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Machine learning the dimension of a Fano
variety

Tom Coates 1, Alexander M. Kasprzyk 2 & Sara Veneziale 1

Fano varieties are basic building blocks in geometry – they are ‘atomic pieces’
of mathematical shapes. Recent progress in the classification of Fano varieties
involves analysing an invariant called the quantum period. This is a sequence
of integers which gives a numerical fingerprint for a Fano variety. It is con-
jectured that a Fano variety is uniquely determined by its quantum period. If
this is true, one should be able to recover geometric properties of a Fano
variety directly from its quantum period. We apply machine learning to the
question: does the quantum period of X know the dimension of X? Note that
there is as yet no theoretical understandingof this.We show that a simple feed-
forward neural network can determine the dimension of X with 98% accuracy.
Building on this, we establish rigorous asymptotics for the quantumperiods of
a class of Fano varieties. These asymptotics determine the dimension ofX from
its quantum period. Our results demonstrate that machine learning can pick
out structure from complex mathematical data in situations where we lack
theoretical understanding. They also give positive evidence for the conjecture
that the quantum period of a Fano variety determines that variety.

Algebraic geometry describes shapes as the solution sets of systemsof
polynomial equations, and manipulates or analyses a shape X by
manipulating or analysing the equations that define X. This interplay
between algebra and geometry has applications across mathematics
and science; see e.g., refs. 1–4. Shapes definedbypolynomial equations
are called algebraic varieties. Fano varieties are a key class of algebraic
varieties. They are, in a precise sense, atomic pieces of mathematical
shapes5,6. Fano varieties also play an essential role in string theory.
They provide, through their ‘anticanonical sections’, the main con-
struction of the Calabi–Yaumanifolds which give geometric models of
spacetime7–9.

The classification of Fano varieties is a long-standing open pro-
blem. The only one-dimensional example is a line; this is classical. The
ten smooth two-dimensional Fano varieties were found by del Pezzo in
the 1880s10. The classification of smooth Fano varieties in dimension
threewas a triumphof 20th centurymathematics: it combinesworkby
Fano in the 1930s, Iskovskikh in the 1970s, and Mori–Mukai in the
1980s11–16. Beyond this, little is known, particularly for the important
case of Fano varieties that are not smooth.

A new approach to Fano classification centres around a set of
ideas from string theory called Mirror Symmetry17–20. From this per-
spective, the key invariant of a Fano variety is its regularised quantum
period21

bGX ðtÞ=
X1
d =0

cdt
d ð1Þ

This is a power series with coefficients c0 = 1, c1 = 0, and cd = rdd!,
where rd is a certain Gromov–Witten invariant of X. Intuitively speak-
ing, rd is the number of rational curves in X of degree d that pass
through a fixed generic point and have a certain constraint on their
complex structure. In general rd can be a rational number, because
curves with a symmetry group of order k are counted with weight 1/k,
but in all known cases the coefficients cd in (1) are integers.

It is expected that the regularised quantum period bGX uniquely
determines X. This is true (and proven) for smooth Fano varieties in
lowdimensions, but is unknown in dimensions four andhigher, and for
Fano varieties that are not smooth.
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In this paper we will treat the regularised quantum period as a
numerical signature for the Fano variety X, given by the sequence of
integers (c0, c1,…). A priori this looks like an infinite amount of data,
but in fact there is a differential operator L such that LbGX � 0; see e.g.,
[ref. 21, Theorem 4.3]. This gives a recurrence relation that determines
all of the coefficients cd from the first few terms, so the regularised
quantum period bGX contains only a finite amount of information.
Encoding a Fano variety X by a vector in Zm+ 1 given by finitely many
coefficients (c0, c1,…, cm) of the regularised quantum period allows us
to investigate questions about Fano varieties using machine learning.

In this paper, we ask whether the regularised quantum period of a
Fano variety X knows the dimension of X. There is currently no viable
theoretical approach to this question. Instead, we use machine learn-
ing methods applied to a large dataset to argue that the answer is
probably yes, and then prove that the answer is yes for toric Fano
varieties of low Picard rank. The use of machine learning was essential
to the formulation of our rigorous results (Theorems 5 and 6 below).
This work is, therefore, proof-of-concept for a larger programme,
demonstrating that machine learning can uncover previously
unknown structure in complex mathematical datasets. Thus, the Data
Revolution, which has had such impact across the rest of science, also
brings important new insights to pure mathematics22–27. This is parti-
cularly true for large-scale classification questions, e.g., refs. 28–32,
where these methods can potentially reveal both the classification
itself and structural relationships within it.

Results
Algebraic varieties can be smooth or have singularities
Depending on their equations, algebraic varieties can be smooth (as in
Fig. 1a) or have singularities (as in Fig. 1b). In this paper, we consider
algebraic varieties over the complex numbers. The equations in Fig. 1a,
b, therefore, define complex surfaces; however, for ease of visualisa-
tion, we have plotted only the points on these surfaces with co-
ordinates that are real numbers.

Most of the algebraic varieties that we consider below will be
singular, but they all have a class of singularities called terminal quo-
tient singularities. This is themost natural class of singularities to allow
from the point of view of Fano classification6. Terminal quotient sin-
gularities are very mild; indeed, in dimensions one and two, an alge-
braic variety has terminal quotient singularities if and only if it is
smooth.

The Fano varieties that we consider
The fundamental example of a Fano variety is projective spacePN�1.
This is a quotient of CN n f0g by the group C× , where the action of

λ 2 C× identifies the points (x1, x2,…, xN) and (λx1, λx2,…, λxN). The
resulting algebraic variety is smooth and has dimension N − 1.
We will consider generalisations of projective spaces called
weighted projective spaces and toric varieties of Picard rank two.
A detailed introduction to these spaces is given in the Supplemen-
tary Notes.

To define a weighted projective space, choose positive integers
a1, a2,…, aN such that any subset of size N − 1 has no common factor,
and consider

Pða1,a2, . . . ,aNÞ= ðCN n f0gÞ=C×

where the action of λ 2 C× identifies the points

ðx1, x2, . . . , xNÞ and ðλa1x1, λ
a2x2, . . . , λ

aN xNÞ

in CN n f0g. The quotient Pða1,a2, . . . ,aNÞ is an algebraic variety of
dimension N − 1. A general point of Pða1,a2, . . . ,aNÞ is smooth, but
there can be singular points. Indeed, a weighted projective space
Pða1,a2, . . . ,aNÞ is smooth if and only if ai = 1 for all i, that is, if and only
if it is a projective space.

To define a toric variety of Picard rank two, choose a matrix

a1 a2 � � � aN

b1 b2 � � � bN

� �
ð2Þ

with non-negative integer entries and no zero columns. This defines an
action ofC× ×C× onCN , where ðλ,μÞ 2 C× ×C× identifies the points

ðx1, x2, . . . , xNÞ and ðλa1μb1x1, λ
a2μb2x2, . . . , λ

aNμbN xNÞ

inCN . Set a = a1 + a2 +⋯ + aN and b = b1 + b2 +⋯ + bN, and suppose that
(a, b) is not a scalar multiple of (ai, bi) for any i. This determines linear
subspaces

S+ = ðx1, x2, . . . , xNÞjxi =0 if bi=ai < b=a
� �

S� = ðx1, x2, . . . , xNÞjxi =0 if bi=ai > b=a
� �

of CN , and we consider the quotient

X = ðCN n SÞ=ðC× ×C× Þ ð3Þ

where S = S+∪ S−. The quotient X is an algebraic variety of dimension
N − 2 and second Betti number b2(X) ≤ 2. If, as we assume henceforth,
the subspaces S+ and S− both have dimension two or more then

Fig. 1 | Algebraic varieties and their equations. a A smooth example (x2 + y2 = z2 + 1); b An example with a singular point (x2 + y2 = z2).
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b2(X) = 2, and thus X has Picard rank two. In general Xwill have singular
points, the precise form of which is determined by the weights in (2).

There are closed formulas for the regularised quantum period of
weighted projective spaces and toric varieties33. We have

bGPðtÞ=
X1
k =0

ðakÞ!
ða1kÞ!ða2kÞ! � � � ðaNkÞ!

tak ð4Þ

where P=Pða1, . . . ,aNÞ and a = a1 + a2 +⋯ + aN, and

bGX ðtÞ=
X

ðk,lÞ2Z2\C

ðak +blÞ!
ða1k + b1lÞ! � � � ðaNk +bNlÞ!

tak +bl ð5Þ

where the weights for X are as in (2), and C is the cone inR2 defined by
the equations aix + biy ≥ 0, i2 {1, 2,…,N}. Formula (4) implies that, for
weighted projective spaces, the coefficient cd from (1) is zero unless d
is divisible by a. Formula (5) implies that, for toric varieties of Picard
rank two, cd = 0 unless d is divisible by gcd{a, b}.

Data generation: weighted projective spaces
The following result characterises weighted projective spaces with
terminal quotient singularities; this is [ref. 34, Proposition 2.3].

Proposition 1. Let X =Pða1,a2, . . . ,aNÞ be a weighted projective space
of dimension at least three. ThenXhas terminal quotient singularities if
and only if

XN
i = 1

fkai=ag 2 f2, . . . ,N � 2g

for each k2 {2,…, a − 2}. Here a = a1 + a2 +⋯ + aN and {q} denotes the
fractional part q − ⌊q⌋ of q 2 Q.

A simpler necessary condition is given by [ref. 35, Theorem 3.5]:

Proposition 2. Let X =Pða1,a2, . . . ,aNÞ be a weighted projective space
of dimension at least two,withweights ordereda1≤a2 ≤…≤aN. IfXhas
terminal quotient singularities then ai/a < 1/(N − i + 2) for
each i2 {3,…,N}.

Weighted projective spaces with terminal quotient singularities
have been classified in dimensions up to four34,36. Classifications in
higher dimensions are hindered by the lack of an effective upper
bound on a.

We randomly generated 150,000 distinct weighted projective
spaces with terminal quotient singularities, and with dimension
up to 10, as follows. We generated random sequences of weights
a1 ≤ a2 ≤ … ≤ aN with aN ≤ 10N and discarded them if they failed to
satisfy any one of the following:

1. for each i2 {1,…,N}, gcdfa1, . . . , bai, . . . ,aNg= 1, where bai indicates
that ai is omitted;

2. ai/a < 1/(N − i + 2) for each i2 {3,…,N};
3.

PN
i= 1fkai=ag 2 f2, . . . ,N � 2g for each k2 {2,…, a − 2}.

Condition 1 here was part of our definition of weighted projective
spaces above; it ensures that the set of singular points in
Pða1,a2, . . . ,aNÞ has dimension at most N − 2, and also that weighted
projective spaces are isomorphic as algebraic varieties if and only if
they have the same weights. Condition 2 is from Proposition 2; it
efficiently rules out many non-terminal examples. Condition 3 is the
necessary and sufficient condition from Proposition 1. We then dedu-
plicated the sequences. The resulting sample sizes are summarised in
Table 1.

Data generation: toric varieties
Deduplicating randomly-generated toric varieties of Picard rank two is
harder than deduplicating randomly-generated weighted projective
spaces, because different weight matrices in (2) can give rise to the
same toric variety. Toric varieties are uniquely determined, up to iso-
morphism, by a combinatorial object called a fan37. A fan is a collection
of cones, and one can determine the singularities of a toric variety X
from the geometry of the cones in the corresponding fan.

We randomly generated 200,000 distinct toric varieties of Picard
rank twowith terminalquotient singularities, andwithdimensionup to
10, as follows. We randomly generated weight matrices, as in (2), such
that 0 ≤ ai, bj ≤ 5. We then discarded the weight matrix if any column
waszero, andotherwise formed the corresponding fanF.Wediscarded
the weight matrix unless:
1. F had N rays;
2. each cone in F was simplicial (i.e., has number of rays equal to its

dimension);
3. the convex hull of the primitive generators of the rays of F con-

tained no lattice points other than the rays and the origin.

Conditions 1 and 2 together guarantee that X has Picard rank two,
and are equivalent to the conditions on the weight matrix in (2) given
in our definition. Conditions 2 and 3 guarantee that X has terminal
quotient singularities. We then deduplicated the weight matrices
according to the isomorphism type of F, by putting F in normal
form38,39. See Table 1 for a summary of the dataset.

Data analysis: weighted projective spaces
We computed an initial segment (c0, c1,…, cm) of the regularised
quantumperiod for all the examples in the sample of 150,000 terminal
weighted projective spaces, with m ≈ 100,000. The non-zero coeffi-
cients cd appeared to grow exponentially with d, and sowe considered

Table 1 | The distribution by dimension in our datasets

Weighted projective spaces Rank-two toric varieties

Dimension Sample size Percentage Dimension Sample size Percentage

1 1 0.001

2 1 0.001 2 2 0.001

3 7 0.005 3 17 0.009

4 8936 5.957 4 758 0.379

5 23,584 15.723 5 6050 3.025

6 23,640 15.760 6 19,690 9.845

7 23,700 15.800 7 35,395 17.698

8 23,469 15.646 8 42,866 21.433

9 23,225 15.483 9 47,206 23.603

10 23,437 15.625 10 48,016 24.008

Total 150,000 Total 200,000
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flog cdgd2S where S= fd 2 Z≥0jcd ≠0g. To reduce dimension, we fitted
a linear model to the set fðd, log cdÞjd 2 Sg and used the slope and
intercept of this model as features; see Fig. 2a for a typical example.
Plotting the slope against the y-intercept and colouring datapoints
according to the dimensionweobtain Fig. 3a: note the clear separation
by dimension. A Support Vector Machine (SVM) trained on 10% of the
slope and y-intercept data predicted the dimension of the weighted
projective space with an accuracy of 99.99%. Full details are given in
the Supplementary Methods.

Data analysis: toric varieties
As before, the non-zero coefficients cd appeared to grow exponentially
with d, so we fitted a linear model to the set fðd, log cdÞjd 2 Sg where
S= fd 2 Z≥0jcd ≠0g. We used the slope and intercept of this linear
model as features.

Example 3. In Fig. 2b, we plot a typical example: the logarithm of the
regularised quantum period sequence for the nine-dimensional toric

variety with weight matrix

1 2 5 3 3 3 0 0 0 0 0

0 0 0 3 4 4 1 2 2 3 4

� �

along with the linear approximation. We see a periodic deviation from
the linear approximation; themagnitude of this deviation decreases as
d increases (not shown).

To reduce computational costs, we computed pairs ðd, log cdÞ for
1000 ≤ d ≤ 20,000 by sampling every 100th term. We discarded the
beginning of the period sequence because of the noise it introduces to
the linear regression. In cases where the sampled coefficient cd is zero,
we considered instead the next non-zero coefficient. The resulting plot
of slope against y-intercept, with datapoints coloured according to
dimension, is shown in Fig. 3b.

We analysed the standard errors for the slope and y-intercept of
the linearmodel. The standard errors for the slope are small compared
to the range of slopes but, inmany cases, the standard error sint for the
y-intercept is relatively large. As Fig. 4 illustrates, discarding data
points where the standard error sint for the y-intercept exceeds some
threshold reduces apparent noise. This suggests that the underlying
structure is being obscured by inaccuracies in the linear regression
caused by oscillatory behaviour in the initial terms of the quantum
period sequence; these inaccuracies are concentrated in the y-inter-
cept of the linear model. Note that restricting attention to those data
points where sint is small also greatly decreases the range of y-inter-
cepts that occur. As Example 4 and Fig. 5 suggest, this reflects both
transient oscillatory behaviour and also the presence of a subleading
term in the asymptotics of log cd which ismissing fromour feature set.
We discuss this further below.

Example 4. Consider the toric variety with Picard rank two and weight
matrix

1 10 5 13 8 12 0

0 0 3 8 5 14 1

� �

This is one of the outliers in Fig. 3b. The toric variety is five-dimen-
sional, and has slope 1.637 and y-intercept −62.64. The standard errors
are 4.246 × 10−4 for the slope and 5.021 for the y-intercept. We com-
puted the first 40000 coefficients cd in (1). As Fig. 5 shows, as d
increases the y-intercept of the linear model increases to −28.96 and
sint decreases to 0.7877. At the same time, the slope of the linearmodel
remains more or less unchanged, decreasing to 1.635. This supports
the idea that computing (many) more coefficients cd would sig-
nificantly reduce noise in Fig. 3b. In this example, even 40,000 coef-
ficients may not be enough.

Computing many more coefficients cd across the whole dataset
would require impractical amounts of computation time. In the
example above, which is typical in this regard, increasing the number
of coefficients computed from 20,000 to 40,000 increased the com-
putation time by a factor of more than 10. Instead we restrict to those
toric varieties of Picard rank two such that the y-i,ntercept standard
error sint is less than 0.3; this retains 67,443 of the 200,000datapoints.
We used 70% of the slope and y-intercept data in the restricted dataset
for model training, and the rest for validation. An SVM model pre-
dicted thedimensionof the toric varietywith an accuracyof 87.7%, and
a Random Forest Classifier (RFC) predicted the dimension with an
accuracy of 88.6%.

Neural networks
Neural networks do not handle unbalanced datasets well. Therefore,
we removed the toric varieties of dimensions 3, 4, and 5 fromour data,
leaving 61,164 toric varieties of Picard rank two with terminal quotient

Fig. 2 | The logarithm of the non-zero period coefficients cd: a for a typical
weighted projective space (Pð5,5,11,23,28,29,33,44,66,76Þ); b for the toric variety
of Picard rank two from Example 3.
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singularities and sint < 0.3. This dataset is approximately balanced by
dimension.

A Multilayer Perceptron (MLP) with three hidden layers of sizes
(10, 30, 10) using the slope and intercept as features predicted the
dimension with 89.0% accuracy. Since the slope and intercept give
good control over log cd for d≫0, but not for small d, it is likely that
the coefficients cdwith d small contain extra information that the slope
and intercept do not see. Supplementing the feature set by including
the first 100 coefficients cd as well as the slope and intercept increased
the accuracy of the prediction to 97.7%. Full details can be found in
the Supplementary Methods.

From machine learning to rigorous analysis
Elementary “out of the box” models (SVM, RFC, and MLP) trained on
the slope and intercept data alone already gave a highly accurate
prediction for the dimension. Furthermore, even for the many-feature

MLP, which was the most accurate, sensitivity analysis using SHAP
values40 showed that the slope and intercept were substantially more
important to the prediction than any of the coefficients cd: see Fig. 6.
This suggested that the dimension of X might be visible from a rigor-
ous estimate of the growth rate of log cd .

In the Methods section, we establish asymptotic results for the
regularised quantum period of toric varieties with low Picard rank, as
follows. These results apply to any weighted projective space or toric
variety of Picard rank two: they donot require a terminality hypothesis.
Note, in each case, thepresenceof a subleading logarithmic term in the
asymptotics for log cd .

Theorem 5. Let X denote the weighted projective spacePða1, . . . ,aNÞ,
so that the dimension of X is N − 1. Let cd denote the coefficient of td in
the regularised quantum period bGX ðtÞ given in (4). Let a = a1 +⋯ + aN

Fig. 3 | The slopes and y-intercepts from the linear models: a for weighted
projective spaces with terminal quotient singularities. The colour records the
dimension of the weighted projective space and the circled points indicate

projective spaces. b for toric varieties of Picard rank two with terminal quotient
singularities. The colour records the dimension of the toric variety.

Fig. 4 | The slopesand y-intercepts from the linearmodel.This is as in Fig. 3b, but
plotting only data points for which the standard error sint for the y-intercept
satisfies sint < 0.3. The colour records the dimension of the toric variety.

Fig. 5 | Variation as we move deeper into the period sequence. The y-intercept
and its standard error sint for the toric variety from Example 4, as computed from
pairs ðk, log ck Þ such that d − 20,000 ≤ k ≤ d by sampling every 100th term. We also
show LOWESS-smoothed trend lines.
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and pi = ai/a. Then cd =0 unless d is divisible by a, and non-zero coef-
ficients cd satisfy

log cd ∼Ad � dimX
2

logd +B

as d→∞, where

A= �
XN
i = 1

pi logpi

B= � dimX
2

logð2πÞ � 1
2

XN
i = 1

logpi

Note, although it plays no role in what follows, that A is the
Shannon entropy of the discrete random variable Z with distribution
(p1, p2,…, pN), and that B is a constant plus half the total self-
information of Z.

Theorem 6. Let X denote the toric variety of Picard rank two with
weight matrix

a1 a2 a3 � � � aN

b1 b2 b3 � � � bN

� �

so that the dimension of X is N − 2. Let a = a1 +⋯ + aN, b = b1 +⋯ + bN,
and ℓ = gcd{a, b}. Let ½μ : ν� 2 P1 be the unique root of the homo-
geneous polynomial

YN
i= 1

ðaiμ+biνÞaib �
YN
i= 1

ðaiμ+ biνÞbia

such that aiμ + biν ≥ 0 for all i2 {1, 2,…,N}, and set

pi =
μai + νbi

μa+ νb

Let cd denote the coefficient of td in the regularised quantum
period bGX ðtÞ given in (5). Then non-zero coefficients cd satisfy

log cd ∼Ad � dimX
2

logd +B

as d→∞, where

A= �
XN
i = 1

pi logpi

B= � dimX
2

logð2πÞ � 1
2

XN
i = 1

logpi �
1
2
log

XN
i= 1

ðaib� biaÞ2
‘2pi

 !

Theorem 5 is a straightforward application of Stirling’s formula.
Theorem 6 is more involved, and relies on a Central Limit-type theo-
rem that generalises the De Moivre–Laplace theorem.

Theoretical analysis
The asymptotics in Theorems 5 and 6 imply that, for X a weighted
projective space or toric variety of Picard rank two, the quantum
period determines the dimension of X. Let us revisit the clustering
analysis from this perspective. Recall the asymptotic expression
log cd ∼Ad � dimX

2 logd +B and the formulae forA andB fromTheorem
5. Figure 7a shows the values of A and B for a sample of weighted
projective spaces, coloured by dimension. Note the clusters, which
overlap. Broadly speaking, the values of B increase as the dimension of
the weighted projective space increases, whereas in Fig. 3a, the y-
intercepts decrease as the dimension increases. This reflects the fact
that we fitted a linear model to log cd , omitting the subleading logd
term in the asymptotics. As Fig. 8 shows, the linear model assigns the
omitted term to the y-intercept rather than the slope. The slope of the
linear model is approximately equal to A. The y-intercept, however,
differs from B by a dimension-dependent factor. The omitted log term
does not vary too much over the range of degrees (d < 100,000) that
we considered, and has the effect of reducing the observed y-intercept
from B to approximately B� 9

2 dimX , distorting the clusters slightly
and translating them downwards by a dimension-dependent factor.
This separates the clusters. We expect that the same mechanism
applies in Picard rank two as well: see Fig. 7b.

We can show that each cluster in Fig. 7a is linearly bounded using
constrained optimisation techniques. Consider, for example, the
cluster for weighted projective spaces of dimension five, as in Fig. 9.

Proposition 7. Let X be the five-dimensional weighted projective space
Pða1, . . . ,a6Þ, and let A, B be as in Theorem 5. Then B+ 5

2A≥ 41
8 . If in

addition ai ≤ 25 for all i then B+ 5A≤ 41
40.

Fix a suitable θ ≥0 and consider

B+ θA= � dimX
2

logð2πÞ � 1
2

XN
i = 1

logpi � θ
XN
i= 1

pi logpi

with dimX =N � 1 = 5. Solving

minðB+θAÞ subject to p1 + � � � +p6 = 1

p1, . . . ,p6 ≥0

on the five-simplex gives a linear lower bound for the cluster. This
bound does not use terminality: it applies to any weighted projective
space of dimension five. The expression B + θA is unbounded above on

Fig. 6 | Model sensitivity analysis using SHAP values. The model is an MLP with
three hidden layers of sizes (10,30,10) applied to toric varieties of Picard rank two
with terminal quotient singularities. It is trained on the slope, y-intercept, and the
first 100 coefficients cd as features, andpredicts thedimensionwith 97.7%accuracy.
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the five-simplex (because B is) so we cannot obtain an upper bound
this way. Instead, consider

maxðB+θAÞ subject to p1 + � � � +p6 = 1

ϵ≤p1 ≤p2 ≤ � � � ≤p6

for an appropriate small positive ϵ, whichwe can take to be 1/awherea
is the maximum sum of the weights. For Fig. 9, for example, we can
take a = 124, and in general, such an a exists because there are only
finitely many terminal weighted projective spaces. This gives a linear
upper bound for the cluster.

The same methods yield linear bounds on each of the clusters in
Fig. 7a. As the Figure shows, however, the clusters are not linearly
separable.

Discussion
We developed machine learning models that predict, with high
accuracy, the dimension of a Fano variety from its regularised
quantum period. These models apply to weighted projective spaces
and toric varieties of Picard rank two with terminal quotient singu-
larities. We then established rigorous asymptotics for the reg-
ularised quantum period of these Fano varieties. The form of the
asymptotics implies that, in these cases, the regularised quantum
period of a Fano variety X determines the dimension of X. The
asymptotics also give a theoretical underpinning for the success of
the machine learning models.

Perversely, because the series involved converge extremely
slowly, reading the dimension of a Fano variety directly from the
asymptotics of the regularised quantumperiod is not practical. For the

Fig. 7 | The values of the asymptotic coefficients A and B: a for all weighted
projective spaces Pða1, . . . ,aN Þ with terminal quotient singularities and ai ≤ 25 for
all i. The colour records the dimension of the weighted projective space. b for toric

varieties of Picard rank two in our dataset. The colour records the dimension of the
toric variety.

Fig. 8 | For weighted projective spaces, the asymptotic coefficients A and B are
closely related to the slope and y-intercept. a Comparison between A and the
slope from the linear model, for weighted projective spaces that occur in both
Figs. 3a and 7, coloured by dimension. The line slope =A is indicated.bComparison

between B and the y-intercept from the linear model, for weighted projective
spaces that occur in both Figs 3a and 7a, coloured by dimension. In each case, the
line y -intercept =B� 9

2 dimX is shown.
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same reason, enhancing the feature set of our machine learning
models by including a logd term in the linear regression results in less
accurate predictions. So although the asymptotics in Theorems5 and6
determine the dimension in theory, in practice, themost effective way
to determine the dimension of an unknown Fano variety from its
quantum period is to apply a machine learning model.

The insights gained from machine learning were the key to our
formulation of the rigorous results in Theorems 5 and 6. Indeed, it
might be hard to discover these results without a machine learning
approach. It is notable that the techniques in the proof of Theorem
6 – the identification of generating functions for Gromov–Witten
invariants of toric varieties with certain hypergeometric functions –

have been known since the late 1990s and have been studied by many
experts in hypergeometric functions since then. For us, the essential
step in the discovery of the results was the feature extraction that we
performed as part of our ML pipeline.

This work demonstrates that machine learning can uncover pre-
viously unknown structure in complex mathematical data, and is a
powerful tool for developing rigorous mathematical results; cf.22. It
also provides evidence for a fundamental conjecture in the Fano
classification programme21: that the regularised quantum period of a
Fano variety determines that variety.

Methods
In this section, we prove Theorem 5 and Theorem 6. The following
result implies Theorem 5.

Theorem 8. Let X denote the weighted projective spacePða1, . . . ,aNÞ,
so that the dimension of X is N − 1. Let cd denote the coefficient of td in
the regularised quantum period bGX ðtÞ given in (4). Let a = a1 +… + aN.
Then cd =0 unless d is divisible by a, and

log cka ∼ ka loga� 1
a

XN
i = 1

ai logai

" #
� dimX

2
logðkaÞ

+
1 + dimX

2
loga� dimX

2
logð2πÞ � 1

2

XN
i= 1

logai

That is, non-zero coefficients cd satisfy

log cd ∼Ad � dimX
2

logd +B

as d→∞, where

A= �
XN
i= 1

pi logpi B= � dimX
2

logð2πÞ � 1
2

XN
i= 1

logpi

and pi = ai/a.

Proof. Combine Stirling’s formula

n!∼
ffiffiffiffiffiffiffiffiffi
2πn

p n
e

� �n
with the closed formula (4) for cka. □

Toric varieties of Picard rank 2
Consider a toric variety X of Picard rank two and dimension N − 2 with
weight matrix

a1 a2 a3 � � � aN

b1 b2 b3 � � � bN

� �

as in (2). Let us move to more invariant notation, writing αi for the
linear form on R2 defined by the transpose of the ith column of the
weight matrix, and α = α1 +⋯ + αN. Eq. (5) becomes

bGX ðtÞ=
X

k2Z2\C

ðα � kÞ!QN
i= 1ðαi � kÞ!

tα�k

where C is the cone C = fx 2 R2jαi � x ≥0 for i= 1,2, . . . ,Ng. As we will
see, for d≫0 the coefficients

ðα � kÞ!QN
i = 1ðαi � kÞ!

where k 2 Z2 \ C andα � k =d

are approximated by a rescaled Gaussian. We begin by finding the
mean of that Gaussian, that is, by minimising

YN
i = 1

ðαi � kÞ! where k 2 Z2 \ C andα � k =d:

For k in the strict interior of C with α ⋅ k = d, we have that

ðαi � kÞ!∼
αi � k
e

� �αi �k

as d→∞.

Proposition 9. The constrained optimisation problem

min
YN
i = 1

ðαi � xÞαi�x subject to
x 2 C

α � x =d

	
has a unique solution x = x*. Furthermore, setting pi = (αi ⋅ x*)/(α ⋅ x*) we
have that the monomial

YN
i = 1

pαi �k
i

depends on k 2 Z2 only via α ⋅ k.

Fig. 9 | Linear bounds for the cluster of five-dimensional weighted projective
spaces in Fig. 7a. The bounds are given by Proposition 7.
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Proof. Taking logarithms gives the equivalent problem

min
XN
i= 1

ðαi � xÞ logðαi � xÞ subject to
x 2 C

α � x =d

	
ð6Þ

The objective function
PN

i = 1ðαi � xÞ logðαi � xÞ here is the pullback
to R2 of the function

f ðx1, . . . , xNÞ=
XN
i = 1

xi log xi

along the linear embedding φ : R2 ! RN given by (α1,…, αN). Note
that C is the preimage under φ of the positive orthantRN

+ , so we need
to minimise f on the intersection of the simplex x1 +⋯ + xN = d,
ðx1, . . . , xNÞ 2 RN

+ with the image of φ. The function f is convex and
decreases as we move away from the boundary of the simplex, so the
minimisation problem in Eq. (6) has a unique solution x* and this lies in
the strict interior ofC.We can, therefore,find theminimum x* using the
method of Lagrange multipliers, by solving

XN
i= 1

αi logðαi � xÞ+α = λα ð7Þ

for λ 2 R and x in the interior of C with α ⋅ x = d. Thus

XN
i = 1

αi logðαi � x*Þ= ðλ� 1Þα

and, evaluating on k 2 Z2 and exponentiating, we see that

YN
i = 1

ðαi � x*Þαi �k

depends only on α ⋅ k. The result follows. □
Given a solution x* to Eq. (7), any positive scalarmultiple of x* also

satisfies Eq. (7), with a different value of λ and a different value of d.
Thus the solutions x*, as d varies, lie on a half-line through the origin.
The direction vector ½μ : ν� 2 P1 of this half-line is the unique solution
to the system

QN
i= 1

ðaiμ+biνÞaib =
QN
i= 1

ðaiμ+biνÞbia

μ

ν

� �
2 C

ð8Þ

Note that the first equation here is homogeneous in μ and ν; it is
equivalent to Eq. (7), by exponentiating and then eliminating λ. Any
two solutions x*, for different values of d, differ by rescaling, and the
quantities pi in Proposition 9 are invariant under this rescaling. They
also satisfy p1 +⋯ + pN = 1.

We use the following result, known in the literature as the “Local
Theorem”41, to approximate multinomial coefficients.

Local Theorem. For p1,…, pn2 [0, 1] such that p1 +⋯ + pn = 1, the ratio

d
n�1
2

d

k1 � � � kn

� �Yn
i= 1

pki
i :

expð� 1
2

Pn
i = 1 qix

2
i Þ

ð2πÞn�1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 � � �pn

p ! 1

as d→∞, uniformly in all ki’s, where

qi = 1� pi xi =
ki � dpiffiffiffiffiffiffiffiffiffiffiffiffi

dpiqi
p

and the xi lie in bounded intervals.

LetBrdenote the ball of radius r about x* 2 R2. FixR > 0.We apply
the Local Theorem with ki = αi ⋅ k and pi = (αi ⋅ x*)/(α ⋅ x*), where k 2
Z2 \ C satisfies α ⋅ k = d and k 2 BR

ffiffiffi
d

p . Since

xi =
αi � ðk � x*Þffiffiffiffiffiffiffiffiffiffiffiffi

dpiqi

p
the assumption that k 2 BR

ffiffiffi
d

p ensures that the xi remain bounded as
d→∞. Note that, by Proposition 9, themonomial

QN
i = 1 p

ki
i depends on k

only via α ⋅ k, and hence here is independent of k:

YN
i = 1

pki
i =

YN
i= 1

pαi �x*
i =

YN
i = 1

pdpi
i

Furthermore

XN
i = 1

qix
2
i =

ðk � x*ÞTA ðk � x*Þ
d

where A is the positive-definite 2 × 2 matrix given by

A=
XN
i = 1

1
pi

αT
i αi

Thus, as d→∞, the ratio

ðα � kÞ!QN
i = 1ðαi � kÞ!

:
exp � 1

2d ðk � x*ÞTA ðk � x*Þ
� �
ð2πdÞN�1

2
QN

i = 1 p
dpi +

1
2

i

! 1 ð9Þ

for all k 2 Z2 \ C \ BR
ffiffiffi
d

p such that α ⋅ k = d.

Theorem 10. (This is Theorem 6 in the main text). Let X be a toric
variety of Picard rank two and dimension N − 2 with weight matrix

a1 a2 a3 � � � aN

b1 b2 b3 � � � bN

� �

Let a = a1 +⋯ + aN and b = b1 +⋯ + bN, let ℓ = gcd{a, b}, and let ½μ :

ν� 2 P1 be the unique solution to Eq. (8). Let cd denote the coefficient
of td in the regularised quantum period bGX ðtÞ. Then non-zero
coefficients cd satisfy

log cd ∼Ad � dimX
2

logd +B

as d→∞, where

A= �
XN
i = 1

pi logpi

B= � dimX
2

logð2πÞ � 1
2

XN
i = 1

logpi �
1
2
log

XN
i= 1

ðaib� biaÞ2
‘2pi

 !

and pi =
μai + νbi
μa+ νb .

Proof. We need to estimate

cd =
X

k2Z2\C
with α�k =d

ðα � kÞ!QN
i= 1ðαi � kÞ!

Considerfirst the summandswith k 2 Z2 \ C such thatα ⋅ k = d and
k=2BR

ffiffiffi
d

p . For d sufficiently large, each such summand is bounded by
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cd�1 + dimX
2 for some constant c—see Eq. (9). Since the number of such

summands grows linearly with d, in the limit d→∞ the contribution to
cd from k=2BR

ffiffiffi
d

p vanishes.
As d→∞, therefore

cd ∼
1

ð2πdÞN�1
2
QN

i= 1 p
dpi +

1
2

i

X
k2Z2\C\B

R
ffiffi
d

p
withα�k =d

exp � ðk � x*ÞTA ðk � x*Þ
2d

 !

Writing yk = ðk � x*Þ=
ffiffiffi
d

p
, considering the sum here as a Riemann sum,

and letting R→∞, we see that

cd ∼
1

ð2πdÞN�1
2
QN

i= 1 p
dpi +

1
2

i

ffiffiffi
d

p Z
Lα

exp � 1
2
yTAy

� �
dy

where Lα is the line through the origin given by kerα and dy is the
measure on Lα given by the integer lattice Z2 \ Lα � Lα .

To evaluate the integral, let

α? =
1
‘

b

�a

� �
where ‘= gcdfa,bg

and observe that the pullback of dy along the map R ! Lα given by
t↦ tα⊥ is the standard measure on R. Thus

Z
Lα

exp � 1
2
yTAy

� �
dy=

Z 1

�1
exp � 1

2
θx2

� �
dx =

ffiffiffiffiffiffi
2π
θ

r

where θ=
PN

i= 1
1

‘2pi
ðαi � α?Þ2, and

cd ∼
1

ð2πdÞdimX
2
QN

i= 1 p
dpi +

1
2

i

ffiffiffi
θ

p

Taking logarithms gives the result. □

Data availability
Our datasets42,43 and the code for the Magma computer algebra
system44 that was used to generate them are available from Zenodo45

under a CC0 license. The data was collected using Magma V2.25-4.

Code availability
All code required to replicate the results in this paper is available from
Bitbucket under an MIT license46.
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