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A deep learning-based stripe self-correction
method for stitched microscopic images

Shu Wang 1,2,3,9, Xiaoxiang Liu2,9, Yueying Li1,9, Xinquan Sun1, Qi Li2,
Yinhua She2, Yixuan Xu1, Xingxin Huang3, Ruolan Lin4, Deyong Kang5,
Xingfu Wang6, Haohua Tu7,8, Wenxi Liu 2 , Feng Huang 1 &
Jianxin Chen 3

Stitched fluorescence microscope images inevitably exist in various types of
stripes or artifacts caused by uncertain factors such as optical devices or
specimens, which severely affects the image quality and downstream quanti-
tative analysis. Here, we present a deep learning-based Stripe Self-Correction
method, so-called SSCOR. Specifically, we propose a proximity sampling
schemeand adversarial reciprocal self-trainingparadigm that enable SSCOR to
utilize stripe-free patches sampled from the stitched microscope image itself
to correct their adjacent stripe patches. Comparing to off-the-shelf approa-
ches, SSCOR can not only adaptively correct non-uniform, oblique, and grid
stripes, but also remove scanning, bubble, and out-of-focus artifacts, achieving
the state-of-the-art performance across different imaging conditions and
modalities. Moreover, SSCOR does not require any physical parameter esti-
mation, patch-wise manual annotation, or raw stitched information in the
correction process. This provides an intelligent prior-free image restoration
solution formicroscopists or evenmicroscope companies, thus ensuringmore
precise biomedical applications for researchers.

Fluorescence microscope is an indispensable tool for biomedical
research, which can be used to obtain auxiliary informationwith high
spatial resolution, such as intracellular biological processes or his-
topathological features1,2. At present, themost common approach to
obtain large-scale high-resolution microscopic images is to con-
tinuously stitchmultiple tiles or field of views (FOVs)3,4. However, the
stripes, shadings, and even artifacts often remain in the stitched
fluorescence images, especially in the weak signal regions of label-
free or large-scale stitched images5–9. According to our imaging
experience and previous research results, it has been discovered
that, even for the most stable commercial nonlinear optical

microscopic instruments, the diverse stripes may still exist in the
acquired images10. Optical engineers often underestimate the impact
of stripes on biomedical researches. A survey of 170 microscope
users found that ignoring the stripe correction procedure tends to
result in a 35% increase in false and missed detection of cells in
images11. In addition, the images severely contaminated by stripes
usually will be discarded by microscopists. The feature analysis on
the image content around stripes is carefully avoided by researchers
as well. Therefore, the stitched stripes not only reduce the image
quality, but seriously introduce considerable bias to the downstream
quantitative analysis.
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Some optical approaches can reduce or even avoid the stripe
effect during imaging process, such as optimizing the beam quality
and excitation optical path, or adjusting the levelness of the stage.
However, the configuration of the microscope system requires pro-
fessional optical engineers to operate. Increasing the laser power
excites the fluorescence signal to a greater extent, but high power will
increase the risk of photodamage to specimen. Besides, commercial
microscopic software can zoom out the scanning range of the scanner
to only image the central shading-free FOV, or increase the stitching
overlap of two adjacent tiles. Nevertheless, scaling the single tile will
also reduce the size of the final stitched image. Although optical
engineers have utilized Bessel beams and strip mosaicking to remove
vertical stripeswhile increase scanning speed12,13, the horizontal stripes
still exist, and these methods may result in a decrease in spatial reso-
lution. Thus, there is always a trade-off between FOV and resolution for
optical correction methods. As a result, image post-processing
approach is the preferred solution for stripe correction.

In general, the existing stripe correction algorithms can be divi-
ded into prospective approaches and retrospective approaches11,14.
Prospective approaches require additional reference images to esti-
mate the effective illumination variation of the target image during the
image acquisition process. Some commercial fluorescence micro-
scopes provide customized referencemicroslides to acquire reference
images. In fact, imaging parameters vary with the specimen type,
quality, and laser power for each experiment. Moreover, the effective
imaging time of different samples is limited (e.g., live cells, immuno-
fluorescence, and fresh tissue), so it is difficult to obtain accurate
reference images under the same experimental conditions within the
limited time. In contrast, retrospective approaches only utilize actual
acquired images to construct the correction model. Two of the
representative state-of-the-art algorithms are BaSiC14 and bundled
correction software from commercial microscope (e.g., Zen15, Zeiss).
They remove the stitched stripes by correcting the shading of each tile,
which perform well for uniform stripe images when each stitched tile
has the same shading pattern, that is, falloff of intensity from the
center of the image. However, complex and multi-type stripes usually
appear in practical imaging experiments. It is difficult to fit a generic
model to correct each shading tile in non-uniform stripe images due to
different shading patterns caused by a combination of multiple fac-
tors, such as misaligned optics, beam quality, and uneven sample or
stage. Moreover, these methods require the tile size to be known or
access raw stitching data to obtain the optimal corrected images, but
such prior information is usually not intentionally recorded in
experiments. Besides, once the images are stitchedonline, commercial
correction software cannot perform correction operations even if the
microscopist has recorded the stitched information. With the recent
progress of deep learning technique, deep neural network-based
models can also be applied for this task. Most relevant to our work, a
fully convolutional network-based method16 was proposed to process
color microscopic image with uneven illumination. Yet, these types of
methods arebasedon supervised learning schemewhichdemands raw
stitching tiles and the well restored images processed by experts to
form a large number of registered image pairs for training their
models. The dependency on large amount of supervised training data
will limit the use of the method in real scenarios.

In this paper, we propose a deep unsupervised Stripe Self-
Correction method (SSCOR), which accomplishes the task of stripe
correction and artifact removal based on the input stitched image
itself through a self-correction procedure consisting of proximity
sampling, adversarial self-training, and local-to-global correction
schemes. In principle, unlike previous methods that aim to process
image tiles, SSCOR is uniquely formulated as patch-based shading
correction method, and it is able to adaptively handle the various
patterns of stripes and even artifacts existed in the stitched fluores-
cence images. In contrast to previous deep learning-based shading

correctionmethods, SSCOR can be applied in situations where there is
insufficient training data with only one or a few given images. Besides,
the self-correction process of ourmethod does not require any optical
mechanical structure adjustment or optical path design, while it does
not rely on the estimated physics parameters or raw stitched infor-
mation either. Comparing to off-the-shelf approaches, we demon-
strated that SSCOR has achieved the state-of-the-art performance on
four image datasets with different modalities, which provided an
intelligent image quality optimization solution to facilitate more pre-
cise downstream biomedical applications for researchers.

Results
SSCOR workflow
As illustrated in Fig. 1a, the purpose of SSCOR is to restore the content
of the stitched fluorescence images via adaptively removing various
stripes and artifacts, including non-uniform, oblique, and grid stripes,
as well as scanning, bubble, and out-of-focus artifacts. To accomplish
this purpose, we performed validation experiments on images of dif-
ferent histopathological features and modalities, including label-free
multiphoton microscopy (MPM) datasets, labeled fluorescence
datasets17, and stimulated Raman scattering (SRS) image datasets18.
The workflow of SSCOR is shown in Fig. 1b. SSCOR follows the divide-
and-conquer strategy, in which the stripe correction of the stitched
images can be divided into the stripe correction task for all the sub-
regions, i.e., image patches. Given any stitched image, a proposed
proximity sampling strategy is applied on thefirst stage, inwhich apair
of adjacent normal and anomaly patches that are respectively sampled
on and off the stripes or the regions with artifacts (Supplementary
Fig. 1), in order toprepare sufficient approximately registeredpositive/
negative training data for the stripe correction model. This patch
sampling strategy demands little manual effort in the preprocessing
stage comparing to those methods that rely on the raw information of
image tiles, while it makes the proposed model tolerant towards the
mildly imprecise or roughly estimated partition of tiles. On the second
stage, an adversarial self-training scheme is employed to train the
stripe correction model. In particular, a deep convolutional neural
network, i.e., the stripe correction network, is established for restoring
anomaly patches with stripes or artifacts. To preserve the quality of
stripe correction, the restored patches gained by the stripe correction
network are assessed by a discriminator network with the reference to
the corresponding normal patches sampled in their proximity, since
the patches in proximity usually contain similar textures and illumi-
nation condition. Moreover, SSCOR also introduces an auxiliary task,
in which we reciprocally synthesize the restored image patches into
anomaly ones by composing similar stripe pattern with them and
evaluate the consistency between the original patches and their syn-
thesized ones, which can effectively constrain the stability of stripe
correction. To do so, another neural network, i.e., the stripe synthesis
network, is applied to accomplish this purpose. Last, on the local-to-
global correction stage, the whole-slide images are partitioned into
multiple overlapping patches in the sliding-window manner and fed
into the stripe correction network to obtain corrected patches. After
that, all the corrected patches are merged to form the final corrected
result.

SSCOR adaptively corrects different types of stripes
Non-uniform stripes, grid stripes, and oblique stripes are commonly
observed in stitched fluorescence images. As illustrated in Fig. 2, the
correction results of SSCOR were compared against the off-the-shelf
methods CIDRE11 and BaSiC14 as well as the software ZEN15. First of all,
the label-freeMPM imageof breast cancer showed typical non-uniform
stripes in Fig. 2a. Diverse shading patterns of each tile lead to non-
uniformity, caused by uncontrollable factors such as the condition of
specimen or instrument. The major challenges rest in two aspects: 1)
strong signal area needs to be properly corrected, otherwise the
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stripes will appear to bemore obvious; 2) weak signal area also require
to be enhanced, so as to make the entire image consistent. The mag-
nified area showed that SSCORperformed significant optimalde-stripe
effects than CIDRE11, BaSiC14, and ZEN15. Second, for the grid stripes
formed by stitching uniform tile shadings, SSCOR also showed
superior correction ability in the representative MPM images on liver
cancer (arrows in Fig. 2a). As observed, the existing methods over-
enhanced the signal on the stripes. Thanks to the proximity sampling
scheme, SSCOR produced smoother results on the stripes than the
others. Note that,without raw tile information asprior knowledge, ZEN
cannot produce any results. Last, as the pathological tissues are often
adhered on glass slide askew, the captured image may need to be
rotated properly to meet a downstream application need, so that the
stripes will be slightly oblique. This oblique stripe can be commonly

observed in high-throughput fluorescent labeled images of mouse
brain datasets17. As observed, SSCOR also achieved the best correction
effect on the oblique stripes, while other methods were almost inef-
fective for this stripe.

To quantify the correction quality, we used the intensity profiles
along the regionof interest (ROI), i.e., the areawithinwhite rectangle in
the oblique stripes, are given in Fig. 2b. The intensity profiles of raw
images show obvious fluctuations as it transitions from non-striped
areas (white areas) to striped areas (grey areas). Compared with other
methods, SSCORwas able to correct the intensity of fluctuationsmore
effectively while preserving tissue characteristic information. For fur-
ther verification, the inverse coefficient variation (ICV)19,20 was adopted
to evaluate the de-stripe ability of different correction algorithms.
SSCOR achieved the best performance on these three types of stripe
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Fig. 1 | Illustration of the proposed SSCOR workflow. a Overview of SSCOR
workflow. SSCOR is able to adaptively cope with various stripes (e.g., non-uniform,
oblique, and grid stripes) and artifacts (e.g., bubble-like, out-of-focus, and scanning
fringe artifacts) via the three stages of sampling, training, and correction. b The
SSCOR framework consists of three stages to accomplish stripe self-correction,
including proximity sampling, adversarial self-training, and local-to-global correc-
tion. First of all, given a stitched image with stripes, SSCOR samples adjacent
normal and anomaly patches (in blue and green boxes) on and off the stripes for
preparing training data, respectively. Next, SSCOR acquires the ability of stripe
correction and artifact removal through patch-based adversarial self-training. In

overall, SSCOR is composed of sub-networks, i.e., stripe correction network, stripe
synthesis network, and discriminator, and they play different roles on the training
phase. Concretely, the stripe correction network restores anomaly patches and the
stripe synthesis network synthesizes the corrected patches into anomaly ones,
which are subject to consistency constraints so as to preserve the original image
content. Additionally, with the normal patches as reference, the discriminator
assesses the quality of corrected patches. Last, on the local-to-global correction
stage, all the patches of the given stitched images will be corrected by the well-
trained stripe correction network, and the results will be merged to form a stripe-
free image as the final result. Scale bars: 1mm.
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images (Fig. 2c). For more details, the intensity profiles of the non-
uniform stripes and grid stripes, as well as the other typical stripe
correction examples were shown in Supplementary Fig. 2. Besides, we
illustrated the correction results across different intensity levels of
heterogeneous images in Supplementary Fig. 3, which demonstrate
that SSCOR does not overestimate or underestimate the fluorescence

signal in stripe regions while still preserving the intensity contrast of
tissue components in non-stripe regions.

High tolerance towards imprecise prior stitched information
Practically, researchers often crop or rotate the stitched images to
select desired ROIs, as illustrated in the schematic diagram from Fig. 3.
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Yet, there may exist errors in the process of manual cropping or
extraction, due to unknown original tile size, while rotation may also
increase the difficulty of image restoration and thus result in oblique
stripes. Most existing methods are sensitive towards the imprecise
prior stitched information, while the proposed SSCOR shows higher
error tolerance. To demonstrate the ability, we manually cropped the
MPM image of cerebral vascular malformation (uniform stripe image
in Fig. 3a), and rotated the fluorescence image ofmouse brain (oblique
stripe in Fig. 3b) to simulate the procedure.

As observed, SSCOR showed higher tolerance and robustness
against the stripes with cropping or rotation, according to the metrics
of ICV under different cropping and rotation conditions. In contrast,
using BaSiC, the stripes still remained in the correction images under
these situations. Concretely, SSCOR can maintain stable correction as
the cropping error is no more than 16% of the tile size, or the angle of
the oblique stripes is less than 7 degrees. In addition, the intensity
profiles showed that SSCOR can improve the signal intensity on the
image regions with stripes while well preserving the image contrast.
Apart from the corrected shading regions, SSCOR minimized the
intensity variations in the non-stripe regions (Fig. 3c, d). Supplemen-
tary Fig. 4 displayed the comparison results of CIDRE, and detailed
results under greater rotation conditions. Besides, SSCOR also showed
tolerance towards the imprecise user-defined abnormal region for
bubble-like artifacts (Supplementary Fig. 5). To sum up, SSCOR not
only requires little raw information to correct stripes, but also
demonstrates high tolerance and robustness against imprecise prior
image adjustments.

SSCOR removes special artifacts on stripes
Besides from the stripes thatmay existed in the stitched images, there
are empirically three types of special artifacts on stripes during image
acquisition, as shown in Fig. 4. The first is the out-of-focus artifact
caused by the unevenness of the specimen, which significantly reduces
the signal intensity of images. The second is the scanning fringe arti-
facts (SFA) produced by a high-speed galvo-resonant scanner
imaging21. The third is the bubble-like artifact mainly caused by local
tissue moisture loss, which is often observed in laser photodamage or
the unsealed specimen. These artifacts deteriorate the image quality
and make the histopathological features unusable for downstream
applications. Therefore, we synthesized these special artifacts and
stripes based on SRS images of human brain tumors18 (Fig. 4a). The
procedure of artifact synthesis was described in Supplementary Fig. 6
and Supplementary Note 1.

Unfortunately, most tile-based stripe correction methods like
BaSiC, can hardly be applied to this task, since these artifacts are not
caused by uniform optical patterns within tiles. For a thorough com-
parison, we also introduced latest deep learning-based image
enhancement methods, including ZeroDCE22, Neighbor2Neighbor23

and Mask-ShadowGAN24, to perform these tasks. The reasons and
limitations of using these deep learning comparison methods were
detailed in Supplementary Note 2). In Fig. 4b, SSCOR exhibited the
ability to correct both the artifacts and stripes, which can restore weak
tissue signals from the out-of-focus areas while reserving the color

fidelity of the original image. Besides, SSCOR can remove the SFA, and
recover the partial original tissue signal from the bubble artifact. Our
correction results restoredmost of the histopathological features that
could be used for downstream analysis. Quantitatively, the intensity
profiles within the out-of-focus magnified areas demonstrated the
capability of SSCOR on artifact restoration and stripe correction
(Fig. 4c). Moreover, through the calculation of peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) of the corrected
image, SSCOR-corrected images have better image quality than other
methods (Fig. 4d). We also showed the restoration results of real out-
of-focus artifact, bubble artifact, and photobleaching artifact in the
MPM images (Supplementary Fig. 7). In addition, to further evaluate
the effectiveness of different correctionmethods,we conducted auser
study involving 50 participants from diverse backgrounds (Supple-
mentary Note 3). The results of the user study were presented in
Supplementary Table 1 and 2, and Supplementary Fig. 8, which
demonstrated that SSCOR significantly outperformed other methods
for stripe correction and artifact removal in each discipline.

SSCOR-corrected images benefit downstream tasks
Stripes and artifacts in the images have a negative impact on down-
stream application analysis. Therefore, we validated the benefits of
SSCOR-corrected images for downstream tasks through four common
post-processing applications (Fig. 5a), including virtual pathological
staining, cell classification, automatic cell counting, and collagen sig-
natures extraction.

First of all, virtual pathological staining of fluorescent images has
been proven to promote the clinical development of microscopic
imaging techniques25–28. Therefore, we utilized a promising deep-
learned virtual staining model, UTOM27, to transform non-uniform
stripe MPM images of cerebral vascular malformations into H&E-
stained images (Fig. 5b). However, the stripes still exist on the images
transformed by the virtual staining algorithm owing to the uncor-
rected stripes in the stitched fluorescent images. More seriously, the
stripes also cause false staining of tissue characteristics (i.e., the mis-
generated cells as highlighted by the arrows in Fig. 5b), which may
inadvertently lead to misdiagnosis by pathologists. By contrast,
SSCOR-corrected images were able to suppress these effects brought
by the stripes. Second, we corrected the stripes in real breast H&E
images collected using a pathology slide scanner (Motic VM1000). In
Fig. 5c, SSCOR displayed a comparable correction performance to
BaSiC. We found that the slight difference in stripe correction would
also affect the classification results. In specific, we conducted the cell
classification for the uncorrected, BaSiC-corrected, and SSCOR-
corrected images, respectively. As observed in the enlarged local
image region, the SSCOR-corrected image showed the best classifica-
tion results. We noticed that the lymphocytes highlighted by arrows
were correctly classified in the SSCOR-corrected image (the cells with
black contour), while BaSiC-corrected and uncorrected images result
in the errors ofmisidentifying them as fibrocytes (the ones with yellow
contour). In Supplementary Fig. 9a, we showed the complete cor-
rected source image of Fig. 5c and highlighted the cell classification
result of another stripe-free region. In addition, the classification

Fig. 2 | The correction results of different types of stripes. a Non-uniform, grid,
and oblique stripe are the most common stripes in imaging experiments. Com-
pared with the off-the-shelf method via zooming in the local details, SSCOR shows
the ability of stripe correction on large-scale stitched multiphoton image of breast
cancer (non-uniform stripe), multiphoton image of liver cancer (grid stripe), and
fluorescence images of mouse brain (oblique stripe). White arrows indicate the
positions of grid stripe. Notably, the Zeiss correction method is not applicable (N/
A) because there are no raw files for the grid and oblique stripe images. Red and
green pseudo-color respectively represent the two channels of multiphoton
microscope. Scale bars of non-uniform stripe and grid stripe: 200 μm. Scale bars of
oblique stripe: 1mm. b The intensity profiles along the area within the white

rectangles in the oblique stripes demonstrate that SSCOR corrects the intensity
fluctuations more effectively, while preserving tissue characteristic information.
c The inverse coefficient variation (ICV) further quantitatively evaluates the de-
stripe ability. A larger ICV corresponds to the flatter intensity profile and indicates a
better correction quality. SSCOR outperforms the comparison methods on these
three types of stripe images (nNon-uniform = 15, nGrid = 14, and nOblique = 41; n repre-
sents the quantity of the stripe images. The size of the images varies depending on
the stripe direction and the homogeneity of histopathological features). The mar-
kers represent themeanvalues of the normalized ICV. Sourcedata are providedasa
Source Data file.
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Data file.
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results of a synthetic stripe image from another H&E dataset,
CoNSep29, were demonstrated and quantitatively evaluated in Sup-
plementary Fig. 9b and 9c. The correction results of other repre-
sentative synthetic H&E stripe images are presented in Supplementary
Fig. 10. As a conclusion, SSCOR is in favor of not only recovering the

ambiguous segmentation of cells, but also improving cell classifica-
tion. Third, we performed the most common downstream task, auto-
matic cell counting19, on SRS images of brain tumor with SFA (Fig. 5d).
The white dots represent the location and size of the cells. The color-
codedmarkers represent the sizeof the cells. SSCOR-corrected images
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significantly reduced the false detection and missed detection of cells
compared with N2N method. Furthermore, by quantifying the cell
number ratio, the counting results of SSCOR-corrected image was
more consistent with GT images. We also performed the cell counting
task on bubble artifact and stripe images (Supplementary Fig. 11). In
addition, to verify the accuracy of the automatic cell counting
algorithm30, the automatic counting results and manual counting
results were compared in Supplementary Fig. 12. Fourth, tumor-
associated collagen signatures are associated with the tumor devel-
opment and disease prognosis10,28. In the Fig. 5e, we extracted three

prognosis-related signatures including the collagen fiber number31,
collagen fiber density31, and contrast feature of collagen fiber32 in the
SRS image with out-of-focus artifact. In the visualization of collagen
fiber number and density, ZeroDCE seemed to remove artifacts area,
but it also produced incorrect image content. Combined with the
quantification of the three extracted collagen signatures, SSCOR
showed the best restoration ability for collagen signatures in the out-
of-focus artifact image. These results demonstrated that although the
stripe or artifact can bring a non-negligible error for the downstream
analysis, SSCOR has various stripe and artifact correction capabilities,
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which is able to restore the realistic content of the image hidden in the
stripe, and minimize the occurrence of such errors.

Finally, we overviewed the capabilities, advantages, and limita-
tions of SSCOR and all the comparison methods in practical stripe
correction scenarios (Table 1). In particular, SSCOR could provide
supplementary supports for the off-the-shelf methods, including var-
ious types of stripes, less prior information that supplements BaSiC
and CIDRE, custom-built system friendly that supplements ZEN, and
stripe self-correction that supplements other deep learning methods.
In terms of correction time, the prior-free SSCOR takes 45 seconds to
correct an image (2881 × 2872 pixels), and the training only relies on
the input stitched image itself. Compared with other unsupervised
deep learning methods22–24, SSCOR focuses on fluorescent micro-
scopic image scenarios, the correction time is close to them or even
less. Although our method is more time-consuming than the digital
image processing-based correction methods such as BaSiC14, it can be
competent for various stripe and artifact correction tasks without raw
stitching tiles. As a result, these advantages enable SSCOR-corrected
images to provide more precise qualitative diagnosis and quantitative
analysis for downstream tasks. Based on the experimentally acquired
images and their stripe or artifact types, Table 1 can also be used as a
brief guideline to select the appropriate method.

Discussion
Stripe or shading correction has become an indispensable image post-
processing step after microscopic image acquisition. However, the
diverse stripes and complex artifacts that often appear in stitched
microscopic images have not been effectively addressed. Existing off-
the-shelf methods like BaSiC14 and CIDRE11 have achieved excellent
performance on the uniform stripe correction for microscopic
images11,14,16,19. They are inspiredby the physical process ofmicroscopic
image generation, which recover real image intensity by estimating the
flat-field illumination variation and the dark-field thermal noise when
no light is incident on the sensor. In specific, BaSiC14 and CIDRE11

proposed to apply low-rank sparse decomposition and regularized
energyminimization todeduce theflat-field anddark-field respectively
to correct each image tile. However, many latent factors, e.g., laser
source, detector noise, specimen quality, and stability of optical
devices, jointly affect the shading patterns of image tiles during
practical image acquisition. As a result, the multi-factor influenced
shading patterns appear to be inconsistent, or even unpredictable, in a
large-scale stitched image, thus appear various types of stripes or
artifacts5–7,10,12,13,33–35. Thus, the ideal physical process of microscopic
image generation simulated by prior methods is not sufficiently cap-
able to model this realistic task. Besides, the raw stitched image
information, such as tile size and stitching overlap percentage, are
often discarded during data storage and transmission, which poses
further challenge for the methods relying on raw tiles.

Previousmethods tackle stripe correction from the perspective of
shading correction in each raw image tile. In contrast, SSCOR is based

on image patches from post-stitched images. The advantage lies in the
following aspects. First, in practice, the stitched information on raw
image tiles may not be well retained, so these tile-based methods may
not be reliable in such situations, because it is usually impossible to
precisely partition tiles. As demonstrated in the Results of high toler-
ance towards imprecise prior stitched information, compared to the
tile-based method, patch-based SSCOR has higher tolerance towards
inevitably imprecise tile partition and stripe obliqueness during image
cropping and rotating. Next, since each image patch is smaller than a
tile, sampling patches easily suffice the training data, which meets the
data hunger nature of deep models. Moreover, sampling adequate
patches can provide diverse shading patterns rather than constant
shading patterns. Thus, patch-based SSCOR also has better general-
izability and adaptability for challenging stitched images with various
stripes on four datasets with different modalities.

Due to data hunger nature of deep learning models36–40, large
datasets are often the prerequisite for training thesemodels into good
form. However, unlike clinical imaging and digital pathology datasets,
there are currently few publicly available large datasets on nonlinear
optical microscopic images. Therefore, as the major contribution, the
proximity sampling strategy is proposed, which enables SSCOR to rely
upon one or a limited number of post-stitched images for training,
without any patch-wise manual annotation. To do so, SSCOR collects
sufficient proximity patch samples on and off the stripes from the
same image. Although these samples are unregistered paired, they
have similar illumination condition and contextual textures. Besides,
the off-stripe patches can serve as the stripe-free references to those
on-stripe patches. Thus, it inspires the stripe self-correction process of
SSCOR in converting the stripe patches from stitched images into
stripe-free patches and eventually merging them together in an
unsupervised manner. This self-correction approach provides an
effective way to fully exploit the limited training images without
requiring any prior stitching information. Hence, driven by our sam-
pling strategy, prior-free SSCOR not only achieves state-of-the-art
performance against the off-the-shelf approaches in stripe and artifact
self-correction, but also saves a large amount of effort for researchers
from the tedious and challenging correction tasks when they demand
high-quality stripe-free images for downstream analysis.

In essence, the goal of SSCOR is to correct the shaded patches
sampled from stripes. The main challenge lies in the natural blending
of the non-uniform shaded regions and the content of patches, as well
as multiple latent factors that influence stripe patterns in real-world
scenarios, which hindersmodeling of physical process. To address this
concern, inspired by25,27,41–44, any image with various stripes can be
approximately considered as the feature embeddings from amanifold
of high-dimension space that smoothly bridges image domains con-
taining images with and without stripes. By implicitly modeling the
manifold space using deep neural network, SSCOR is able to freely
translate the images with stripes to the ones without stripes, which
circumvents the trouble ofmodeling latent factors in physical process.

Fig. 5 | SSCOR-corrected imagesbenefit downstream tasks. a Schematic diagram
of SSCOR applications in three downstream tasks. Virtual staining27, cell counting30,
and collagen fiber extraction31,32 are performed to verify the significance of SSCOR
in typical stripe and artifacts correction. b Compared with the corresponding
comparison methods, SSCOR-corrected image reduces the misidentification of
histopathological features to the largest extent on the tile stitching positions of the
virtual stained images. The ground truth (GT) images are the adjacent stained
section of the imaging section. The arrows indicate the misgenerated cells caused
by stripes. Scale bars: 500μm. c In real H&E images, SSCOR not only recoversmore
ambiguous cells, but also improves the accuracy of cell classification. The yellow
segmented cells represent fibroblasts, and the black segmented ones represent
lymphocytes. The arrows indicate the cells misidentified in the uncorrected and
BaSiC-corrected images yet correctly identified in SSCOR-corrected images. Scale
bar of stripe image: 500 μm. Scale bar of enlarged image: 20μm. d SSCOR-

corrected image significantly reduces the false detection and missed detection of
cells. The white dots represent the location of the cells. The color-coded markers
represent the size of the cells. The cell number ratio is calculated by the ratio of cell
numbers in the uncorrected/corrected image to theGT images (n = 53,n represents
the quantity of ROIs in scanning fringe artifact images). Box plots indicate median
(middle line), 25th, 75th percentile (box) and 1.5 × interquartile range (whiskers).
Scale bar: 100μm. e SSCOR-corrected image restores the tumor collagen-
associated signatures more realistically, which is reflected in the visualization of
collagen fiber number and density. The green lines indicate the orientation of
collagen fiber. The red dots indicate the location of collagen fiber. The heatmap is
used to visualize the collagen fiber region. The SSCOR-corrected image is also
highly consistent with GT image in quantitative comparison of collagen fiber
density, number, and contrast. Scale bars: 100 μm. Source data are provided as a
Source Data file.
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In addition, with the aid of the stripe synthesis network that recipro-
cally adds the shades to the corrected patches, SSCOR is forced to
project the images without stripes back to the counterparts without
stripes, so it can effectively regularize the stripe correction process
and faithfully preserving the original image content.

In practice, the utilization of SSCOR involves two fundamental
steps: (1) rough estimation of stripe positions and (2) selection of
normal patches. To optimize the usability and efficiency of our
method, we have outlined several guidelines that encompass crucial
elements for successful implementation in the following aspects: a
schematic diagram of typical stripes and artifacts (Supplementary
Fig. 13), the representative sampling cases of stripe and artifact (Sup-
plementary Fig. 1), as well as the corresponding description and sam-
pling strategy (Supplementary Table 4). The provided guidelines
empower researchers to effectively sample patches for different
stripes and artifacts with minimal manual intervention. Nevertheless,
there still remains several limitations in the proposed approach. First,
SSCOR offers a semi-automated approach rather than a fully auto-
mated one, which necessitates a minor degree of human intervention
during the initial phases of training. This intervention is primarily
required to approximately determine the positions of stripes and the
appropriate patch size. As the futurework,we aim tomakeSSCOR fully
automatic while maintaining its generalizability and effectiveness.
Second, when handling the uniform stripes, with knowing the prior
information on precise tile partition, previous methods like CIDRE11,
BaSiC14, and ZEN15 can achieve slightly better performance than
SSCOR. The reasons are two folded. Onone hand, both uniform stripes
with a consistent pattern and precise tile partition provide critical
constraints andpriorson the estimationofflat anddarkfields,whichfit
the settings of existing tile-based methods. On the other hand, SSCOR
does not assume that the patterns of stripes are uniform. Its proximity
sampling scheme exhaustively samples a large number of patches that
innately contain various stripe patterns. Thus, it sacrifices the model’s
robustness over uniform stripe, but it increases the generalizability for
various non-uniform stripes. Third, SSCOR may have difficulty distin-
guishing between the heavy stripes and the original low-intensity
content in the image, potentially resulting in incorrect corrections. In
these cases, the model may either hallucinate erroneous details to
compensate the degraded image content caused by heavy stripes, or
choose to neglect the stripes due to treating them as part of the ori-
ginal image content. Fourth, both the adversarial self-training stage
and local-to-global correction stage of SSCOR require GPU-based
computation resources and cost more running time than previous
methods. So, SSCOR can hardly be applied to image sequences or
video in the current form. The adversarial self-training is performed
offline, which usually demands sufficient time to train a robust model,
but the offline training time may not significantly affect the down-
stream applications. As the future work, we will focus on the accel-
eration of local-to-global correction stage. To do so, the structure of
SSCOR can be further optimized so as to deploy on the edge
devices45–48 and the local-to-global correction can be further acceler-
ated using parallel computation49,50. Furthermore, since SSCOR was
implemented based on PyTorch, it can be easily transplanted to dif-
ferent platforms suchasportable computingdevices or cloud-basedAI
inference engines, andwe are going to implement it as plug-in of open-
source platforms like Deep-ImageJ51. More importantly, the code and
pretrainedmodels of SSCOR are ready to release in public, so that they
can be continuously updated and extended to more data, which can
benefit more imaging and biomedical fields.

To sum up, we propose a deep learning-based stripe self-
correction method, SSCOR. In principle, our proposed proximity
sampling scheme and adversarial reciprocal training paradigm enable
SSCOR to utilize normal patches as reference to correct their anomaly
counterparts. As a consequence, SSCOR canonly rely on input stitched
image itself to adaptively correct non-uniform, oblique, and grid

stripes, as well as remove scanning, bubble, and out-of-focus artifacts,
while faithfully preserving the original image content. Through the
comprehensive experiments on three fluorescence datasets of differ-
ent modalities, SSCOR achieves the state-of-the-art performance for
stripe correction and artifact removal. Comparing to off-the-shelf
retrospective approaches, the prior-free SSCOR does not require any
physical parameter estimation, patch-wisemanual annotation, and raw
stitched information in the correction process, which is a researcher-
friendly approach that provides supplementary support for the digital
image processing-based correction methods. In addition, it is also
demonstrated that SSCOR significantly improves the precision of
downstreamanalysis for common applications. As the futurework, the
efficiency of SSCOR can be further improved for use in edge devices or
as plug-in of open-source platforms, which can benefit more imaging
and biomedical communities by embracing more modality data.

Methods
Ethical statement
All anonymous tissue collections for retrospective study of MPM
imaging were conducted under a protocol approved by the Institu-
tional Review Boards (IRB) of FujianMedical University UnionHospital
(2020-085). For the user study, all participants provided written
informed consent prior to participating in the image quality ques-
tionnaire. This user study was conducted under a protocol approved
by the Institutional Review Boards (IRB) of Fujian Normal University
(IACUC-20230039).

Microscopy datasets
The following microscopic datasets were used in this study: (1) the
MPMdataset that contains breast imageswith non-uniform stripe, liver
cancer images with grid stripe, and cerebral vascular malformation
images with uniform stripe; (2) the mouse brain fluorescence dataset17

that includes the images with oblique stripe; (3) the images from SRS
dataset18 were used to synthesize various artifacts and stripes; (4) the
images from H&E dataset29,52 were used to synthetic stripes.

Fluorescence, SRS, and H&E are publicly available datasets. For
the acquisition of MPM dataset, we used a multiphoton imaging sys-
tem consisting of a commercial confocal microscope (Zeiss LSM 880
META, Jena, Germany) and an external mode-locked Ti: sapphire laser
(140 fs, 80MHz)10,26, in which the excitation wavelength was 810 nm
and the average power of the samples was 30mW. Tissues used for
imaging were extracted during surgery and prepared as formalin-fixed
and paraffin-embedded samples. The samples were sliced con-
secutively into 5-μm sections using a microtome. The imaged sections
were deparaffinized by alcohol and xylene prior to imaging. The
adjacent sections were stained with H&E for histopathological com-
parison. A comparison of these datasets was detailed in Supplemen-
tary Table 5.

Network architecture
The unpaired images X , Y , which are the anomaly patch domain and
normal patch domain, respectively. In order to restore the anomaly
patches and preserve the original content, SSCORmainly composes of
four sub-networks: (1) the stripe correction network GC that aims to
correct the input anomaly patch; (2 and 3) two discriminator networks,
DX andDY , that utilizes the unpaired patch as reference to evaluate the
quality for the corrected patch and synthetic patch; (4) the stripe
synthesis networkGS that adds shades to the corrected patch and thus
compares itwith theoriginal anomalypatch,whichenables topreserve
the image content from over-correction. Supplementary Fig. 14
depicts the detailed structures and the relationship of the networks in
the proposed framework.

In concrete, the stripe correctionnetwork of SSCOR is basedonan
encoder-decoder network structure, which is composed of down-
sampling layers, intermediate layers, and upsampling layers. First, the
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downsampling layers are essentially two strided convolutional layers
for extracting low-level visual features of the input patch. Next, in the
intermediate layers, there follows nine stacked residual blocks36 to
extract high-level semantic features for describing visual histological
components. Last, there are two upsampling layers implemented by
strided convolution as well, which are used to integrate features
extracted from previous layers and reconstruct them to the corrected
patch with the original dimension. Besides, the discriminator network
is composed of five convolutional layers, in which the first four layers
are the convolutional layers for extracting deep visual features and the
last convolutional layer serves as a classifier. Moreover, the structure
of the stripe synthesis network is identical to that of the stripe cor-
rection network.

SSCOR employs the stripe correction network GC and stripe
synthesis networkGS to learn themapping between the image domain
of any anomaly patch X and the image domain of any normal patch Y .
During training, the overall loss function L can be defined below:

L= Ladv + λLcons, ð1Þ

where Ladv refers to the adversarial loss that consists of the losses for
training the stripe correction networkGC and stripe synthesis network
GS, as well as the losses for training discriminator networksDX andDY .
Formally, the adversarial loss is composed of four terms,

Ladv = L
GC
adv + L

GS
adv + L

DY + LDX : ð2Þ

Besides, Lcons refers to the content consistency loss that aims to
enhance the capability of preserving the original image content for the
stripe correction network GC and stripe synthesis network GS. λ is a
constant set as 10 to balance these two loss terms.

Adversarial losses. During training, an anomaly patch and its
associate normal patch in proximity will be passed to the discriminator
network to distinguish if they are normal. If the anomaly patchwas not
well corrected, the network could easily discriminate them.Hence, the
objective is to enhance the quality of the anomaly patch to its max-
imum extent, thereby maximizing the difficulty of discrimination. For
GC and GS, their losses can be formulated as:

LGC
adv =EX ð1� DY ðGCðX ÞÞÞ2

h i
, ð3Þ

LGS
adv =EY ð1� DX ðGSðY ÞÞÞ2

h i
, ð4Þ

whereEX ð�Þ andEY ð�Þ compute the expected values of the distribution
of image domain X and Y , respectively. These two losses leverage
discriminators to evaluate the quality of stripe correction and stripe
synthesis. In other words, the harder it is for the discriminators to
distinguish between the processed patches and the reference raw
patches, thebetter the generated resultswill be.On theother hand, the
adversarial losses for training the discriminator networks DY and DX

that are dedicated to strengthen the ability of discriminating the
processed patches and the reference raw patches, can be written as
below:

LDY =EY ð1� DY ðY ÞÞ2
h i

+EX DY ðGCðX ÞÞ2
h i

, ð5Þ

LDX =EX ð1� DX ðX ÞÞ2
h i

+EY DX ðGSðY ÞÞ2
h i

: ð6Þ

Content consistency loss. In order to preserve the original image
contentwithout beingdeterioratedduring generation, the consistency
constraint is achieved by reciprocally reconstructing, which requires

GC and GS to be jointly learned. The content consistency loss essen-
tially introduces two reciprocal processes: “destriping-shading” and
“shading-destriping”. Specifically, in the “destriping-shading” process,
we first remove stripes from the input anomaly patch, and subse-
quently synthesize the stripes back to their corrected form,obtaining a
synthesized patch. By constraining the synthesized patch to be similar
to the input anomaly patch, we are able to maintain image content
quality during network inference and achieve content consistency.
Furthermore, we also implemented a reciprocal “shading-destriping”
process on an input corrected patch to further reinforce content
consistency. Thus, the content consistency loss can be formulated as:

Lcons =EX ½k GSðGCðX ÞÞ � Xk1�+EY ½k GC ðGSðY ÞÞ � Yk1�: ð7Þ

In particular, the first term aims to guarantee that an anomaly
patch X after being successively processed by GC and GS should be
consistent to itself in a reciprocal manner. Similar to the first term, the
second term let a normal patch Y be consistent to itself after being
processed byGS and GC . This reciprocal process confinesGC andGS to
generate desired results and preserves the original content.

Network implementation details
The network architecture of SSCOR is illustrated in Supplementary
Fig. 14, where each cube represents a multi-channel feature map. The
respective label (e.g., 256 × 256 × 64) under each cube indicates the
spatial dimensions and channel information of the corresponding
feature map. The detailed description of our framework is elucidated
as below.

In the stripe correction network, the first three layers are imple-
mented as downsampling layers, using convolution (Conv), Instance
Normalization (IN), and Rectified LinearUnit (ReLU). For input patches
with dimensions of 256 × 256× 3, a convolutional layer is first applied
to increase the feature depth to 256× 256× 64. The featuremap is then
downsampled by two in the next two downsampling layers, while the
number of channels is doubled by the convolution with stride 2. This
process results in a 128 × 128 × 128 feature map capable of extracting
low-level visual features of the input patch. To extract high-level
semantic features for describing visual histological components, nine
stacked residual blocks are employed. These blocks incorporate
shortcut connections to facilitate the information flow during network
training. The first two upsampling layers are realized by a transpose
convolution with stride 2, followed by IN and ReLU. The final upsam-
pling layer is realized by a convolutional layerwith stride 1, followedby
Hyperbolic Tangent (Tanh) activation. In addition, the discriminator of
our model employs a relatively shallow CNN architecture, with the last
convolution layer producing a single-channel feature map for a patch
to be classified as either normal or anomaly.

For training SSCOR, we utilized the Adam solver53 with a learning
rate of 0.0002 and exponential decay rates for the first and second
moment estimates set to 0.5 and 0.999, respectively. During training,
the number of epochs is set to 200,with afixed learning rate in thefirst
100 epochs and a linear decay to zero over the next 100 epochs. Note
that, we did not utilize any pre-trained weights during the training
process. The training procedure is stable even with different random
initializations (Supplementary Fig. 15). The hyper-parameters of the
sampling strategy are described in the Supplementary Table 6. The
optimal step size for patch sampling is determined according to the
experimental results in Supplementary Fig. 16. During inference, the
procedure of the local-to-global correction is illustrated in Supple-
mentary Fig. 17. We set the step size of sliding-window as half of the
patch size or a fixed value of 100 pixels.
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Proximity sampling strategy
Proximity sampling strategy serves as one of the most critical com-
ponents in SSCOR. For any stitched images with different stripes and
artifacts, the sampling strategy can be summarized as: (1) define nor-
mal and abnormal regions; (2) iteratively sample an anomaly patch
from abnormal region and a normal patch from normal region in
proximity to pair with the normal patch. Specifically, the proximity
sampling strategy consists of the following steps. First of all, the par-
tition of tiles can be manually annotated by users even without
expertise and the rough locations of stripes can be initially deter-
mined. Although the manual partition inevitably be imprecise due to
the unknown width or slight oblique of stripes, SSCOR can tolerate
these mild errors. Next, based on the rough locations of the stripes,
image patches can be randomly sampled accordingly. Specifically, the
patches sampled around the stripes are considered as anomaly pat-
ches, while those far away from the stripes are normal patches. In
practice, the dimension of the sampled patches is predefined as the
image regions smaller than that of the original image tiles, which
enables SSCOR to sample a large number of normal/anomaly patches
whileobtaining sufficiently diverse stripepatterns. For training SSCOR,
each anomaly patch needs to pair with a normal patch. To ensure the
quality of image restoration, the paired normal and anomaly patches
need to be located in a proximity. To do so, given a sampled anomaly
patch, the nearest adjacent normal patch is chosen. Besides, for an
image containing not only stripes but also specific artifacts, the sam-
pling strategy is slightly different. Concretely, the anomaly patches are
mainly sampled from the region with artifacts, while the correspond-
ing normal ones are obtained from the closest normal image region.

To improve the usability of SSCOR for correcting various types of
stripes or artifacts, we drew the schematic diagrams for illustrating six
typical stripes and artifacts (Supplementary Fig. 13). Additionally, a
comprehensivedescriptionof the various types of stripes and artifacts,
along with their corresponding sampling strategies, is provided in
Supplementary Table 4. Detailed settings of the proximity sampling
strategy applied to the experimented images are outlined in Supple-
mentaryTable 6.Moreover, the ablation studies on the effectivenessof
sampling strategy, adversarial reciprocal-training, local-to-global cor-
rection were conducted, as described in Supplementary Note 4 and
Supplementary Fig. 18.

Benchmarks
For comparison,we introduced several off-the-shelfmethods including
CIDRE11, BaSiC14, and ZEN15. Among these methods, as retrospective
methods, CIDRE11 and BaSiC14 proposed optimization based approa-
ches to accomplish tile-based shading correction. ZEN15 is a commercial
software from Zeiss, which requires a reference image generated from
image tiles to performshading correction. All of themcanbe applied to
the task of uniform stripe correction. In addition, some latest deep
learning-based methods, like ZeroDCE22, Neighbor2Neighbor23, and
Mask-shadowGAN24, were involved in experiments. As latest repre-
sentative models for image enhancement, they were originally
designed for various tasks including low-light enhancement, image
deshadow, and image denoising. They can be adapted to the tasks
related to artifact removal. For more detailed information on these
comparison methods, please refer to Supplementary Note 5.

Evaluation protocols
We adopted multiple metrics to evaluate the correction quality
through comprehensive experiments. Formicroscopic imageswithout
the available ground truth (GT), twometrics were used to evaluate the
correction quality. The first metric is the intensity profile, which
measures the discrepancy between the corrected and uncorrected
image or ground truth. The intensities were averaged within the ROIs
in the direction parallel to the stripes. The intensity profiles in stripe
and non-stripe areas can respectively reflect the abilities for removing

stripe and preserving the original image features. The second metric,
inversecoefficient variation (ICV), is used toquantitatively evaluate the
correction effect, which can be calculated as follows:

ICV =Ra=Rsd ð8Þ

where Ra refers to the signal intensity of microscopic image, which is
calculated by the averaged pixel intensities of an ROI. Rsd is used to
estimate the degree of intensity fluctuation in the stripe area, which is
calculated by the standard deviation of pixel intensities. A larger ICV
corresponds to the flatter intensity profile and quantitatively indicates
a better correction quality. Notably, ICV is sensitive to the sudden
changes in the signal intensity of image content. Theblackbackground
should be avoided when selecting the ROI, otherwise the ICV will be
disturbed by the image content signal.

For synthetic data with GT, we additionally adopted the full-
reference quality metrics, PSNR and SSIM, to assess the image quality
and structural similarity between corrected image and GT.

In order to verify the contribution of SSCOR-corrected images to
downstream applications, we applied virtual pathological staining,
automatic cell counting, and collagen signatures extraction toquantify
the ability of SSCOR for preserving the original tissue characteristics,
respectively. The virtual staining was achieved by an unsupervised
content-preserving transformation network (UTOM)27. The cell seg-
mentation and classification were performed by Hover-Net29. The cell
numbers were counted using the software package CellProfiler 4.2.130.
Thenumber and area of collagenfiberswereextracted andqualifiedby
CurveAlign v4.031. The contrast feature of collagen fibers calculated by
a gray-level co-occurrence matrix-based algorithm32 (Matlab vR2021b,
the MathWorks Inc.).

Hardware and software
All experiments were conducted on a workstation with a NVIDIA RTX
3090 GPU. Eachmodel was trained on a single GPU using the PyTorch
library (v1.7.1). Cropping patches, synthetic image generation and
quality evaluation were performed in Python (v3.7).

Statistics & reproducibility
All statistical analyses were performed using GraphPad Prism (version
9.0.0, GraphPad Software, San Diego, California USA). To compare
three or more groups, a one-way analysis of variance (ANOVA) was
utilized, followed by Tukey’s multiple comparisons test. If the nor-
mality test failed, Kruskal-Wallis test and Dunn’s multiple comparisons
test were used. All box plots indicate median (middle line), 25th, 75th
percentile (box) and 1.5 × interquartile range (whiskers). The sig-
nificance level is displayed as asterisks, and P < 0.05 was considered
statistically significant (*P <0.05, **P <0.01, ***P <0.001, ****P <0.0001;
ns, not significant). No statistical method was used to predetermine
sample size.

Under the unsupervised learning settings, for each input image,
all the models were trained once per set of hyper-parameters, and
tested on the same image. With different initial weights, the proposed
SCCOR eventually achieved similar results. To facilitate reproduction,
we release the trainedmodel, codes, and source data at https://github.
com/lxxcontinue/SSCOR.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MPM data of non-uniform/grid stripes used in this study are
available at our github repository https://github.com/lxxcontinue/
SSCOR. The fluorescence dataset17 used for oblique stripes are avail-
able at http://brainarchitecture.org/. The SRS dataset18 used for special
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artifacts synthesis are available at https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:10.7910/DVN/EZW4EK. The CoNSep
dataset29 used for stripes synthesis are available at https://warwick.ac.
uk/fac/cross_fac/tia/data/hovernet/. The MoNuSAC dataset52 used for
stripes synthesis are available at https://monusac-2020.grand-
challenge.org/Data/. Source data are provided with this paper.

Code availability
The codes, pretrainedmodels, and relevant resources of the proposed
SCCOR are publicly released with a detailed guide at https://github.
com/lxxcontinue/SSCOR.
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