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Recent experimental advances have stimulated interest in the use of large,
two-dimensional arrays of Rydberg atoms as a platform for quantum infor-
mation processing and to study exotic many-body quantum states. However,
the native long-range interactions between the atoms complicate experi-
mental analysis and precise theoretical understanding of these systems. Here
we use new tensor network algorithms capable of including all long-range
interactions to study the ground state phase diagram of Rydberg atoms in a
geometrically unfrustrated square lattice array. We find a greatly altered phase
diagram from earlier numerical and experimental studies, revealed by study-
ing the phases on the bulk lattice and their analogs in experiment-sized finite
arrays. We further describe a previously unknown region with a nematic phase
stabilized by short-range entanglement and an order from disorder mechan-
ism. Broadly our results yield a conceptual guide for future experiments, while
our techniques provide a blueprint for converging numerical studies in other

lattices.

Rydberg atom arrays consist of a set of cold neutral atoms that are
trapped in an optical lattice, interacting strongly with each other via
excitation into Rydberg states”. Advances in experimental control
over a large number of atoms, arranged in two-dimensional arrays,
have generated significant interest in using these systems for a variety
of applications, including quantum information processing and stabi-
lizing quantum states with long-range entanglement>. A recent
seminal experiment'®, backed by numerical studies**°, has suggested a
richness in the ground states of Rydberg atom arrays on a 2D square
lattice. However, although the observed, non-disordered, phases are
not all classical crystals, they contain little entanglement. Thus it
remains unclear whether such arrays realize non-trivial entangled
quantum ground-states on simple lattices.
The Rydberg atom array Hamiltonian is
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Here 67 =|0;)(1;| +]1;){0;| and A; = |1,)(1;| ({|0;).|1;)} denote ground
and Rydberg states of atom ). a is lattice spacing, Q labels Rabi fre-
quency, and 6 describes laser detuning. V parameterizes the interac-
tion strength between excitations. This can be re-expressed in terms of

the Rydberg blockade radius Ry, with V/(R,/a)® = Q. We study the
square lattice in units a = Q =1, yielding two free parameters & and R,,.

The ground states of this Hamiltonian are simply understood in
two limits. For 6/Q>1, R, # 0, the system is classical and one obtains
classical crystals of Rydberg excitations”* whose spatial density is set
by the competition between 6 and R,. For 6/Q <1, R,# 0, Rydberg
excitations are disfavored and the solutions are dominated by Rabi
oscillations, leading to a trivial disordered phase'>*?. In between
these limits, it is known in 1D that no other density-ordered ground
states exist besides the classical-looking crystals, with a Luttinger
liquid appearing on the boundary between ordered and disordered
phases®.

In 2D, however, the picture is quite different. An initial study"
using the density matrix renormalization group (DMRG)”* found
additional quantum crystalline (or so-called density-ordered) phases,
where the local excitation density is not close to O or 1. A recent
experiment on a 256 programmable atom array has realized such
phases™. However, as also discussed there, the density-ordered phases
are unentangled quantum mean-field phases, and thus not very inter-
esting. In addition, more recent numerical results” highlight the sen-
sitivity of the physics to the tails of the Rydberg interaction and finite
size effects. Thus, whether Rydberg atom arrays on a simple
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unfrustrated lattice—such as the square lattice—support interesting
quantum ground-states, remains an open question.

Here, we resolve these questions through high-fidelity numerical
simulations. To do so, we develop and employ new numerical techni-
ques based on variational tensor network methods. Tensor networks
have led to breakthroughs in the understanding of 2D quantum many-
body problems®, and our two new techniques address specific com-
plexities of simulating interactions in Rydberg atom arrays. The first we
term I-point DMRG, which utilizes a computational spin basis with
periodic boundary conditions, and which can also be viewed as a type
of DMRG that is deployed on a torus with interactions wrapping
around to infinite range, while employing a traditional finite system
two-dimensional DMRG methodology”. This removes interaction
truncations and boundary effects present in earlier studies'*”**, and
allows us to controllably converge the bulk phase diagram. The second
is a representation of long-range interactions* compatible with pro-
jected entangled pair states (PEPS)*7¢, With this, we use PEPS to find
the ground states of a Hamiltonian with long-range interactions for the
first time, and specifically here, model the states of finite Rydberg
arrays of large widths as used in experiment. We show that, unex-
pectedly, the faithful inclusion of all long-range terms in our simula-
tions yields quite different physics compared to both previous
theoretical and experimental analyses. Some previously predicted
ground state phases are destabilized, while other unanticipated phases
emerge - including evidence of a non-trivial nematic phase stabilized
by short-range entanglement in an order from disorder mechanism®,
even on the geometrically unfrustrated square lattice array. In the
following, we first describe the new numerical techniques, before
turning to the bulk and finite-size phase behavior of square lattice
Rydberg arrays and the question of entangled quantum phases.

Results

Bulk simulation strategy and I'-point DMRG

A challenge in simulating Rydberg atom arrays is the long-range tails of
the interaction. Because itinerancy only arises indirectly as an effective
energy scale”, the main finite size effects arise from interactions. Many
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Fig. 1| Numerical methods and strategy. a A schematic representation of I'-point
DMRG. A single infinite bulk configuration is given by periodic images of the central
supercell configuration. The wavefunction coefficient for this infinite configuration
is given by the contraction of a snake MPS, which is defined only within a single

supercell. b By widely varying the size of the supercell, I-point DMRG obtains many
different ground states. Identifying all accessible supercells which give the same

ground state order (shown with identically colored points), we can ensure that all
competing low-energy states are well converged w.r.t. finite size effects, and thus

(configuration|¥) =

previous studies have employed a cylindrical DMRG geometry com-
mon in 2D DMRG studies”. However, there the interaction is truncated
to the cylinder half-width, while along the open direction, edge atoms
experience different interactions than in the bulk; both choices pro-
duce strong finite size effects.

To avoid these problems, we perform 2D DMRG calculations in a
site Bloch basis. Given the site basis |n, ), n € {0,1}, the Bloch basis
states are periodic combinations, |n,,)=>"/n,.g,) Where
R;=(n-L,m-L)), nm € Z, are lattice vectors, Ly, L, are the supercell
side lengths, and n,,=n ., i€, the occupancies at the transla-
tionally related sites are the same. The above are analogous to Bloch
states at the I'-point of the supercell Brillouin zone. The finite many-
body Hilbert space under the I'-point restriction is [, I71,.,); this Hil-
bert space should be interpreted as a model of the Hilbert space of the
infinite system, rather than a true subspace of it. The corresponding
matrix product state (MPS) is expressed as |W)=3" ], yA?;jy)mx,y)
where A" is the MPS tensor associated with Bloch function 1, ,, ey,
denote its bonds, and a 2D snake ordering has been chosen through
the lattice. In the above picture, I'-point 2D DMRG formally models an
infinite lattice (Fig. 1a) with a wavefunction constrained by the super-
cell shape. This differs from using a periodic MPS as periodicity is
enforced by the Bloch basis rather than the MPS. The I'-point DMRG
calculation can also be viewed as working on a finite toroidal geometry
(i.e., the supercell) with the typical pure site basis |n, ), but where the
interactions are allowed to wrap infinitely around the torus, rather than
being cut off. In either interpretation, the Hamiltonian per supercell
contains interactions expressed as an infinite lattice sum,
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Further details of this approach and its two interpretations are dis-
cussed in the Methods section.

The only finite size parameter is the supercell size L, x L,. We thus
perform exhaustive scans over Ly, L, to identify competing ground
state orders. We systematically converge the energy per site of low-
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properly identify the true ground state (inset shows ground-state order (dark
green) converged w.r.t. supercell size, separated from other low-energy orders by
107* energy units). ¢ A PEPS wavefunction ansatz with bond dimension D for a finite
system. Each tensor is a different color because they can all be unique. d A sim-
plified diagrammatic representation of the long-range Hamiltonian construction
for PEPS in ref. 32. All terms in the Hamiltonian are accounted for by a sum of L,
comb tensor network operators. Tensors of the same color are identical.
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Fig. 2| Phase diagrams of the bulk system under various assumptions. The color
of a dot/region identifies the ground state order. The density profiles for each color
are given in (e) and shown near each phase domain. a The phase diagram given by I'-
point DMRG including all long-range interactions. b The phase diagram from I'-

point DMRG when interactions are truncated to O beyond a distance of |r;—rj|=2.
¢ The classical phase diagram (when all sites are either fully occupied or empty)

including all long-range interactions. d The mean-field phase diagram, including all

1/8-stagger

long-range interactions. Error bars display the uncertainty of the computed phase
boundaries. e Representative density profiles for all phases in (a-d), identified by
the colored dot in each lower right corner. All profiles have I'-point boundary
conditions on all edges. In (a, b) dots denote computed data, while shading is a
guide for the eye. (c, d) are computed with very fine resolution/analytically, thus no
dots are shown.

energy orders by increasing the commensurate supercell sizes to
contain many copies of the order (up to 108 sites). The finite size
effects converge rapidly because no interactions are truncated and
there are no edge effects even in the smallest cells, allowing us to
converge the energy per site to better than 1075, compared to the
smallest energy density difference we observe between competing
phases of -10™ (see Fig. 1b and Supplementary Methods).

Finite simulations and PEPS with long-range interactions

To simulate ground-states of finite arrays, we consider finite systems
(with open boundaries) of sizes 9x9 up to 16 x16 atoms. This
resembles capabilities of near-term experiments'®’. The width of the
largest arrays challenges what can be confidently described with MPS
and DMRG for more entangled states. Consequently, we employ PEPS
wavefunctions which capture area law entanglement in 2D, and can
thus be scaled to very wide arrays (Fig. 1c). Together with DMRG cal-
culations on moderate width finite lattices, the two methods provide
complementary approaches to competing phases and consistency
between the two provides strong confirmation. However, PEPS are
usually combined with short-range Hamiltonians. We now discuss a
way to combine long-range Hamiltonians efficiently with PEPS without
truncations.

For this, we rely on the representation we introduced in ref. 32.
This encodes the long-range Hamiltonian as a sum of comb tensor
network operators (Fig. 1d). As discussed in ref. 32, arbitrary isotropic
interactions can be efficiently represented in this form, which mimics
the desired potential via a sum of Gaussians, i.e. % = Z’;max cpe b
(where knax - 7 for the desired accuracy in this work) The combs can

be efficiently contracted much more cheaply than using a general
tensor network operator.

While ref. 32 described the Hamiltonian encoding, here we must
also find the ground-state. We variationally minimize (W|H|W) using
automatic differentiation®®. Combined with the comb-based energy
evaluation, this allows for both the PEPS energy and gradient to be
evaluated with a cost linear in lattice size. Further details are discussed
in the Methods section, including some challenges in stably conver-
ging the PEPS optimization.

Summary of the bulk phase diagram

Figure 2a shows the bulk phase diagram from I-point DMRG with
infinite-range interactions. We first discuss the orders identified by
their density profiles (orders of some phase transitions are briefly
discussed in Supplementary Note 3). Where we observe the same
phases as in earlier work", we use the same names, although there are
very substantial differences with earlier phase diagrams.

With weaker interactions (R, <1.8), the ground states progress
through densely-packed, density-ordered phases starting from
checkerboard (pink, R, ~1.2), to striated (cyan, R, ~1.5), to star (blue,
Ry, ~1.6). While the checkerboard and star phases are classical-like
crystals, the striated state is a density-ordered quantum phase, seen
previously”.

With stronger interactions (R, >1.8), the phases look very differ-
ent from earlier work, which truncated the interactions”. Ordered
ground states start with the i-staggered phase (red, R,~1.95), then
progress to a nematic phase (dark green, R, - 2.2) and the }-staggered
phase (gold, R,~2.4). There is also a small region at larger 6 (not
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Fig. 3 | Mean-field striated versus entangled nematic phase. a Density-density
correlation functions of the mean-field and exact striated ground state, both at
(8, Rp) = (3.1, 1.5); these agree, confirming the mean-field nature of the striated
phase. (b) Density-density correlation functions for the entangled nematic phase
ground state and two different mean-field ground states (from a 6 x 3 unit cell and a
3 x 4 unit cell) at (6, Rp) = (5.0,2.3). In (a, b), 2-fold/4-fold degeneracy of a peak is
indicated by 2/4 horizontal dots distributed around the proper distance coordi-
nate. 8-fold degeneracy in (a) is shown as two rows of 4 dots. The non-mean-field
(entangled) character of the nematic phase is evident. ¢ Structure of the nematic
state in terms of classical configurations constructed via compositions of 3 indi-
vidual column states |a),|b),|c). In the classical limit, there are 4 distinct sets of low-
energy configurations, all characterized by the absence of adjacent columns in the
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same state (e.g., |aa...)) and large degeneracies due to permutational symmetry
between |a), |b), and |c). The lowest in energy is 6-fold degenerate, corresponding
to the 3-star state. However, in the quantum nematic state the configurations that
are slightly higher in energy have much larger wavefunction coefficients. The most
relevant classical states in the wavefunction are those with the greatest number of
possible single full column hops (e.g., a > b) without introducing unfavorable states
like |aa...), revealing the role of itinerancy in the nematic phase. d Bipartite
entanglement entropy for each possible bipartition of the 12 x 9 supercell nematic
ground state. One inset shows the path that the partition location axis follows
through the supercell MPS, while the other shows the entanglement spectrum at a
central cut.

shown) where the nematic phase and a classical-like crystal (which we
call 3-star) appear to be essentially degenerate, with an energy differ-
ence per site of Ae <3107 (see Supplementary Note 2).

Effects of interactions on the bulk phases

In Figure 2b, we show the phase diagram computed using I'-point
DMRG with interactions truncated to distance 2. This approxima-
tion resembles earlier numerical studies', but here bulk boundary
conditions are enforced by the Bloch basis, rather than cylindrical
DMRG. Comparing Fig. 2a, b, we see the disordered and striated
phases are greatly stabilized using the full interaction, and new
longer-range orders are stabilized at larger R,. Comparing Fig. 2b
and ref. 19, we see that having all atoms interact on an equal footing
(via the Bloch basis) destroys some quantum ordered phases seen in
ref. 19 at larger R,.

Classical, mean-field, and entangled bulk phases

Without the Rabi term Q, one would obtain classical Rydberg
crystals without a disordered phase. Figure 2c shows the classical
phase diagram. For the 6 values here, the 1D classical phase diagram
has sizable regions of stability for all accessible unit fraction
densities**?*. However, the connectivity of the square lattice in 2D

changes this. For example, only a tiny part of the phase diagram
supports a 3-density crystal, and we do not find a stable i-density
crystal within unit cell sizes of up to 10 x 10. All ordered quantum
phases in Fig. 2a appear as classical phases except for the striated
and nematic phases, while there are small regions of classical
phases at densities 1 and 2 with no quantum counterpart. The stri-
ated and nematic phases emerge near the 1 and 1 density gaps
respectively, however the nematic phase also supersedes the large
region of the { density 3-star crystal.

Ref. 18 suggested that quantum density-ordered phases are qua-

litatively mean-field states of the form [Ja;0;)+/1— |a;?|1;).
Figure 2d shows the mean-field phase diagram. The disordered phase
does not appear, as it emerges from defect hopping and cannot be
described without some entanglement®. The mean-field phase dia-
gram contains features of both the classical and quantum phase dia-
grams. The striated quantum phase indeed appears as a mean-field
state, confirmed by the match between the mean-field and exact cor-
relation functions (Fig. 3a). However, the nematic phase does not
appear, and in its place is the same l-density crystal stabilized in the
classical phase diagram. This shows that a treatment of entanglement
is required to describe the nematic phase.

Nature Communications | (2023)14:5397
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Fig. 4 | Phase diagram of the 15 x 15 finite system and finite lattice orders. a The
phase diagram, where colors correspond to the same phase classifications as Fig. 2.
Triangles represent tentative classification of points showing inconsistent PEPS
convergence, see Supplementary Methods. A new order, which we call square, is
specified in (c) and various examples of boundary-bulk frustrated ground states in
(b). d The density profile for a nematic-like ground state that can be stabilized on a
15 x 14 lattice at (6, Rp) = (3.4, 2.1) with manually tailored edge excitations (see text).
e Comparing the correlations of the finite nematic phase to the converged bulk
phase. The degeneracy of the peaks is split by the boundary excitations, but the
number of peaks is generally conserved between the two (green ovals), which
provides a clear distinction from mean-field states (see Fig. 3b).

Nature of the bulk nematic phase

Figure 3b shows the density correlation function of the nematic phase,
which does not display mean-field character. To reveal the phase
structure, Fig. 3¢ shows the lowest energy classical states in the same
region of the phase diagram. Due to the Rydberg blockade radius
(Rp=2.3), excitations are spaced by 3 units within a column, giving 3
column configurations |a), \b) |c). Column-column interactions,
however, prevent adjacent columns from being in the same config-
uration (with excitations separated by 2 units); thus, states such as
|abch...) are allowed, but |acch...) are not. Without long-range
interactions, these column constraints give rise to an exponential
classical degeneracy. Long-range interactions partially lift the classical

degeneracy, yielding the |abc...) crystal (3-star phase) and its 6-fold
degenerate permutations. However, after including quantum fluctua-
tions and entanglement through a 4th order perturbative treatment of
o (giving rise to defect itinerancy), |abab ...) and related configura-
tion energies are lowered below those of the |abc .. .) configurations;
the fluctuations stabilize non-classical crystal configurations (see
Supplementary Note 1). Figure 3c gives the weights of the configura-
tions in the computed quantum ground-state, which are distributed
across the exponentially numerous non-classical |abab .. .), |abcbab)
etc., configurations, with the classical crystal |abc...) configurations
strongly disfavored. The bi-partite entanglement entropy and entan-
glement spectrum are further shown in Fig. 3d. Although the fluctua-
tions are presumably of finite range, the entanglement spectrum
carries 3 large Schmidt values across every cut along the DMRG snake
MPS, showing the state is entangled across the entire supercell, and
well approximated by an MPS of bond dimension 3. The entanglement
structure emerges from the combination of defect itinerancy and the
constraints on adjacent columns. Thus, it is clear that quantum fluc-
tuations are much stronger in this phase than in any of the surrounding
ordered phases. Assuming the entanglement is ultimately short-
ranged (i.e., on scales beyond the supercell sizes we can treat here),
this phase can be identified as containing strong fluctuations around a
non-classical crystal, stabilized by an order from disorder mechanism®”
(further discussion in Supplementary Note 1).

Finite phase diagram

Current experiments are limited to lattices with open boundary con-
ditions consisting of a few hundred atoms'®'®, To investigate how this
modifies the bulk behavior, we computed the phase diagram of
selected finite lattices from size 9 x 9 to 16 x 16, using DMRG for the
smaller sizes and our PEPS methodology for the larger ones.

We first focus (in Fig. 4a) on understanding the fate of the ordered
phases on the 15x15 lattice along three slices: 6=2.7, 4.0, and 5.0
(16 x 16 lattice phases, as well as other lattice sizes, are discussed in
Supplementary Notes 4-5). Here, many finite lattice ground state
orders resemble those in the bulk. However, their regions of stability
are substantially reduced and their patterns are broken by frustration.
Out of the density-ordered quantum phases, the striated mean-field
phase remains due to its commensurate boundary-bulk configura-
tions, while in the region of strongest interactions, the nematic phase is
destabilized. A new region of classical order, called here the square
phase (Fig. 4c), emerges across much of the R, =1.5-1.8 region where
the star phase was stable in the bulk?®. We distinguish the square order
from the striated order in the sense that the former has negligible
quantum fluctuations on the (1, 1)-sublattice, although it is unclear if
the square and striated orders constitute truly distinct phases (in the
bulk phases the square order is not stable, only the striated order
appears).

In Fig. 5, we directly compare the experimental results on the
13 x 13 lattice to our calculations on the same lattice. The analysis of the
experiments in ref. 18 was based on simulations on the 9 x 9 lattice
using truncated interactions. This assigned only part of the experi-
mental non-zero order parameter space to a square/striated phase (see
Fig. 5a, note, the order parameter does not distinguish between
square/striated orders). However, our simulations (Fig. 5c) in fact
reproduce the full region of the non-zero order parameter, and thus,
the whole region seen experimentally should be assigned to a square/
striated phase, with the square order appearing in the upper part of the
region. Similarly, the experimental analysis identified a large region of
star order (Fig. 5b). This assignment is complicated by edge effects,
which mean that the order parameter used does not cleanly distin-
guish the star phase from other phases. However, our simulations
suggest that the region of the star phase should be considered to be
much smaller, located at the very top of the non-zero order region, and
this is confirmed using a different, more sensitive order parameter
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smaller star phase.
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(Fig. 5e). Overall, the measured data corresponds more closely to our
numerics than earlier simulations, giving confidence in our more
precise interpretation (more discussion in Supplementary Note 5).

Stabilizing the finite analog of the nematic order

Generally, the impact of boundary physics can be understood in terms
of frustration of the bulk order by the boundary order, where excita-
tions concentrate more densely due to the lower energetic penalty from
fewer long-range interactions on the edge. Examples of the effects of
this frustration, ranging from modified bulk orders, to defect domi-
nated states, to boundary-only orders are shown in Figs. 4b, ¢ and 5e
(see also Supplementary Note 4).

We searched for conditions to stabilize the nematic ground-state
on a finite lattice by manipulating boundary effects. We scanned var-
ious rectangular sizes and explicitly removed patterns of atoms from
the edges to induce different bulk orders. We found the best condi-
tions to stabilize a finite-size analogy of the nematic phase occur near
(6, Rp) =(3.4,2.1), on a 15 x14 lattice, while removing edge atoms to
create a spacing of 4 on two edges and 3 on the other two edges
(Fig. 4d). Note that the location of this state in phase space cannot be
directly compared to the locations of states in Fig. 4a due to the sig-
nificant difference in the treatment of the boundary. Although there
are strong finite size effects, the density profile and correlation func-
tions (Fig. 4d, e) reveal qualitative similarities to the bulk nematic
phase, in particular, the presence of 4-fold correlation peaks at dis-
tance +/5 and +/8, which are also a feature of the bulk entangled phase
(Fig. 3b). Importantly, the multiplicity of these peaks would be differ-
ent in the classical or mean-field ground-states at this density.

Discussion

Using new tensor network simulation methods, we have obtained a
converged understanding of the phase diagram of Rydberg atom
arrays in both bulk and finite simple square lattices. Surprisingly, our
bulk phase diagram is quite different from that predicted in earlier
numerical studies, while on finite lattices, our results support a rein-
terpretation of previous experimental analysis. Theoretically, this is
due to the subtle effects of the long-range interactions that are
addressed by our techniques, while experimentally, it brings into focus
the challenge of more accurate theoretical models to interpret
increasing experimental capabilities in quantum many-body physics.
Perhaps most intriguingly, we find strong evidence that the geome-
trically unfrustrated square lattice supports a nematic phase with
strong fluctuations, stabilized by an order from disorder mechanism
involving the competition between emergent itinerancy and the con-
straints of the Rydberg interaction.

A primary focus of Rydberg atom array experiments has been to
realize well-studied short-range Hamiltonians, for example, on fru-
strated lattices. However, we find that lattice frustration is not neces-
sary to produce interesting entanglement effects in Rydberg systems.
In fact, our work highlights the richness and complexity intrinsic to
Rydberg atom arrays, due to the non-trivial effects of their native
interactions.

Methods

A brief conceptual discussion of our new numerical techniques was
already presented in the Results section. Here, we will focus on more
algorithmic details and subtleties.
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I'-point DMRG: theory and relation to other methods

In this work we chose to perform 2D DMRG in a site Bloch basis at the
I-point in the Brillouin zone. Let us define the computational supercell
of the DMRG calculation to be of dimension L, x L, sites. Then, such a
I-point site Bloch basis state |n, ) is related to the normal site basis
state |n, ) at site ry, by

mx,y) = Z 1M y)+r,) 3)
[

where R;=(n-Ly, m-L)); n,m € Z. In other words, each single particle
basis state is a superposition of the original site basis states separated
by lattice vectors of the supercell. The occupancies of sites related by
the supercell lattice vectors, i.e., .y and n,. ,, . g, are constrained to be
the same. The Bloch function has unit norm per supercell.

The many-particle 2D DMRG wavefunction is then

W)= TIAe) 1A 4)
{e} xy

where A% is the MPS tensor associated with Bloch function Nyyr €xy
denote its bonds, and a standard snake ordering has been chosen
through the lattice”. The Hilbert space is [Leylngy), ie., it is of
dimension 251y, Note that, for supercells larger than a single site, the
Hilbert space is a product of Bloch functions, but no double occupancy
occurs because different Bloch functions 72, , occupy non-overlapping
sites on the infinite lattice. The final Hilbert space is best viewed as a
model of the Hilbert space of the infinite system, rather than a
subspace in the Hilbert space of the infinite system. We have
implemented this strategy with the ITensor software library®.

As mentioned earlier, this representation is different from the
cylindrical boundary condition MPS employed in previous
studies'®”". The primary advantage of the current approach is that
regardless of supercell size, the 2D DMRG state models an infinite
system in 2D (rather than a finite system in at least one direction in
prior cylindrical studies) simply because the underlying single-particle
basis is a discrete periodic function on the infinite 2D square lattice.
Thus there is no need to truncate the Rydberg interactions unlike in
cylinder studies. We note that this type of Bloch basis, i.e., linear
combinations of local states separated by (supercell) lattice vectors, is
widely used in electronic structure theory partly for similar reasons,
namely, it allows one to treat the infinite range Coulomb interaction.
For an example of a DMRG calculation of an infinite system using such
Bloch bases (known as crystalline atomic orbitals) in electronic struc-
ture, see e.g., ref. 40.

Systematic convergence to the correct bulk behavior in the Bloch
representation is controlled by two parameters: the DMRG bond
dimension and the size of the supercell. The I'-point basis functions for
larger supercells span larger and larger models of the Hilbert space of
the infinite system. Examining convergence with bond dimension and
supercell size is fully sufficient to establish convergence to the ther-
modynamic limit. Because of the hardcore constraints of the bosons, it
is not convenient to consider the product space of Bloch states at
different points in the supercell Brillouin zone. However, we could in
principle choose to define all Bloch states in Eq. (3) to be away from the
I point in the supercell Brillouin zone, equivalent to adding phase
factors in Eq. (3). This would correspond to a twisted boundary con-
dition, and averaging over such boundary conditions might be
expected to further reduce finite size effects.

One way to understand the 2D DMRG calculation in the Bloch
basis is to examine the form of the correlation functions it predicts for
an infinite system. Because the Bloch states at the I'-point are periodic,
all correlation functions are implicitly periodic across supercells. For
example, transformed to the site basis, the density-density correlation

function satisfies

<nX1'y1 Ny, y, > = <nxld’1n(xzd’z) +Ry > : )

Particles in adjacent supercells are thus entangled and correlated with
each other, but in a highly constrained fashion. (This can be seen from
the entanglement of a single particle state in the Bloch basis, which has
the maximum entanglement entropy of log 2 for a cut in the site basis).
Note that a 2D infinite tensor network, such as an iPEPS, also introduces
a constrained form of correlations between particles; but the constraint
there is different and controlled solely by the bond dimension. In the 2D
DMRG calculations in the Bloch basis, the full flexibility of long-range
correlations is restored by increasing the supercell size.

An alternative, and completely equivalent, way to describe the 2D
DMRG calculation in the Bloch representation at the I' point is to map it
to a calculation on a finite system. This finite system is a torus of
dimension L, xL,; we see that it has a Hilbert space of the same
dimension, labeled by the same occupancies |7, ,); thus the model
Hilbert space of the infinite system at the I' point can be identified with
the toroidal Hilbert space.

In the I'-point picture, the transformation from the basis |n, ;) to
the Bloch basis |1, ,) modifies the interaction from the original Ryd-
berg form to an infinite lattice sum over the real space lattice (Eq. (2)).
This Hamiltonian (Eq. (2)) then encodes the per supercell energy of the
infinite bulk system. In the toroidal picture, this lattice sum can be
viewed as arising from taking interactions that loop around a torus
infinitely many times, with the proper decaying form. There is a 1-1
mapping between the toroidal representation with infinite wrap-
around, and the I'-point supercell formulation discussed above. For
example, the torus representation can also be generalized to the
twisted Bloch basis discussed above: this corresponds to inserting
hoppings across the torus with a phase factor. Which language is used
is thus primarily a matter of preference.

Further details regarding analysis of finite size errors and con-
vergence strategy can be found in Supplementary Methods.

PEPS: overview

The PEPS simulations in this work combine recent advances in opti-
mizing PEPS wavefunctions using automatic differentiation®® and 2D
operator representations of long-range interactions®. This combina-
tion illuminated many new challenges for PEPS optimization with
respect to complicated Hamiltonians. The following sections will detail
the various challenges and the technical solutions used in this work.
The instability of PEPS optimization remains an open problem and it is
an area of future research to determine a PEPS optimization pipeline
(using automatic differentiation) that is fully robust to problem
instance. In the following sections, D will refer to the PEPS bond
dimension and y will refer to the maximum bond dimension allowed
during contraction before approximations (via singular value decom-
position, SVD) are performed. The algorithms were implemented with
the quimb software package*', using PyTorch as the backend library for
automatic differentiaion*”

PEPS: operator representation

The method proposed in ref. 32 to represent Hamiltonians with long-
range interactions writes the interaction potential as a sum of Gaus-
sians,

o

K
~ MO +Y?)

= et = V(D). 6
( x—z +y2>6 ; 1 ( )
Using standard methods for fitting functions by exponential sums****,
we can obtain a K=7 fit with error €= max; |1/r¢ — Vg, (r;)| =10~ on
the domain r € [1,16+/2], which is used throughout the work.
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PEPS: essential computational techniques

As originally discussed in ref. 38, when trying to use automatic dif-
ferentiation to optimize a PEPS there are a few essential techniques
that must be employed, which are not typically default in standard
automatic differentiation libraries. They are essential; without them
the computation of the energy expectation value and its derivative will
typically not run to completion due to out-of-memory errors or
numerical infinities.

The first techniques is numerical stabilization of the gradient of
SVD, by adding Lorentzian broadening to the inverse singular values.
Consider a standard SVD of a rectangular matrix A= USV". In reverse-
mode automatic differentiation, the derivative of this operation is
given by,

A= %U[ﬂ o (UTU-U'v)+F o (VIV-V'V)|V -
+

USVT +( — uUTYUS VT +US™ W (1 — vvT).

Here, U, S, and V are the derivatives (or, adjoints) of U, S, and V with
respect to the preceding operations in the reverse-computational
graph. [F,], =1+ 1 for i#j, otherwise F=0, where the s; are

oSS T sts;

individual singular values. In the case of (quasi-) degeneracy of singular
values, or if their magnitudes becomes vanishing small, A is not well-
defined. At the cost of introducing a small error into the gradients, this
issue can be practically resolved by applying a Lorentzian broadening
to the various inverses, e.g., Sj%sz 575 In this work we use e =10"".

5;—5;)° +€

The second essential techniqdé is)the broad usage of intermediate
checkpointing when evaluating the energy to reduce the memory load
of computing gradients. This is a well-known technique in reverse-mode
automatic differentiation that trades additional compute time for a
lower peak memory usage. Consider the forward-pass computational
graph to evaluate the energy. After every n steps in the graph, one can
save an intermediate of the computation and discard all the other
intermediates within the n-step interval that automatic differentiation
libraries would typically need to store. Then, to propagate through the
reverse-pass computation graph (to compute the gradients), a single n-
step chunk is run in forward-pass to populate all the necessary inter-
mediates in that segment of the graph. The reverse-mode computation
can then progress through that segment, and the process is repeated
for the subsequent n-step segments until the entire reverse-graph has
been computed. The key for application with PEPS is to choose the
proper intermediates to store, which do not require too much memory
(i.e., store intermediates after compressing their bond dimensions).

PEPS: stabilizing the optimization
A straightforward implementation of the energy expectation value as
described in ref. 32, with optimization via automatic differentiation
including the above techniques, typically fails to find the ground state
PEPS for the Rydberg Hamiltonian (see Supplementary Fig. 3). This
failure can be generally attributed to the fact that in the quantity under
optimization E =%”(‘p‘f>, both the numerator and denominator are
evaluated approximately and thus the computation is not strictly
bound by the variational principle. Consequently, the optimization can
find pathological regions of the PEPS parameter values which make the
PEPS contractions inaccurate for the chosen y, even when starting
from an accurately contractible PEPS. Unfortunately, in this problem,
we find that simply raising the value of y does not prevent this behavior
until y is impractically large.

In order to mitigate this problem, we use the following four
techniques in tandem:

*  We employ line search methods that minimize the gradient
norm as well as the energy. In this work, we use the BFGS
algorithm® in conjunction with such a line search, as suggested
in ref. 38.

*  We use the cost function £y/2 + E>/2 + A|E, - E;| where F; and E,
are the energies of PEPS on lattices rotated by 180 degrees and A
is a penalty factor. This strongly penalizes the optimization from
entering parameter space with large contraction error (where £;

and £, would be very different).
* During the first iterations of the gradient optimization we only

update small patches of tensors at a time, which are chosen to
break spatial symmetries that may be contained in the initial
guess. After this has pushed the optimization towards the sym-
metries of the true ground state order, then all tensors can be

updated at each optimization step.
*  We evaluate the numerator and denominator of E in a consistent

way by using a technique we call local normalization. During the
computation of (Y|H|yp), writing H as a comb tensor sum
H= ng 1 h;, then for each comb tensor numerator (|h;|¢p), the
associated denominator uses the identical contraction, but with
h; replaced by the identity (the environments are not
recomputed).

Combining all four of these techniques removes the most egre-
gious instabilities in the optimization trajectory (see Supplementary
Fig. 3), at the cost of a slightly larger computational burden. However,
as in more standard DMRG calculations with small bond dimension,
convergence to the correct ground-state (rather than a local mini-
mum) still requires a reasonable initial guess.

PEPS: initial guess
Obtaining an accurate ground state PEPS typically relies on starting
with an accurate initial guess. The predominant algorithms to generate
such a guess for problems with a local Hamiltonian are simple
update*®*® or imaginary time projection of a converged small D solu-
tion to a larger D guess. However, in the presence of long-range
interactions it becomes challenging to generalize either of these
methods in an efficient and/or accurate way. We, therefore, used the
following simple scheme to generate initial guesses in this work.
* Sum n manually constructed D =1 PEPS to obtain an initial PEPS
of bond dimension D = n. The configurations of these D =1 PEPS
were set to reproduce specific low energy Rydberg crystals and

defects within them.
* For small R,: truncate the long-range interactions in H to next-

nearest, or next-next-nearest, neighbor interactions (distance of
+/2 or 2), and run conventional simple update starting from the
above manually summed PEPS. This fails once the ground state

excitations are spaced by more than 2.
* Forlarge Rp: add positive random noise to the manually summed

PEPS, and then run a highly approximate, first-order gradient
optimization for~25 iterations using a large step size when
updating the parameters.

Further details regarding the convergence can be found in Sup-
plementary Methods.

Finite 2D DMRG

Standard 2D DMRG calculations with open boundaries were used to
study the 9 x 9 system, a low-entanglement region of the 13 x 13 sys-
tem, and to supplement convergence of PEPS on the larger 15 x 14,
15x15, and 16 x16 lattices. Like the PEPS calculations, these too
included all long-range interactions (according to Eq. (1)). The maximal
bond dimension used for the 9x9 and 13x13 simulations was
D,,.x =1200, which we found was more than enough to accurately
study the regions of interest in Fig. 5 for these lattices (see Supple-
mentary Fig. 6). For supplementing PEPS convergence on the larger
lattices, we used Dy, = 750. Although this bond dimension is not large
enough to capture the ground state energy or entanglement of such
large systems with high precision, we found it sufficient to capture the
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first 3-4 digits of the ground state energy and to help with distin-
guishing between the different low-entanglement ordered phases
present in the finite phase diagram, which have substantially larger
gaps than the bulk system due to edge effects.

Bulk mean field and classical phases

The mean field phase diagram for the bulk system (including all long-
range interactions) in Fig. 2d was generated by the following
procedure.

* Parameterize the single site wavefunction as
|@;) =sin*(6,)|0) +cos?(6,)|1), where |0) is the atomic ground
state and |1) is the excited Rydberg state.

* Construct a completely un-entangled many-body wavefunction

as a typical product of these single-site states according to all
reasonable unit cells between size 2 x 2 and 8 x 10 (supercells are

not necessary for mean-field convergence).
* Initialize all possibly relevant configurations for each unit cell as

initial guesses. These can be obtained from classical algebraic
arguments or classical Monte Carlo. We used a simple classical
Monte Carlo Metropolis algorithm to find low energy crystals for

each unit cell size.
* Minimize the I'-point energy for all guesses with respect to the

{63} using gradient descent. Analytic gradients are easily derived,

or automatic differentiation can be employed.
+ Classify the phase of the lowest energy state using the same

density-based order parameters as the I'-point DMRG calculations.

The phase space was scanned with a 6-resolution of 0.1 and a Ry-
resolution of 0.025. Importantly, these calculations are subject to the
same limitation as the I'-point DMRG - they do not capture any possible
low energy states with a unit cell larger than 8 x10. Although such
states are not expected in the phase space under examination, this
study cannot definitively rule them out.

The classical phase diagram for the bulk system (including all
long-range interactions) in Fig. 2c was generated by the following
procedure.

* Run classical Monte Carlo minimization of the I'-point energy for
every unit cell size between 2x2 and 10 x10 at phase space

points spaced by A6=0.3, AR, =0.1.
* For all low energy configurations obtained at all phase points,

derive their continuous functional form E(6, R,) by numerically

integrating the interactions.
+ Analytically solve for the intersection line between each adjacent

pair of configurations in phase space that have minimal energy.

These calculations are also subject to the same limitation as above
—any states with unit cells larger than 10 x 10 are not captured, and we
cannot rule out their possible existence.

Data availability

Data and plotting scripts for Figs. 3, 4, and 5 can be found at https://
gitlab.com/mattorourke41/rydberg public_data. All other data is
available from the authors upon request.

Code availability
Source codes for the numerical simulations are available from the
authors upon request.
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