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Dominance vs epistasis: the biophysical
origins and plasticity of genetic interactions
within and between alleles

Xuan Xie1, Xia Sun1,8, Yuheng Wang 1,8, Ben Lehner 2,3,4,5 &
Xianghua Li1,5,6,7

An important challenge in genetics, evolution and biotechnology is to
understand and predict how mutations combine to alter phenotypes, includ-
ing molecular activities, fitness and disease. In diploids, mutations in a gene
can combine on the same chromosome or on different chromosomes as a
“heteroallelic combination”. However, a direct comparison of the extent, sign,
and stability of the genetic interactions between variants within and between
alleles is lacking. Here we use thermodynamic models of protein folding and
ligand-binding to show that interactions between mutations within and
between alleles are expected in even very simple biophysical systems. Protein
folding alone generates within-allele interactions and a single molecular
interaction is sufficient to cause between-allele interactions and dominance.
These interactions change differently, quantitatively and qualitatively as a
systembecomesmore complex. Altering the concentration of a ligand can, for
example, switch alleles from dominant to recessive. Our results show that
intra-molecular epistasis and dominance should be widely expected in even
the simplest biological systems but also reinforce the view that they are plastic
system properties and so a formidable challenge to predict. Accurate predic-
tion of both intra-molecular epistasis and dominance will require either
detailed mechanistic understanding and experimental parameterization or
brute-force measurement and learning.

A fundamental goal in biology is to understand and predict how
mutations combine to alter phenotypes. This is important in bio-
technology – for example when engineering new enzymatic activities
and protein properties – and also in animal and plant breeding, clinical
genetics and evolutionary biology.

Although mutations are normally assumed to have indepen-
dent effects, this often proves not to be the case: additional

variants within the same gene as well as in other genes can
quantitatively and qualitatively alter the impact of a mutation1.
Predicting these genetic interactions between variants and
so improving genetic prediction beyond the performance that
can be achieved using additive models is a central challenge
in clinical genetics, evolutionary biology, agriculture and
biotechnology.
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When two variants occur in the same gene in a diploid species,
they can either both occur on the same chromosome or each variant
can be on a different chromosome, i.e., with one variant on the
paternal and one on the maternal chromosome as different alleles. In
any individual, approximately 1 in 10 human genes carry two or more
variants compared to a reference genome2, with >20,000 combina-
tions of variants within the samegene observed >1.5million times in 59
medically actionable genes in ~50k individuals from the UK Biobank
population3. It is therefore important for clinical genetics to under-
stand and be able to predict what happens when multiple mutations
occur in the same gene, and how the outcome differs depending upon
whether the two variants occur on the same chromosome (‘within
allele’) or on different chromosomes (‘between alleles’).

In quantitative genetics, clinical genetics, functional genomics,
animal breeding and evolutionary biology, the phenotypic change
when combining mutations is most often assumed to be log-
additive (Wexp_log) (Eq. 1) or additive (Wexp_add) (Eq. 2)

1,4. For exam-
ple, when two variants (variant A and variant B for example com-
pared to the wild-type variant WT) are combined within the same
copy of a gene, the change in phenotype or fitness (W) is often
expected to be log-additive (Eq. 1), with deviance from this
expectation (Wexp) referred to as a genetic interaction or epistasis (E
or e for log-additive or additive model respectively) (Eqs. 3, 4)1,5.

log W exp log

� �
= log WA

� �
+ log WB

� �� log WWT

� � ð1Þ

W exp add =WA +WB �WWT ð2Þ

EAB = log WAB

� �� log W exp

� �
ð3Þ

eAB =WAB �W exp ð4Þ
Similarly, when two variants are combined in different alleles (αA

and αB for example as two different variants of the same gene), the
expected phenotype is normally considered to be the average of the
phenotypes when the variants are present in two copies (i.e. homo-
zygotes) (Eq. 5), with any deviance from this additive expectation
W exp αA=αB quantified as the dominance index6,7 or degree of dom-
inance (Eq. 6)8,9. The former uses one allele as the reference and scores
above or below 0.5 indicate the reference allele is recessive or domi-
nant, respectively. On the other hand, the degree of dominance does
not set a reference allele and 0 indicates no dominance, a positive
value indicates that the allele with better function is dominant, and
vice versa. Complete dominance or recessivity (where the hetero-
zygote phenotype is the same as either parent) leads to an absolute
value of 1.

W exp αA=αB =
W αA=aA +W αB=αB

2
ð5Þ

Degree of dominance=
WαA=αB �W exp αA=αB

WαB=αB �W exp αA=αB

��� ��� ð6Þ

Mutations have been found to vary extensively in their dom-
inance, with important implications for breeding, evolution and
human clinical genetics10,11.

Various mechanisms have been proposed to cause epistasis,
dominance, or both1,8,11,12. These include the non-linear relationships
between additive free energies and phenotypes. For example, two-
state cooperative protein folding results in a sigmoidal relationship
between the folding energy of a protein and the fraction of a protein
that is folded13–16. Additional non-linear relationships between

genotype and phenotype are introduced bymolecular interactions17,18,
cooperativity19,20, molecular competition21,22, metabolic flux7,23 and
feedback loops andotherdynamics in cellularnetworks8. In addition to
such ‘global’ or ‘non-specific’ interactions between mutations due to
nonlinear genotype-phenotype relationships1, mutation-specific cau-
ses of epistasis and dominance are also observed. These include non-
additive changes in free energy when mutating energetically-coupled
residues24 and gain-of-function, change-of-function and dominant
negative mutations25.

Protein (or RNA) folding and binding to ligands constitute the
fundamental reactions common to nearly all cellular processes. Ther-
modynamic models have been used to interpret and predict how
mutations combine in large-scale experimental datasets1,18,21,26–29, but a
direct comparison of how these foundational biophysical processes
cause interactions within (intra-molecular epistasis) and between
alleles of a gene is lacking.

Comparisons of how variants interact within and between alleles
of a gene are complicated by the different metrics that are typically
used to quantify these types of genetic interactions. While between-
allele interactions are typically quantified in a diploid system as dom-
inance by comparing the heterozygous and homozygous phenotypes
(Eqs. 5, 6), within-allele interactions are quantified using metrics of
epistasis (Eqs. 3, 4). In addition, whereas intra-molecular epistasis is
most often quantified using a metric that quantifies the deviance from
a log-additive expectation (Eqs. 1, 3), dominance is typically quantified
as the deviance from an additive expectation (Eqs. 5, 6). This makes
direct comparisons of how variants interact within and between alleles
confusing, simply because the metrics used are different. Throughout
this manuscript, we, therefore, quantify interactions within and
between alleles using identicalmeasures of genetic interaction, andwe
do so using both additive and log-additive expected outcomes. To
allow comparisons to standard definitions of dominance, we also
quantify the dominance of alleles using the degree of dom-
inance (Eq. 6).

Our results show that, even in the simplest biophysical systems,
mutations are expected to frequently combine with outcomes that
differ from the additive or log-additive expectations. Moreover, the
expected outcome is typically different when combining variants
within versus between alleles. In the simplest possible protein sys-
tem, where a phenotype is linearly dependent on the concentration
of a folded protein, there are no between-allele interactions or
dominance, but abundant within-allele interactions (intra-mole-
cular epistasis). Adding a single ligand-binding reaction to the sys-
tem is sufficient to generate between-allele interactions and
dominance which change both quantitatively and qualitatively
depending on how much ligand is present. Furthermore, in this
simple biophysical system, the epistasis depends on the biophysical
effects of mutations whether the folding energy or the binding
energy is altered, whereas the between-allele interactions and
dominance are the same for mutations altering folding or binding.
Introducing a nonlinear dependency of a phenotype on the con-
centration of a protein or protein-ligand complex transforms the
within- and between-allele interactions and often in opposite
directions. Our results show that intra-molecular epistasis interac-
tions and dominance are expected in even the simplest one-gene
diploid biophysical systems but that they are plastic with their
magnitude and sign dependent on the precise molecular details of
the system and on the conditions. Moreover, they highlight that
both within and between-allele genetic interactions and dominance
are difficult to predict quantitatively and qualitatively as they
depend on the parameter values in even very simple biophysical
systems. Prediction of these interactions and dominance will
therefore require either detailed mechanistic understanding and
quantification of relevant cellular parameters or large-scale
empirical measurements and learning.
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Results
Within- and between-allele genetic interactions in simple bio-
physical systems
In a diploid system, each gene is present in twocopies – in humans, the
maternal and paternal alleles, respectively. When a gene carries two
different mutations (mutant A and mutant B thereafter A and B), the
two variants can, therefore, either both be present in the same allele
(αAB/αWT) (Fig. 1a) or each variant can be in a different allele as a het-
eroallelic combination or compoundheterozygote (αA/αB) (Fig. 1b). In a
haploid organism, a similar comparison can be made for gene dupli-
cates – two variants can be combined in the same duplicate (paralog)
or each can be in a different paralog.

Quantifying how variants interact when they are combined
requires the specification of a null model for independent effects.
The interactions between variants within the same allele of a gene
are typically referred to as epistasis or genetic interactions with a
log-additive (or sometimes additive) null model most often used
as the expected outcome (Eqs. 1–4, Fig. 1b)1,4. In contrast, inter-
actions between variants in different alleles of the same gene are
typically quantified as dominance, which uses an additive expec-
ted outcome (Eq. 5, Fig. 1e, f and Supplementary Fig. 1)6,9. There-
fore, when comparing how mutations interact within and between
alleles of a gene, throughout this manuscript we quantify inter-
actions using both log-additive and additive null models (Eqs. 7, 8)
(Fig. 1b, d).

Expected phenotypes (Wexp):

log W exp log

� �
=Max

log Cð Þ,
log WαA=αWT

� �
+ log W αB=αWT

� �
� log WαWT=αWT

� � !

ð7Þ

W exp add =Max C, WαA=αWT +W αB=αWT �W αWT=αWT

� �� �
ð8Þ

C =
0:5 αAB=αWT

0 αA=αB

(

The wild-type phenotypeW αWT=αWT is set to 1 and complete-loss of
function as 0. Forwithin-allele combinations ofmutations (αAB/αWT),we
set the lower bound of a phenotype to be half of the wild-type phe-
notype (C =0.5) as the second allele of the gene is always functional
(Fig. 1b) (Eqs. 7, 8), which is not a general definition but a reasonable
treatment for our biophysical model.

The interaction between each pair of mutations was then quan-
tified as the difference between the observed double mutant pheno-
type and that expected from an additive or log-additivemodel (Fig. 1b,
d). Thus, a negative interaction score indicates a worse-than-expected
phenotype when two mutations combine and vice versa for a positive
interaction score.

Fig. 1 | Quantifying within-allele, between-allele genetic interactions and
dominance. a–d Two single mutations each on a chromosome of the same gene
can combine within the same allele (a), quantified as within-allele interactions
(intra-molecular epistasis) (b) or combinebetween twodifferent allelesof the same
gene (c), quantified as between-allele interactions (d), based on the additive or log-
additive expectations (b, d). For within-allele mutation combinations, the lower

bound of the expected phenotype is set to 0.5 AU (arbitrary unit), with the dotted
grey empty circle indicating the expected phenotype below 0.5 AU and the solid
grey circle indicating the new expected phenotype set to 0.5 AU. e, f How two
homozygous mutations combine (e) is quantified as dominance based on the
additive expectation (f).
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For comparison, we also quantify the degree of dominance
(thereafter, dominance; Eq. 6) by comparing the compound hetero-
zygous phenotypes with the average of homozygotes’ pheno-
types (Eq. 5).

Protein folding generates intra-molecular epistasis but not
dominance
We first considered the simplest biophysical system where a pheno-
type (orfitness) is linearly related to the concentration of a protein that
folds cooperatively and exists in two states: unfolded and folded
(Model 1) (Fig. 2a, b, n). Such two-state cooperative folding is observed
for many small proteins30. The probability of the protein being folded
(or folded fraction, F) depends on the Gibbs free energy difference
between the two states (the folding energy), ΔGFolding (Fig. 2a, c) and
can be calculated using the Boltzmann distribution (Eq. 9) where R is
the gas constant and T is the absolute temperature.

F =
e�ΔGFolding=RT

1 + e�ΔGFolding=RT
ð9Þ

Mutations affect the folding energy relative to the wild type, and
changes in free energy are (ΔΔGFolding) assumed to be additive when
combining mutations in the same molecule. We first considered a
moderately stable protein (ΔGFolding = −2 kcal per mol) and mutations
with a range of effect sizes (ΔΔGFolding = −2 to 13 kcal per mol) and
combined pairs of mutations either within the same allele or between
the two alleles (for details, see Methods).

We plotted the phenotypes of doublemutants against the change
in free energy (ΔΔGFolding) of the constituent singlemutants (Fig. 2c–e,
h, i) and also against the phenotypes of the singlemutants (Fig. 2f, g, j,
k). Comparing the iso-phenotype contour lines (phenotype isochores)
when combining mutations within allele (Fig. 2d) to the expectations
when assuming additivity (Fig. 2e upper panel) or log-additivity (Fig. 2e
lower panel) illustrates how protein folding alone generates
epistasis1,13,15,16: the sigmoidal relationship between the fraction of a
protein that is folded and free energy (Fig. 2c) means that two desta-
bilizing mutations often have an outcome that is more detrimental
than both the additive and log-additive expectations, and combining a
stabilizing with a destabilizing mutation often results in a better than
expected outcome (negative and positive interactions respectively
shown in Fig. 2e, g, Supplementary Fig. 2b).

In contrast, when twomutations affecting folding are combined in
different alleles, the phenotypic outcome is additive (Fig. 2h–k, m),
consistent with the most widely used null model for dominance
(Fig. 2n–q). In comparison, assuming log-additivity overestimates the
phenotype when combining two destabilizing mutations, resulting in
negative interactions (lower panels of Fig. 2i, k). Considering more
stable and less stable wild-type proteins does not change these con-
clusions (Supplementary Fig. 2a, c–f).

To evaluate these results experimentally, we expressed two
copies of the N-terminal domain of the bacteriophage lambda
repressor CI fused to GFP (Supplementary Fig. 3a, b Supplementary
Fig. 9). This protein domain does not dimerize and forms a stable
monomer following the two-state folding model31. We selected eight
individual mutants of CI from our earlier study21 (see the Methods
section for more details) and quantified the total protein fluorescence
when the mutations are combined in two different copies or in the
same copy of the gene (Supplementary Fig. 3c, d). In agreement with
the expectation from our simulations, mutations typically combine
additively between alleles but have lower than expected concentra-
tionswhen combinedwithin the sameallele (Supplementary Fig. 3c, d).

In summary, protein folding alone is not expected to generate
between-allele interactions or dominance but it does generate within-
allele interactions (epistasis): additivity is the correct null model for

dominance but neither additivity nor log-additivity is the correct
expectation for epistasis.

Ligand binding generates dominance
Manyproteins bind ligands as part of their function, for example, small
molecules, nucleic acids or other proteins. We examined how ligand-
binding affects the expectation for how mutations interact within and
between alleles. We first considered the case where a phenotype is
linearly determined by the concentration of protein-ligand complex
(Model 2) (Fig. 3a, b). In this system, mutations can alter the free
energy of folding, as in Model 1 (Fig. 2c), or they can alter the binding
energy (i.e. affect the binding affinity). In Figs. 3c and d, we compare
the observed and expected double mutant phenotypes when com-
bining mutations affecting either folding or binding (the expected
values are the same for folding and binding mutations because the
additive and log-additive expectations are calculated from the phe-
notypic values) In this model, the ligand concentration is the same as
the protein concentration, the protein is moderately stable
(ΔGFolding = −2 kcal permol) and the binding affinity ismoderate32 (free
energy of binding ΔGBinding = −5 kcal per mol, corresponding to a dis-
sociation constant, KD = 291 nM at 37 °C).

Similar to what is observed in the folding-only model (Model 1),
when two destabilizing mutations are combined in the same protein,
the decrease in the concentration of the protein bound to the ligand is
often larger than the additive or log-additive expectation i.e., there is
negative epistasis (blue shaded areas in Fig. 3c and Supplementary
Fig. 4a, b).

However, unlike in Model 1, there are now non-additive interac-
tions between mutations when they are combined in the two different
alleles as heterozygotes, with two destabilizing mutations typically
having an outcome that is better than the additive expectation (pink-
shaded area indicating positive interaction scores in Fig. 3d, Fig. 3g and
Supplementary Fig. 4c, d when [Ligand]/[Protein] = 1.0). Similarly,
when two homozygous mutations combine (Fig. 3k), there is dom-
inance (Fig. 3l–p). Weakly detrimental mutations combined with
near-neutral mutations lead to worse-than-expected phenotypes
(blue-shaded area in the top right of Fig. 3l) and better-than-expected
phenotypes when combined with very detrimental mutations (pink-
shaded area in the bottom left of Fig. 3l). The weakly detrimental
mutations are partially dominant over mutations with near-neutral or
very detrimental mutations. In short, mutations that do not show
any dominance in the protein folding-only model now display
dominance22.

Mutations interact with opposite signs within and between
alleles
In the folding and binding model (Model 2), mutations interact to
generate both within and between-allele interactions: the phenotype
of double mutants often differs from the additive and log-additive
expectations. However, comparing the curvature of the observed
phenotypic isochores in Figs. 3c and d, the interactions within and
between alleles are qualitatively different: two detrimental variants
typically have an outcome that is worse than additive when they both
occur in the same allele (Fig. 3c, e) but better than additive when they
occur in different alleles (Fig. 3d, g). Moreover, although the signs of
interaction are different, the interaction scores when the same muta-
tions are combined within versus between alleles are positively cor-
related (Fig. 3i, j), meaning that mutation pairs with strong between-
allele interactions show weak within-allele interactions and vice versa.

Folding and binding mutants differ in their epistasis but have
the same dominance
When mutations are combined in the same allele in Model 2, the
outcome differs depending on whether themutations affect folding
or binding. That is, combining single mutants with the same
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Fig. 2 | Protein folding generates intra-molecular epistasis but not dominance.
a, b Two-state protein folding system (Model 1) with two mutations within- (a) or
between alleles (b). Phenotypes are determined by the folded protein concentra-
tion marked with grey-shaded boxes. c The relationship between the free energy
changes of protein folding and folded protein fraction of homozygotes. The grey
dashed linemarks thewild-typeprotein freeenergyof folding.d–kHeatmaps show
how two mutations combine within- (d–g) or between alleles (h–k) when they are
ordered by free energy changes (d, e, h, i) or phenotypes (f, g, j, k). Black lines
indicate phenotypic iso-chores. l, m Relationships between the observed and

expected phenotypes with additive expectation when combining two detrimental
mutants within- (l) or between alleles (m). The darker the colour, the higher the
density of the simulateddatapoints.nCompoundheterozygotes derived from two
homozygous mutations within a two-state protein folding system (Model 1).
o Relationships between the observed and expected phenotypes with additive
expectation when combining two detrimental homozygous mutants.
p, q Heatmaps show how two homozygous mutations combine when they are
ordered by phenotypes either calculated (p) or expected based on the phenotype
additivity (q). Black lines indicate phenotypic iso-chores.
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phenotypic value but different underlying causal biophysical
mechanisms results in a different outcome in a double mutant
(compare “Folding mutants” and “Binding mutants” columns in
Fig. 3c). As shown in Fig. 3e, folding mutant phenotypes deviate
from the expected additive phenotypes more than binding mutant
phenotypes, resulting in stronger negative interaction scores
(Fig. 3f). This is because the non-linear relationships between the

phenotype and the free energies of folding or binding are different
(Supplementary Fig. 4a, b)18,27,29.

In contrast, when twomutations in different alleles are combined,
the phenotype of the double mutant does not depend on whether the
mutations affect folding or binding (Fig. 3d, g, l, m), resulting in the
same between-allele interactions (Fig. 3h) or dominance (Fig. 3n).
Thus, in this simple folding and binding system, the magnitude of
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epistasis but not dominance depends on the biophysical effect of a
mutation – whether a mutation affects protein stability or the binding
affinity.

Changes in ligand concentration alter both epistasis and
dominance
In the version of Model 2 presented in Fig. 3, the ligand concentration
is the same as the total protein concentration. However, as illustrated
in Fig. 4, altering the ligand concentration both quantitatively and
qualitatively changes epistasis, between-allele interactions, and
dominance.

The interactions betweenmutationswithin the same allele change
as the ligand concentration is altered (Fig. 4a) with the appearance of
positive epistasis at low ligand concentrations (seen as the appearance
of a magenta-filled area indicating positively interacting pairs in
Fig. 4d, e). For example, when the ligand-protein ratio is0.8, 80%of the
protein is boundwhen both alleles arewild-type but 50%of the protein
is bound when one allele is null. The lowest possible phenotypic value
is thus 62.5% of the wild-type phenotype (0.5/0.8) not 50% of the wild-
type as the additive and log-additive models assume (the left panel of
Fig. 4d, e). To sum up, variations in the ligand concentration alter
epistasis quantitatively when two mildly detrimental mutations com-
bine (Fig. 4d, e, as the blue-shaded areas indicate) and qualitatively
when two very detrimental mutations combine (Fig. 4d, e), seen as the
change from positive epistasis to no epistasis with increasing ligand
concentration indicated by the relative position of the expected versus
observed phenotypes.

At high ligand concentrations (e.g. [Ligand]: [Protein] = 10 in
Fig. 4b, c), there is no between-allele interaction or dominance, with
mutations combining additively. When the ligand concentration is
reduced (e.g. [Ligand]: [Protein] = 2 in Fig. 4b), the phenotype of a
double mutant (compound heterozygote) is better than the additive
expectation for between-allele interactions. There is also dominance,
both positive and negative, depending upon the variant effect sizes
(Fig. 4c, g). At [Ligand]: [Protein] = 1, these tendencies further increase
(Fig. 4b, f). However, as the ligand concentration is further decreased,
the phenotypes of double mutants become worse than the additive
expectation for between-allele interactions ([Ligand]: [Protein] = 0.8 in
Fig. 4b, f) and there is a positive dominance score ([Ligand]: [Pro-
tein] = 0.8 in Fig. 4c, g).

Thus, changing the concentration of a ligand both quantitatively
and qualitatively alters the interactions between alleles, and can result
in the more detrimental variant switching from dominant to recessive
(Supplementary Fig. 5).

Why does ligand-binding cause between-allele interactions and
dominance and why do the interactions switch as the ligand con-
centration changes?When the concentration of the ligand is in excess,
changes in protein concentration result in a proportional change in
ligand binding and the two alleles effectively behave as independent
thermodynamic systems (Supplementary Fig. 6 right columns). How-
ever, when the ligand concentration is reduced, the two alleles now

compete for binding to the ligand and so they can no longer be con-
sidered as independent systems. For example, when a mutation A
destabilizes allele 1, less of allele 1 binds to the ligand but, because
ligand binding is competitive, more of the ligand now binds to allele 2,
resulting in a smaller-than-additive reduction in the total protein-
ligand complex (see the magenta lines indicating additive expectation
below the upper boundary of the darkest filled areas for the observed
phenotypes in the middle columns Supplementary Fig. 6a, b). How-
ever, as the ligand concentration is further reduced, the system enters
a regime where the relationship between the fraction bound and the
total protein concentration is no longer linear as the protein is in
excess and all of the ligand is bound (Supplementary Fig. 6). Moder-
ately reduced stability or affinity now has no effect on the concentra-
tion of the protein-ligand complex such that only larger changes in
energy alter the concentration of the bound complex (the left columns
of Supplementary Fig. 6). As a result, many detrimental mutations
combine to have a greater reduction in the protein-ligand complex
than additive effects (see the magenta line above the upper boundary
of the darkest filled area in the left column of Supplementary
Fig. 6a, b).

Nonlinear dose-response curves differentially transform within-
and between-allele genetic interactions
So far, we have considered situations where a phenotype is linearly
dependent on the concentration of a folded protein or a protein-
ligand complex. However, in reality, phenotypes often depend non-
linearly on the concentrations of macromolecules33. We, therefore,
used three representative concentration-phenotype relationships –

concave, convex and sigmoidal linking functions – to explore how
non-linear relationships alter the interactions within and between
alleles (Fig. 5a).

When applied to the mutations affecting ligand-binding energy
(Model 2), all three functions alter within- and between-allele genetic
interactions (Fig. 5b–d) and dominance (Fig. 5f, h). Moreover, the
interactions not only change quantitatively but also in some cases
qualitatively, switching from positive to negative (Fig. 5d, h). The
effects of the non-linear concentration fitness functions can also differ
for both interactions and dominance. For instance, a concave function
shifts within-allele interactions and dominance to less negative or
positive values, whereas between-allele interactions become negative
(Fig. 5b, c, e–g). In contrast, a sigmoidal concentration-fitness function
shifts both within- and between-allele interactions towards more
negative values, with a stronger effect on the latter (Fig. 5d, e). Inter-
estingly, a sigmoidal function switches dominance scores from nega-
tive to positive and vice versa, indicating mutations switch from
recessive to dominant and vice versa (Fig. 5f, h). Moreover, between-
andwithin-allele genetic interactions canbecomeanti-correlatedwhen
nonlinear linking functions are applied (Fig. 5d, compared to Fig. 3i, j).

The effects of linking functions on the interactions between
folding variants in Model 1 and Model 2 are consistent with those on
binding mutants (Supplementary Fig. 7).

Fig. 3 | Ligand binding generates between-allele interactions and dominance.
a, b Three-state protein system with unfolded, folded, and ligand-bound states
(Model 2), with two mutations of the same gene within- (a) or between alleles (b).
Phenotypes are determined by the ligand-bound protein concentration marked
with grey-shaded boxes. c,dHeatmaps showing how twomutations both affect the
same biophysical parameters combine: protein-folding (the second column) or
ligand-binding (the third column) when they are ordered by the phenotype.
e, g Relationships between the observed and expected phenotypes with additive
expectationwhen combining two detrimentalmutantswithin (e) or between alleles
(g). f, h–j Comparisons of interaction scores between different types of double
mutant combinations: protein-folding vs. ligand-binding mutants within- (f) or
between-alleles (h), between- vs. within-allele interactions of the protein-folding (i)
or ligand-binding (j) mutants. The darker the colour, the higher the density of the

simulated data points at the given between- vs. within-allele interactions.
k Compound heterozygotes derived from two homozygous mutations within a
three-state protein system (Model 2). lHeatmaps showing how twomutations both
affect the same biophysical parameters combine: protein-folding (the second col-
umn) or ligand-binding (the third column) when they are ordered by the homo-
zygous phenotype.m Relationships between the observed and expected
phenotypes when combining two detrimental homozygous mutants.
n Comparison of dominance between different types of double mutant combina-
tions: protein-folding vs. ligand-binding mutants. o, p Comparisons of expected
phenotypes (o) and dominance vs. between-allele interaction scores (p) for the
same compound heterozygote mutants. The darker the colour, the higher the
density of the simulated data points.
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To examine howdependent our conclusions are on the parameter
values defining the non-linear curves, we repeated our analysis with
five different curvatures (slopes) for each of the concave, convex and
sigmoidal curves (Supplementary Fig. 8a). We observe stronger
negative within-allele interactions with steeper convex curves and
stronger negative between-allele interactions with steeper concave or
sigmoidal curves (Supplementary Fig. 8b, d). Nevertheless, the direc-
tion of the changes is independent of the parameter values (Supple-
mentary Fig. 8b–e).

Taken together, these results show that protein folding generates
within-allele interactions (intra-molecular epistasis) and a single bind-
ing reaction is sufficient to generate between-allele interactions and
dominance. However, the strength and sign of epistasis and dom-
inance are highly dependent on the details of the system, including the
relationship between the concentration of a molecule and the phe-
notype of interest. This makes them difficult to predict without a
detailed mechanistic understanding of a system and knowledge of the
relevant cellular parameters or large-scale empirical measurements of

Fig. 4 | Changes in ligand concentration switch between-allele interactions.
a, b, c The relationships between the observed and expected phenotypes with
additive expectation when combining two detrimental mutants within- (a),
between (b) heterozygous alleles or homozygous alleles (c) at different ligand-
protein ratios. d–g Heatmaps show how two mutations combine within - (d, e)

between heterozygous alleles (f), or homozygous alleles (g) when they both affect
the same biophysical parameters: protein-folding (d, f, g) or ligand-binding (e, f, g).
For both between-allele mutant combinations, folding or binding double mutants
are shown together since they are not distinguishable (f, g). Black lines indicate
phenotypic iso-chores.
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mutational effects and interactions. Even the simple perturbation of
altering the concentration of a binding partner can quantitatively alter
epistasis and switch an allele from dominant to recessive.

Discussion
Wehave analyzed here howmutations interact within and between the
two alleles of a gene in simple thermodynamic models of protein
folding and binding in a one-gene diploid system. Our results show
that protein folding on its own is expected to generate within-allele
interactions (intra-molecular epistasis) but not between-allele inter-
actions and dominance. However, the addition of a single binding
reaction is sufficient to generate between-allele interactions and
dominance.

How two mutations interact often differs in both magnitude and
sign depending upon whether they combine within the same allele or

in different alleles. Moreover, interactions depend qualitatively and
quantitatively on both the biophysical effects of mutations and the
context, with, for example, a change in the concentration of a ligand
sufficient to switch a mutation from dominant to recessive in even the
simple system of a protein that folds and binds a single ligand.

Taken together, our results illustrate that double mutant inter-
actions are to be widely expected in even the simplest one-gene
diploid biological systems, but also emphasize that they are system
properties and therefore difficult to predict.

That dominance, between- and within-allele interactions are (1)
expected in even the simplest systems, (2) context-dependent, and (3)
difficult to predict – has important implications for human genetics,
biotechnology, and evolution. As an example, our results suggest that
it is not unreasonable to expect disease-causing alleles to switch from
dominant to recessive depending upon the conditions, examined

Fig. 5 | Nonlinear concentration-phenotype functions differentially transform
dominance and epistasis. a Linear, concave, convex and sigmoidal linking func-
tions are used to transform protein concentrations into phenotypes. b Interaction
scores based on the additive expectation for double mutants within- or between
alleleswith linear (Model 2), concave, convex, or sigmoidal protein concentration–
phenotype relationships. c With vs. without nonlinear linking function compar-
isons of interaction scores based on the additive expectation. d Between- vs.
within-allele doublemutants’ interaction scores based on the additive expectation,

with nonlinear linking functions. e Distribution of interaction scores based on
additive expectation before and after nonlinear linking functions. The green arrow
indicates thedistribution shifting towards negative valueswhile themagenta arrow
indicates the distribution shifting towards positive values; the arrowheads point at
the range after applying the nonlinear linking functions to the phenotype.
f, g, h Dominance scores before and after nonlinear linking functions (f), dis-
tribution (g), and with vs. without nonlinear linking function comparisons (h).
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phenotype or individual. Indeed, examples exist in human clinical
genetics of variants reported to be both dominant and recessive, for
example in Marfan syndrome34.

Different and sometimes even opposite interaction patterns for
the same pair of variants when they are combined on one allele rather
than in two different alleles of a gene reinforces the importance of
phasing variants into haplotypes in human genetics35–37.

An important simplificationof our approach is that it assumes that
free energy changes are additive. Although this is likely to be true for
the majority of mutation combinations18,27 specific non-additive
changes in free energy, for example between mutations in physically
contacting residues24,38, will generate additional epistasis and
dominance.

In future work, it will be interesting to quantify and compare the
expected within- and between-allele interactions in more complex
equilibrium systems, as well as in dynamicalmodels8,39. In addition, the
effects of imbalanced expression of the different alleles could be
combinedwithourmodel, as allele-specific expression hasbeenwidely
observed in humans35. Finally, it will be important to experimentally
evaluate dominance and epistasis in the same genes, for example,
using deep mutational scanning approaches1. Using large-scale muta-
genesis approaches it will also be possible to evaluate how frequently
specific exceptions to the typical patterns of dominance and epistasis
arise, what the most frequent causes of these exceptions are, and how
they can be predicted.

An important general goal in human genetics, agricultural
genetics, biotechnology and evolutionary biology including viral
forecasting is to improve genetic prediction beyond the accuracy that
canbe achievedwith additivemodels. Herewehave shown that even in
the very simplest biological systems, within, between-allele interac-
tions and dominance are expected, context-dependent and challen-
ging to predict. It is precisely the emergent, plastic and difficult-to-
predict nature of these interactions that makes better-than-additive
genetic prediction a formidable challenge.

How in practice will better-than-additive genetic prediction be
achieved? One approach could be to build detailed mechanistic
models of each system of interest and to parameterize these models
using experimental measurements. However, given the complexity of
most biological systems of interest, we suggest that a non-mechanistic
approachmay actually provemore successful. Indeed, we suspect that
the combination of large-scale data collection and machine learning
may prove to be the more efficient strategy for improving genetic
predictionbeyondwhat canbe achievedwith additivemodels and that
this will accelerate progress in biotechnology, agriculture, viral fore-
casting, and human genetics.

Methods
Phenotypes
To study how mutations in a protein-coding gene combine in a
diploid system, we first defined the phenotype (W) in the system as
functional molecule concentration inside the cell relative to the
wild-type diploid situation. These functional molecules can be fol-
ded proteins or a protein-ligand complex. In each model, the phe-
notype of a mutant is normalized to the homozygous wild-type
(WT) phenotypes so that W αWT=αWT = 1AU (arbitrary unit) and the
complete loss of function is set to 0. With the simple assumption of
additivity in the functional molecule concentrations, we imposed a
lower bound of the expected simple heterozygote phenotype (i.e.
any single mutants or any double mutants’ expected phenotypes
within the same allele) to 0.5 AU (half the wild-type pheno-
type) (Fig. 1b).

Expected phenotypes, interaction scores and dominance scores
When there is only one mutation A, the homozygote is annotated as
(αA/αA) and the heterozygote with the wild type is annotated as (αA/

αWT). The compound heterozygote is annotated as (αA/αB) while the
heterozygous double mutant with both variants present in the same
allele is designated (αAB/αWT). For a given pair of single mutant phe-
notypes, there are two expected double mutant phenotypes based
on additive and log-additive expectations as shown in equations
Eqs. (7, 8). For a given pair of homozygous mutant phenotypes, the
expected double compound heterozygotes’ phenotypes are given as
the average of the parental phenotypes based on the widely used
assumption for dominance calculation, as shown in equation Eq. (5).
Interactions between mutations are quantified as differences between
observed versus expected phenotypes as shown in Fig. 1.

Model 1: protein folding
Phenotype is determined by the total concentration of folded protein.
In thismodel, the protein of interest (X) expressed fromeach allele (α i,
i ∈{1, 2} – one maternal and the other paternal copy respectively, and
the alleles are allowed tobe thewild type) has twoconfiguration states:
unfolded (XU, α i) and folded (XF, α i). The free energy difference
between folded and unfolded protein states is ΔGFolding, α i (kcal per
mol). Mutations on each allele can affect folding energy (ΔGFolding),
which is described as the sum of wild-type folding energy and the
energy differences (mutations)ΔGFolding,wt +ΔΔGFolding, α i. Equilibrium
between the two states follows Eq. (10).

½XF ,αi�
½XU,αi�

= e
� ΔGFolding,wt +ΔΔGFolding,αið Þ

RT ð10Þ

In the above and following equations, R is the gas constant
(R = 1.98 × 10−3 kcal per mol), T is the absolute temperature for 37 °C
(310.15 Kelvin) and the wild-type ΔGFolding,wt is set to −2 kcal per mol
unless stated otherwise.

The total concentration of the protein (XT) follows Eq. (11).

XT

� �
=
X
i= 1,2

XU,α i

� �
+ XF ,αi

� �� �
ð11Þ

Expression levels from each allele were considered to be equal
and therefore, [XT,1] = [XT,2] = 0.5 [XT] in all our models. Using Eqs. (10)
and (11) with [XT] as a constant, we can calculate the functional mole-
cule [XF, α i] as a function of energy terms and total protein con-
centration in the following way:

½XF ,α i�=
0:5 XT

� �
1 + e

ΔGFolding,wt +ΔΔGFolding,αi
RT

ð12Þ

The phenotype of a mutantWmut is the sum of the folded protein
concentration normalized to that of the wild type, following Eq. (13):

Wmut =

P
i= 1,2

XF ,α i

� �
2 XF ,wt

� � ð13Þ

To obtain the observed double mutant phenotypes between
alleles, we could combine Eqs. (10–13) and simply replaceΔΔGFolding, α 1

with ΔΔGFolding,A and ΔΔGFolding, α 2 with ΔΔGFolding,B respectively, as
shown below.

WαA=αB =
1 + e

ΔGFolding,wt
RT

	 

2 + e

ΔGFolding,wt +ΔΔGFolding,A
RT + e

ΔGFolding,wt +ΔΔGFoliding,B
RT

	 


2 1 + e
ΔGFolding,wt +ΔΔGFolding,A

RT

	 

1 + e

ΔGFolding,wt +ΔΔGFolding,B
RT

	 

ð14Þ

For a single mutation A, we simply set ΔΔGFolding, α 2 = 0 and
replace ΔΔGFolding, α 1 with ΔΔGFolding,A in Eq. (14). After simplification,
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the equation for a single mutant phenotype can be written as follows:

WαA=αWT =
2 + e

ΔGFolding,wt
RT + e

ΔGFolding,wt +ΔΔGFolding,A
RT

2 1 + e
ΔGFolding,wt +ΔΔGFolding,A

RT

	 
 ð15Þ

For the double mutation (A and B) in the same molecule,
ΔΔGFolding,A and ΔΔGFolding,B values are added to replaceΔΔGFolding,A in
Eq. (15), resulting in Eq. (16).

W αAB=αWT =
2 + e

ΔGFolding,wt
RT + e

ΔGFolding,wt +ΔΔGFolding,A +ΔΔGFolding,B
RT

2 1 + e
ΔGFolding,wt +ΔΔGFolding,A +ΔΔGFolding,B

RT

	 
 ð16Þ

Additive or log-additive expectations of the double mutant phe-
notypes are calculated by combining Eq. (7) or Eq. (8) with Eq. (15) for
both within-allele and between-allele combinations.

We note that the additive expectation for between-allelemutation
combinations is mathematically the same as observed between-allele
mutation combinations (Fig. 2i, k, upper right). Firstly, by combining
Eq. (7) with Eq. (15) for each mutation, we obtain Eq. (17):

W exp add αA=αB =
2+ e

ΔGFolding,wt
RT + e

ΔGFolding,wt +ΔΔGFolding,A
RT

2 1 + e
ΔGFolding,wt +ΔΔGFolding,A

RT

	 
 +
2 + e

ΔGFolding,wt
RT + e

ΔGFolding,wt +ΔΔGFolding,B
RT

2 1 + e
ΔGFolding,wt +ΔΔGFolding,B

RT

	 
 � 1

ð17Þ

Then, Eq. (17) can be rewritten into the same form as Eq. (14). In
otherwords,mathematicallyW exp add αA=αB =WαA=αB in thismodel. The
log-additive expectation is, however, different.

By replacingmutation B in Eq. (14) withmutation A, we obtain the
following formula, which is used to calculate the homozygous
mutant’s phenotype, as shown in (Eq.18) below.

WαA=αA =
1 + e

ΔGFolding,wt
RT

1 + e
ΔGFolding,wt +ΔΔGFolding,A

RT

ð18Þ

Model 2: folding and ligand-binding
Phenotype is determined by the total concentration of protein-ligand
complex in Model 2. In this model, one protein molecule binds to one
ligand molecule and the total ligand concentration (LT) is the sum of
free ligand (L) and those bound to the protein (equal to the protein-
ligand complex concentration, Σi=1,2(XL, α i)), which follows Eq. (19).

LT
� �

= L½ �+
X
i= 1,2

XL,αi

� �
ð19Þ

Compared toModel 1, there is an additional energy term – the free
energy difference between the protein-ligand complex state and the
unbound foldedproteinwith free ligand stateΔGBinding (kcal permol)–
which we define as binding energy. Mutations on each allele can now
be described as those affecting protein folding energy (ΔΔGFolding) or
binding energy (ΔΔGBinding).

There are three configuration states of the protein expressed
from each allele: unfolded (XU, α i), folded (XF, α i) and protein-ligand
complex (XL, α i). The equilibrium between [XU, α i] and [XF, α i] follows
Eq. (10), and the equilibrium between [XF, α i] and [XL, α i] follows Eq.
(20).

½XL,αi�
½XF ,αi� � L½ �

= e
�
�
ΔGBinding,wt +ΔΔGBinding,αi

�
RT ð20Þ

The total concentration of the protein (XT) follows Eq. (21), as
shown below.

XT

� �
=
X
i= 1,2

XU,αi

� �
+ XF ,αi

� �
+ XL,αi

� �� �
ð21Þ

As stated earlier, [XT, α 1] = [XT, α 2] = 0.5 [XT]. By combining this
information with Eq. (14), Eq. (19–21), we express the protein-ligand
complex concentration from each allele as a function of energy terms,
total protein concentration and the free ligand concentrationas shown
in Eq. (22):

½XL,αi�=
0:5 XT

� �
L½ �

½L�+ e
ΔGBinding,wt +ΔΔGBinding,αi

RT 1 + e
ΔGFolding,wt +ΔΔGFolding,αi

RT

	 
 ð22Þ

The phenotype of a mutantWmut is the sum of the protein-ligand
complex concentration normalized to that of the wild-type as shown
below in Eq. (23).

Wmut =

P
i = 1,2

XL,αi

� �
2 XL,wt

� � ð23Þ

For a double mutant (A and B mutations respectively) between
alleles, we combine Eqs. (10, 19–23) and simply replaceα 1 withA and α
2 with B for corresponding mutation types, as shown in Eq. (24).

W αA=αB =
L½ � Lwt

� �
+ e

ΔGBinding,wt
RT 1 + e

ΔGFolding,wt
RT

	 
	 


2 Lwt
� �

L½ �+ e
ΔGBinding,wt +ΔΔGBinding,A

RT 1 + e
ΔGFolding,wt +ΔΔGFolding,A

RT

	 
	 


�
2 L½ �+ e

ΔGBinding,wt +ΔΔGBinding,A
RT 1 + e

ΔGFolding,wt +ΔΔGFolding,A
RT

	 

+ e

ΔGBinding,wt +ΔΔGBinding,B
RT 1 + e

ΔGFolding,wt +ΔΔGFolding,B
RT

	 
	 


½L�+ e
ΔGBinding,wt +ΔΔGBinding,B

RT 1 + e
ΔGFolding,wt +ΔΔGFolding,B

RT

	 
	 


ð24Þ

If there is only one mutation A on allele 1, then ΔΔGFolding,

α 2 =ΔΔGBinding, α 2 = 0 and we replace ΔΔGFolding, α 1 with ΔΔGFolding,A

and ΔΔGBinding, α 1 with ΔΔGBinding,A. Eq. (24) will be simplified to a
single mutant phenotype as follows:

WαA=αWT =
L½ � Lwt
� �

+ e
ΔGBinding,wt

RT 1 + e
ΔGFolding,wt

RT

	 
	 


2 Lwt
� �

L½ �+ e
ΔGBinding,wt +ΔΔGBinding,A

RT 1 + e
ΔGFolding,wt +ΔΔGFolding,A

RT

	 
	 


�
2 L½ �+ e

ΔGBinding,wt +ΔΔGBinding,A
RT 1 + e

ΔGFolding,wt +ΔΔGFolding,A
RT

	 

+ e

ΔGBinding,wt
RT 1 + e

ΔGFolding,wt
RT

	 
	 


½L�+ e
ΔGBinding,wt

RT 1 + e
ΔGFolding,wt

RT

	 
	 

ð25Þ

Above, [Lwt] is the free ligand concentration inside the wild type
while [L] is the free ligand concentration inside the mutant cells. For a
double mutant on the same allele, ΔΔGFolding,A and ΔΔGFolding,B are
summed in place of ΔΔGFolding,A, and ΔΔGBinding,A and ΔΔGBinding,B are
summed in place of ΔΔGBinding,A while keeping allele 2 as wild-type
(ΔΔGFolding, α 2 = 0 and ΔΔGBinding,α 2 = 0), shown as in Eq. (26).

W αAB=αWT =
L½ � Lwt
� �

+ e
ΔGBinding,wt

RT 1 + e
ΔGFolding,wt

RT

	 
	 


2 Lwt

� �
L½ �+ e

ΔGBinding,wt
RT 1 + e

ΔGFolding,wt
RT

	 
	 


�
2 L½ �+ e

ΔGBinding,wt +ΔΔGBinding,A +ΔΔGBinding,B
RT 1 + e

ΔGFolding,wt +ΔΔGFolding,A +ΔΔGFolding,B
RT

	 

+ e

ΔGBinding,wt
RT 1 + e

ΔGFolding,wt
RT

	 
	 


½L�+ e
ΔGBinding,wt +ΔΔGBinding,A +ΔΔGBinding,B

RT 1 + e
ΔGFolding,wt +ΔΔGFolding,A +ΔΔGFolding,B

RT

	 
	 


ð26Þ
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Additive or log-additive expectation can be calculated by com-
bining Eq. (7) or Eq. (8) with Eq. (25), with corresponding parameters
changed in the equations.

By replacingmutation B in Eq. (24) withmutation A, we obtain the
following formula to calculate a homozygous mutant’s phenotype.

W αA=αA =
L½ � Lwt
� �

+ e
ΔGBinding,wt

RT 1 + e
ΔGFolding,wt

RT

	 
	 


Lwt
� �

L½ �+ e
ΔGBinding,wt +ΔΔGBinding,A

RT 1 + e
ΔGFolding,wt +ΔΔGFolding,A

RT

	 
	 
 ð27Þ

To be noted, the free ligand concentrations in the cell will change
with the change of corresponding phenotypes. For example, the free
ligand concentrations in single mutant A or B are [LA] = [LT]−
([XL,A] + [XL,WT]) or [LB] = [LT]− ([XL,B] + [XL,WT]). If [LT] ismuchbigger than
[XT] and thus the free ligand concentration is not affected by howmany
molecules are bound to the protein, free ligand concentration can be
considered a constant as [LT] (i.e. [LA]≈ [LB]≈ [LT]). In this situation, the
additive expectation for a between-allelemutant combination simplifies
to the same form as Eq. (24), indicating that there will be no dominance
when the total ligandconcentration ismuchbigger than the total protein
concentration.

We examined several cases where we altered [LT] so that the total
ligand concentration is the same, more abundant (2X, 10X) or less
abundant (0.8X) than the total protein concentration [XT]. With
mutational effects as changes in folding energy (ΔΔGFolding, α i) or
ligand-binding energy (ΔΔGBinding, α i) as input, we calculated the
phenotypes using the R package rootSolve.

General non-linear functions
Three common types of non-linear functions (concave, convex, and
sigmoidal) linking functional protein concentrations to the down-
stream phenotypes were used. All the curves go through points (0, 0)
and (1, 1). To evaluate the parameter sensitivity of our conclusions, we
generated another set of equations defining the curves with a tunable
parameterm. In the equations below, x and ydefinephenotypes before
and after applying each of the non-linear transformations.

Concave:

y=
e�m x�1ð Þ � em

1� em
ð28Þ

Convex:

y=
em x�1ð Þ � e�m

1� e�m
ð29Þ

Sigmoidal:

y=
em + 1
em � 1

1
1 + e�2m x�0:5ð Þ �

1
1 + em

	 

ð30Þ

m ≥0, and thebiggerm is, the bigger the curvature is.Whenm =0,
it becomes a line. We examined five parameter values (0.6, 1.5, 2.5, 3.8,
and 5.5 for concave and convex curves; 2.2, 3.5, 5, 7 and 10 for each
sigmoidal curve) and their effects on the phenotypes and interactions

in our study. In Fig. 5, we selected m = 1.5 for concave and convex
curves; m = 5 for the sigmoidal curve.

Simulation of mutational effects
Wild-type biophysical parameters and relative ligand concentration to
the total protein concentrations in each model are shown in Table 1.

Two mutation types – those affecting protein stability (folding
mutations) and binding affinity to a ligand (binding mutations) were
described as changes in Gibbs free energy (ΔΔG) between folded-
unfolded states (ΔΔGFolding) and bound-unbound states (ΔΔGBinding).
To generate single mutations, ΔΔGFolding and ΔΔGBinding ranging from
−2 to 13 kcal per mol with an interval of 0.125 kcal per mol were added
to ΔGFolding,wt and ΔGBinding,wt respectively.

To examine how twomutations of given phenotypes combine, we
generated single mutants with phenotypes ranging from 0.5 AU to
1.02 AU with an interval of 0.005AU, and homozygous mutants with
phenotypes ranging from 0AU to 1.02 AU with an interval of 0.01 AU.
Using the same sets of equations, and phenotypes as inputs, again
using R and rootSolve package, we calculated the corresponding ΔΔG
for each phenotype. Then, with the obtained ΔΔG values for each
mutant as new inputs to the system, we calculated double mutants’
phenotypes.

As stated earlier, when two mutations affecting the same bio-
physical parameters combined on the same allele, ΔΔG was added to
the corresponding parameter as the new input to calculate double
mutants’ phenotypes. On the other hand, when mutations combined
between alleles, ΔΔG was kept separate and inputted as two inde-
pendent values on each allele for the phenotype calculation.

The processes of calculating phenotypes frommutants (ΔΔG) and
ΔΔG from phenotypes with the nonlinear linking functions are the
same as thosewithout linking curves, except that the phenotypes were
transformed based on Eqs. (28–30) depending on the situation. The
transformed singlemutant phenotypeswere used to calculate additive
or log-additive expectations based on Eqs. (5, 7, 8), and interaction
scores were calculated as shown in Fig. 1. All the phenotype and
interaction patterns were visualized using the ggplot package in R.

The ‘diploid’ plasmid constructs for Model 1
We generated plasmids carrying two copies of the N-terminal domain
of the lambda repressor CI fused with GFP (Supplementary Fig. 3a, b).
The ‘diploid’ plasmid carries two copies of CI N-terminal domain (1st
−91st AA out of the 236AA) fused with GFP at the C-terminus via a
flexible glycine linker (36 bp: ggatccgctggctccgctgctggttctggcgaattc)
in the tail-to-tail direction separated by a bidirectional terminator
present in the template plasmid. It has been shown in various studies
that fluorescence intensity is linearly related to the fluorescent protein
or the tagged protein40–43, allowing us to examine the phenotype
additive assumptions.

To generate the ‘diploid’ plasmid, we first constructed an inter-
mediate ‘haploid’ plasmid carrying the fusion protein of CI N-terminal
domain and GFP, generated from the template pCIPR-Low plasmid21

which carries one copy of the full-length CI gene, operator DNA
sequence and the downstreamGFPORF21. The ‘haploid’ plasmid shares
the samebackbone of the pCIPR-Lowplasmid (PBADM11), but with the
operator removed so thatCI cannot dimerize or bind to anymolecules.

The glycine linker was inserted via site-directed mutagenesis
(SDM) using Vazyme Phanta Max Super-Fidelity DNA Polymerase

Table 1 | Parameter values

Mutation types ΔGFolding,wt (kcal per mol) ΔGBinding,wt (kcal per mol) LT Ratio to XT

Model 1 Folding −2/−3.5/−0.5 NA NA

Model 2 Folding, Binding −2 −5 1/0.8/2/10

F Folding. L Ligand-binding. “/” separates different parameter options that we examined in this study and NA indicates that the parameter is not relevant to the model.
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(primers are listed in SupplementaryTable 3) followedbyNewEngland
Biolabs (NEB) KLD enzyme treatment. We used the protocols of the
NEB Q5SDM. Single mutations of CI are introduced to the ‘haploid’
plasmid via SDM and chemically transformed to the commercial E.coli
DH5α competent cells (purchased from Genesand) following the
manufacturer’s instructions.

To generate the ‘diploid’ plasmid, the gene block region starting
from the promoter to the stop codon of CI-GFP fusion protein was
amplified via overlap extension PCR that introduces two restriction
enzyme sites Spe1 and Sac1 (Supplementary Fig. 9). Then, the PCR
amplicon is purified, and treatedwith restriction enzymesNEBSpe1-HF
and Sac1-HF at 37 °C for 1 h. This fragment is ligated to the linearized
WT ‘haploid’ plasmid sharing the same restriction site sticky ends via
Vazyme T4 ligase treatment at room temperature for 1 h to form a
diploid system (Supplementary Fig. 9a).

For the within-allele double mutants, two mutations instead of
one are introduced to the ‘haploid’ plasmid via SDM as the method
described above. The plasmid is linearized downstream to the termi-
nator and ligated with the WT CI N terminal-GFP fusion protein ORF
(Supplementary Fig. 9b). Combining two different gene copies each
carrying one different mutation, we generated between-allele double
mutations (Supplementary Fig. 9c).

With reference to all ‘haploid’ mutant phenotype data and struc-
tural characteristics of mutation sites21, we selected 8 single mutations
(Table 2, Supplementary Table 1). Mutational effects on the functionof
the full-length CI protein were highly bimodal with most mutations
either neutral or completely detrimental. We reason that our model
will unmask more mildly destabilizing mutations as there is no
dimerization that is known to stabilize theprotein. Therefore, the eight
mutations were selected with the phenotype spanning from near
neutral to mildly detrimental and with low standard error. We did not
select any completely detrimental mutations as they are not informa-
tivewhen combinedwith othermutations.Mutational effects correlate
well between our ‘heterozygous diploid’ protein-folding system and
the earlier study, with this study more sensitive to mutational effects
on protein stability (Supplementary Fig. 10). An exception is the
mutant L33F (A99C) which is detrimental in the original data but
neutral in this new model system, indicating that the mutation does
not affect protein folding.

To generate mutation combinations, we excluded mutation
pairs whose amino acid alpha-carbon atoms are within 12 Å dis-
tances in the protein 3D structure (PDB 1LMB) to exclude any
potential position-specific interactions due to the contacts44. With
several mutations failing during PCR or subsequent sequence-
verification steps, we obtained in total 23 double mutations (10
within-allele combinations and 13 between-allele combinations)
(Supplementary Table 2). Two of these double mutations are also
observed in the earlier study based on the pCIPR-Low21 (See the
phenotype comparisons in Supplementary Figure 10, and Supple-
mentary Table 4 for the full phenotype data).

Phenotyping the mutational effects via Flow cytometry
The sequence-validated diploid plasmids were transformed into the
homemade E.coli BW27783 competent cells for arabinose-induced
fusion protein production. Three colonies were picked for each gen-
otype as biological replicates and cultured in LB-ampicillin liquid
media. 1.5μl of the overnight LB bacteria culture was added to 150μl
M9 medium in 96-well plates and incubated for about 6 h till
OD600=0.4–0.6, to induce the fusion protein expression. Each sam-
ple was prepared with 1:500 dilution into 2ml PBS for flow cytometry.
Samples were then analysed with BD FACSMelody with a 100-flow rate
and 5000 cells are recorded based on SSC-A and FSC-A gate threshold
in four batches (Supplementary Fig. 11). Cells carrying the empty
plasmid backbone (PBADM11) were used as the GFP-negative control
to count the autofluorescence. BD FACSChorus software version

1.1.20.2030 was used to analyze GFP signal of the cells during the data
collection.

Flow cytometry data analysis
WeusedR to subset cellswith the threshold of FSC-Abetween900 and
9800, SSC-A between 110 and lg(0.93)xFSC-A + 530. Bacterial cells
were visibly in two different populations – with high or low SSC. To
decrease the heterogeneity, we chose the bacterial cells with low SSC
(low subcellular complexity) (Supplementary Fig. 11). The mean GFP
signal of each mutant cell population was averaged across three bio-
logical replicates (μ_GFPmut), removed the mean autofluorescence
(μ_GFPPBAD) and finally normalized to the wild type (μ_GFPwt) within
the same batch, following the formula shown in Eq. (31).

GFPobs =
μ GFPmut � μ GFPPBAD

μ GFPwt � μ GFPPBAD
ð31Þ

The standard error of the mean (SE) of the observed normalized
GFP signal follows Eq. (32), as shown below:

SEobs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEmut

2 + SEPBAD
2
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μ GFPmut � μ GFPPBAD

0
@

1
A

2

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEwt

2 + SEPBAD
2

q
μ GFPwt � μ GFPPBAD

0
@

1
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2
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ð32Þ

The expected phenotype of double mutants is calculated
according to equations Eqs. (7, 8), with the error propagated using the
formulas shown below:

Additive:

SEexp add AB =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEobs A

2 + SEobs B
2 + SEobs wt

2
q

ð33Þ

Log-additive:

SEexp log AB =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEobs A

GFPobs A

	 
2

+
SEobs B

GFPobs B

	 
2
s

ð34Þ

Interactions between or within alleles are calculated as shown in
Fig. 1, and the error of the interaction scores is shown below.

SEinteraction =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEobs AB

2 + SEexp AB
2

q
ð35Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Table 2 | Single mutations were chosen from Li et al., 201921

Substitution site (AA) Substitution site (nt) Mutation position at the
structure

M23L A67C surface

L33F A99C DNA-binding

K53N A159C surface

S55R C165G core

V56I G166A core

E57K G169A surface

E58D A174T surface

F59L T177A core

The position is indexed based on the Li et al. 21 study. The position in the full protein sequence
is +17 aa.
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Data availability
The experimental data generated to support the conclusions of this
study are included in the article and the supplementary information.
The datasets generated and analyzed in this study are also available in
the GitHub repository: XL-Lab/P1_Dominance_vs_Epistasis45.

Code availability
Custom codes are available in the GitHub repository: https://github.
com/XLi-Lab/P1_Dominance_vs_Epistasis [github.com]45.
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