive their extinction if the environment is sink-like. Parameters: L = 8,
K = 105, r = 1/h, δ =0.75/h for source-like environment, δ =0.25/h for sink-like
environment.
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Cell motility as a factor that limits bacterial survival in sink-like
environments
We have seen how bacterial motility shapes the evolution of antibiotic
resistance in a variety ofmodels.Wehave shown thatwild-type profiles
form the basis of bacterial adaptation by creating mutants and dic-
tating their fitness in antibiotic landscapes (Fig. 1d). Moreover, all our
models admit a deadly motility regime, defined by a critical motility
(Fig. 2b, Fig. 3b, Fig. 4b). Above the critical motility, the wild-type goes
extinct and adaptation is not possible (Supplementary Movie 5). The
goal of this last section is to explain the emergence of such critical
motility regime, and to bring together the previous sections.

We start by studying analytically how the wild-type profile forms
at a fixed resistance state R (Fig. 1b, d). A wild-type profile (N1,…,NL)
can be conceptualised as a point in the profile space of cell numbers
(Fig. 5a) and its time-evolution can be described by the mean-field
equations that are derived from the stochastic dynamics. We illustrate
the general approach (SI Theorems 2, 3) using the staircasemodel with
only two compartments (L = 2,R = 1), which is known as the source-sink
model25. In this model, the mean-field equations for the wild-type
profile formation are the following,

_N1 = rð1� N1=KÞN1 � ðδ + νÞN1 + νN2,
_N2 = � ðδ + νÞN2 + νN1:

ð4Þ

This systemcanbe analysedwithdynamical systems theory, which
studies qualitative features of systems of ordinary differential equa-
tions (ODE). More precisely, the time-evolution of this system on R2

can be characterised by phase portraits (Fig. 5b), which in this case
have two fixed-points: a trivial fixed point N1 =N2 = 0 where the
population goes extinct, and a non-trivial fixed point where the
population survives, which is defined as

N1 =K 1� δðδ +2νÞ
rðδ + νÞ

� �
,

N2 =
ν

ν + δ
N1:

ð5Þ

These phase portraits admit only two distinct types of trajectory
flows (Fig. 5b). Either the non-trivial fixed point has positive physical
densitiesNx >0 and globally attracts all possiblewild-type profiles with
Nx >0 (i.e., the bacterial population survives); or the non-trivial fixed
point is non-physical Nx <0 and the trivial fixed point attracts all
possible wild-type profiles with Nx > 0 (i.e., the bacterial population
does not survive). These two types of phase portraits appear at
different motility rates ν. Furthermore, we can understand this
dynamics with bifurcation theory, and study how the non-trivial fixed
pointmoves through theprofile space asmotility ν increases fromzero
(Fig. 5c). At lowmotility, the non-trivialfixedpoint is stable and located
in the non-negative quadrant N1,2 ≥0. As motility increases, the
dynamics is different in source-like (f>0) and sink-like (f<0)
environments, where the average wild-type fitness of the source-sink
model is f = r=2� δ. If the environment is source-like, the non-trivial
fixed point never leaves the quadrant N1,2 > 0 and remains stable.
However, in sink-like environment, the non-trivial fixed point collides
with the trivial fixed point through a transcritical bifurcation, which
exchanges their stability. In these cases, there is a critical motility,

νc =
δðr � δÞ
2δ � r

>0 ð6Þ

which corresponds to this bifurcation. The emergence of a bifurcation
is necessary, since (a) the trivial fixed point must be stable as ν→∞
when cells experience an average sink-like environment, and (b) the
non-trivial fixed pointmust be stable as ν→0when cells grow locally in
the source at x = 1 (SI Theorem 3). Therefore, these fixed points must

collide and exchange their stability through a transcritical bifurcation.
This bifurcation theory argument is general and provides a robust
mechanism for the emergence of the critical motility regime in all our
models (Supplementary Note 2).

In short, and put differently in amore biological realm, a bacterial
population can be driven to extinction by increasing the rate at which
cells move in sink-like environments (i.e., in spatially heterogeneous
environments where the average wild-type fitness is negative) because
highly motile cells experience an average environment. This idea
suggests that one can limit bacterial adaptation in heterogeneous
landscapes by targeting cell motility.

Discussion
In this work, we have used mathematical analysis to study how bac-
terial motility affects the evolution of antibiotic resistance in spatially
heterogeneous environments that have different antibiotic con-
centrations. By doing so, our study contributes to the large body of
literature that has recognized spatial heterogeneity as an important
factor for bacterial adaptive evolution but where active motility of
bacteria remains poorly explored9–11,25–31.

We have identified three regimes of bacterial adaptation, which
are defined by the degree of cell motility in evolving populations.
Accordingly, we called them low motility, high motility and deadly
motility regimes (Fig. 2b). The theory of the low motility regime has
already been discussed25,26, and has been compared with experimental
works that studied how antibiotic gradients affect bacterial adaptation
rate9,10. Interestingly, while Zhang et al.9 reported an increased adap-
tation rate in their antibiotic gradients compared to well-mixed con-
ditions, Baym et al.10 did not find such an acceleration in theirs. We
note that while the same bacterial species were used, the antibiotic
landscape that cells experienced was very different in these two
experimental systems, which would be sufficient to affect the adap-
tation rates according to our work (Fig. 2b). Such difference can
emerge when cells move at different rates (Fig. 2b), or for different
gradient steepness27,28,31. Indeed, these effects are interchangeable
because increasing gradient steepness brings spatial points of fixed
antibiotic concentrations closer, which resembles the effect of
increasing effective motility.

This effect then suggests that the adaptation regime of an evol-
ving population is governed by the antibiotic variability explored by
bacteria during their lifetime. The adaptation rate can therefore be
quantified by a dimensionless visiting number V, defined as the num-
ber of regions that differ in antibiotic concentrations and that are
visited by an average cell during its life-time (Supplementary Note 7).
In our model, V = ν/δ as cells change antibiotic regions at a rate ν and
live for time 1/δ. Therefore, V < 1 (resp. V > 1) corresponds to the low
(resp. high) motility regime (Fig. 2). In experiments, the visiting num-
ber can be calculated from the characteristic cell speed v, doubling
time in the absence of antibiotics t and length-scale over which the
drug concentrations varyonMIC scales l. The visiting number isV = vt/l
as cells explore length-scale ofvtduring their lifespan,while antibiotics
differ at length-scale l. We estimated the visiting numbers in Zhang
et al.9 and Baym et al.10 and predict that cells in Baym et al.10 were
evolving in a low motility regime (V ≈0.1846 < 1) and cells in Zhang
et al.9 in the high motility regime (V ≈ 120 > 1). Notably, Baym et al.10

observed adaptation at the population front and coexistence of
resistance strains, which is consistent with a low motility regime
(Fig. 1d), while Zhang et al.9 observed that resistant mutants quickly
invade the entire environment, consistent with high motility regime
(Fig. 1d). If bacteria were evolving in different motility regimes as
predicted by our visiting number, it may help to explain why the
authors observeddifferent rates of bacterial adaptation in their studies
(Supplementary Table 1).

As a corollary of our analysis, we find that there is an optimal level
of cell motility for bacterial adaptation in spatially heterogeneous
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environments (Fig. 2b). A similar optimum has been identified in
models of HIV38 and cancer39 drug resistance evolution. These models
are analogous to our setting in that they consider the movement of
viruses or cancer cells between compartments of different drug con-
centrations. However, the deadly motility regime was not identified in
these works. It is not clear if these models do not allow for a deadly
motility regime or if instead the authors simply did not explore their
model fully. Since our models rest on general features of living cells,
they may be useful to understand the evolutionary dynamics of cell
types other than bacteria, namely cancer cells during chemotherapy,
where the role of cell motility and drug gradients remains poorly
explored40,41.

Some of our findings are closely related to those from ecology
works that study biological adaptation at range edges where species
expand their range in an environmental gradient by dispersal and
mutation42–45. In this literature, local adaptation is known to be pre-
ventedbyhighmotility, the so-calledmotility load43, where lessfit wild-
type genotypes migrate enough to increase competition with mutant
genotypes, which decreases selection for the latter. As a result, genetic
diversity is lower in their high motility regime when compared to the
lowmotility regime, aswe find inourwork (Fig. 1d). This loss of genetic
diversity in the ecological models is often associated with critical
motility43,46,47, which can be compared with our critical motility.
Notably, the emergence of a critical motility in these works can be
explained by the same bifurcation mechanism that we identified
(Supplementary Note 2), which highlights the robustness of our
mechanism across modelling frameworks. Moreover, due to its sim-
plicity, the staircase model can be used to provide analytical insights
into biological adaptation at range edges as in Lenormand43, Nagylaki48

and Kirkpatrick & Barton42, while considering the important stochas-
ticity of natural processes as in Polechova & Barton45.

Ourmodelsmakemultiple simplifying assumptions regarding the
biology of bacteria. While we extended our initial staircase model to
account for some of this biology, such as the effect of resistance costs
(Supplementary Fig. 2), level ofmutation rates (Supplementary Fig. 3),
differential competition between growing and non-growing cells
(Supplementary Fig. 4), bactericidal antibiotics (Supplementary Fig. 5)
and biased motility (Supplementary Fig. 6), these processes could be
modelled differently. For example, we modelled resistance costs as a
reduction in division rate (Supplementary Fig. 2), while one could
study resistance costs that decrease motility rate. Moreover, we
assumed implicitly that bacterial adaptation results from the vertical
transmission of resistance genes only, and horizontal gene transfer
(HGT) is known to affect the evolution of antibiotic resistance49.
However, the staircasemodel is a closed systemand it is known that for
these systems, HGT does not have an important impact50–54. While
considering the effect of immigration of cells was beyond the scope of
this work, we tested the predictions for closed systems by imple-
menting HGT in the staircase model and found that HGT does not
affect our conclusions (Supplementary Fig. 9, Supplementary Note 4).

In addition to considering the effect ofHGTmore thoroughly, one
may extend our models to account for other relevant biology of bac-
teria such as the existence of persister phenotypes, which can affect
the stability of microbial communities55, or the effect of phage infec-
tion, which can affect bacterial motility24. Regardless, our current
results lead us to conclude that cell motility limits bacterial adaptive
evolution in spatially heterogeneous environments. This realization
then suggests that manipulating motility may prove to be a useful
approach for controlling bacterial systems and their impacts on us.

Methods
Simulations
A major component of our methods is computer simulations of the
staircase model and its extensions. Hereby, we describe how to simu-
late the basic staircase model. The staircase model treats bacterial

evolution in drug gradients as a continuous-time Markov process,
which is a stochastic process whose future state depends only on the
present state and not on the past states. A state of the staircasemodel is
specified by the number of bacterial cells Nx,g at each lattice point
(x, g)∈ {1,…, L}2 of the position-genotype lattice. The initial state of the
staircase model at time t=0 is chosen as N1,1 = 10

−3K and Nx,g =0 for
other lattice points (x, g) ≠ (1, 1). The time-evolution of the initial state of
the staircase model Nx,g is determined by the following processes i∈ I:

• death of a cell of genotype g at position x (Nx,g→Nx,g − 1): rate
bi = δNx,g,

• division of a cell of genotype g at position x ≤ g when ∑g Nx,g≤ K
(Nx,g→Nx,g + 1): rate bi = r(1 −∑g Nx,g),

• movement of a cell of genotype g from position x to position
x + 1 (Nx,g→Nx,g − 1, Nx+1,g→Nx+1,g + 1): rate bi = νNx,g,

• movement of a cell of genotype g from position x to position
x − 1 (Nx,g→Nx,g − 1, Nx−1,g→Nx−1,g + 1): rate bi = νNx,g,

• mutation of a cell at position x fromgenotype g to genotype g + 1
(Nx,g→Nx,g − 1, Nx,g+1→Nx,g+1 + 1): rate bi = μfNx,g,

• mutation of a cell at position x fromgenotype g to genotype g − 1
(Nx,g→Nx,g − 1, Nx,g−1→Nx,g−1 + 1): rate bi = μgNx,g.To simulate this
time-evolution, we use the exact sampling of stochastic trajec-
tories of the staircasemodel via a computationally efficient Next
Reaction Method56, which samples the next process that takes
place and the time when it happens. Effectively, this method
combines computationally efficient data structures and the Gil-
lespie’s algorithm57:

1. sample the next process i, which happens with probability
bi/∑j∈I bj,

2. sample the waiting time Δt, which has distribution ExpðPi2I biÞ,
3. update the time t→ t +Δt when the next process i happens and

execute the process i.

Using this sampling technique, the times that correspond to the
founder and winner states can be measured for all resistance states R
(Fig. 2a). Founder states are defined by the first time when a single
mutant cell (g =R + 1) appears in the overlap region (x = R + 1),while the
winner states are defined by the first time when there is more mutant
cells (g = R + 1) than wild-type cells (g ≤ R) in the overlap region (x =
R + 1). As in Hermsen et al.26, we record the times that correspond to
the founder states TR

i in n = 50 independent simulations i and set
T0
i =0. The adaptation rate is estimated as,

aR =
nP

iðTR
i � TR�1

i Þ
: ð7Þ

This expression matches the definition of the adaptation rate
precisely when n→∞, because

P
iðTR

i � TR�1
i Þ=n ! ETR

evo +ETR�1
eco by

the law of large numbers. The standard deviations associated with
taking finite n = 50 can be computed using the central limit theorem
and we checked that their corresponding error bars are smaller than
the symbols in Fig. 2b. Asweusen = 50 simulations in all Figures and all
Figures include the original staircasemodel as a special case, errors are
expected to be negligible in all other Figures. The standard deviations
are provided in the Source Data.

The same algorithm is used to simulate the extensions of the
staircase model and the precise parameters used in simulations are
detailed in the Supplementary Note 10.

Analytical and numerical techniques
In addition to computer simulations, we developed a combination of
analytical and numerical techniques, which are used to compute the
evolutionary time, ecological time and the adaptation rate. In contrast
to simulations, these techniques are based on closed-form solutions of
master equations, numerical methods for solving algebraic equations
(such as Newton-Raphson method) and solving ODEs (such as Runge-
Kutta method). To illustrate these techniques, we show how to
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compute the expected waiting times at a resistance state R and the
adaptation rate aR in the original staircase model.
1. Find the wild-type profile Nx at a resistance state R. Use

Newton-Raphsonmethod to solve the algebraic equations for the
non-trivial fixed point of the mean-field theory

0= rð1� Nx=KÞNx1x ≤R � δNx

+ νðNx�1 � NxÞ11<x + νðNx + 1 � NxÞ1x<L,
ð8Þ

where 1 is the indicator function.
2. Compute the evolutionary time ETR

evo. A closed-form solution
exists and follows from a modification of the theory in Hermsen
et al.25,26. We consider three independent adaptation paths along
which wild-type can produce a first mutant in the overlap region
x =R + 1. On the position-genotype lattice (x, g), they are the
division path D: (R,R)→ (R,R + 1)→ (R + 1,R + 1) (mutation at x = R
followed by migration to the right); the overlap path O:
(R + 1, R)→ (R + 1, R + 1) (mutation at x =R + 1); and the no-division
pathN: (R + 2, R)→ (R + 2, R + 1)→ (R + 1, R + 1) (mutation at x = R + 2
followedbymigration to the left). As theoriginal theory26 assumes
low motility, it neglects the no-division path since there are no
wild-type cells to mutate at position x = R + 2 in this regime (SI
Theorem 3). Moreover, we assume that the flux of mutants
between neighbouring compartments in the division region x ≤ R
and the no-divison region x ≥ R + 2 is equilibrated, so that we can
ignore the net probability flux of mutants that enter or exit the
compartments x = R − 1, R,R + 1 and also ignore longer paths such
as (R − 1, R)→ (R − 1, R + 1)→ (R,R + 1)→ (R + 1,R + 1) (mutation at
x =R − 1 followed by double migration to the right). This is a
reasonable assumption as the flux of mutant-producing wild-type
is equilibrated far from the population front. The computation of
ETR

evo has the following structure.
(a) The waiting times till a mutant is produced in the overlap

region along path i∈ {D,O,N} are denoted by Ti (Fig. 2a).
(b) The probability that the waiting will be longer than t is

SiðtÞ=PðTi > tÞ and the probability density function of Ti is
given by Fi(t) = −dSi/dt.

(c) Notice that TR
evo = mini Ti and that Ti are independent.

Thus, SðtÞ=PðTR
evo> tÞ= SDðtÞSOðtÞSNðtÞ.

(d) The probability density function of TR
evo is

FðtÞ= � dS
dt

= FDðtÞSOðtÞSNðtÞ
+ SDðtÞFOðtÞSNðtÞ
+ SDðtÞSOðtÞFNðtÞ:

ð9Þ

(a) The expected time ETR
evo =

R1
0 tFðtÞdt is found by numerical

integration.

Therefore, the problem is solved by finding the functions Si(t)
and differentiating them to produce Fi(t). According to Hermsen
et al.25,26, these functions are:

(a) For path D:

SDðtÞ=
cDe

bDt

cD coshðcDtÞ+bD sinhðcDtÞ

� �aD

ð10Þ

where

aD =
μf NR

r0 � μf
,bD =

1
2
ðν + δ � r0 +μf +μbÞ,

cD =
1
2

ν + r0 � μf + δ +μb

� �2
�

� 4ðr0 � μf Þðδ +μbÞ
i1=2

,

ð11Þ

and

FDðtÞ= νSDðtÞhnðtÞiD, ð12Þ

where 〈n(t)〉D is the average mutant population in compartment x = R
at time t

hnðtÞiD =
μf NR tanhðcDtÞ
cD +bD tanhðcDtÞ

: ð13Þ

(b) For path O:

SOðtÞ= e�μf NR + 1t , ð14Þ

FOðtÞ=μf NR+ 1e
�μf NR+ 1t : ð15Þ

(c) For path N:

SNðtÞ=
cNe

bNt

cN coshðcNtÞ+ bN sinhðcNtÞ

� �aN

ð16Þ

where

aN = � NR+ 2,bN =
1
2
ðν + δ +μf +μbÞ,

cN =
1
2

ðν � μf + δ +μbÞ2
h

+4μf ðδ +μbÞ
i1=2

,
ð17Þ

and

FNðtÞ= νSNðtÞhnðtÞiN , ð18Þ

where 〈n(t)〉N is the average mutant population in compartment x =
R + 2 at time t

hnðtÞiN =
μf NR+ 2 tanhðcNtÞ
cN +bN tanhðcNtÞ

: ð19Þ

Finally, if there is a nonnegligible chance that the first mutant in the
overlap region dies beforedivision, the evolutionary time TR

evo must be
corrected to TR

evo=q, where q is the probability that the first mutant in
the overlap region divides before its death (Supplementary Note 8).
3. Compute the ecological time ETR

eco. The competition between
wild-type and mutants can be described well by the mean-field
equations:

dwx

dt
= � μf wx +μbmx

+ r 1�wx +mx

K

� �
wx1x ≤R � δwx

+ νðwx�1 �wxÞ11<x + νðwx + 1 �wxÞ1x<L

dmx

dt
= +μf wx � μbmx

+ r 1�wx +mx

K

� �
mx1x ≤R � δmx

+ νðmx�1 �mxÞ11<x + νðmx + 1 �mxÞ1x<L

ð20Þ

with initial conditions at time t =0:

wx =Nx � hnðETR
evoÞiD, x = 1, . . . ,R

wx =NR+ 1 � 1,x =R+ 1

wx =Nx � hnðETR
evoÞiN , x =R+ 2, . . . , L

mx = hnðETR
evoÞiD,x = 1, . . . ,R

mx = 1, x =R + 1

mx = hnðETR
evoÞiN , x =R +2, . . . , L

ð21Þ
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In these equations wx and mx stand for the number of wild-type and
mutant cells in spatial compartment x, respectively. The system is
simulated from the end state of the previous stochastic processwhen a
first mutant appears in the overlap region. This system can be
simulated efficiently by a Runge-Kutta (RK4) method. The time
t =ETR

eco is reached when wR+1 <mR+1 for the first time, i.e., the
mutants outcompete the wild-type in the overlap region.
4. Find the adaptation rate. The adaptation rate is found from

aR =
1

ETR
evo +ETR�1

eco

: ð22Þ

For convenience, we refer to this set of techniques as analytical
techniques, even though they implementmany numerical procedures.
The benefit of the analytical techniques, as opposed to simulations,
comes from their computational efficacy. In addition to this form of
analytical techniques, we developed a purely analytical approach,
which describes the formation of the wild-type profile and this
approach is detailed in the Supplementary Notes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data generated in this study are provided in the Source
Data file. Source data are provided with this paper.

Code availability
All the code58 used in this work is available at: https://github.com/vit-
pi/StaircaseModel.
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