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Analysis of 72,469 UK Biobank exomes links
rare variants to male-pattern hair loss

Sabrina Katrin Henne 1, Rana Aldisi 2, Sugirthan Sivalingam2,3,
Lara Maleen Hochfeld1, Oleg Borisov 2, Peter Michael Krawitz2, Carlo Maj 2,4,
Markus Maria Nöthen 1 & Stefanie Heilmann-Heimbach 1

Male-pattern hair loss (MPHL) is common and highly heritable. While genome-
wide association studies (GWAS) have generated insights into the contribution
of common variants to MPHL etiology, the relevance of rare variants remains
unclear. To determine the contribution of rare variants to MPHL etiology, we
perform gene-based and single-variant analyses in exome-sequencing data
from 72,469 male UK Biobank participants. While our population-level risk
prediction suggests that rare variants make only a minor contribution to
general MPHL risk, our rare variant collapsing tests identified a total of five
significant gene associations. These findings provide additional evidence for
previously implicated genes (EDA2R, WNT10A) and highlight novel risk genes
at and beyondGWAS loci (HEPH,CEPT1, EIF3F). Furthermore,MPHL-associated
genes are enriched for genes considered causal for monogenic trichoses.
Together, our findings broaden the MPHL-associated allelic spectrum and
provide insights into MPHL pathobiology and a shared basis with monogenic
hair loss disorders.

Male-pattern hair loss (MPHL), or androgenetic alopecia, is the most
common form of hair loss, with a lifetime prevalence of ~80% in Eur-
opean men. MPHL is characterized by progressive and androgen-
dependent hair loss in the frontotemporal region and vertex of the
scalp1. Affected men may experience psychosocial effects2, and lack
well-tolerated and effective treatment options3,4.

Early twin studies estimated that ~80%of theobservedphenotypic
variance of MPHL is attributable to genetic factors5,6. Subsequent
genome-wide association studies (GWAS) have yielded substantial
insights into the genetic basis of MPHL via the identification of more
than 600 independent genetic risk variants at more than 350 genomic
loci, which together explain ~39% of the phenotypic variance7–17.While
thesedata have highlighted a number of plausible candidate genes and
pathways, the majority of GWAS risk variants are common variants
(minor allele frequency (MAF)≫ 1%) located in non-coding areas of the
genome, which renders pinpointing of diseasemechanisms and causal
genes notoriously difficult.

In contrast, fewer data are available concerning the potential
contribution toMPHL etiology of rare variants (MAF < 1%). A previous
study on MPHL, which analyzed imputed genotyping data from the
UK Biobank (UKB), estimated that the contribution of rare variants
(MAF 0.0015% − 1%) to MPHL heritability was close to 0%13. However,
imputed genotyping data do not offer comprehensive insights on
rare variants, the systematic study of which has been hampered by
the limited availability of whole genome or in the context of (rare)
coding variants, whole exome sequencing (WES) data from ade-
quately sized cohorts. Since 2019, the analysis of (rare) variants in
coding areas of the genome has been facilitated by the availability of
a large WES data set created by UKB18,19. The UKB resource further
contains self-report data onMPHL, thereby for the first time enabling
the investigation of a potential relevance of rare variants to MPHL
pathogenesis.

The aim of the present study therefore was to perform the first
exome-based analysis on MPHL in a tranche of 200,629 exomes from

Received: 21 September 2022

Accepted: 24 August 2023

Check for updates

1Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany. 2Institute for Genomic Statistics and
Bioinformatics, University of Bonn, Bonn, Germany. 3Department of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany.
4Center for Human Genetics, University Hospital of Marburg, Marburg, Germany. e-mail: sheilman@uni-bonn.de

Nature Communications |         (2023) 14:5492 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2953-2700
http://orcid.org/0000-0002-2953-2700
http://orcid.org/0000-0002-2953-2700
http://orcid.org/0000-0002-2953-2700
http://orcid.org/0000-0002-2953-2700
http://orcid.org/0000-0002-3034-9970
http://orcid.org/0000-0002-3034-9970
http://orcid.org/0000-0002-3034-9970
http://orcid.org/0000-0002-3034-9970
http://orcid.org/0000-0002-3034-9970
http://orcid.org/0000-0001-8700-4335
http://orcid.org/0000-0001-8700-4335
http://orcid.org/0000-0001-8700-4335
http://orcid.org/0000-0001-8700-4335
http://orcid.org/0000-0001-8700-4335
http://orcid.org/0000-0002-9559-1725
http://orcid.org/0000-0002-9559-1725
http://orcid.org/0000-0002-9559-1725
http://orcid.org/0000-0002-9559-1725
http://orcid.org/0000-0002-9559-1725
http://orcid.org/0000-0002-8770-2464
http://orcid.org/0000-0002-8770-2464
http://orcid.org/0000-0002-8770-2464
http://orcid.org/0000-0002-8770-2464
http://orcid.org/0000-0002-8770-2464
http://orcid.org/0000-0003-1057-465X
http://orcid.org/0000-0003-1057-465X
http://orcid.org/0000-0003-1057-465X
http://orcid.org/0000-0003-1057-465X
http://orcid.org/0000-0003-1057-465X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41186-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41186-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41186-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41186-w&domain=pdf
mailto:sheilman@uni-bonn.de


the UKB. Gene-based analyses (SKAT-O and GenRisk) and single-
variant tests were used to investigate whether rare variants showed
association with MPHL in a final set of 72,469 men. To interpret the
association findings, multiple follow-up analyses were performed. A
schematic overviewof the studyworkflow is depicted in Fig. 1. Our first
systematic analysis of the contribution of rare variants to MPHL
etiology broadens the allelic spectrum of previously reported candi-
date genes (EDA2R, WNT10A), yields evidence for novel MPHL candi-
date genes both at and beyond knownGWAS loci (HEPH,CEPT1, EIF3F),
suggests an association between genotrichoses and the common
MPHL phenotype and provides a basis for future investigations of the
contribution of rare variants to MPHL pathobiology.

Results
Data set characteristics
After quality control, the final data set comprised the data of 72,469
men aged 39–82 years. Our continuous model, all-model and two-as-
control model comprised 72,024 unrelated (kinship < 0.0442)men. Of
these, 49,640 with any signs of baldness (pattern 2–4) were classified
as cases (case-control ratio 2.2:1) in the all-model, and 33,454 (pattern 3
or 4) were classified as cases in the two-as-controlmodel (case-control
ratio 1:1.2). The age distribution per MPHL pattern group is shown in
Fig. 2. The extreme model comprised 17,053 unrelated men, of whom
6523 relatively younger men (age < 60 years) with significant balding
(pattern 4) were classified as cases and 10,530 elderly men (age ≥ 60
years) with no signs of balding were classified as controls (case-control
ratio 1:1.6).

After filtering for per-sample and per-individual missing rates
(<5%) and Hardy-Weinberg-Equilibrium (PHWE > 10−6), a total of
2,656,761 rare (MAF < 1%), nonsynonymous variants in 18,946 protein-
coding genes remained for analysis in the SKAT-O and single-variant
association tests (Fig. 1), with 239,082 variants in 18,449 genesmeeting
themore stringent high impact threshold (frameshift, splice acceptor-,
splice donor-, and start- or stop-altering variants, transcript ablations
and transcript amplifications). For the GenRisk analyses, a total of
16,211,028 rare (MAF < 1%) variants in 18,848 genes remained after
filtering.

Analyses were performed to assess the optimal number of top
principal components (PCs) to correct for. In the association tests of
imputed genotype data with a variable number of included top PCs,
minimum genomic inflation factor values were generated when
including 14–20 PCs in the continuous model, 14–15 PCs in the all-
model, 14–19 PCs in the two-as-controlmodel, and 5PCs in the extreme
model (see Supplementary Fig. 1). Based on these findings, we opted to
correct for 14 PCs in the continuous-, all- and two-as-control models,
and for 5 PCs in the extreme model.

Single-variant association analyses
In a first step, we tested for an association of individual rare coding
variants toMPHL. The analyses identified two genome-wide significant
variants (P < 8 × 10−9) in the continuous- and all-model (Fig. 3, Supple-
mentary Fig. 2, Supplementary Data 1). The two genome-wide sig-
nificant variants, i.e., 23:66604439:G:A (rs12837393, MAF = 5.5 × 10−3,
Pcontinuous = 3.0 × 10−12, betacontinuous = 0.19, Pall = 4.8 × 10−10, odds-
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Fig. 1 | Overview of the analysis workflow. Exome and phenotype data obtained
from the UKB were processed and used in three types of association analysis:
GenRisk, SKAT-O, and single-variant testing. Four different phenotypemodelswere
used, of which three distinguishing cases (red) and controls (grey), as well as one
continuous phenotype model. To interpret the association findings, several
downstream follow-up analyses were performed. VEP ensembl variant effect

predictor, HWE Hardy-Weinberg-equilibrium, MAF minor allele frequency, GWAS
genome-wide association study, MPHL male-pattern hair loss. MPHL pattern dia-
grams adapted from the UK Biobank survey accessible at https://biobank.ctsu.ox.
ac.uk/crystal/refer.cgi?id=100423 and reproduced by kind permission of UK
Biobank ©.
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ratio [OR]all = 1.53, r²sentinel SNP = 1.6 × 10−4
, D’sentinel SNP = 0.35) and

23:66197712:C:T (rs151003259, MAF = 2.0 × 10−3, Pcontinuous = 1.0 × 10−13,
betacontinuous = −0.35, Pall = 2.9 × 10−10, ORall = 0.59, r²sentinel SNP = 4.5 ×
10−7

, D’sentinel SNP = 1.0) (GRCh38), are missense variants located within
EDA2R and HEPH respectively. Notably, the T allele of 23:66197712:C:T
was exclusively observed in combination with the MPHL risk allele
(MAF > 0.99) of the respective GWAS sentinel SNP.

To assess whether the observed single-variant associations were
independent of common variant associations previously identified
through GWAS, all single-variant analyses were repeated with con-
ditioning for 622 lead SNPs previously implicated in a UKB-based
GWAS on MPHL13 (Supplementary Fig. 3, Supplementary Data 1). Nei-
ther of the previously significant single variants retained genome-wide
significance after conditioning. While an association signal was
retained for the variant 23:66604439:G:A in EDA2R (Pall = 4.0 × 10−4),
the 23:66197712:C:T variant inHEPHwas not independent of the GWAS
lead SNPs (Pall = 0.35). Several variants retained a relatively low P-value
even after conditioning, indicating a strong association that was
independent from common GWAS variants. For instance, among the
top ten variants post-conditioningwere 3:69964940:G:A (rs149617956,
located in MITF, Pcontinuous = 5.4 × 10−6), 2:218882368:C:A (rs121908119,
located in WNT10A, Ptwo-as-control = 6.1 × 10−6), 21:44499878:C:T
(rs138480801, located in TSPEAR, Ptwo-as-control = 6.9 × 10−6),
11:46366461:G:T (rs901998, located in DGKZ, Ptwo-as-control = 1.1 × 10−5),
and 23:67711453:C:A (rs1800053, located in AR, Pcontinuous = 1.8 × 10−5).

Gene-based association analyses
To assess the cumulative contribution of rare variants to MPHL, we
performed gene-based association analyses using SKAT-O20 and
GenRisk21, a new burden association test which upweights rarer and
more deleterious variants (based on CADD). We applied the GenRisk
test to a data set of both coding andnon-coding rare variants, aswell as
to coding rare variants identical to the variant set used in the SKAT-O
analysis. The SKAT-O analysis based on 2,656,761 variants from all ten
variant consequence categories identified two genes with a genome-
wide significant association (P < 2.6 × 10−6) to MPHL: EDA2R
(Pcontinuous = 1.4 × 10−8); and HEPH (Pcontinuous = 7.3 × 10−9) (Fig. 4, Sup-
plementary Data 2). No significantly associated genes were identified
based on SKAT-O analyses of high-impact variants, with the top asso-
ciation, WNT10A, yielding a P-value of 7.8 × 10−6 in the two-as-control
model (Supplementary Fig. 4, Supplementary Data 2).

The GenRisk analyses identified a total of three significantly asso-
ciated genes (P < 2.6 × 10−6) across the four phenotype models:
EDA2R (Pcontinuous = 1.8 × 10−6),CEPT1 (Pall-model = 2.1 × 10

−6), andWNT10A
(Ptwo-as-control = 2.2 × 10−6) (Fig. 5, Supplementary Data 3). The CEPT1
association finding is likely attributable to a combination of coding and
non-coding variants with high CADD scores, and mainly driven by the
MPHL pattern groups 2 and 3. Whether this reflects a biological aspect
has to be determined by further analyses. The GenRisk analyses based
on only coding variants further identified a significant association with
EIF3F (Ptwo-as-control = 2.5 × 10−6) (Fig. 6, Supplementary Data 3).

N = 22,384 N = 16,186 N = 19,502 N = 13,952

Fig. 2 | Phenotypic distribution within the final set of 72,024 men in the con-
tinuous-, all- and two-as-controlmodel.Density plot showing the agedistribution
permale-patternhair loss (MPHL)pattern group. The number of individuals in each

MPHL pattern group is shown above the plot. MPHL pattern diagrams adapted
from the UK Biobank survey accessible at https://biobank.ctsu.ox.ac.uk/crystal/
refer.cgi?id=100423 and reproduced by kind permission of UK Biobank ©.
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Comparison with an in-house data set on human hair follicle
expression22 revealed that all five MPHL-associated genes (EDA2R,
HEPH, CEPT1, WNT10A, EIF3F) are expressed in human hair follicles. Of
these, EDA2R, HEPH and WNT10A are located at previously implicated
MPHL-GWAS risk loci. An enrichment of a less stringent set of gene
associations (P< 3 × 10−3 in the SKAT-O or GenRisk analyses) was
observed in regions ±1Mb of published MPHL-GWAS lead SNPs
(P = 5.6 × 10−15, overlap 192/595 genes). Thiswas supportedby the FUMA
GENE2FUNC analysis, which identified an enrichment of these gene
associations and MPHL GWAS findings reported in the GWAS catalog.

Conditional SKAT-O analyses were performed in order to deter-
minewhether the significant associations findings for EDA2R andHEPH
were driven by the genome-wide significantly associated variants
23:66604439:G:A and 23:66197712:C:T, respectively. The P-values of
HEPH and EDA2R both before and after the exclusion of these two
variants are shown in Table 1. Notably, the association with EDA2R
appears to have been driven very strongly by 23:66604439:G:A. In
contrast, the effect of 23:66197712:C:T seems to have been less

pronounced, since the conditional analyses for HEPH generated low P-
values (albeit non genome-wide significant), particularly in the two-as-
control and the extreme model.

Conditional GWAS-GenRisk analysis
A conditional GWAS-GenRisk analysis was performed to test whether
common variants implicated by GWAS are independent from GenRisk
gene scores (Supplementary Data 4). The distribution of the differ-
ences in −log10(P) with and without GenRisk gene score correction is
shown in Supplementary Fig. 5. These data indicate no systematic
dependence between common variants implicated by GWAS and
GenRisk gene scores, as a large majority of tested common variants
(99.89%) are not or only minimally impacted (|Δ−log10(P)| < 1) by cor-
rection for any gene score. However, the GenRisk scores of the genes
EDA2R and WNT10A show some attenuation of the common variant
GWAS signal at their respective loci. In contrast, the associated gene
HEPH and e.g., the AR gene do not show any such attenuation (Sup-
plementary Fig. 6).
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Overlap with genotrichoses
The inspection of ClinVar (Supplementary Data 5) revealed thatMPHL-
associated variants comprise several variants that have been reported
as pathogenic for monogenic trichoses. A systematic enrichment
analysis of genotrichosis-associated genes23–27 amongst a less stringent
set of gene associations (P < 3 × 10−3 in the SKAT-O or GenRisk ana-
lyses) revealed a significant enrichment (P = 1.1 × 10−4). The total over-
lap across all association analyses comprised the genes WNT10A,
HOXC13, DSP, LPAR6, ALX4, EDAR, CDH3, HR, and SPINK5. Notably, two
of the top associated single variants (albeit not genome-wide sig-
nificant), i.e., 2:218882368:C:A (Ptwo-as-control = 4.1 × 10−5) and
21:44499878:C:T (Ptwo-as-control = 9.0 × 10−6), which are located in
WNT10A and TSPEAR respectively, were reported to be pathogenic for
ectodermal dysplasia in previous studies28,29.

Pathway gene set and network analyses
Pathway-based gene set enrichment analysis of a less stringent set of
559 MPHL-associated genes (P < 3 × 10−3 in either the SKAT-O or the
GenRisk analyses) revealed an enrichment of MPHL-associated genes
in TGF-beta signaling (false discovery rate [FDR] = 0.040) and SMAD2/

3:SMAD4 transcriptional regulation (FDR =0.021) (Supplementary
Data 6). A protein-protein interaction network analysis of a less strin-
gent set of 86MPHL-associated genes (P < 3 × 10−4 in the SKAT-Oor the
GenRisk analyses) detected enrichments with ectodermal dysplasia
genes (FDR = 2.6 × 10−3, overlapping genes EDA2R, WNT10A, EDAR,
HOXC13 and IFT122) and genes assigned to the gene ontology termhair
follicle development (FDR =0.014, overlapping genesWNT10A, EDAR,
LAMA5, HOXC13, LGR4 and ALX4) (Supplementary Fig. 7).

Risk modeling
To evaluate the contribution of rare variants toMPHL, a risk prediction
model integrating MPHL polygenic risk scores (PRS) and GenRisk
gene-based scores was created (Fig. 7), as based on rare variants
(MAF < 1%), age, sequencing batch and top PCs. The PRS-only risk
model achieved medium discriminative power similar to the MPHL
PRSmodel previously published by Hagenaars et al.14 in distinguishing
no hair loss (pattern 1) from severe hair loss (pattern 4), at least
moderate hair loss (pattern 3–4) and at least slight hair loss (pattern
2–4), as measured by the area under the curve (AUC)
(AUCsevere = 0.791, AUCmoderate = 0.732, AUCslight = 0.693) when
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considering the full cohort of 72,024 males. In the test data set, the
PRS-only model yielded slightly lower predictive power
(AUCsevere = 0.725, AUCmoderate = 0.687, AUCslight = 0.647). A riskmodel
based exclusively on the gene-based risk score, which integrated all
gene-based scores into one, showed low discriminative power
(AUCsevere = 0.560, AUCmoderate = 0.557, AUCslight = 0.508). Integration
of PRS and gene-based risk scores generated only minimal to no
increase in discriminative power compared to the PRS-only model
(AUCsevere = 0.726, AUCmoderate = 0.686, AUCslight = 0.646). Despite the
high number of associated genes, this largely confirms earlier obser-
vations that rare variants explain only a minor fraction of the genetic
risk for MPHL at population-level13.

Discussion
MPHL is a complex, common trait for which a large number of risk loci
and variants have already been characterized via analyses of common
variation7–17. The main aim of the present study was to analyze the
extent to which rare variants contribute to MPHL. A previous study of
MPHL, which was based on imputed genotyping data from the UKB,
showed that the contribution of rare variants (MAF between 0.0015%

and 1%) toMPHL heritability was close to 0%13. To reassess this finding,
we accessed a large exome sequencing data set from the UKB in order
to perform a systematic analysis of rare variants in coding areas of the
genome.

In line with previous reports that suggest a minor contribution of
rare variants to MPHL heritability, our risk prediction models showed
that the inclusion of gene-based scores that are based on rare variants
into existing risk prediction models based on common variants made
little to no contribution to discriminative power between cases and
controls. This is also reflected in the low number of significant asso-
ciation findings in our single-variant analysis. Both rare variant asso-
ciations identified (P < 8 × 10−9) have already been reported at genome-
wide significance in GWAS13.

The SKAT-O and GenRisk gene-based analyses detected sig-
nificant associations with rare variants in five genes (P < 2.6 × 10−6),
which, while limited, offers important insights intoMPHL biology, and
may be etiologically relevant for individual risk. The identified gene
associations comprise both previously implicated and novel MPHL
candidate genes. Genes previously implicated by GWAS include EDA2R
(ectodysplasin A2 receptor), one of the flanking genes at the most
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strongly associated MPHL GWAS locus on chromosome (chr) X (AR/
EDA2R locus)30 and WNT10A (Wnt Family Member 10A), the likely
causal gene at the chr.2q35 risk locus forwhich a functional interaction
with anotherMPHL risk locus has been shown31. Thesefindings suggest
that both common and rare variation in these genes contributes to
MPHL etiology. The analyses further identified an association with
HEPH (Hephaestin), which, while being located less than 500 kb
upstream of EDA2R, has not been previously considered a candidate
gene. However, recent reports have indicated thatHEPH plays a crucial
role in hair development through its ferroxidase activity32. In addition
to the insights that our rare coding variant analyses yielded at GWAS
loci, they also implicate novel MPHL candidate genes beyond GWAS
loci, namely CEPT1 (Choline/ethanolamine phosphotransferase 1) and
EIF3F (Eukaryotic translation initiation factor 3 subunit F). CEPT1
encodes the terminal enzyme in the Kennedy pathway of phospholipid

biosynthesis33. While no reports specifically linking CEPT1 and hair
(loss) biology exist, there is evidence for a link between phospholipid
metabolism and hair biology. For example, the topical administration
of phospholipids was shown to promote hair growth in mice34, and
overexpression of group X-secreted phospholipase A2 in mice led to
alopecia and changes in hair cycling35. EIF3F encodes a subunit of the
eukaryotic initiation factor 3 (eIF-3) complex. Recent reports suggest a
potential involvement of EIF3F in hair pigmentation, as a patient with
two heterozygous variants in EIF3F presented with skin and hair
hypopigmentation36, and a heterozygous EIF3F knock-out resulted in
abnormal coat pigmentation in mice37. This is of interest as the trans-
formation of pigmented terminal hair follicles to unpigmented vellus
hair follicles is a pathophysiological feature of MPHL38. Additionally,
EIF3F has been shown to act as a negative regulator of cell proliferation
in cancer cells39, andwas shown to regulate Notch signaling40, which in
turn is involved in hair follicle stem cell fate determination41.

Our conditional single-variant analysis further identified a number
of strong associations independent from common GWAS variants.
Among the top ten variant associations from this analysis are variants
located within the genes AR (androgen receptor), WNT10A, TSPEAR
(Thrombospondin Type Laminin G Domain and EAR Repeats), MITF
(Melanocyte Inducing Transcription Factor) and DGKZ (Diacylglycerol
Kinase Zeta). Given that these rare, nonsynonymous coding variants
achieved low P-values - albeit above the threshold for genome-wide
significance - despite the generally low power of the single-variant
analyses, these may constitute independent candidate genes. The two
genome-wide significant single variant associations 23:66604439:G:A
(in EDA2R) and 23:66197712:C:T (in HEPH) did not retain genome-wide
significance after conditioning, pointing to a (partial) inter-
dependence between these variants and common GWAS variants,
which was more pronounced for 23:66197712:C:T, while
23:66604439:G:A retained a partial signal. We further observed that (i)
the rare MPHL risk allele of the 23:66604439:G:A variant occurs
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Fig. 7 | Precision-recall-curves of the created MPHL risk models based on PRS
only, GenRisk gene-based scores, and PRS combined with GenRisk gene-based
scores. Themodels were tested in terms of prediction of no hair loss (pattern 1) vs

severe hair loss (pattern 4), at least moderate hair loss (pattern 3-4), and at least
slight hair loss (pattern 2-4). PRS polygenic risk score, PR precision-recall, Avg.
average.

Table 1 | Results of conditional SKAT-O analysis, involving the
removal of the two variants that showed genome-wide sig-
nificance in the single-variant analyses (23:66197712:C:T and
23:66604439:G:A)

Gene P Pconditioned

Continuous model HEPH 7.3 × 10−9 1.3 × 10−4

EDA2R 1.4 × 10−8 0.84

All-model HEPH 1.5 × 10−7 1.3 × 10−2

EDA2R 1.4 × 10−7 0.79

Two-as-control model HEPH 1.7 × 10−7 2.8 × 10−5

EDA2R 5.9 × 10−6 0.81

Extreme model HEPH 2.0 × 10−7 5.7 × 10−6

EDA2R 8.0 × 10−5 0.12

The SKAT-O P-value (unadjusted) before and after conditioning is shown according to gene and
phenotype model.
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exclusively on the common MPHL risk haplotype previously reported
by Hillmer et al.42 (rs2497935-A, rs962458-A, rs12007229-C,
rs12396249-G) and (ii) the rare protective allele of the 23:66197712:C:T
variant occurs almost exclusively on a lower-risk haplotype with only
the rs962458-A risk allele. While the 23:66604439:G:A variant exclu-
sively occurs on the previously reportedMPHL risk haplotype, a partial
signal remains in the conditional analyses, which may point to an
independent effect of the rare variant and the risk haplotype.However,
at this point, a causal role of either variant can neither be confirmed
nor excluded.

As genes identified through our rare variant gene-based associa-
tion tests were enriched for genes at known MPHL GWAS loci (lead
SNP ± 1Mb), thesedata underline the importance of studies that assess
the entire allelic spectrum of disease associations, and their potential
to highlight causal genes at GWAS risk loci. A conditional GWAS-
GenRisk analysis was performed and found no systematic dependence
between commonGWAS-implicated variants andGenRisk gene scores.
The analysis however identified risk loci where the GWAS association
signal appears to be (partially) driven by both common and rare var-
iants, namely chr.Xq12 (EDA2R) and chr.2q35 (WNT10A). Associated
lociwhich are not impactedby anyGenRisk gene scoremaybedue to a
low contribution of rare deleterious variants to the association. How-
ever, further investigation into the extent of dependence between
common variants and GenRisk gene scores is required.

The X-chromosome has long been at the center of genetic ana-
lyses on MPHL. Early studies focused on the X-linked androgen
receptor gene (AR), due to the strict androgen dependency of the
phenotype. Although the results have been conflicting in regards to
the likely causal variants and genes, the AR/EDA2R locus has con-
sistently been the most strongly associated genomic region for MPHL,
although neither the precise causal variants nor the causal genes have
been confirmed43. In the present study, we identified significant asso-
ciations with two X-chromosomal genes, namely EDA2R and HEPH,
thereby yielding newor additional evidence for these candidate genes.
Our analyses did not identify significant associations of rare variants in
the AR gene (PSKAT-O binary = 7.6 × 10−5). This is in line with previous
Sanger-sequencing-based studies of the AR coding sequence, which
did not identify any significant associations between the AR and
MPHL44,45. Althoughwe cannot exclude the possibility that our analysis
lacked statistical power to detect such an association, one might also
speculate that a potential involvement of the AR gene in MPHL
pathobiology is impacted primarily by regulatory common variants,
rather than rare variants in or around its coding sequence.

Moreover, a less stringent set of MPHL-associated genes over-
lapped with and were enriched for genes that have been reported as
the cause of monogenic trichoses, namely WNT10A (odonto-onycho-
dermal dysplasia and Schöpf-Schulz-Passarge syndrome), HOXC13
(pure hair and nail ectodermal dysplasia), DSP (Carvajal syndrome),
LPAR6 (hypotrichosis 6), ALX4 (total alopecia in frontonasal dysplasia),
EDAR (ectodermal dysplasia), CDH3 (ectodermal dysplasia), HR
(hypotrichosis 4 and alopecia universalis), and SPINK5 (Netherton
syndrome). Notably, most of these genes either cause ectodermal
dysplasias, hypotrichoses or alopecia. However, as we detected var-
iants with a previously reported likely or known pathogenic associa-
tion with genotrichoses in both cases and controls, no definitive
statement can be made as to whether the presence of or variable
expressivity of a genotrichosis may have led to a misclassification in
the MPHL self-report. Generally, an overlap between genotrichoses-
and MPHL-associated genes would be biologically plausible, as differ-
ent levels of impairment of key hair follicle signaling pathways would
be expected to result in differing phenotypes. For example, GWAS
have previously yielded evidence for an association between hair curl
andMPHL9. Together, these findings may indicate an overlap in causal
genes between genotrichoses and MPHL.

Rare coding variants in the associated genes identified in this
study have been previously associated with phenotypes such as mean
corpuscular haemoglobin (EIF3F) and urea (HEPH)46,47. Suggestive
associations have further been identified between testosterone levels
and EDA2R, and alcohol use and EIF3F. Some of these associationsmay
present interesting links – for instance, epidemiological studies have
(albeit with conflicting evidence) found associations between MPHL
and alcohol consumption48.

The present analyses utilized four different phenotype models.
Our continuous model represented a 1:1 representation of the pro-
gressive phenotype, which may however be most sensitive to mis-
classifications in the self-report. Our all-model provided a simple
description of the phenotype by considering unaffected men as con-
trols andmen with any type of balding (frontal or vertex) as cases. The
purpose of our extreme model was to achieve complete separation
between cases and controls, despite the age-dependent and pro-
gressive nature of MPHL. This involved considering men with com-
plete baldness of the scalp below 60 years of age as cases, and
unaffected men aged 60 years or older as controls. The aim of this
approach is to facilitate detectionof variants andgenes contributing to
balding in relatively younger men and may provide higher statistical
power, as these supercontrols are among the 10%ofmen least affected
by MPHL1 and are unlikely to develop a significant degree of balding
during their lifetime. However, this phenotype model comes at the
expense of sample size, whichwas reduced by nearly 80% compared to
the other phenotypemodels. The purposeof the two-as-controlmodel
was to address the possibility of misclassifications in the self-reporting
of balding. Misclassifications may be possible for UK Biobank MPHL
patterns 1 and 2 (unaffected vs frontal balding), since we are of the
opinion that the presence of balding in the frontotemporal regions of
the scalp may be subjectively over- or underestimated in the absence
of a dermatological assessment. In the present study, the different
phenotype models yielded partially distinct gene associations, for
example WNT10A and EIF3F, which consistently showed stronger sig-
nals in the two-as-control model. This may be an indication that dis-
tinct mechanisms contribute to more severe stages of balding, which
are easier to detect using this case-control separation. All in all, the
phenotype models employed in this study provide different perspec-
tives on the MPHL phenotype and can account for certain possible
errors in the self-report.

In this study, we performed two types of gene-based analyses:
SKAT-O and GenRisk. SKAT-O is a well-established tool for gene-
based association analyses and has the ability to detect associations
in the presence of mixed effect directions at the variant level. Gen-
Risk employs a scoring system that uses a beta distributionweighting
schema for allele frequency, which is similar to SKAT-O, and patho-
genicity scores (CADD score), to upweight rare and deleterious var-
iants. As a result, GenRisk does not require variant consequence
filtering. Moreover, GenRisk generates individual-level gene-based
scores, which can be used in downstream analyses such as associa-
tion analyses and risk prediction modeling. GenRisk was recently
used to identify associations between rare genetic variants and blood
biomarkers, identifying both known and novel associations
(preprint)49. In the present study, both methods yielded partially
distinct gene associations.While the inclusion of non-coding variants
and non-protein-coding genes in the GenRisk analysis may yield
overall more comprehensive results, the association signal may
encompass a greater overlap with GWAS. The GenRisk analysis of
coding variants only, on the other hand, offers an increased focus on
high-impact coding variants, without severely reducing the number
of variants through e.g., high-impact variant consequence filters. The
analyses employed in this study therefore address different
hypotheses. While each method offers different biological insights,
some identified gene associations are consistent between SKAT-O
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and GenRisk, and Fisher’s exact tests show a significant overlap of a
less stringent set of associations (P < 3 × 10−3) between the two
analyses across all phenotype models (ORcontinuous = 54.3,
Pcontinuous = 1.5 × 10−17; ORall-model = 92.8, Pall-model = 2.1 × 10−24;
ORtwo-as-control = 71.3, Ptwo-as-control = 3.5 × 10−20; ORextreme model = 99.1,
Pextreme model = 3.9 × 10−19). However, given the novelty of the
approach, corroboration of the GenRisk results in further studies is
desirable.

To our knowledge the present study represents the first sys-
tematic analysis of the contribution of rare variants to MPHL etiology.
While rare variants in coding regions of the genomeseem tomakeonly
a small contribution to MPHL genetic risk at population-level and may
have little value for risk prediction, they may nonetheless contribute
significantly to individual risk. In linewith this hypothesis, we observed
only a marginal contribution to the overall MPHL risk prediction of
gene-based burden scores with respect to the PRS. Since prediction
model performances are typically assessed on overall data set metrics
(such as AUC) it can be expected that the impact of variables infor-
mative only for a small proportion of samples can be marginal (e.g.,
there might be few individuals whose MPHL genetic risk can be
attributed to damaging rare variants in a specific MPHL susceptibility
gene). Instead, PRS by providing a gradient-risk in the overall data set
can model the genetic risk throughout the population, therefore
representing a global genetic risk variable. While gene-based burden
scores may not be particularly suited for risk prediction models in the
general population, they are a powerful instrument to detect gene
associations and can therefore be helpful to dissect the genetic
architecture of complex traits such as MPHL. As demonstrated with
our study, the analysis of rare variants additionally offers important
insights into associated alleles, genes and pathways, as well as pleio-
tropy, thereby improving our understanding of MPHL pathobiology.
While the present study provides first insights into the contribution of
rare variants to MPHL pathobiology based on a tranche of 200,629
exomes from the UK Biobank, the final data set of ~450,000 exomes
has been released while completing the present analyses. This data set
represents a considerable increase in sample size. Continued investi-
gation on the role of rare variants forMPHL using this larger data set is
therefore warranted.

In summary, the findings of our analysis broaden the allelic
spectrum of previously reported candidate genes (EDA2R, WNT10A),
yield evidence for novel MPHL candidate genes both at (HEPH) and
beyond (CEPT1, EIF3F) known GWAS loci and suggest an association
between genotrichoses and the commonMPHL phenotype. Together,
they provide a basis for future investigations into MPHL pathobiology
and the contribution of rare variants to MPHL. Investigations of the
functional relevance of rare variants and their interactions with com-
mon variants at and beyond risk loci will eventually improve our
understanding of MPHL pathobiology and may lead to improved risk
prediction and identification of affected pathways and can pave the
way for the development of personalized therapies.

Methods
Phenotype data
The UK Biobank study has been approved by the North West Multi-
centre Research Ethics Committee as a Research Tissue Bank and all
UKB participants provided written informed consent. The UKB 200k
release contains exome- and MPHL self-report data from 89,311
men18,19. TheseMPHL self-report data were recorded at up to four UKB
assessment center visits. Using a touch-screen questionnaire, partici-
pants scored their hair loss on a scale of 1 to 4, as based on four
pictograms (Supplementary Fig. 8): 1 –Unaffected; 2 – frontotemporal
balding; 3 – balding of the frontotemporal region and vertex; and 4 –

complete baldness of the top of the scalp.
In the present study, four phenotype models were used: (i) a

continuous model, which considers hair loss patterns 1–4 on a

continuous scale, (ii) an all-model, in which controls (pattern 1) were
compared to cases (pattern 2–4); (iii) an extreme model, in which
supercontrols (pattern 1, age ≥60) were compared to severe cases
(pattern 4, age <60); and (iv) a two-as-control model, in which controls
(pattern 1–2) were compared to cases (pattern 3–4) in order to address
the possibility of misclassifications between pattern 1 and 2 in the self-
assessment.

For individuals who provided MPHL data at more than one
assessment center visit, additional steps were performed in order to
check the self-report data for sanity, and to select an entry for use in
the analyses. The most recently recorded MPHL pattern was selected
for analysis, unless an improvement inMPHL status was recorded. Due
to the progressive nature ofMPHL, an improvement is implausible. To
avoid the need to exclude individuals who reported an improved
MPHL status and to instead identify a plausible MPHL pattern, the
following steps were performed: (i) if two balding patterns were
available, and the differencebetween the patternswas no larger than 1,
the higher pattern was used; (ii) if 3 balding patterns were available, a
pattern that was recorded 2 times was used; (iii) if 4 balding patterns
were available, a pattern that was recorded 3 times was used. If no
plausible MPHL pattern could be identified in this manner, the indivi-
dual was excluded. To account for the age-dependency of MPHL, in
case of multiple assessments, for cases, we selected the lowest age at
which the highest MPHL pattern was recorded. For controls, we
selected the highest age at which no (pattern 1) ormild (pattern 2) hair
loss was recorded.

To select participants for the present analysis, the following four
criteria were used: (i) no grounds for exclusion found in the MPHL
multi-entry sanity check; (ii) availability of genotype and kinship data;
(iii) genetically and self-reported male sex with no sex chromosome
aneuploidy; and (iv) self-reportedwhite British ethnicity, aswell as very
similar genetic ancestry, as based on a principal components analysis
of the genotypes. In addition, related individuals up to the thirddegree
were excluded on the basis of UKB kinship coefficients (kinship coef-
ficient ≥0.0442). Iterative exclusion was performed for one individual
in a related pair, with individuals with a larger number of related
individuals being excluded preferentially. An unexpected improve-
ment of MPHL was observed in 2235 individuals. Of these, 293 were
excluded since no plausibleMPHL pattern could be nominated. A total
of 72,469 of the 89,311 male UKB participants fulfilled these criteria.
Exclusion of related individuals was performed separately for each
phenotype model, resulting in the following final sample counts:
72,024 (continuous, all- and two-as-control models) and 17,053
(extreme model).

Variant data
Exome sequencing variant data for the 200,643 participants in the
UKB 200k release were downloaded from the UKB in PLINK format.
The data comprised 17,981,897 variants, which were captured from
204,829 autosomal and gonosomal exonic regions ±100 bp flanking
regions. For the SKAT-O and single-variant analyses, the data were
quality controlled in PLINK 2.050 with respect to per-individual
missing rate (<5%), per-variant missing rate (<5%), and Hardy-
Weinberg equilibrium (P > 10−6). Variants were filtered for a MAF <
1% based on their frequency in the different phenotype model data
subsets. Variants were converted to variant call format (VCF) and
annotated using the Ensembl Variant Effect Predictor (VEP)(v104)51.
Variants with a predicted nonsynonymous consequence ofmoderate
or high impact in a protein-coding gene (as based on Ensembl gene
annotation release 104) were selected. These variant criteria com-
prised missense, insertion, deletion, splice acceptor-, splice donor-,
and start- or stop-altering variants, as well as transcript and reg-
ulatory region ablations.

For the GenRisk analyses, variant data were quality controlled
in PLINK 2.0 with respect to per-variant missing rate (<2%) and
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Hardy-Weinberg equilibrium (P > 10−6). Variants were filtered for an
MAF < 1%, as based on their frequency in the data set. The variant data
were annotated with CADD (Combined Annotation Dependent
Depletion) scores (CADD v1.6)52 and gene features based on the
GRCh38NCBIRefSeq refFlat table fromtheUCSCGenomeBrowser53,54.

Imputed genotype data were downloaded from the UKB in BGEN
format. These data comprised information concerning 97,059,328
variants and were converted to PLINK format using PLINK 2.0 and the
ref-first parameter.

Correction for population stratification
To account for population stratification, analyses were performed to
estimate the optimal number of top PCs to include in our statistical
models. For this purpose, GWAS were performed on the UKB imputed
genotype data using a varying number of included PCs, and the
genomic inflation factor λ was determined. Imputed genotype data
were processed in PLINK 2.0, with preservation of the imputed geno-
type dosages. The data were quality controlled for info score (≥0.3)
and minor allele count (≥20) and filtered for each of the four pheno-
type model subsets. GWAS were performed in PLINK 2.0, with cor-
rection for age and the 1−20 top PCs, as pre-calculated by the UKB
based on imputed SNP genotype data. In the extreme model, age
correction was omitted, since this phenotype model differentiates
based on age.

Association analyses
The association analyses of the continuous model, all-model and the
two-as-control model were corrected for age, sequencing batch and
the top 14 PCs. In the association analyses of the extreme model,
correction was made for sequencing batch and the top five PCs only.
GWAS-style single variant analyses of the filtered exome data were
performed in PLINK 2.0 using the glm function with covariate nor-
malization to mean 0, variance 1. LD of the single-variant associations
with the sentinel GWAS SNP was calculated in PLINK 2.0 using the ld
function. For the 23:66197712:C:T variant in HEPH, the nearest GWAS
lead SNP was used: 23:66001818:T:A (rs771150309, MPHL risk allele =
major allele = T). For the 23:66604439:G:A variant in EDA2R, the closest
GWAS lead SNP (23:66418642 (rs5965195)) was not contained in the
employed imputed genotyping data release, and the nearest sig-
nificant SNPwas used instead: 23:66418267:G:A (rs4827473,MPHL risk
allele = major allele = A).

Two types of gene-based analyses were performed: SKAT-O20 and
GenRisk21. SKAT-O was applied to the filtered exome data using the
SKATBinary.SSD.All (for binary phenotype definitions) and the
SKAT.SSD.All (for the continuous phenotype definition) functions with
default settings in the SKAT R package (v2.0.1)20. Data were converted
to PLINK 1 binary format using PLINK 2.0 for use as input files. Variants
were assigned to genes based on the VEP annotation approach
described above. In addition to the nonsynonymous variant con-
sequence threshold imposed through the present filtering steps, more
stringent thresholds were applied in this analysis by restricting inclu-
sion to variants of high impact, as based on VEP annotation (splice
acceptor, splice donor, stop- or start-altering and frameshift variants,
as well as transcript ablations). TheGenRisk analysis was performed on
the filtered exome data in VCF format using the GenRisk Python
package (v0.2.5)21. GenRisk was applied separately to i) rare variants
(MAF < 1%) annotated to any gene and ii) only coding variants, using
the identical variant set as used in the SKAT-O analyses. Gene-based
scoreswere generated usingweightedMAF (beta density functionwith
parameters a = 1 and b = 25) and raw CADD scores as functional
annotation, whereby variants with a lower MAF or higher CADD score
were upweighted. The association analysis of the gene-based scores
and previously described covariates was performed using linear
regression (continuous model) or L1-logistic regression (all-, two-as-
control and extreme models).

The P-value threshold for genome-wide significance in single-
variant association analyses was selected as 8 × 10−9, as empirically
determined by Karczewski et al. based on analyses of 394,841 UK
Biobank exomes46. P-value thresholds for the SKAT-O and GenRisk
gene-based analyses were determined using Bonferroni correction
based on the maximum number of genes tested, resulting in a
threshold of 2.6 × 10−6 (corresponding to 18,946 genes tested in the
SKAT-O analysis).

Enrichment analyses
To improve the feasibility of enrichment analyses and obtain a more
comprehensive gene list of approximately 500 genes, a less stringent
P-value threshold of P < 3 × 10−3 was selected, resulting in a less strin-
gent set of 595 MPHL-associated genes. Testing was performed for an
enrichment of this less stringent set of MPHL-associated genes in
genes located ±1Mb of previously published GWAS lead SNPs7–17.
Enrichment testing using a one-tailed Fisher’s exact test from scipy
(v1.8.1) was performed with a background list comprising the final
tested genes per phenotype model. Using the same method, analyses
were also performed to test for an enrichment of this less stringent set
ofMPHL-associated genes in genes causative formonogenic trichoses.
A list of 65 known trichosis genes was created, as based on previous
publications23–27. The genes and their corresponding condition are
listed in Supplementary Table 1.

ClinVar query
An inspection was made to determine whether MPHL-associated rare
variants have been described as pathogenic or likely pathogenic on
ClinVar. ClinVar data were downloaded as VCF (accessed 02.05.2022)
and filtered for nominally significant single variants (P <0.05 in any
phenotype model). Information on associated conditions was extrac-
ted for variants listing a clinical significance of pathogenic, likely
pathogenic or conflicting interpretations of pathogenicity.

Conditional analyses
To evaluate the dependence of association signals on specific var-
iants, conditional analyses were performed. Gene-level conditional
analyses of the genes EDA2R and HEPH were conducted using SKAT-
O, as previously described, after the exclusion of two variants that
showed genome-wide significance in the single-variant analyses
(23:66197712:C:T and 23:66604439:G:A).

Using data from the continuous model, we tested whether SNPs
previously implicated in GWAS were independent from GenRisk gene
scores. Imputed genotype data from the UKB were filtered for MAF
(>1%), info score (>0.3), per-variant missing rate (<5%), Hardy-Weinberg
equilibrium (P > 10−6). Association analyses of the filtered imputed
genotypedatawere performed in PLINK2.0 using the glm functionwith
covariate normalization to mean 0, variance 1, and corrected for age
and 14 top PCs. The analyses were performed per locus, defined based
on 622 SNPs that were identified as independent MPHL lead SNPs in a
UKB-based GWAS13 ± 500kb flanking regions. For each gene per locus,
the analysis was additionally corrected for the respective GenRisk gene
scores. ResultingP-values and effect sizeswere then comparedbetween
the uncorrected and gene-corrected analyses.

To test whether the rare single-variant associations were inde-
pendent from common SNPs previously implicated in GWAS, imputed
genotype data from theUKBwere filtered for info score (>0.3) and 622
SNPs that were identified as independent MPHL lead SNPs in a UKB-
based GWAS13. GWAS-style exome single variant analyses were then
performed as described above, with the inclusion of genotypes for
lead SNPs on the same chromosome as covariates.

Pathway gene set and network analyses
Gene set analysis was performed using FUMA GENE2FUNC55 (v1.4.0)
with default settings. MPHL-associated genes (P < 3 × 10−3 in any gene-
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based test) were used as input gene list. All tested genes were supplied
as a background list. The results were filtered for pathway gene set
categories, namely canonical pathways, curated gene sets, computa-
tional gene sets, chemical and genetic perturbation, hallmark gene
sets, Reactome, KEGG and WikiPathways. To further obtain an over-
view of protein interactions and co-expression, a STRING (v11.5)56

protein network analysis was performed using a less stringent set of
MPHL-associated genes. Here, a threshold of P < 3 × 10−4 was selected
in order to obtain a more manageable network of <100 genes.

Risk modeling
To test whether the inclusion of rare variants improves common
variant-based risk modeling of MPHL, GenRisk was used to create a
risk prediction model integrating MPHL PRS with GenRisk gene-
based scores, which were generated as described above. In order to
establish a PRSmodel, a GWAS of imputed genotyping data from the
UKB was performed based on data from our continuous model.
Individuals with no exome sequencing data were selected to ensure
no sample overlap, and filtered using the criteria described pre-
viously, resulting in 105,565 unrelated (both within this sample and
with the 72,024 individuals of the continuous, all- and two-as-control
models) male individuals. The imputed genotype data were quality-
controlled (info score >0.3, per-variant missing rate <5%, HWE
P > 10−6) and filtered for common variants (MAF > 1%). The GWAS was
performed in PLINK 2.0 using the glm function, and corrected for age
and 18 top PCs (estimated as the optimal number of top PCs for this
sample based on λ calculation).

PRSwere calculated for the cohort of 72,024males using PRSice-2
(v2.3.5)57 using autosomal and X-chromosomal SNPs P < 7.85 × 10−3

(best-fit PRS P-value threshold) and otherwise default settings. AUCs
for the full cohort were computed using the pROC R package (v1.18)58.
The cohort of 72,024 males was split 25–50–25%, with 25% being used
for weighting genes and summing all gene-based scores into one gene-
based risk score per individual. Training of the integrated risk pre-
diction models was performed using 50% of the samples with 10-fold
cross-validation, with the remaining 25% of samples being used as an
independent testing set. The risk prediction model was generated
based on data from our continuous model with age, sequencing batch
and the top 14 PCs being included as features. To evaluate the con-
tribution of rare variants, the performances of risk models that inclu-
ded gene-based scores and PRS were compared with risk models that
included PRS only.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This research has been conducted using data from UK Biobank under
Application Numbers 24661 and 102444. The individual-level genetic
and phenotypic data are available under restricted access; access can
be obtained by application through theUKBiobank platform. The data
generated that support the findings of this study are provided in the
Supplementary Data. The CADD score data used in this study are
available in theUniversity ofWashingtonCADD scoredatabase https://
krishna.gs.washington.edu/download/CADD/v1.6/GRCh38/whole_
genome_SNVs.tsv.gz. The gene feature annotation data used in this
study are available in the Ensembl database under release number 104
https://ftp.ensembl.org/pub/release-104/gtf/homo_sapiens/Homo_
sapiens.GRCh38.104.chr.gtf.gz and in the UCSC Genome Browser
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/refFlat.
txt.gz. The ClinVar data used in this study are available from
the ClinVar database https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_
GRCh38/archive_2.0/2022/clinvar_20220430.vcf.gz.
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