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Proteogenomics of different urothelial
bladder cancer stages reveals distinct
molecular features for papillary cancer and
carcinoma in situ

Zhenmei Yao1,6, Ning Xu1,6, Guoguo Shang1,6, Haixing Wang1,6, Hui Tao2,6,
Yunzhi Wang 1, Zhaoyu Qin 1, Subei Tan 1, Jinwen Feng 1, Jiajun Zhu1,
Fahan Ma 1, Sha Tian 1, Qiao Zhang1, Yuanyuan Qu3, Jun Hou1 ,
Jianming Guo1 , Jianyuan Zhao 4,5 , Yingyong Hou 1 & Chen Ding 1

The progression of urothelial bladder cancer (UC) is a complicated multi-step
process. We perform a comprehensive multi-omics analysis of 448 samples
from 190 UC patients, covering the whole spectrum of disease stages and
grades. Proteogenomic integration analysis indicates the mutations of HRAS
regulated mTOR signaling to form urothelial papilloma rather than papillary
urothelial cancer (PUC). DNA damage is a key signaling pathway in the pro-
gression of carcinoma in situ (CIS) and related to APOBEC signature. Glucoli-
pidmetabolism increase and lower immune cell infiltration are associatedwith
PUC compared to CIS. Proteomic analysis distinguishes the origins of invasive
tumors (PUC-derived and CIS-derived), related to distinct clinical prognosis
and molecular features. Additionally, loss of RBPMS, associated with CIS-
derived tumors, is validated to increase the activity of AP-1 and promote
metastasis. This study reveals the characteristics of two distinct branches (PUC
and CIS) of UC progression and may eventually benefit clinical practice.

Bladder cancer is the tenth most common cancer worldwide, with
approximately 570,000 new cases of bladder cancer reported each
year1. Over 90% of bladder cancers are urothelial cell carcinoma, while
about 5% are squamous cell carcinoma2. Stratification of patients with
urothelial bladder cancer (UC) based on pathological stage and grade
is crucial for clinical decision-making. Staging distinguishes non-

muscle-invasive tumors (NMIBCs) from muscle-invasive tumors
(MIBCs) based on the depth of invasion.MIBCs have a higher tendency
for lymph node and organ metastasis3. NMIBCs consist of different
entities, including carcinoma in situ (CIS; Tis), papillary non-invasive
tumors (Ta), and tumors invading the lamina propria (T1)4. There are
several risk factors for UC, including age, gender, race, smoking,
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occupational exposure to aromatic amines, and pathogen
infections5–7. However, the pathogenesis of UC and its stage-wise
progression have not yet been fully explained and defined.

CIS, a flat aggressive lesion, is one of the NMIBCs. A primary CIS
unassociated with current or previous bladder carcinoma has been
reported in ~3% of all patients with bladder cancer. 50% of CIS cases
occur concurrently with T1-stage diseases, and 60% of CIS cases occur
concurrently with muscle-invasive diseases (T2-T4)8,9. Patients with
isolated or combinedCIShave a high risk of progressing to themuscle-
invasive stage10. CIS often exhibits mutations in tumor suppressor
genes, such as TP53, RB1, and PTEN11,12. Unfortunately, the extreme
trace amount of CIS tissue samples has limited in exploring the key
events and the molecular mechanism during the CIS progression.

Papillary lesions of the bladder include benign urothelial papil-
loma and malignant papillary urothelial carcinoma (PUC). Although
PUC and papilloma share morphological similarities, they are distinct
clinicopathological typeswith varying treatmentoptions andexpected
clinical outcomes. Papilloma is a benign disease with a low risk of
recurrence and a potential formalignancy, whereas PUC is amalignant
condition that may necessitate invasive treatment or surveillance13.
Recently, Sumit et al. showed that oncogenic mutations in HRAS and
KRAS were found in nearly all instances of papilloma, while mutations
commonly associated with PUC, such as FGFR3, chromatin modifier
genes, and TERT promoter, were infrequently detected14. However, for
PUC and papilloma, their pathogenic pathways and how the genomic
aberrations affect the proteomic alterations and phosphoproteomic
actions remains unclear yet. Additional comprehensive studies to
further clarify the molecular differences between papilloma and PUC
are warranted.

Based on histological and clinical observations, two types of
potential precursor lesions for invasive cancer are recognized: PUC
and CIS. The PUC shows a high recurrence rate, while CIS has a high
progression rate15. Mutation analysis shows that the typical char-
acteristic of PUC is gain-of-function mutations in oncogenes such as
HRAS, FGFR3, and PI3K, while the typical characteristic of CIS is loss-of-
function mutations affecting tumor suppressor genes such as TP53,
RB1, and PTEN16,17. The CIS could co-occur with the PUC in one patient.
Whereas, no clinically useful markers exist currently that identify
whether these patients originate in CIS or PUC. Thus, more specific
features of two distinct branches (PUC and CIS) and their biomarkers
remain to be explored.

Here, we perform a comprehensive genomic, transcriptomic,
proteomic, and phosphoproteomic analysis to profile the proteoge-
nomic patterns of 448 samples dissected from urothelial bladder
neoplasm of different stages in 190 patients. The comprehensive
multi-omics analysis elucidates the molecular characterization of
papilloma, PUC, and CIS. We also distinguish the origins of invasive
tumors (PUC-derived and CIS-derived), which reflecting distinct clin-
ical prognosis and molecular features. Meanwhile, proteogenomic
analysis uncovers the key chromosomal events in the UC metastatic
group and proposes the potential functions of RBPMS in metastasis.
We further validate that RBPMS deficiency promotes UC development
through facilitating the formation of the c-Fos/c-Jun complex and thus
results in the activation of AP-1 in human urinary bladder carcinoma
T24 and 5637 cell lines. Our multi-omics analysis enables a more
comprehensive understanding of the molecular characteristics of two
distinct branches (PUC and CIS) in the UC progression and can further
advance precision medicine.

Results
Proteogenomic landscape of urothelial bladder cancer pro-
gression cohort
Histopathologically, the progression of urothelial bladder cancer (UC)
was a multi-step process that initiates as noninvasive urothelial
hyperplasia, progresses to carcinoma in situ (CIS) or papillary

urothelial cancer (PUC), evolves into invasive cancer (propria mem-
brane or muscle infiltration), and culminates in the potentially lethal
stage of lymph nodemetastasis and distantmetastasis4. We previously
reported an integrated multiomics analysis of 116 UC patients with
predominantly invasive and high-grade samples (95%)18. We have now
expanded thework to a larger UCpatient series withmore noninvasive
and low-grade samples that are essential to acquire insight into the
progression of UC (Table 1). Additionally, comparing to previously
published UC datasets (UROMOL cohort19 and TCGA cohort20), our
cohort (henceforth Fudan cohort) has the following characteristics: 1)
All the patients in our cohort were Asian, while only 7% of patients in
the TCGA cohort were Asian. All patients in the UROMOL cohort were
European; 2) Our cohort included patients in both the early and late
stages of the disease, while the UROMOL cohort included early-stage
patients (Ta-T1), and the TCGA cohort included late-stage patients (T2-
T4); 3) The benign papilloma was exclusively included in our cohort.

Table 1 | The baseline characteristics of patients among dif-
ferent cohorts

Characteristics TCGA,
2018
(N = 436)

UROMOL
(N = 535)

Xu et al.,
2022
(N = 116)

Fudan
(N = 190)

Chi-square
p value

Age no. (%)

≥ 70 yr 209 (48) 254 (47) 45 (39) 63 (33) p = 0.0023

<70 yr 227 (52) 281 (53) 71 (61) 127 (67) –

Gender no. (%)

Male 317 (73) 382 (71) 88 (76) 150 (79) p = 0.35

Female 119 (27) 153 (29) 28 (24) 40 (21) –

Smoking no. (%)

Yes 302 (70) NA 18 (15) 29 (15) p = 1.7E-8

No 115 (26) NA 98 (85) 161 (85) –

Unknown 18 (4) NA 0 0 –

Grade no. (%)

High 412 (94) 215 (40) 110 (95) 148 (78) p = 3.2E-6

Low 21 (5) 320 (60) 6 (5) 42 (22) –

Unknown 3 (1) 0 0 0 –

T stage no. (%)

Ta 0 397 (74) 11 (9) 37 (21) p = 2.2E-16

T1 3 (1) 135 (26) 34 (29) 52 (29) p = 8.5E-7

T2 127 (29) 0 46 (40) 59 (33) –

T3 208 (48) 0 22 (19) 20 (11) –

T4 64 (15) 0 3 (3) 10 (6) –

Tx 2 (<1) 0 0 0 –

Unknown 32 (7) 0 0 0 –

Papilloma no. (%)

Yes 0 0 0 12 (6) p = 2.2E-16

No 436 (100) 0 116 (100) 178 (94) –

Concomitant CIS no. (%)

Yes 0 78 (15) 0 42 (22) p = 2.2E-16

No 0 459 (85) 116 (100) 148 (78) –

Unknown 436 (100) 0 0 0 –

Geographical features no. (%)

Asian 31 (7) 0 116 (100) 190 (100) p = 2.2E-16

European 274 (63) 535 (100) 0 0 –

Others 131 (30) 0 0 0 –

History of treatment no. (%)

Yes 10 (2) 0 0 0 p = 0.54

No 426 (98) 535 (100) 116 (100) 190 (100) –

Pearson’s Chi-squared test was used to examine the differences among different categorical
variables.
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We collected 448 samples from 190UC patients in this study, covering
precancerous stage (morphologically normal urothelium [Normal],
hyperplasia, the urothelial proliferation of uncertain malignant
potential [UPUMP]), the benign stage (Papilloma), and the tumor stage
(CIS, PUC, invasive cancer without otherwise specified histology [NOS]
or with variant histology [Variant]) (Fig. 1a and Supplementary Fig. 1a,

b). All patients had no history of preoperative treatment and were
recruited from Zhongshan Hospital in Shanghai. All samples were
isolated from formalin-fixed, paraffin-embedded (FFPE) sections and
evaluated by three experts in urologic pathology to confirm their
accuracy (Methods). A schematic diagram of the experimental design
is shown in Fig. 1a. The clinical and pathological characteristics, as well
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as the subtypes of the patients, are summarized in Supplementary
Data 1. In total, 448 samples were collected for proteomic profiling, in
which 211 samples (139 cases), 125 samples (168 cases), and 67 samples
(43 cases) were conducted on phosphoproteomic profiling, whole-
exome sequencing (159 depth-coverage) and transcriptomic sequen-
cing (128 depth-coverage), respectively (Fig. 1b and Supplemen-
tary Fig. 1c).

Label-free quantificationmeasurement of 448 samples resulted in
a total of 16,151 protein groups at a 1% false discovery rate (FDR) at the
protein and peptide levels (Fig. 1c and Supplementary Data 1)
(Methods)21,22. The number of identified proteins was slightly elevated
from approximately 7500 gene products in the precancerous stage to
over 8500geneproducts in the tumor stage (Supplementary Fig. 1d). A
phosphoproteomic analysis was conducted on 211 samples, 37,204
phosphosites corresponding to 6476 phosphoproteins were identified
and quantified (Fig. 1d). Whole-cell extract of HEK293T cells was used
as the quality control (QC), which represented the MS was robust and
was consistent basedon the Spearman’s correlation coefficients (mean
= 0.90) (Supplementary Fig. 1f). The sample proteome exhibited a
unimodal distribution and passed the proteomics quality control
procedure (Supplementary Fig. 1e). Transcriptomic sequencing was
carried out on 67 samples, and we identified 16,318 genes per sample,
with fragments per kilobase of transcript per million fragments map-
ped (FPKM) of more than 1.

To explore the relationship between proteome and phospho-
proteome, gene-wise and sample-wise correlation analysis was per-
formed between 5907 phosphoprotein-protein pairs for normal
samples, papilloma samples, and tumor samples (PUC, CIS, NOS, and
Variant). The median correlation value of normal was 0.15, while
tumors of different subtypes had higher median values ranging from
0.21 to 0.24 (Supplementary Fig. 1g–l), which was also observed in the
previous studies23,24. In normal samples, 62% of phosphoprotein-
protein pairs exhibited positive spearman correlation coefficients that
were associated with pathways such as the epithelial cell differentia-
tion and actin cytoskeleton organization pathway (Supplementary
Fig. 1g). In papilloma samples, 63% of phosphoprotein-protein pairs
showed positive spearman correlation coefficients that were asso-
ciated with pathways such as the cell adhesion and inositol phosphate
metabolism pathway (Supplementary Fig. 1h). In tumor samples, the
process including cell cycle, DNA repair, and PI3K-Akt signaling path-
way displayed a positive correlation pattern (Supplementary Fig. 1i–l),
further revealed the concordance between phosphoproteome and
proteome in regulating core process in tumor and normal. In addition,
we further focused on outliers which affect tumorigenesis through
phosphorylation. To identify tumor-associated phosphoproteins, we
conducted a screening of phosphoproteins that exhibited a >2-fold
increase in tumor samples compared to normal samples, without a
corresponding increase in protein abundance. The results showed that
470 phosphoproteins, which exhibited greater changes than their
corresponding protein abundance (Supplementary Fig. 1m, Wilcoxon
rank-sum test, Benjamini-Hochberg (BH)-adjusted p < 0.05, T/N ratio >
2), were significantly enriched in pathways related to the regulation of
cell differentiation and protein phosphorylation (Supplementary
Fig. 1n). Among the 470 phosphoproteins, we found that some phos-
phoproteins which affected cell proliferation, such as RPS6KA3 and
PPP1R13L (Supplementary Fig. 1o, p), were highly expressed in tumors

only at the phosphorylation level. In addition, the phosphorylation of
theRPS6KA3 substrates (BADS118,MTORS1261, SRF S224, etc.), which
involved in the regulation of cell differentiation and the inhibition of
apoptotic were upregulated in tumor samples (Supplementary Fig. 1q).
These analyses showed that the proteome and phosphoproteome
possess unique features and, when integrated appropriately, could
bring insights to find driving mechanisms in UC progression.

At the genomic level, different mutations were detected in dif-
ferent tumor stages and pathological subtypes. As for the benign
urothelial papilloma, it has less mutated genes. Only the oncogenic
hotspot mutations in HRAS (83%) were present in nearly all cases of
papilloma, whereas alterations in cell cycle genes and chromatin
modifying genes were rarely observed, suggesting that papilloma was
driven primarily by RAS pathway activation (Fig. 1e, Fisher’s exact test,
p = 5.0E-5). As for themostmalignantmuscle-invasive tumors (MIBCs),
the mutations of TP53 were more frequent in MIBC when compared
with non-muscle-invasive tumor (NMIBCs) and benign papilloma
(Fig. 1e, Fisher’s exact test, p =0.035). In addition, mutations in TP53
were also identified in a mutually exclusive pattern with alterations in
HRAS and FGFR3 (Supplementary Fig. 1r, Fisher’s exact test, p =0.002).
Furthermore, we identified four mutational signatures by Sigminer
(SBS5, which is currently unknown but appears to be clock-like in
nature; SBS1, which is associated with aging; SBS30, which is linked to
DNA base excision repair; and SBS13, which is associated with the
APOBEC cytidine deaminase (Methods; Supplementary Fig. 1s and
SupplementaryData 1).We found that the SBS1mutation signaturewas
slightly more frequent in patients with early-stage (NMIBC, 62%),
whereas the SBS30 mutational signature was prevalent in late-stage
patients (MIBC, 71%) (Fig. 1f). To verify our findings, we analyzed the
mutational signatures identified in the UROMOL cohort19 and the
TCGA cohort20 (Supplementary Fig. 1t, u). We found that the SBS1
mutational signaturewasonlypresent in theUROMOL cohort focusing
on the early-stage of the disease (Fig. 1g), while the SBS30 mutational
signature was only present in the TCGA cohort focusing on the late-
stage of the disease (Fig. 1h). These results further indicated that the
SBS1 mutational signature belongs to the signature of early-stage of
the disease, whereas the SBS30 mutational signature belongs to the
signature of the later-stage of the disease.

Taken together, 448 samples were collected and classified into 9
pathological tissues subtypes covering 6 tumor stages in our cohort.
We established a comprehensive landscape of UC progression, span-
ning from theprecancerous stages (Normal, Hyperplasia, andUPUMP),
the benign stage (Papilloma), and ultimately to the tumor stages (CIS,
PUC, NOS, and Variant) at the multi-omics level, which covering the
whole spectrum of disease stages and grades.

DNA damage signaling related to APOBEC signature was a key
signaling pathway in the progression of carcinoma in situ
CIS is a type of flat urothelial lesion with varying thickness, and up to
60% of CIS cases will progress to aggressive UC25. Proteogenomic
investigation of different disease stages, spanning from normal,
hyperplasia, UPUMP, CIS, and ultimately to invasive tumors (NOS),
could provide valuable insights into the molecular mechanisms
involved inCISprogression. Principal component analysis (PCA)of 8146
proteins distinguished between precancerous lesions and carcinoma,
indicating an abnormal proteomic landscape during the development

Fig. 1 | Proteogenomic landscape of urothelial bladder cancer progression
cohort. a Top panels: a model depicting the progression of urothelial bladder
cancer (UC) and the workflow of the experiment. Bottom panels: the clinical
information and the number of samples for proteomic, phosphoproteomic, WES,
and RNA-seq analysis. b Summary of data and metadata generated in this study.
cCumulative number of protein identifications inUCprogression. dThe overlap of
proteins and phosphoproteins. Six thousand one hundred and ninety-nine proteins
were identified with 36,450 phosphosites. e An overview of the genomic landscape

of urothelial bladder cancer by tumor stage and pathological subtype. At the bot-
tom are SBS signatures. At the right are mutational frequencies for genes among
different pathological subtypes. f Sankey diagram analysis of SBS signatures and
urothelial bladder cancer of different tumor stages in Fudan cohort. g Sankey
diagram analysis of SBS signatures and urothelial bladder cancer of different tumor
stages in UROMOL cohort. h Sankey diagram analysis of SBS signatures and uro-
thelial bladder cancer of different tumor stages in TCGA cohort. Source data are
provided as a Source Data file.
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and progression of CIS (Fig. 2a and Supplementary Data 2). Pathway
enrichment analysis of the differentially expressed proteins (Methods)
showed that normal-enriched proteins were involved in epithelial cell
differentiation and reactive oxygen species (ROS) metabolic, whereas
proteins enriched in hyperplasia mainly participated in immune
response such as chemokine signaling and cellular response to

interferon (Fig. 2b, c). As for the UPUMP, a lesion with thickened uro-
thelium and with no true papillary fronds, it was more related to car-
bohydrate metabolic and covalent chromatin modification pathways
(Fig. 2b, c). Interestingly, we found that CIS had the similar protein
expression profile associated withmalignancy as NOS, such as stronger
cell proliferation and DNA damage repair (Fig. 2c and Supplementary
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Fig. 2a), which was consistent with the high-risk characteristics of CIS26.
In addition, we found that ROS metabolic was downregulated and
response to DNA damage stimulus was upregulated in both CIS and
NOS (Fig. 2d and Supplementary Fig. 2b, Wilcoxon rank-sum test,
p = 3.2E-4). The generation of ROS is one of the signs of cancer
progression27, and it leads to oxidative damage to DNA and proteins28.
We generated a DNA damage response (DDR) score for our samples
based on known DDR marker phosphoproteins29 (Methods; Fig. 2e,
Supplementary Data 2). As expected, the CIS and NOS showed a high
DDR score (Fig. 2e, Kruskal-Wallis test, p= 1.2E-4).

To further explore the reason as to why there was higher DDR
score in the CIS and NOS, we calculated the spearman correlation
coefficient for theDDR score andmutational signatures.We found that
theDDR scorehad the highest correlationwith theAPOBECmutational
signature (Fig. 2f; Spearman’s r = 0.39, p = 0.037). The APOBEC muta-
tion signature is generated by the cytidine deaminase of the apolipo-
protein B mRNA editing enzyme30, 31. As expected, the expression of
APOBEC3s proteins (APOBEC3A, APOBEC3B, APOBEC3C, and APO-
BEC3G) were higher in APOBEC-signature-containing samples (Sup-
plementary Fig. 2c, Supplementary Data 2; Wilcoxon rank-sum test,
p =0.035). Furthermore, the greater expression level of APOBEC3s in
samples containing the APOBEC signature was also found in the
UROMOL cohort (Supplementary Fig. 2d). The levels of DDR score
were found to be significantly associated with the expression of
APOBEC3s protein (Fig. 2g, h; Spearman’s r = 0.38, p = 1.7E-4). Mean-
while, the higher levels of APOBEC3s proteins were also observed in
the CIS and NOS (Fig. 2i; Wilcoxon rank-sum test, p = 3.7E-4).

Next, we interrogated the source and consequences of the higher
levels of APOBEC3sproteins. Theprotein abundanceof APOBEC3swas
positively correlated with the pyrimidine metabolism and DNA repair
KEGG gene set in our cohort, which was further confirmed in the
UROMOL cohort (Fig. 2j and Supplementary Fig. 2e, f). Pathway ana-
lysis revealed a number of proteins involved in DNA repair and pyr-
imidine metabolism were more abundant in the CIS and NOS, such as
FEN1, MSH6, PRPS2 and GMPS (Fig. 2k). In addition, these proteins
showed positive correlation with the APOBEC3 members, especially
with 3B and 3C (Fig. 2k). Middlebrooks et al. reported that the APO-
BEC3 expression was predominantly induced by treatment with a
DNA-damaging drug in bladder cancer cell line, which further con-
firming our findings32. Taken together, we found DNA breaks acquired
during the oxidation system and antioxidant system imbalance could
provide a source of single-stranded DNA, further stimulate APOBEC3
expression, and fuel APOBEC-mediated mutagenesis and CIS pro-
gression (Fig. 2l).

Proteogenomic profiles distinguished papilloma from papillary
urothelial cancer
Inverted urothelial papilloma is a rare epithelial tumor of the urinary
tract, typically considered a benign clinical condition, whereas

papillary urothelial cancer (PUC) carries a high risk of progression33.
The difference in pathogenic pathways probably underlies the differ-
ences in clinical behavior between PUC and papilloma. PCA analysis
showed a clear separation of papilloma and PUC in the proteome level
(Supplementary Fig. 3a, Supplementary Data 3). Differential proteins
analysis between papilloma and PUC resulted 2147 proteins (Supple-
mentary Fig. 3b; Wilcoxon rank-sum test, BH-adjusted p < 0.05, PUC/
papilloma ratio > 2 or <0.5; Supplementary Data 3). Pathway enrich-
ment analysisofdifferentially expressedproteins showed that proteins
enriched in PUC were involved in the JAK STAT signaling pathway,
mTOCR1 signaling pathway, and DNA repair, whereas proteins enri-
ched in papilloma mainly participated in the P53 pathway, MAPK
pathway, and WNT beta catenin signaling pathway (Fig. 3a). The ana-
lysis of kinase activity scores inferred from phosphorylation sites by
employing PTM signature enrichment analysis34 (Methods), revealed
that major kinases activated in papilloma and PUC, such as CDK16,
MAP3K8, and TRIB2 were activated in PUC, while RPS6KA2, PRKCG,
and IKBKE were activated in papilloma (Fig. 3a).

To determine the divergence of genomic drivers in papilloma
and PUC, we compared the differences in genomic variations
between them. The result showed that papilloma carried higher
mutation rate of genes, such as MPRIP, HRAS, and MAP3K1, while
PUC carried a higher mutation rate of genes, such as FGFR3 and
PPFIBP1 (Fig. 3a; Fisher’s exact test, p < 0.05). We also investigated
the protein expression level of these mutations, the results showed
four proteins (HRAS, ALDH7A1, CBLB, and MPRIP) were differently
expressed between papilloma and PUC (Fig. 3b). Among these
mutations, HRAS mutations have been reported to be predominant
in inverted urothelial papilloma35, and our result were consistent
with this. RAS (HRAS, KRAS, and NRAS), as the second largest
mutated gene driver in various human cancers, has long been a vital
research target for cancer. Its function is to transform the extra-
cellular environment into a cascade of intracellular signal trans-
duction. We further found that the RTK-RAS pathway was activated
in papilloma (Supplementary Fig. 3c), and the most common
mutational hotspot inHRAS in our cohort wasHRASQ61R (8/10), which
was consistent with previous studies14, 36 (Supplementary Fig. 3d, e).

To investigate how mutations in HRAS drove its downstream
pathways, we examined the expression of HRAS at the protein level in
patients with or without HRAS mutations. The result showed that
patients with HRAS mutations have higher levels of HRAS protein
expression (Fig. 3c;Wilcoxon rank-sum,p = 0.002), and the expression
of HRAS in papilloma was higher than PUC (Fig. 3d; Wilcoxon rank-
sum, p = 2.1E-4). The significant difference was also observed in the
TCGA cohort (Supplementary Fig. 3f). To further establish a connec-
tion between genetic alterations and corresponding downstream
pathways, we explored the correlationbetween the protein abundance
of HRAS and enriched pathways. It has been reported that RASmutant
protein regulates tumor cell proliferation, apoptosis, and angiogenesis

Fig. 2 | DNA damage signaling related to APOBEC signature was a key signaling
pathway in the progression of CIS. a Principal component analysis (PCA) of
proteomic data (8,146 proteins) among Normal (green, n = 87), Hyperplasia (pur-
ple, n = 35), UPUMP (blue, n = 6), CIS (navy, n = 42), and NOS (red, n = 93).
b Pathways enriched for differentially expressed proteins in Normal, Hyperplasia,
UPUMP, CIS, and NOS. c Heatmap of differentially expressed proteins in Normal,
Hyperplasia, UPUMP, CIS, and NOS. d Heatmap of the protein abundance of reac-
tive oxygen species (ROS) metabolic and DNA damage response-related genes.
e Heatmap showing each sample’s phosphorylation status for the set of phos-
phoproteins used to determine DNA damage response (DDR) score (Kruskal-Wallis
test, p = 1.2E-4). f Volcano plot showing the correlation between DDR score and
mutational signatures (two-sided Spearman’s correlation test). g Left: heatmap of
APOBEC3s protein abundance and DDR score in different tissues. Right: heatmap
showing the Spearman’s correlation between APOBEC3s protein abundance and
the DDR score (two-sided Spearman’s correlation test). h Correlation of DDR score

with the protein abundance of APOBEC3s (two-sided Spearman’s correlation test).
i Expression profiles of APOBEC3s in Normal (n = 87), Hyperplasia (n = 35), UPUMP
(n = 6), CIS (n = 42), and NOS (n = 93) (two-sided Wilcoxon rank-sum test, p = 3.7E-
4). Boxplots showmedian (central line), upper and lower quartiles (box limits), 1.5×
interquartile range (whiskers). j Volcano plot showing the correlation between
enriched KEGG pathways scores (sample-specific gene set enrichment analysis
(ssGSEA)) and APOBEC3s protein abundance (two-sided Spearman’s correlation
test). k Left: heatmap showing the relative abundance of proteins involved in DNA
repair and pyrimidine metabolism across Normal, Hyperplasia, UPUMP, CIS, and
NOS samples. Right: heatmap showing the Spearman’s correlation between APO-
BEC3s and the proteins involved in DNA repair and pyrimidine metabolism (two-
sided Spearman’s correlation test). l Overview of ROS and DNA repair pathways
associated with APOBEC mutational signature. *p <0.05 is considered statistically
significant. *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001, ns > 0.05. Source data
are provided as a Source Data file.
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through downstream signaling pathways such as MAPK and PI3K37.
Notably, we found that the protein abundance of HRAS was positively
correlated with the MAPK pathway (Fig. 3e). We further found that
higher expression of HRAS was positively correlated with higher
phosphorylation ofMAP3K1, MAPK1, and RPS6KA3 (Fig. 3f–h), and the
expression of RPS6KA3 was higher in papilloma than PUC (Figs. 3i, j).

Additionally, we were interested that the expression of HRAS was
negatively correlated with mTORC1 signaling pathway (Fig. 3e). To
explore the intrinsic relationship between HRAS and
mTORC1 signaling pathway, we further found that the expression of
RPS6KA3 was positively correlated with TSC2 (Fig. 3k; Spearman’s
r = 0.7, p = 9.4E-7). Previous study had reported that RPS6KA3 potently
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inhibits TSC2 ability to suppress mTOR signaling38. Notably, we
observed that TSC2 was negatively correlated with mTORC1 signaling
pathway (Fig. 3i; Spearman’s r = -0.39, p =0.014). These results sug-
gested that the HRAS protein might suppress the mTOR1 signaling
pathwayby inhibiting TSC2 ability (Fig. 3m). The summary of theHRAS
mutation associations was shown in Fig. 3n.

The differentmetabolic and immune characteristics of papillary
urothelial cancer and carcinoma in situ
PUC and CIS are the two main forms of early bladder cancer with
distinct clinical, pathological, and molecular features39. According to
histological grading, CIS is a high-grade tumor, while PUC could be
classified into high-grade and low-grade tumors (HGPCand LGPC)with
divergent molecular oncogenesis. PCA analysis of proteomic (8,134
proteins) and phosphoproteomic (2,222 phosphoproteins) data sepa-
rated CIS samples from PUC samples (Fig. 4a and Supplementary
Fig. 4a; Supplementary Data 4), revealing the molecular differences
between PUC and CIS. The sample-specific gene set enrichment ana-
lysis (ssGSEA, Methods) showed that pathways related to glucolipid
metabolism, such as glycerophospholipid metabolism, glycolysis, and
gluconeogenesis, were enriched in the PUC group (Fig. 4b, c; Supple-
mentary Data 4). On the contrary, epithelial-mesenchymal transition
(EMT), as well as other immune and oncogenic signaling pathways,
such as tumor necrosis factor alpha (TNF-α), complement cascades,
and IL6 JAK-STAT3 signaling, were enriched in the CIS group (Fig. 4b,
c). In addition, we found that mitotic spindle assembly and DNA
replication pathways were more highlighted in HGPC and CIS than in
LGPC (Fig. 4b, c). The HGPC and CIS samples showed a highly sig-
nificant overexpression of the TPX2 protein, which is a spindle
assembly factor (Supplementary Fig. 4b). TPX2 could activate aurora
kinase A (AURKA) and mediate the localization of AURKA to spindle
microtubules40,41. The significant positive correlation between TPX2
and AURKA was observed in both our cohort and the TCGA cohort
(Supplementary Fig. 4c, d). We then performed kinase activity analysis
based on the levels of substrate phosphorylation and compared spe-
cific activated kinases among LGPC, HGPC, and CIS (Methods). As
expected, AURKA showed higher kinase activity in HGPC and CIS
compared with LGPC (Supplementary Fig. 4e; Wilcoxon rank-sum test,
p =0.0025). The upregulation of TPX2 modulated the activity of
AURKA and facilitated mitotic spindle assembly in the HGPC and CIS
(Supplementary Fig. 4f).

To further investigate the different molecular mechanisms
between PUC and CIS, we focused on transcription factors, as they
regulate numerous biological processes and play a pivotal role in
the development of cancer42. Interestingly, we found that the
FOXO1 and JUN proteins were observably over-expressed in the
PUC and CIS, respectively (Fig. 4d, Wilcoxon rank-sum test, BH-

adjusted p < 0.05, Supplementary Data 4). FOXO1 belongs to the
FOXO transcriptional protein family and is the main regulatory
factor of glucose metabolism43, 44. AKT1, one of the kinases that
phosphorylates FOXO145, showed the highest correlation with the
protein abundance of FOXO1 (Fig. 4e, f; Spearman’s r = 0.31,
p = 2.4E-4). Notably, the kinase activity (p = 0.012) and protein
abundance of AKT1 (p = 3.2E-5) were higher in the PUC compared
with the CIS (Fig. 4f; Wilcoxon rank-sum test). Fu et al. reported
that dephosphorylated FOXO1 upregulates gluconeogenic genes,
such as those encoding phosphoenolpyruvate carboxy kinase and
the catalytic subunit of glucose-6-phosphatase, whereas AKT1
inhibits gluconeogenesis by phosphorylating FOXO146. These
results suggested that AKT1 regulated gluconeogenesis and gly-
colysis by regulating the phosphorylation of FOXO1 in the PUC
(Fig. 4g and Supplementary Fig. 4g). Another transcription factor
that showed the highest fold change between CIS and PUCwas JUN
(Fig. 4d; Wilcoxon rank-sum test, BH-adjusted p = 0.002, CIS/PUC
ratio > 2). JUN is a key regulatory factor of carcinogenesis events
and affects the expression of a series of cell proliferation, migra-
tion, and immune regulatory factors, which are closely related to
the occurrence and metastasis of cancer47–49. We found that many
proteins participating in the EMT and immune, which are JUN
target genes (TG), were upregulated in CIS (Fig. 4h and Supple-
mentary Fig. 4g), such as SERPINA3, ITGB5, and VCAM1. These
findings suggested that JUN might regulate the EMT and immune
by regulating the downstream TG of JUN in the CIS.

We compared the xCell scores50 (Methods) of PUC and CIS based
on proteomic data. The microenvironment and immune scores were
higher in CIS than in PUC (Fig. 4i, Supplementary Data 4, Wilcoxon
rank-sum test, p <0.05), indicating a higher degree of tumor infiltra-
tion by immune cells in CIS than in PUC. Subsequently, we compared
the z-scores of several immune cells prevalent in CIS and PUC and
found that the composition of tumor-infiltrating immune cells was
significantly different between the tumor types (Fig. 4j). We observed
that the CIS had higher infiltration of CD8 + T cells, dendritic cells, and
macrophages M1 than the PUC (Fig. 4j, Wilcoxon rank-sum test,
p <0.05). Additionally, we observed the glycolysis showed the highest
negative correlation with the immune score in PUC and CIS (Fig. 4j, k,
Spearman’s r = 0.44, p = 2.4E-8), including enrichment of enzymes
responsible for the production and secretion of lactate, which is a
known immunosuppressive factor in the tumor microenvironment51.
The significantly negative correlation between the immune score and
glycolysis was also detected in Dyrskjøt’s cohortm, including PUC and
CIS52 (Supplementary Fig. 4h).

Together, our results showed that the PUC was characterized
by the higher level of glucolipid metabolism-related pathways,
whereas the CIS had higher immune cell infiltration (Fig. 4l). These

Fig. 3 | Proteogenomic profiles distinguished papilloma from papillary uro-
thelial cancer. a Heatmap of kinase activity scores and differentially regulated
pathways between papilloma and papillary urothelial cancer (PUC), annotatedwith
clinical features. two-sided Fisher’s exact test was used for categorical variables:
age, status of genes withmutations (MPRIP;HRAS;MAP3K1; RPL14; PPFIBP1; FGFR3),
etc. b The scatter plot showing the significantly different mutated genes and their
proteins expression difference in papilloma and PUC. The y axis represented the p
value (-log10) of two-sidedFisher’s exact test formutated genes betweenpapilloma
and PUC, and the x axis represented the p value (-log10) of two-sided Wilcoxon
rank-sum test. c The protein expression of HRAS in patients with or without HRAS
mutations (two-sided Wilcoxon rank-sum test, p =0.002). d Boxplots showing the
protein expression of HRAS in papilloma (n = 12) and PUC (n = 30) (two-sided Wil-
coxon rank-sum test, p = 2.1E-4). Boxplots show median (central line), upper and
lower quartiles (box limits), 1.5× interquartile range (whiskers). e Volcano plot
showing the correlation between different pathways and the protein expression of
HRAS (two-sided Spearman’s correlation test). f Correlation of HRAS protein
abundance with MAP3K1 phosphoprotein abundance (two-sided Spearman’s

correlation test). gCorrelation ofMAPK1 phosphoprotein abundancewithMAP3K1
phosphoprotein abundance (two-sided Spearman’s correlation test). h Correlation
of MAPK1 phosphoprotein abundance with RPS6KA3 phosphoprotein abundance
(two-sided Spearman’s correlation test). i Boxplots showing the phosphoprotein
expression of RPS6KA3 in papilloma (n = 10) and PUC (n = 47) (two-sidedWilcoxon
rank-sum test, p = 1.3E-4). Boxplots show median (central line), upper and lower
quartiles (box limits), 1.5× interquartile range (whiskers). j Ranked co-
phosphorylation signature of MAPK pathway aligned with HRAS mutation.
k Correlation of TSC2 phosphoprotein abundance with RPS6KA3 phosphoprotein
abundance (two-sided Spearman’s correlation test). l Correlation of TSC2 phos-
phoprotein abundance with mTORC1 pathway (two-sided Spearman’s correlation
test).mHeatmap of rankedHRASprotein abundance and the protein abundanceof
mTORC1 pathway-related genes. n A model depicting the multilevel regulation of
HRASmutations. *p <0.05 is considered statistically significant. *p <0.05, **p <0.01,
***p <0.001, ****p <0.0001, ns > 0.05. Source data are provided as a Source
Data file.
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results suggested that patients with CIS may benefit from treat-
ment with immune therapy, while those with PUCmay benefit from
glycolysis inhibitors treatments. Moreover, different molecular
characteristics of the PUC and CIS provide the basis for distin-
guishing the origins of invasive tumors.

The distinction of PUC - and CIS-derived tumors and their
association with clinical outcomes
Invasive urothelial bladder cancer (including propria membrane infil-
tration and muscle infiltration) could develop from CIS and PUC53,54,
while no markers exist currently that distinguish the origins of these
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invasive tumors. Having described the differences between PUC and
CIS (Fig. 4), we next set out to determine whether comparing PUC-
overrepresented and CIS-overrepresented proteomes could distin-
guish the origins of invasive tumors. We first applied Wilcoxon rank-
sum tests with a Benjamini-Hochberg adjusted p value cutoff (BH-
adjusted p <0.05) and found 2175 differentially expressed proteins
between PUC and CIS (Supplementary Fig. 5a, Supplementary Data 5,
Wilcoxon rank-sum test, BH-adjusted p < 0.05). We used RapidMiner
9.6.0 (Methods) to construct a Fast-Large Margin classifier model
based on the overexpressed proteins of PUC and CIS (Fig. 5a, Sup-
plementary Data 5, N = 18). To train and test the classifier, the samples
were divided according to the sample type, that is, PUC or CIS, where
80% of the samples served as the training set and the remaining 20%
represented the test set.Weapplied 10-fold cross-validation to the80%
of training samples yielded classifier model with high sensitivity (true
positive rate) (82%) and specificity (true negative rate) (91%) in the
discovery cohort (Fig. 5b).When applied to the 20%of testing samples,
the classifier model separately achieved high accuracy of 100%
(Fig. 5b). To evaluate the accuracy of the classifier model for PUC and
CIS, we incorporated additional independent samples (validation
cohort, including 15 PUC samples and 5 CIS samples) from Dyrskjøt’s
cohort52 (Fig. 5c). As shown in Fig. 5d, we observed the classifiermodel
achieved a high accuracy of 95% in validation cohort.

To distinguish the origins of invasive tumors, we applied the
classifier model in invasive tumor samples (N = 86). Thirty-three inva-
sive tumor samples were classified as CIS-derived and 53 samples were
classified as PUC-derived. Consistent with the characteristics of PUC
and CIS, PUC-derived samples were featured by glucolipidmetabolism
pathways and CIS-derived samples were characterized by the higher
level of immune cell infiltration and extracellular matrix pathways
(Fig. 5e). Surprisingly, we found that CIS-derived patients were asso-
ciated with both poor overall survival (OS, p = 0.016) and inferior
progressive-free survival (PFS, p =0.021) (Fig. 5f, log-rank test). In
addition, CIS-derived patients were with more metastasis than PUC-
derived (Fig. 5e, Fisher’s exact test, p =0.0032). When we applied the
classifier model to the TCGA cohort55 consisting almost muscle-
invasive bladder tumors, the similar results were also observed that
poor survival and higher level of immune scores were seen in CIS-
derived patients (Fig. 5g, h, log-rank test, p <0.05; Supplementary
Data 5). Furthermore, we matched PUC-derived/CIS-derived and
transcriptional subtypes fromTCGAcohort (luminal, luminal papillary,
luminal infiltrated, basal squamous, andneuronal).We found thatPUC-
derived matched well with the luminal subtypes (73%), including
luminal, luminal papillary, and luminal infiltrated (Supplementary
Fig. 5b). The CIS-derived agreed well with the basal squamous and
neuronal subtypes (65%) (Supplementary Fig. 5b). These results sug-
gested that the luminal subtype might originate from the PUC, while
the basal squamous and neuronal subtype might originate from the
CIS. Then, we randomly selected two classifier proteins (RNASE2 and
ACOX1) to validate their expression in PUC, CIS, PUC-derived, and CIS-

derived tissues by immunohistochemistry (IHC). As a result, in con-
sistent with our proteomic data, ACOX1 was confirmed to be over-
represented in PUC and PUC-derived tissues, whereas RNASE2 was
overrepresented in CIS and CIS-derived tissues (Supplementary
Fig. 5c). Thus, our study provides a classifier model for distinguishing
invasive tumors as PUC-derived and CIS-derived tumors related to
prognosis and metastasis (Fig. 5i).

Together, ourfindings suggested that thedifferences in prognosis
for invasive patients may, in part, stem from a fundamental difference
in the origins. The classifier to distinguish the origins of invasive
tumors provided predictive information on disease progression in
invasive tumors that the CIS-derived patients need more positive
surveillance and treatment.

Loss of RBPMS potentially driving tumor metastasis
Ten to 15% of patients diagnosed with bladder cancer have distant
metastases at the time of diagnosis56. Up to 50% of patients with
muscle-invasive bladder cancer experience distant metastases to the
lymph nodes, lungs, liver, and bones57. In our cohort, 20% patients
were recorded as having distant metastasis. Compared to the non-
metastatic group, the metastatic group had a significantly worse sur-
vival through Kaplan-Meier curves (Fig. 6b, log-rank test, p = 1.7E-5).
Comparing patients’basic features among twogroups, such as gender,
age, and smoking history, the result showed there were no significant
difference (Fig. 6a; Fisher’s exact test, p >0.05). However, more
patients occurred vascular invasion in the metastatic group than the
non-metastatic group. Additionally, we observed that the PUC-derived
tumors were enriched in non-metastatic group while the CIS-derived
tumors were compatible with the metastatic group.

Differential protein analysis between metastatic group and non-
metastatic group resulted in 250 proteins (Supplementary Fig. 6a;
Supplementary Data 6; Wilcoxon rank-sum test, BH-adjusted p <0.05,
Metastasis /Non-metastasis ratio > 2 or <0.5). Pathway enrichment
analysis of differentially expressed proteins showed that metastasis-
enriched proteins were involved in the extracellular matrix organiza-
tion, cell adhesion, and skeletal systemdevelopment,whereas proteins
enriched in non-metastasismainly participated in the regulation of cell
cycle, positive regulation of GTPase activity, and regulated of cell
proliferation (Fig. 6c). Additionally, some proteins significantly upre-
gulated in the metastatic group were shown in Supplementary
Figure 6b.

Genomic information showed that the metastatic group carried
higher mutations of DMBT1, ARAP2, CWF19L1 and COL27A1 (Fig. 6a;
Fisher’s exact test, p < 0.05). To further determine the divergence of
the genomic driver in the metastatic group and non-metastatic group,
we observed that 20 peaks altered more frequently in the metastatic
group (Fisher’s exact test, p <0.05). Among the 20 altered peaks, 8p12
deletionwas significantly correlatedwith poor prognoses (Fig. 6d) and
thesemight suggest that 8p12 deletion was associated with metastasis
of UC, in which some metastasis suppressor gene might be harbored.

Fig. 4 | The different metabolic and immune characteristics of papillary uro-
thelial cancer and carcinoma in situ. a Principal component analysis (PCA) of
proteomic data (8,134 proteins) among low-grade papillary cancer (LGPC), high-
grade papillary cancer (HGPC), and carcinoma in situ (CIS). b Heatmap illustrating
sample-specific gene set enrichment analysis (ssGSEA) pathway scores of selected
pathways differentially expressed among LGPC, HGPC, and CIS. c The represented
pathways among LGPC, HGPC, andCIS. The radial axis values were ssGSEApathway
score.d Proteins abundanceof transcription factor differences between PUCorCIS
(two-sided Wilcoxon rank-sum test, BH-adjusted p <0.05). e Volcano plot showing
the correlation of kinase with FOXO1 based on protein level (two-sided Spearman’s
correlation test). f Left: the kinase activity of AKT1 in LGPC (n = 22), HGPC (n = 25),
and CIS (n = 18) groups (two-sided Wilcoxon rank-sum test, p =0.012). Right: the
protein abundance of AKT1 in LGPC (n = 40), HGPC (n = 63), andCIS (n = 42) groups
(two-sided Wilcoxon rank-sum test, p = 3.2E-5). Boxplots show median (central

line), upper and lower quartiles (box limits), 1.5× interquartile range (whiskers).
g Heatmap of the protein abundance of glycometabolism-related genes regulated
by AKT1. h Heatmap of the protein abundance of the target genes of JUN that
participated in immune and extracellular matrix. i Microenvironment score
(p = 2.1E-5) and immune scores (p = 3.7E-5) of LGPC (n = 40), HGPC (n = 63), and CIS
(n = 42) (two-sided Wilcoxon rank-sum test). Boxplots show median (central line),
upper and lower quartiles (box limits), 1.5× interquartile range (whiskers). j Top
panels: heatmap of immune cell infiltration among LGPC, HGPC, and CIS. Bottom
panels: heatmap of the protein abundance of glycolysis-related genes. At the right
was the Spearman’s correlation between immune score and the proteins involved
in glycolysis. k Volcano plot showing the correlation between enriched pathways
scores and immune scores (two-sided Spearman’s correlation test). l Overview of
the different characteristics in papillary urothelial cancer (PUC: LGPC and HGPC)
and CIS. Source data are provided as a Source Data file.
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To identify the metastatic suppressor genes, we found 9 cis-effects
genes on 8p12, such as RBPMS, DCTN6, and GSR (Fig. 6e; Supplemen-
taryData 6). Among the 9 cis-effects, the protein abundance of RBPMS
was significant lower in tumor with metastasis than non-metastasis
(Fig. 6f, g;Wilcoxon rank-sum test,p =0.0076). Interestingly, the lower
expression level of RBPMS was also observed in CIS and CIS-derived

tumors compared to PUC and PUC-derived tumors (Supplementary
Fig. 6c), which indicated that the difference of RBPMS has occurred in
the early period of disease. Pathway enrichment analysis indicated that
cell cycle pathway was overexpressed in tumor harbored RBPMS
deletion (Fig. 6h). In addition, evidence indicated that RBPMS also
binds to protein members of AP-1 transcription factor complex
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repressing its activity58. To further uncover the underlying mechanism
ofRBPMS inUCgrowth andmetastasis,we explored theTFs correlated
with the expression of RBPMS (Fig. 6i). Among the related TFs of
RBPMS, SMAD3 was of particular interest because of its remarkable
correlation coefficient, and the correlation in the metastasis group
(Spearman’s r = 0.73, p = 0.0063) was higher than that in the non-
metastasis group (Spearman’s r = 0.43, p =0.027) (Fig. 6j). The sig-
nificant correlation between RBPMS and SMAD3 was also observed in
TCGA cohort (Supplementary Fig. 6d). We further observed that
RBPMS (Fig. 6k; Spearman’s r = -0.32, p =0.005) and SMAD3 (Fig. 6l;
Spearman’s r = -0.45, p =0.0038) were negatively correlated with the
predicted AP-1 activities (Methods). Consistently, the significantly
negative correlation between RBPMS and the predicted AP-1 activities
was also observed in TCGA cohort and UROMOL cohort (Supple-
mentary Fig. 6e,f). In addition, we found that the AP-1 activity was
associated with poor prognoses in our cohort (Supplementary Fig. 6g;
log-rank test, p =0.022). Many target genes of AP-1, such as CCL2,
VCAM1, andMMP9,weredownregulated alongwith the increase of the
AP-1 activity in our cohort, which was further verified in UROMOL
cohort (Fig. 6m and Supplementary Fig. 6h). Thesemight be caused by
that RBPMS inhibited SMAD3-mediated AP-1 transactivation and
RBPMS blocked the recruitment of SMAD3 to the promoters of AP-1
target genes. A summary of the 8p12 deletion associations was shown
in Fig. 6n.

These findings suggested that the 8p12 deletion occurred fre-
quently in the metastatic group, and the cis-effect gene RBPMS func-
tioned as a tumor suppressor though inhibiting AP-1 transactivation.

The deficiency of RBPMS promoted UC progress through acti-
vating AP-1 transcription factors
To investigate the role of RBPMS in the metastasis of UC, we first
knocked down RBPMS expression in human urinary bladder carci-
noma T24 and 5637 cell lines, and found RBPMS-knocking down cells
exhibited increased proliferation ability in comparison to control cells
(Fig. 7a). In contrast, overexpressed RBPMS slightly slowed down cell
proliferation in T24 and 5637 cells (Supplementary Fig. 7a). Accord-
ingly, RBPMS-knocking down increased, while RBPMS overexpression
decreased cell invasion in T24 cells (Fig. 7b and Supplementary
Fig. 7b). These results supported our findings in the proteomics study
that the loss of RBPMS was associated with the metastasis of UC.

To further validate our findings in the proteomics study
about the significant correlation between RBPMS and predicted
AP-1 activities, we measured the correlations between RBPMS and
AP-1 activity in cultured cells. In T24 and 5637 cells, AP-1 luci-
ferase reporter construct was transfected to indicate the intra-
cellular AP-1 activity. The result that phorbol 12-Myristate 13-
Acetate (PMA), a commonly used stimulator of AP-1 activity,
notably induced AP-1 transcriptional activity, confirmed the AP-1
luciferase reporter could show the AP-1 activity efficiently
(Fig. 7c). In this system, we found RBPMS knockdown led to sig-
nificant increased AP-1 activity (Fig. 7c). In addition, when we

knocked down the expression of c-Fos and c-Jun, respectively in
T24 and 5637 cells, since c-Fos and c-Jun are most important
members of AP-1 transcription factor complex, we found loss of
c-Fos or c-Jun decreased AP-1 activity in RBPMS knockdown cells.
Moreover, c-Fos knockdown abrogated the effect of RBPMS in
regulating AP-1 activity. These results suggested that RBPMS
deficiency activated AP-1 through regulating c-Fos function. Next,
we measured the intracellular activities of AP-1 family members
using the semiquantitative colorimetric kit. In RBPMS knockdown
cells, we found the activities of AP-1 family members, including
c-Jun and c-Fos, increased significantly, compared to the normal
cells (Fig. 7d). In contrast, the activities of c-Jun and c-Fos sig-
nificantly decreased in RBPMS overexpressing cells (Supplemen-
tary Fig. 7c). To further confirm, we tested the mRNA levels of the
target genes of AP-1. The results showed that, the targets of AP-1,
such as IL6, MMP9, and SDHB59–61, increased in RBPMS knock-
down T24 and 5637 cells, and decreased in RBPMS over-
expression T24 and 5637 cells (Fig. 7e and Supplementary
Fig. 7d). In addition, knockdown of c-Fos abrogated the effect of
RBPMS loss in promoting cell proliferation (Fig. 7a), confirming
that the loss of RBPMS promoted tumor development through
targeting c-Fos. Last, we noted that loss of RBPMS expression
promoted the xenograft growth of T24 cells, whereas knockdown
of c-Fos partially abrogated the effect of RBPMS and delayed the
xenograft growth of tumor cells (Fig. 7f). Token together, these
results indicated that the loss of RBPMS in UC promoted cancer
progress through activating AP-1 transcription factors.

We next surveyed how the loss of RBPMS regulated the activ-
ities of c-Fos and c-Jun. First, we tested the interactions between
RBPMS and c-Jun or c-Fos in both T24 and 5637 cells. We found
RBPMS had strong interactionwith c-Fos in co-immunoprecipitation
assays performed using exogenous expressed proteins in T24 cells
(Supplementary Fig. 7e). In contrast, RBPMS did not interact with c-
Jun, because using antibody-targeted c-Jun failed to pull down
RBPMS in T24 cells (Supplementary Fig. 7f). Moreover, we further
validated that RBPMS interacted with c-Fos, but not c-Jun, in co-
immunoprecipitation assays performed using endogenous proteins
in 5637 cells (Fig. 7g). Due to the heavy reliance of AP-1 on specific
Fos and Jun subunits, the heterodimers of c-Fos/c-Jun are more
stable and effective in driving transcription activation compared to
the homodimers of c-Jun/c-Jun62, 63. We tested whether RBPMS
regulated the formation of the c-Fos/c-Jun heterodimer aswell as the
recruitment of c-Fos to the promoters of AP-1 target genes. First, we
found knockdown of RBPMS led to an increased binding ability
between c-Fos and c-Jun, while overexpression of RBPMS resulted in
a decreased binding ability between c-Fos and c-Jun, in both T24 and
5637 cells (Fig. 7h, i). This indicated that deficiency of RBMPS pro-
motes the formation of the c-Fos/c-Jun complex. Second, we
observed increased c-Fos in the chromatin fragment in RBPMS
knockdown cells, compared to control cells, suggested more c-Fos
boundwith chromatin in the condition of RBPMS deficiency (Fig. 7j).

Fig. 5 | The distinction of PUC - and CIS-derived tumors and their association
with clinical outcomes. a Heatmaps of the classifier model proteins that dis-
criminate between PUC and CIS.b The discovery cohort: classification error matrix
using logistic regression classifier of 80% training set and 20% testing set in dis-
covery cohort. The number of samples identified is noted in each box. c Heatmaps
of the classifier model genes that discriminate between PUC and CIS in validation
cohort. d Left: the number of samples identified is noted in each box in validation
cohort. Right: the ROC curves of the classifier model in predicting PUC and CIS in
the validation cohort. e Heatmap illustrating ssGSEA scores of selected pathways,
microenvironment score, and immune scores differentially expressed between
PUC-derived and CIS-derived groups (two-sided Wilcoxon rank-sum test), anno-
tated with clinical features. two-sided Fisher’s exact test was used for categorical
variables: metastatic and metastatic group (p =0.0032). f The Kaplan Meier curves

of progressive-free survival and overall survival of the PUC-derived (n = 53) andCIS-
derived (n = 33) groups (two-sided log rank test). 95% confidence interval (CI) and
hazard ratios (HR) were also presented. g Top panels: heatmaps of the classifier
model genes that classified the origins of invasive tumors as CIS-derived and PUC-
derived in TCGA cohort. Bottom panels: heatmap illustrating ssGSEA scores of
selected pathways, microenvironment score, and immune scores differentially
expressed between PUC-derived and CIS-derived groups in TCGA cohort (two-
sided Wilcoxon rank-sum test). h The Kaplan Meier curves of disease-free survival
(n = 330) and overall survival (n = 423) of the PUC-derived and CIS-derived groups
in TCGA cohort (two-sided log rank test). 95% CI and HR were also presented.
iModel for the characteristics of two distinct branches (PUC/PUC-derived and CIS/
CIS-derived) of urothelial bladder cancer progression. Source data are provided as
a Source Data file.
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Last, using chromatin immunoprecipitation (ChIP)-qPCR, we found
the binding ability of c-Fos to the promoters of IL6, MMP9 and SDHB
increased in the RBPMS-knockdown T24 and 5637 cells (Fig. 7k),
indicating that more c-Fos located in the promoter region of AP-1
target genes and involved in the transcription activation of those
genes. Together, these results indicated RBPMS deficiency

promotedUC development through facilitating the formation of the
c-Fos/c-Jun complex and thus resulted in the activation of AP-1.

Discussion
We performed a comprehensive genomic, transcriptomic, proteomic,
and phosphoproteomic analysis to 448 samples from 190 UC patients.
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Our analysis enables a more comprehensive understanding of the
molecular characteristics of two distinct branches (PUC andCIS) in the
UC progression. The comprehensive multi-omics analysis could serve
as the basis for understanding the mechanism of the carcinogenesis
and as a resource for seeking potential diagnostic and therapeutic
targets.

Flat bladder urothelial tumors confined to the mucosa are
classified as CIS. Without any treatment, about 54% of patients with
CIS will progress to muscle-invasive UC9. However, the trace
amount of CIS tissue samples has limited in exploring the key events
and the molecular mechanism during the CIS progression. In this
study, we observed the downregulation of reactive oxygen species
metabolism and the upregulation of DNA damage response in CIS
and NOS when compared to normal, hyperplasia, and UPUMP.
Further correlation analysis found that the significantly positive
correlation between DNAdamage response and APOBECmutational
signature. The APOBEC mutational signature is generated by the
APOBEC proteins30 and we found that the expression of APOBEC3s
proteins were higher in APOBEC-signature-containing samples, as
well as in CIS and NOS. The expression of APOBEC proteins has
previously been related to poor prognosis in bladder cancer64.
However, the underlying mechanisms behind the origin of APO-
BEC3s expression are not fully understood, but they may be trig-
gered by single-stranded DNA acquired during DNA damage32. The
deeper investigation into the origin and regulation of APOBEC
expression and activity in the progression of urothelial bladder
cancer could lead to precautionary strategies that target APOBEC as
the mutagenic source in urothelial bladder cancer.

The pathological morphology of inverted urothelial papilloma
and PUC is papillary, but their degree of malignancy and treatment
options are different. Inverted urothelial papilloma is a benign histo-
logical type characterized by nested or cord-like endophytic growth of
the urothelium65. In contrast, PUC is malignant, exhibiting cellular
disorganization or atypia, and carries a high risk of recurrence and
progression66. The difference in pathogenic pathways probably
underlies the differences in clinical behavior between these neo-
plasms. However, the pathogenic pathways for PUC and inverted
urothelial papilloma, as well as how genomic aberrations affect pro-
teomic alterations and phosphoproteomic actions, remain unclear. In
our cohort, we found that inverted urothelial papilloma has a genomic
profile (HRAS mutant, FGFR3, TP53 and chromatin-modifying gene
wildtype) distinct from that of PUC. Previous study showed that
mutations in HRAS, KRAS, and NRAS exist in approximately 30% of
human cancers, with HRASmutations being more common in bladder
cancer compared to the other two67. The mutations of HRAS were
predominant in inverted urothelial papilloma and patients with HRAS
mutations have higher protein expression of HRAS. Additionally,
through correlation analysis between the protein of HRAS and

enriched pathways showed that HRAS protein might suppress mTOR
pathway by inhibiting TSC2 ability in inverted urothelial papilloma.
These might explain that inverted urothelial papilloma of the bladder
showed no tendency to infiltration.

The PUC and CIS are two distinct branches of urothelial bladder
cancer progression, each exhibiting unique clinical, pathological, and
molecular features. In our study, we explored the distinct features of
PUC and CIS at protein and phosphoprotein levels which were not
reportedbefore. The results showed that PUCwas characterizedby the
higher level of glucolipid metabolism, whereas the CIS had higher
immune and EMT. Further analysis of transcription factors indicated
that AKT1 might regulate gluconeogenesis and glycolysis by control-
ling the phosphorylation of FOXO1 in PUC, while JUN might regulate
the EMT and immune by regulating the downstream target genes of
JUN inCIS. This observation suggested that inhibitors targeting FOXO1
and JUN have the potential to be considered as therapeutic drugs for
the PUC and CIS, for which chemotherapy options are deemed
unsuitable. Taken together, our study has revealed that these two
types (PUC and CIS) of potential precursor lesions for invasive tumors
were driven by distinct pathways and molecules. These results further
indicated that thedifferent originsof invasive tumorsmight contribute
to the heterogeneity of urothelial bladder cancer, making treatment
more challenging.

The identification ofmolecular subgroups of tumors provides the
possibility of more precise diagnosis and treatment in the clinic.
Therefore, we constructed a classifier model to divide histologically
similar invasive tumors into PUC-derived and CIS-derived tumors,
based on the basis of the different molecular features of PUC and CIS.
Interestingly, we observed that the CIS-derived patients have a poor
prognosis and a higher incidence of metastasis, suggesting that these
patients might require more frequent monitoring and more positive
treatment. The classifier model was further well verified in TCGA
cohort consisting almost muscle-invasive bladder tumors68. Further-
more, we matched PUC-derived/CIS-derived and transcriptional sub-
types from the TCGA cohort (luminal, luminal papillary, luminal
infiltrated, basal squamous, and neuronal).We found that PUC-derived
and CIS-derived matched well with the luminal and basal squamous
subtypes, respectively. Previous studies showed that papillary uro-
thelial lesions develop from intermediate cells, while CIS lesions
develop from basal cells69,70. These results suggested that the differ-
ences in prognosis for invasive patients may stem in part from a fun-
damental difference in the origins. For clinical application, we further
validated the biomarkers in the classifier model by immunohis-
tochemistry, which were consistent with our proteomic data. These
suggested that the panel of biomarker candidates could be potential
candidates used to distinguish invasive tumors of different origins,
implying the possibility to directly translate our findings into
laboratory tests.

Fig. 6 | Loss of RBPMS potentially driving tumor metastasis. a Heatmap illus-
trating the difference between metastatic and non-metastatic tumors. two-sided
Fisher’s exact test was used for categorical variables: age, gender, smoking status,
diabetes, hypertension, nerve invasive, vascular invasion, derived subtype, status of
DMBT1/ARAP2/CWF19L1/COL27A1 mutation. b Kaplan Meier curves for overall sur-
vival of metastatic (n = 23) and non-metastatic (n = 93) groups (two-sided log-rank
test, p = 1.7E-5). 95% confidence interval (CI) and hazard ratios (HR) were also pre-
sented. c Pathways enriched for differentially expressed proteins in metastasis and
non-metastasis tumors. d Significantly different arm-level CNA events inmetastatic
and non-metastatic tumors and their association with prognosis. The p value 1 was
calculated by two-sided Fisher’s exact test and the p value 2 of hazard ratio was
calculated by Cox proportional hazards models. e Heatmap of the protein abun-
dance of 9 cis-effects in 8p12. The protein abundance was converted into z-score
and the tumor samples were ordered by CNV levels. f The differentially expressed
proteins of 9 cis-effects in metastatic and non-metastatic tumors. The size of the
circles represented the p value of two-sided Wilcoxon rank-sum test and the color

of the circles represented the fold change (FC) in metastatic and non-metastatic
tumors. g Boxplots showing the expression levels of RBPMS in metastatic (n = 23)
and non-metastatic (n = 87) tumors (two-sided Wilcoxon rank-sum test). Boxplots
showmedian (central line), upper and lower quartiles (box limits), 1.5× interquartile
range (whiskers). h GSEA analysis showing that Cell cycle was differentially
expressed in RBPMS deletion tumors and WT tumors. i Volcano plot showing the
correlation between different TFs and RBPMS mRNA abundance (two-sided
Spearman’s correlation test). j Correlation of RBPMS mRNA abundance with
SMAD3mRNAabundance (two-sided Spearman’s correlation test).kCorrelation of
RBPMS mRNA abundance with AP-1 activity (two-sided Spearman’s correlation
test). l Correlation of SAMD3 mRNA abundance with AP-1 activity (two-sided
Spearman’s correlation test). m Heatmap showing the estimated AP-1 activity and
the mRNA abundance of the target genes. n A model depicting the multilevel
regulation of 8p12 deletion. *p <0.05 is considered statistically significant.
*p <0.05, **p <0.01, ***p <0.001, ****p <0.0001, ns >0.05. Source data are provided
as a Source Data file.
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Our integrated analysis revealed that 8p12 deletion occurred fre-
quently in metastatic group. Previous study had indicated that more
than one tumor suppressor gene on chromosome 871. RBPMS, a
member of family proteins that bind to nascent RNA transcripts and
regulates their splicing, localization, and stability, is a potential reg-
ulatory target of the 8p12 risk locus. It has been reported that RBPMS

inhibited breast cancer cell growth and migration by interacting with
c-Fos or SMAD3 in cultured cells and in mouse xenograft models72.
Rabelo-Fernandez et al. reported that the knockdown of RBMPS was
associated with increased invasion ability in ovarian cancer58,73. In our
study, we found that RBPMS knockdown led to significant increased
AP-1 activity in human urinary bladder carcinoma T24 and 5637 cell
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lines. Further analysis indicated that RBPMS had strong interaction
with c-Fos, but not c-Jun, in co-immunoprecipitation assays performed
using either exogenous or endogenous proteins. Overall, our results
indicated RBPMS deficiency promoted UC development through
facilitating the formation of c-Fos/c-Jun complex and thus resulted in
activation of AP-1. These suggested that RBPMS might be a critical
suppressor gene of UC tumor metastasis.

In summary, our research presented a comprehensive multi-
omics landscape of two distinct branches (PUC and CIS) in urothelial
bladder cancer progression. We believe this study provides insights
into understanding the progression of UC and enables advances in
understanding its mechanism and diagnostics, delivering a useful
resource for potential therapeutic approaches and personalized
medicine for UC.

Methods
Sample selection
The present studywas carried out complywith the ethical standards of
Helsinki Declaration II and approvedby the InstitutionReviewBoardof
FudanUniversity ZhongshanHospital (B2019-200R).Written informed
consent was received from all patients included in this study.

The adjacent morphologically normal urothelial tissue (Normal),
hyperplasia, urothelial proliferation of uncertain malignant potential
(UPUMP), CIS, noninvasive low-grade papillary cancer (LGPC), non-
invasive high-grade papillary cancer (HGPC), papilloma, invasive can-
cer without otherwise specified histology (NOS) or with variant
histology (Variant) used in this study were obtained from the Zhong-
shan Hospital, Fudan University. Patients, who did not undergo any
anti-cancer treatments prior to surgery, were randomly selected from
January 2011 to December 2019 upon their first visit. All tissues were
surgically resected and formalin-fixed paraffin-embedded (FFPE). A
total of 190 patients (116 patients from our previous study18) were
collected based on the clinical information including gender, age,
smoking status, nerve or vascular invasion, metastasis, hyperglycemia,
hypertension, histological subtype, TNM staging (AJCC cancer staging
system 8th edition), tumor purity, date of surgical resection, patients’
overall survival, and progressive free survival time. All the clinical
information was summarized in Supplementary Data 1.

Sample preparation
The tissue specimens used were FFPE. The sample preparation fol-
lowed FFomic strategy. Accurate evaluation of tumor cellularity was
determinedusing themiddle section of each tumor tissueblock,which
was resected and subjected to hematoxylin and eosin (H&E) staining.
The selection of samples for proteomic, phosphoproteomic, genomic,
and transcriptomic studies needed to satisfy the following three
principles: First, all the samples needed to be conducted on proteomic
profiling. Second, after ensuring proteomic profiling, the samples
underwent phosphoproteomic profiling andwhole-exome sequencing

as much as possible. Finally, if there were any remaining samples,
transcriptomic sequencing was conducted. For proteomic, genomic,
and phosphoproteomic sample preparation, slides (10 μm thick) were
sectioned, deparaffinized with xylene, and washed in an ethanol gra-
dient. Specimens were scraped according to H&E staining, and then all
materials were aliquoted and stored at -80 ˚C until needed. For RNA
sample preparation, slides (10 μm thick) were sectioned, were not
dewaxed and stored at room temperature for further progressing. In
addition, precancerous lesions and divergent histological variant
tumors of patients were scraped according to H&E staining. Tumor
samples were required to contain an average of 70% tumor cell nuclei
with equal to or less than 20% necrosis for inclusion in the study. Each
sample was assigned a new research ID, and the patient’s name or
medical record number used during hospitalization was de-identified.

Pathology Review
All samples were systematically evaluated to confirm the histopatho-
logic diagnosis and any variant histology according to the World
Health Organization (WHO) classification by three expert genitour-
inary pathologists. Additionally, all tumor samples were assessed for
tumor content, thepresence and extent of tumornecrosis, and signsof
invasion into the lamina propria ormuscularis propria. Tumor samples
were also evaluated for the presence and extent of inflammatory
infiltrates, as well as for the type of the infiltrating cells (lymphocytes,
neutrophils, eosinophils, histiocytes, plasma cells) in the tumor
microenvironment. Any non-concordant diagnoses among the three
pathologists were re-reviewed, and a resolutionwas reached following
discussion. All the information is included in Supplementary Data 1.

Whole-exome sequencing
DNA extraction. DNA from the tumor tissues and normal tissues was
extracted according to the manufacturer’s instructions of a QIAamp
DNA Mini Kit (QIAGEN, Hilden, Germany). The quality of isolated and
contaminated samples was verified using the following methods: (i)
DNA degradation and contamination were monitored on 1% agarose
gels; and (ii) DNA concentration was measured using Qubit® DNA
Assay Kit in a Qubit® 2.0 Fluorimeter (Invitrogen, CA, USA).

Library preparation. An amount of 0.6 µg genomic DNA per sample
was used as input material for the DNA preparation. Sequencing
libraries were generated using an Agilent SureSelect Human All Exon
kit (Agilent Technologies, CA, USA) following the manufacturer’s
recommendations, following which index codes were added to each
sample. Briefly, fragmentation was carried out using a hydrodynamic
shearing system (Covaris, Massachusetts, USA) to generate
180–280bp fragments. The remaining overhangs were converted into
blunt ends via exonuclease/polymerase activities. Following adenyla-
tion of the 3’ ends of DNA fragments, adapter oligonucleotides were
ligated. DNA fragments with ligated adapter molecules at both ends

Fig. 7 | ThedeficiencyofRBPMSpromotedUCprogress through activatingAP-1
transcription factors. a The proliferation ability (OD450 value) of T24 and 5637
cells after RBPMS siRNA or c-Fos siRNA transfections (n = 5 biological repeats, two-
sided Student’s t-test, mean ± SEM). b The invasion ability of T24 and 5637 cells
were detected after RBPMS siRNA or c-Fos siRNA transfections (n = 5 biological
repeats, two-sided Student’s t-test, mean ± SEM). c AP-1 transcriptional activity (the
luciferase activity) in T24 or 5637 cells after PMA, RBPMS siRNA, c-Jun siRNA, c-Fos
siRNA transfections (n = 5 biological repeats, two-sided Student’s t-test, mean±
SEM). d Intracellular activities of AP-1 family members measuring by semi-
quantitative colorimetric kit (n = 5 biological repeats, two-sided Student’s t-test,
mean ± SEM). e Expression of IL-6, MMP9 and SDHB in T24 or 5637 cells analyzing
by RT-qPCR to indicatemRNA levels (n = 5 biological repeats, two-sided Student’s t-
test,mean ± SEM). f RBPMS siRNA and/or c-Fos siRNA affects tumor growth in vivo.
Imagesof representative excised tumors fromeachgroup and the tumormasswere
averaged for each transfected group (n = 6 biological repeats, two-sided Student’s

t-test, mean± SEM). g Co-immunoprecipitation assays were used to verify the
interaction of c-Fos and RBPMS, c-Jun and RBPMS in 5637 cells. h Co-
immunoprecipitation assays were used to verify the interaction binding ability
between c-Fos and c-Jun in both T24 and 5637 cells after RBPMS overexpression.
iCo-immunoprecipitation assays were used to verify the interaction binding ability
between c-Fos and c-Jun in both T24 and 5637 cells after RBPMS knockdown. jAfter
the transfectionofRBPMSsiRNA, theRBPMS, c-Fos, c-Jun, Lamin andH3expression
levels in T24 cells nuclear soluble fraction or chromatin chromatin-enriched frac-
tion was determined by western blotting. k After the transfection of RBPMS siRNA
in T24 and 5637 cells, the IL-6, MMP9 and SDHB promoter binding activity as
assessed by ChIP-qPCR (n = 5 biological repeats, two-sided Student’s t-test,
mean ± SEM). *p <0.05 is considered statistically significant. *p <0.05, **p <0.01,
***p <0.001, ****p <0.0001, ns > 0.05. Source data are provided as a Source
Data file.
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were selectively enriched in a PCR reaction. Following the PCR reac-
tion, libraries were hybridizedwith the liquid phase via a biotin-labeled
probe following which magnetic beads with streptomycin were uti-
lized to capture the exons of genes. Captured libraries were enriched
via a PCR reaction to add index tags in preparation for sequencing.
Products were purified using an AMPure XP system (Beckman Coulter,
Beverly, USA) and quantified using the Agilent high sensitivity DNA
assay on the Agilent Bioanalyzer 2100 system.

Clustering and sequencing. Clustering of index-coded samples was
performed on a cBot Cluster Generation System using a Hiseq PE
Cluster Kit (Illumina) according to the manufacturer’s instructions.
After cluster generation, the DNA libraries were sequenced on the
Illumina HiSeq platform and 150 bp paired-end reads were generated.

Whole-exome sequencing data analysis
Quality Control. The original fluorescence image files obtained from
the Hiseq platformwere transformed to short reads (rawdata) by base
calling, following which these short reads were recorded in FASTQ
format, which contains sequence information and corresponding
sequencing quality information. Sequence artifacts, including reads
containing adapter contamination, low-quality nucleotides, and
unrecognizable nucleotides (N), undoubtedly set the barrier for the
subsequent reliable bioinformatics analysis. Hence, quality control is
an essential step that must be applied to guarantee meaningful
downstream analysis.

The data processing steps were as follows:
• Paired reads were discarded if either read contained adapter

contamination (> 10 nucleotides aligned to the adapter, allowing
≤ 10% mismatches).

• Paired reads were discarded if more than 10% of bases are
uncertain.

• Paired reads were discarded if the proportion of low-quality
(Phred quality <5) bases is either read was over 50%.

All downstream bioinformatics analyses were based on high-
quality clean data, which were retained after these steps. At the same
time, QC statistics including total read number, raw data, raw depth,
sequencing error rate, percentage of reads with Q30 (the percentage
of bases with Phred-scaled quality scores greater than 30), and GC
content distribution were calculated and summarized.

Reads mapping to reference sequence. Valid sequencing data were
mapped to the reference human genome (UCSC hg19) using Burrows-
Wheeler Aligner (BWA) software74 to obtain the original mapping
results stored in BAM format. BWA tool, a read alignment package that
is based on backward search with Burrows-Wheeler Transform (BWT).
It can efficiently align relatively long reads (from 70bp to a few hun-
dred base pairs) against the human genome, supporting paired-end
reads and chimeric alignment while being robust to mismatches75. If
one read, or one paired read, were mapped to multiple positions, the
strategy adopted by the BWAwas to choose themost likely placement.
If two or more most likely placements were present, the BWA picked
one randomly. Then, SAMtools76 and Picard (v3.1.0, http://
broadinstitute.github.io/picard/) were used to sort BAM files and
perform duplicate marking, local realignment, and base quality reca-
libration to generate final BAM files for computation of the sequence
coverage and depth. The mapping step was very difficult due to mis-
matches, including true mutations and sequencing errors, and dupli-
cates resulting from PCR amplification. These duplicate reads were
uninformative and should not be considered as evidence for variants.
We used Picard to mark these duplicates for the follow-up analysis.

Variant calling. Somatic variants were then called, utilizing VarScan
v2.3.877 MuTect v1.1.778, and InVEX (http://www.broadinstitute.org/

software/invex/). The following filters were applied to get variant cells
of high confidence: Remove mutations with coverage less than 10×;
Remove variant sites in dbSNP and with mutant allele frequency
(MAF) > 0.05 in the 1000 Genomes databases (1000 Genomes Project
Consortium) and the Novo-Zhonghua (in-house unrelated healthy
individual database), but include sites with MAF ≥0.05 with COSMIC
evidence (http://cancer.sanger.ac.uk/cosmic);79,80 All variants must be
called by 2 or more callers; All variations must be exonic; Retain the
nonsynonymous SNVs if the functional predictions by PolyPhen-2,
SIFT, MutationTaster and CADD all show the SNV is not benign;81,82

Retain genes identified by Cancer Gene Census (CGC, http://www.
sanger.ac.uk/science/data/ cancer-gene-census). The genes with
mutationswere analyzed by Fisher’s exact test to compare two groups,
such as the metastatic/non-metastatic group and PUC/
papilloma group.

Copy-number analysis. Copy Number Alterations (CNAs) were called
by following the somatic CNA calling pipeline in GATK’s (GATK 4) Best
Practice. The results of this pipeline, segment files of every 1000 were
input in GISTIC283, to identify significantly amplified or deleted focal-
level and arm-level events,with aQvalue <0.1 considered significant. A
log2 ratio cut-off 1 was used to define SCNA amplification anddeletion.
We further summarize the arm-level copy number change based on a
weighted sum approach84, in which the segment-level log2 copy ratios
for all the segments located in the given arm were added up with the
length of each segment being weighted. To exclude false positives as
muchas possible, relatively stringent cut-off thresholdswereusedwith
the following parameters: -ta 0.1 -tb 0.1 -brlen 0.98 -conf 0.9. Other
parameters were the same as default values.

Co-occurrence and mutual exclusivity analysis of mutations. Co-
occurrence and mutually exclusive mutated genes were detected
using Fisher’s exact test to determine the co-occurrence and mutually
exclusively of significantly mutated genes in our mutational dataset.

Mutational signature analysis using the sigminer approach. Muta-
tional signatures were jointly inferred for 125 tumors using the R
package (v2.2.0) sigminer85. The sigminer approach (https://github.
com/ShixiangWang/sigminer) was used to extract the underlying
mutational signatures. The 96 mutation vectors (or contexts) gener-
ated by somatic SNVs based on six base substitutions (C >A, C >G,
C > T, T > A, T >C, and T >G) within 16 possible combinations of
neighboring bases for each substitution were used as input data to
infer their contributions to the observed mutations. Sigminer using a
non-negative matrix factorization (NMF) approach was applied to
decipher the 96 × 125 (i.e., mutational context-by-sample) matrix for
the 30 known COSMIC cancer signatures (https://cancer.sanger.ac.uk/
cosmic/signatures) and infer their exposure contributions.

Mutational signature analysis using the deconstructSigs approach.
The mutational signature of each sample was deconstructed using the
deconstructSigs approach86 and its R package (deconstructSigs v1.8.0)
with default parameters. Thirty COSMIC cancer signatures were con-
sidered and their contributions (weights) in each patient were nor-
malized between 0 and 1, and signatures with a weight below 0.08
were filtered out.

RNA-seq
RNA extraction. RNA was extracted from tissues by using the RNA-
storm™ FFPE kit (CELLDATA, USA, #CA94538) according to the man-
ufacturer’s protocol. RNA integrity and concentration were
determined using a NanoDrop 8000 spectrophotometer (Thermo
Fisher Scientific). For library preparation of RNA sequencing, a total
amount of 500ng RNA per sample was used as input material for RNA
sample preparations. Sequencing libraries were generated using a
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Ribo-off® rRNA Depletion Kit (H/M/R) (Vazyme, Nanjing, China,
#N406) and a VAHTS® Universal V6 RNA-seq Library Prep Kit for Illu-
mina (#N401-NR604) following themanufacturer’s recommendations.
Index codes were added to attribute sequences to each sample. The
libraries were sequenced on an Illumina platform and 150 bp paired-
end reads were generated.

RNA-Seq data analysis. RNA-seq raw data quality was assessed using
FastQC (v0.11.9) and the adaptor was trimmed with Trim_Galore (ver-
sion 0.6.6) before any data filtering criteria were applied. Reads were
mapped onto the human reference genome (GRCh38.p13 assembly)
using STAR software (v2.7.7a). Themapped reads were assembled into
transcripts or genes by using StringTie software (v2.1.4) and the gen-
ome annotation file (hg38_ucsc.annotated.gtf). For quantification
purpose, the relative abundance of the transcript/gene was measured
using the normalized metrics, FPKM (fragments per kilobase of tran-
script per million mapped reads). Transcripts with an FPKM score
above one were retained, resulting in a total of 32,879 gene IDs. All
known exons in the annotated files were 100% covered.

Proteomic and phosphoproteomic analysis
FFPE Protein extraction and trypsin digestion. Samples were lysed in
TCEP buffer (2% deoxycholic acid sodium salt, 40mM 2-Chlor-
oacetamide, 100mM Tris-HCl, 10mM Tris(2-chloroethyl) phosphate,
1mM PFSM, pH 8.5) supplemented with protease inhibitors and
phosphatase at 99 °C for 30min. After cooling to room temperature,
trypsin (Promega, Madison,WI, USA, #V5280) was added and digested
for 18 h at 37˚C. 10% formic acid was added and vortex for 3min,
followed by sedimentation for 5min (12,000g). Next, a new 1.5mL
tube with extraction buffer (0.1% formic acid in 50% acetonitrile) was
used to extract the supernatant (vortex for 3min, followedby 12,000 g
of sedimentation for 5min). Collected supernatant was transferred
into a new tube for drying using a speed-vac.

First dimensional reversed-phase separation for proteome. The
dried tryptic peptides were re-dissolved in 10mM NH4HCO3 (pH 10),
and vortexed for 3min, then centrifuged at 12,000 g for 3min. Pep-
tides were separated in a home-made reverse-phase C18 column in a
pipet tip with nine fractions using an increasing gradient of increasing
acetonitrile (6%, 9%, 12%, 15%, 18%, 21%, 25%, 30%, and 35%) under basic
conditions (pH 10). The nine fractions were combined into three
fractions (6 % + 15 % + 25 %, 9% + 18% + 30%, 12 % + 21 % + 35%), dried in
a vacuum concentrator (Thermo Scientific) and then analyzed bymass
spectrometry for proteomic profiling.

The enrichment of phosphorylated peptides. For the phosphopro-
teomic analysis, peptides were extracted from the FFPE slides after
trypsin digestion using the methods described in the “FFPE protein
extraction and trypsin digestion” section above. Tryptic peptides were
used for phosphopeptide enrichment using a High-Select Fe-NTA kit
(Thermo Fisher Scientific, Rockford, IL, USA, #A32992) according to
the kit manual and a previous report87 with some modifications. In
brief, peptides were suspended in binding/wash buffer (contained in
the enrichment kit) and mixed with the equilibrated resins. The
peptide-resin mixture was incubated for 30min with three gentle
blows at room temperature. Following incubation, the resins were
washed thrice with binding/wash buffer and twice with water. The
enriched peptides were eluted with elution buffer (contained in the
enrichment kit) and immediately dried using a speed-vac at 45 °C for
mass spectrometry analysis.

Nano-LC-MS/MS analysis. For the proteome profiling samples, pep-
tides were analyzed on a Q Exactive HF-X Hybrid Quadrupole-Orbitrap
Mass Spectrometer (Thermo Fisher Scientific) coupled with a high-
performance liquid chromatography system (EASY nLC 1200, Thermo

Fisher Scientific). Dried peptide samples re-dissolved in Solvent A (0.1
% formic acid in water) were loaded onto a 2-cm self-packed trap col-
umn (100 μm inner diameter, 3 μm ReproSil-Pur C18-AQ beads, Dr
Maisch GmbH) using Solvent A and separated on a 150 μm-inner-
diameter column with a length of 15 cm (1.9 μm ReproSil-Pur C18-AQ
beads, Dr Maisch GmbH) over a 75min gradient (Solvent A: 0.1% For-
mic acid in water; Solvent B: 0.1% Formic acid in 80% ACN) at a con-
stant flow rate of 600 nL/min (0–75min, 0min, 4% B; 0–10min, 4–15%
B; 10–60min, 15–30% B; 60–69min, 30–50% B; 69–70min, 50–100%
B; 70–75min, 100% B). Eluted peptides were ionized at 2 kV and
introduced into the mass spectrometer. Mass spectrometry was per-
formed in data-dependent acquisition mode. For the MS1 Spectra full
scan, ions with m/z ranging from 300 to 1400 were acquired by an
Orbitrapmass analyzer at a high resolution of 120,000. The automatic
gain control (AGC) target value was set to 3E + 06. The maximal ion
injection time was 80ms. MS2 spectral acquisition was performed in
the ion trap in a rapid speed mode. Precursor ions were selected and
fragmented with higher energy collision dissociation (HCD) with a
normalized collision energy of 27%. Fragment ionswere analyzedbyan
ion trap mass analyzer with an AGC target at 5E + 04. The maximal ion
injection time of MS2 was 20ms. Peptides that triggeredMS/MS scans
were dynamically excluded from further MS/MS scans for 12 s.

For the phosphoproteomic samples, peptides were analyzed on a
Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer
(Thermo Fisher Scientific) coupled with a high-performance liquid
chromatography system (EASY nLC 1200, Thermo Fisher Scientific).
Dried peptide samples re-dissolved in Solvent A (0.1% formic acid in
water) were loaded onto a 2-cm self-packed trap column (100-μm
inner diameter, 3 μm ReproSil-Pur C18-AQ beads, Dr Maisch GmbH)
using Solvent A and separated on a 150 μm-inner-diameter column
with a length of 30 cm (1.9 μm ReproSil-Pur C18-AQ beads, Dr Maisch
GmbH) over a 150min gradient (buffer A: 0.1% formic acid in water;
buffer B: 0.1% formic acid in 80% ACN) at a constant flow rate of 600
nL/min (0–150min, 0min, 4% B; 0–10min, 4%-15% B; 10–125min,
15–30% B; 125–140min, 30%-50% B; 140–141min, 50%-100% B;
141–150min, 100% B). The eluted phosphopeptides were ionized and
detected by a Q Exactive HF-X Hybrid Quadrupole-Orbitrap mass
spectrometry. Mass spectra were acquired over the scan range of m/z
300–1400 at a resolution of 120,000 (AUG target value of 3E +06 and
maximum injection time 80ms). For the MS2 scan, higher-energy
collision dissociation fragmentation was performed at a normalized
collision energy of 30%. The MS2 AGC target was set to 5E + 04 with a
maximum injection timeof 100ms. Thepeptidemodewas selected for
monoisotopic precursor scan and charge state screening was enabled
to reject unassigned 1 + , 7 + , 8 + , and > 8+ ions with a dynamic
exclusion time of 40 s to discriminate against previously analyzed ions
between ± 10 ppm.

MS database searching
Peptide andprotein identification. MS rawfileswere processedwith a
“Firmiana” (a one-stop proteomic cloud platform)21 against the human
National Center for Biotechnology Information (NCBI) RefSeq protein
database (updated on 04-07-2013, 32,015 entries) using Mascot 2.4
(Matrix Science Inc., London, UK). The maximum number of missed
cleavages was set to two. Mass tolerances of 20 ppm for the precursor
and 50 mmu for production were allowed for Q-Exactive HFX. The
fixed modification was cysteine carbamidomethylation, while the
variable modifications were N-acetylation and methionine oxidation.
For the quality control of protein identification, the target-decoy-
based strategy was applied to confirm that the false discovery rate
(FDR) of both peptides and proteins was lower than 1%. The program
percolator was used to obtain the probability value (q-value) and
showed that the FDR (measured by the decoy hits) of every peptide-
spectrum match (PSM) was lower than 1%. All peptides shorter than
seven amino acids were removed. The cutoff ion score for peptide
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identification was set at 20. All PSMs in all fractions were combined for
protein quality control, which was a stringent quality control strategy.
The q-values of both target and decoy peptide sequences were dyna-
mically increased employing the parsimony principle until the corre-
sponding protein FDR was less than 1%. Finally, to reduce the false
positive rate, proteins with at least two unique peptides were selected
for further investigation.

Label-free-based MS quantification of proteins. The one-stop pro-
teomic cloud platform, “Firmiana”, was further employed for protein
quantification. The identification results and the raw data from the
mzXML files were loaded. Then, for each identified peptide, the
extracted-ion chromatogram (XIC) was extracted by searching against
MS1 based on its identification information, and the abundance was
estimated by calculating the area under the extracted XIC curve. For
protein abundance calculation, the non-redundant peptide list was
used to assemble proteins following the parsimony principle. Protein
abundance was then estimated by a traditional label-free, intensity-
based absolute quantification (iBAQ) algorithm, which divided protein
abundance (derived from identifiedpeptide intensities) by the number
of theoretically observable peptides. Match between runs88 was used
to improve parallelism in different tissues from190patients.We built a
dynamic regression function based on commonly identified peptides
in different tissues. According to the correlation value, R2, Firmiana
chooses a linear or quadratic function for regression to calculate the
RT of the corresponding hidden peptides, and check the existence of
the XIC based on the m/z and calculated RT. The program evaluated
the peak area values of the existing XICs. The peak area values were
calculated as parts of the correspondingproteins. Proteinswith at least
two unique peptides with a 1% FDR at the peptide level were selected
for further analysis. Then, the fraction of total (FOT), a relative quan-
tification value that wasdefined as a protein’s iBAQdivided by the total
iBAQ of all identified proteins in one experiment, was calculated as the
normalized abundance of a particular protein among experiments.
Finally, the FOT was further multiplied by 1E5 for ease of presentation
and FOTs less than 1E-5 were replaced with 1E-5 to adjust extremely
small values22.

Batch effect analysis. Hierarchical clustering, dip statistic test and
principal component analyses were implemented in R v.3.5.1 to assess
batch effects in our proteome dataset with respect to the following
two variables: batch identity and sample type (Normal, hyperplasia,
UPUMP, CIS, LGPC, HGPC, papilloma, NOS, and Variant). For hier-
archical clustering analysis, pairwise Spearman’s correlation coeffi-
cients of samples that passed quality control were investigated.
Samples of the same type exhibited high similarity, whereas samples of
different types clearly differed. Therewasno clear associationbetween
batch identity and correlation coefficients. The density plot of the
normalized intensities of the proteins identified in each sample
showed that all samples passed quality control with an expected
unimodal distribution (dip statistic test). The results of principal
component analysis showed that batch effects were negligible for
batch identity but significant for the sample types.

Quality control of themass spectrometry data. For quality control of
performance of mass spectrometry, the HEK293T cell (National Infra-
structure Cell Line Resource, Cat# CRL-11268 from ATCC; RRID:
CVCL_QW54) lysates were measured every three days to set the
quality-control standard. The quality control standard was digested
and analyzedusing the samemethodandconditions as the 28 samples.
A pairwise Spearman’s correlation coefficient was calculated for all
quality-control runs in a statistical analysis environment R v.3.5.1, and
the results are shown in Fig. S1M. The average correlation coefficient
among the standards was 0.90, while the maximum and minimum
values were 0.95 and 0.82, respectively.

Quantification and statistical analysis
Missing value imputation. For the proteomic and phosphoproteomic
data, FOTsmultiplied by 1E5were used for quantification. The proteins
and phosphoproteins detected in more than 30% of the samples were
used for missing value imputation. The missing values were imputed
with 1E-5 and finally, log2 transformed, if necessary. This method has
also been applied in other published proteomic and phosphopro-
teomic studies22,89,90.

Differential protein analysis. Proteins that were expressed in more
than 30% of the samples were selected for differential expression
analysis. The Wilcoxon rank-sum test was used to examine whether
proteins were differentially expressed between PUC (n = 103 samples)
and CIS (n = 42 samples), PUC (n = 103 samples) and papilloma
(n = 12 samples), PUC-derived (n = 33 samples) and CIS-derived
(n = 53 samples), or patients with different mutation statuses and
CNA of statuses. Upregulated or downregulated proteins are defined
as proteins differentially expressed in one group compared with the
other group (Wilcoxon rank-sum test, BH-adjusted p <0.05, Fold
change > 2 or <0.5). The Kruskal-Wallis test was used to test whether
geneswere differentially expressed among the different tissues type or
other subgroups. To account for multiple-testing, the P values were
adjusted using the Benjamini-Hochberg FDR correction. The same
strategy was applied to the differential expression analysis of phos-
phoproteomic data and RNA-seq data.

Pathway enrichment analysis. Differentially expressed genes were
subjected toGeneOntology andKEGGpathway enrichment analysis in
DAVID 6.891 with a p value < 0.05. We used gene sets of molecular
pathways from the KEGG92 /Hallmark93/Reactome94 / GO95 databases to
compute pathways.

Pathway scores and correlation analysis. Single-sample gene set
enrichment analysis (ssGSEA)96 was utilized to obtain pathway scores
for each sample based on RNA-seq, proteomic, and phosphopro-
teomic data using the R package GSVA (v1.42.0)97. Correlations
between thepathway scores andother featuresweredeterminedusing
Spearman’s correlation98. The spearman’s correlationwas calculated in
the R packageHmisc (v4.5-0) and scatter plot was plotted in R package
ggplot2 (v3.3.5). Inferred activity was performed using ssGSEA imple-
mented in the R package GSVA (v1.42.0) with a minimum gene set size
of 10. The transcriptional targets of AP-1 transcription factors were
collected from the ENCODEProjectConsortium99 and used to infer AP-
1 activity via ssGSEA.

Estimation of stromal and immune scores. ESTIMATE100 and xCell50

were used to infer immune scores based on the proteomic data.

Construction and validation of predictive models for the origin of
invasive tumors. We constructed the Fast-Large Margin classifier
model based on the overrepresented proteins of PUC and CIS using
RapidMiner 9.6.0 (RapidMiner Inc, Boston, USA). Polynomial by
Binomial Classification operator uses a binomial classifier and gen-
erates binomial classification models for different classes and then
aggregates the responses of these binomial classification models for
classification of polynomial label. The Fast-Large margin operator
using logistic regression, applied in the subprocess of the Polynomial
by Binomial Classification operator, was employed to build the pre-
diction model based on the overrepresented proteins of PUC and CIS
in the discovery cohort. Samples was randomly divided into 80% of
individuals (the training set) and the remaining 20% (the testing set).
The diagnostic value of this model was verified using ROC analysis.
Sensitivity, specificity, accuracy, and AUC were used to determine
predictive values. In addition, to validate the robustness of the model,
themodel was validated in additional independent samples (including
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15 PUC samples and 5 CIS samples) from Dyrskjøt’s cohort52. Then, we
applied the classifier model in invasive tumor samples including our
cohort and TCGA cohort. The invasive tumor samples were classified
as CIS-derived and PUC-derived samples.

Survival analysis. Kaplan-Meier survival curves (log-rank test) were
used to determine the overall survival (OS) and progression-free sur-
vival (PFS) of different subtypes and patients. The coefficient value,
which is equal to ln (HR), was calculated using Cox proportional
hazards regression analysis. P-values less than 0.05, were considered
significantly different and selected for Cox regression multivariate
analysis. Prior to the log-rank test of a given protein, phosphoprotein,
or phosphosite, survminer (version 0.2.4, R package) withmaxstat was
used to determine the optimal cut-off point for the selected samples
according to a previous study101,102. OS curves were then calculated
(Kaplan-Meier analysis, log-rank test) based on the optimal cut-
off point.

Gene set enrichment analysis (GSEA). GSEA was performed by the
GSEA 4.0.3 software (http://software.broadinstitute.org/gsea/index.
jsp). Gene sets including KEGG, GO Biological Process (BP), Reactome
and HALLMARK downloaded from the Molecular Signatures Database
(MSigDB v7.1, http://software.broadinstitute.org/gsea/msigdb/index.
jsp) were used.

Phosphoproteomic data analysis
Database searching of MS phosphoproteomic data. Phospho-
proteome MS raw files were searched against the human Refseq pro-
tein database (27,414 proteins, version 04/07/2013) using Proteome
Discoverer (version 2.3.0.523) with a Mascot103 (version 2.3.01) engine
with a percolator104. Carbamidomethyl cysteine was used as a fixed
modification, and oxidized methionine, protein N-term acetylation,
and phospho (S/T/Y) were set as variable modifications. The false
discovery rate (FDR) of peptides and proteins was set at 1%. The tol-
erance for spectral search a mass tolerance of 20 ppm for the pre-
cursor. Themaximumnumber ofmissing cleavage site was set at 2. For
phosphosite localization, ptmRS105 wasused to determine phosphosite
confidence, and a phosphosite probability > 0.75 was used for further
analysis. The information of kinase-substrate relationships was
obtained from publicly available databases including PhosphoSite106,
Phos-pho.ELM107, and PhosphoPOINT108.

Kinase activity prediction. Kinase activity scores were inferred from
phosphorylation sites by employing PTM signature enrichment ana-
lysis (PTM-SEA) using the PTM signatures database (PTMsigDB) v1.9.0
(https://github.com/broadinstitute/ssGSEA2.0). Sequence windows
flanking the phosphorylation site by 7 amino acids in both directions
were used as unique site identifiers. Only fully localized phosphoryla-
tion sites as determined by Spectrum Mill software were taken into
consideration. Phosphorylation sites on multiply phosphorylated
peptides were resolved using the approach described in Krug et al.34

resulting in a total of 37,204 phosphorylation sites thatwere subjected
to PTM-SEA analysis using the following parameters:

gene.set.database = “ptm.sig.db.all.flanking.human.v1.9.0.gmt”
sample.norm.type = “rank”
weight = 0.75
statistic = “area.under.RES”
output.score.type =”NES”
nperm = 1000
global.fdr = TRUE
min.overlap = 5
correl.type = “z.score”

DNA damage response score. Phosphoproteome analysis was used
to construct a DNA damage response (DDR) score. To isolate well-

established phosphorylation substrates during DNA damage, we
focused on genes listed in Supplementary Data 2 from29. These pro-
teins had SQ/TQ sites that were found to be phosphorylated by ATM,
ATR or DNAPK in response to DNA damage, and had also been iden-
tified in previous literature as phosphorylation substrates. To calculate
the DDR score, we standardized the fraction of phosphosites per gene
across samples, and averaged values of this subset of genes per
sample.

Immunohistochemistry (IHC). Formalin-fixed, paraffin-embedded
tissue sections of 10 µM thickness were stained in batches for
detecting RNASE2 and ACOX1 in a central laboratory at the
Zhongshan Hospital according to standard automated protocols.
Deparaffinization and rehydration were performed, followed by
antigen retrieval and antibody staining. RNASE2 and ACOX1 IHCwas
performed using the Leica BOND-MAX auto staining system58. anti-
ACOX1 antibody (Proteintech, catalog No: 10957-1-AP, dilution
1:500) and anti-RNASE2 antibody (SAB, catalog No: SAB 42307,
dilution 1:1000) was introduced, followed by detection with a Bond
Polymer Refine Detection DS9800 (Bond). Slides were imaged using
an OLYMPUS BX43 microscope (OLYMPUS) and processed using a
Scanscope (Leica).

Functional experiments
Cell culture. Human HEK293T (Cat# CRL-11268 from ATCC; RRID:
CVCL_QW54), human bladder carcinoma cell line 5637 (Cat# HTB-9
fromATCC, RRID: CVCL_0126), and human bladder carcinoma cell line
T24 (Cat# HTB-4 from ATCC; RRID: CVCL_0554), were obtained. The
cell line 5637 and T24 were cultured in RPMI-1640 medium (HyClone,
Logan, UT,USA) andMcCoy’s 5 A (Modified)Medium (Gibco, Carlsbad,
CA, USA), respectively, supplemented with 10% fetal bovine serum
(Invitrogen, Carlsbad, CA, USA), 100 units/ml penicillin (Invitrogen),
and 100μg/ml streptomycin (Invitrogen) in 5% CO2 at 37 °C. Cells
validation using short tandem repeat markers (STR) were performed
by Meixuan Biological Science and Technology Ltd. (Shanghai). In
detail, these cell lines were firstly tested cell species by PCR method
using extracted total genomic DNA, and examined by STR profiling.
Then, STR data were analyzed using the DSMZ (German Collection of
Microorganisms and Cell Cultures) online STR database (http://www.
dsmz.de/fp/cgi-bin/str.html). Cell lines were tested negative for
mycoplasma contamination. All cells were grown according to the
instruction.

Plasmid construction and transfection. Whole-length RBPMS, c-Fos,
and c-Jun cDNA cloneswere purchased fromOrigene. After confirming
their sequences by sanger-sequencing, RBPMS was amplified and
subcloned into pcDNA3.1-FLAG, pcDNA3.1-Myc, or pCDNA3.1-HA vec-
tor using recombinant DNA technology and were confirmed via
sequencing. For transient transfection, 1μg of each plasmid was
transfected using Lipofectamine 3000 (Invitrogen) according to the
manufacturer’s instructions.

Immunoprecipitation. For immunoprecipitation of the FLAG and
MYC-tagged proteins, transfected cells were lysed 48h after trans-
fection with ice-cold lysis buffer that contained 50mM Tris-HCl (pH
7.4), 150mM NaCl, 0.1–0.5% NP-40 and protease inhibitor cocktail
(Roche) and rotated at 4 °C for 30min. The whole-cell lysates were
immunoprecipitated by overnight incubation with monoclonal anti-
FLAG/MYC antibody-conjugated M2 agarose beads (Sigma). After
threewasheswith lysis buffer, followedby twowasheswith lysis buffer,
the beads were boiled with 1 × SDS loading buffer and were subjected
to Western blotting.

For immunoprecipitation of the endogenous proteins, cultured
cells were grinded in lysis buffer, and the lysates were centrifuged. The
supernatant was precleared with protein A/G beads (Sigma) and
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incubated with anti-RBPMS antibody (Proteintech, catalog No: 15187-1-
AP, dilution 1: 1000), anti-c-Fos antibody (Proteintech, catalog No:
66590-1-Ig, dilution 1: 1000), or anti-c-Jun antibodies (Proteintech,
catalog No: 51151-1-AP, dilution 1: 1000) overnight at 4 °C. The immu-
nocomplexes were then incubated for 2 h at 4 °C with protein A/G
beads. After centrifugation, the pellets were collected and washed five
times with lysis buffer, boiled with 1 × SDS loading buffer and were
subjected to Western blotting.

RNA interference. Synthetic oligos were used for siRNA-mediated
silencing of RBPMS (5′-GGGCTATGAGGGTTCTCTT-3′), c-Fos (5′-CUA-
CUUACACGUCUUCCUU-3′), c-Jun (5′-CUACUUACACGUCUUCCUU-3′),
and scramble siRNA was used as a control. Cells were transfected with
siRNAs using Lipofectamine 3000 according to the manufacturer’s
protocol. Knockdown efficiency was verified by qRT-PCR.

Western blot analysis. Cultured cells were lysed with 0.5% NP-40
buffer containing 50mM Tris-HCl (pH 7.5), 150mM NaCl, 0.5%
Nonidet P-40, and a mixture of protease inhibitors (Sigma-
Aldrich). The protein concentration was quantified using Bradford
assay. For each sample, same amounts of protein extract was
separated using 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred to nitrocellulose membranes.
After blocking with 5% milk (BD Science) solution in TBST (Tris
buffered saline with Tween) for 1–2 h, the membranes were incu-
bated with TBST containing the appropriate primary antibodies
overnight at 4 °C, followed by a 2 h incubation with horseradish
peroxidase-conjugated anti-rabbit IgG secondary antibodies (Cell
Signaling Technology, Catalog: 7074, dilution 1:1000). The target
protein bands were detected using the Chemiluminescent detec-
tion reagent. Anti-RBPMS antibody (Proteintech, catalog No:
15187-1-AP, dilution 1: 1000), anti-c-Jun antibody (Proteintech,
catalog No: 51151-1-AP, dilution 1: 1000), anti-c-Fos antibody (Pro-
teintech, catalog No: 66590-1-Ig, dilution 1: 1000), anti-histone H3
antibody (Proteintech, catalog No: CL647-66863, dilution 1: 1000),
anti-Lamin antibody (Proteintech, catalog No: 12987-1-AP, dilution
1: 5000), anti-Myc antibody (Abcam, catalog No: ab185656, dilu-
tion 1: 2000), and anti-Flag antibody (Abcam, catalog No:
ab205606, dilution 1: 1000) were used, and their specificity was
confirmed by western blotting. Chemiluminescence was measured
on a BioSpectrum 600 Imaging System (UVP, CA, USA).

Cell proliferation assay. Cell proliferation was assessed using the Cell
Counting Kit-8 (Dojindo Laboratories). In brief, cells were seeded in a
96-well plate at 4 × 103 cells/well and allowed to adhere. Cell Counting
Kit-8 solution (10μL) was added to each well, and the cells were
incubated in 5% CO2 at 37 °C for 2 h. Cell proliferation was determined
by measuring the absorbance at 450nm.

Cell invasion assay. The invasion of T24 and 5637 cells was evaluated
objectively by counting the number of the cells that transferred
through the membrane in the invasion chamber. Prior to use the
transfected cells were seeded in the upper chambers with 100μl of
serumfree medium, and the lower chamber was filled with medium
with 10% FBS. After incubation for 24 h, the cells remaining on the
bottom surface of the upper chamber were stained with 0.1% crystal
violet solution for 30min and imaged. Each experiment was carried
out in three replicates.

Quantitative real-time PCR. RNA from cultured cells or human tissue
samples was prepared with TransZol (Trans Gen Biotech), and cDNA
was synthesized from 5 µg of RNA using TransScript First-Strand cDNA
synthesis SuperMix (Trans Gen Biotech). Gene expression was deter-
mined by real-time PCR using an iQTM SYBR Green SuperMix Kit (Bio-
Rad, CA, USA) with a CFX96TM Real-Time system (Bio-Rad). All data

were normalized to ACTB expression. The primers used are listed
below. IL-6: forward primer 5’-GACAGCCACTCACCTCTTCA-3′, reverse
primer 5’-AGTGC CTCTTTGCTGCTTTC-3’. MMP9: forward primer 5′-T
TGACAGCGACAAGAAGTGG-3′, reverse primer 5′-GCCATTCACG
TCGTCCTTAT-3′. SDHB: forward primer 5‘-ACAGCTCCC CGTATCAAG
AAA-3’, and reverse primer 5‘-GCATGATCTTCGGAAGGTCAA-3’. ACTB:
forward primer 5‘-TCCCTGGAGAAGAGCTACG-3’, and reverse primer
5‘-GTAGTTTCGTGG ATGCCACA-3’.

In Vivo xenograft studies. Four-to-six-week-old Balb/C nude male
micewere obtained from Shanghai SLAC Laboratory Animal Co., Ltd
for in vivo xenografts. The mice used in the study were all male
because bladder cancer cases occur more frequently in men,
accounting for 80% of cases1. Mice were housed in pathogen-free,
temperature-controlled environment, scheduled with 12-12 h light-
dark cycles. The feeding conditions were specific pathogen free
animal laboratory with 28 °C and 50% humidity 12/12, providing
sufficient water and diet. Different groups of T24 cells (5×106) were
re-suspended in PBS and injected subcutaneously (SC) into the right
flank of each mouse. The weight and the tumor diameter of each
mouse were measured every week. Tumor volume (mm3) was cal-
culated as follows: (shortest diameter)2 × (longest diameter) × 0.5.
This study is under the guidelines of the Institutional Animal Care
and Use Committee (IACUC), Fudan University. The maximal per-
mitted tumor size is 20mm in an average diameter for mice, in
accordance with guidelines of IACUC. At the end of the experiment,
following euthanasia with excessive carbon dioxide (CO2) inhala-
tion, tumors were excised, weighed, and imaged. All procedures
were performed with approval from the Animal Care Committee at
Fudan University.

Chromatin immunoprecipitation assays. Chromatin immunopreci-
pitation (ChIP) assays were conducted using an EZ ChIP kit
(Upstate). First, cultured cells were crosslinked with 1% for-
maldehyde for 10min, and DNA was sonicated into fragments with
a mean length of 200–500 bp. Sheared chromatin was immuno-
precipitated with antibodies against c-Fos or non-specific rabbit
IgG (Santa Cruz) overnight at 4 °C and the precipitated DNA frag-
ments were identified by PCR and quantified by real-time qPCR
using the primers listed below. IL-6: forward primer 5‘-CGT GCA
TGA CTT CAG CTT TAC-3’, and reverse primer 5‘-TGC AGC TTA
GGT CGT CAT TG-3’. MMP-9: forward primer 5‘-GAG GAG GAG GTG
GTG TAA GC-3’, and reverse primer 5‘-TTG ACA GGC AAG TGC TGA
CT-3’. SDHB: forward primer 5‘-CTT TGC CAG CCA CCC TTG A-3’,
and reverse primer 5‘-ACC TCG TGA GCC ACC CAC CT-3’.

Statistical analysis
Standard statistical tests were used to analyze the clinical data,
including but not limited to Student’s t test, Wilcoxon rank-sum test,
Chi-square test, Fisher’s exact test, Kruskal-Wallis test, Log-rank test.
For categorical variables versus categorical variables (including gene
mutations, gender, age group, smoke status, nerve invasion, vascular
invasion, metastasis, hyperglycemia, hypertension, TNM stage, and
histological type), Fisher’s exact testwasused in a 2× 2 table, otherwise
Chi-square test was used. The Wilcoxon rank-sum test was used to
examine whether genes were differentially expressed between PUC
(n = 103 samples) and CIS (n = 42 samples), PUC (n = 103 samples) and
papilloma (n = 12 samples), PUC-derived (n = 33 samples) and CIS-
derived (n = 53 samples), or patients with different mutation statuses
and CNA of statuses. The Kruskal-Wallis test was used to test whether
geneswere differentially expressed among the different tissues type or
other subgroups. All statistical tests were two-sided, and statistical
significance was considered when p value < 0.05. To account for mul-
tiple-testing, the p values were adjusted using the Benjamini-Hochberg
FDR correction. Kaplan-Meier plots (Log-rank test) were used to
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describe overall survival and progression-free survival. Variables
associated with overall survival and progression-free survival were
identified using univariate Cox proportional hazards regression mod-
els. All the analyses of clinical data were performed in R (v3.5.1) and
GraphPad Prism 8 software. For functional experiments, at least three
biological repeats were performed independently, and results were
expressed as mean± standard error of the mean (SEM). Statistical
analysis was performed using GraphPad Prism8 software. The p values
less than 0.05, 0.01, 0.001, 0.0001 were marked with *, **, ***, ****,
respectively. All the statistical analysis had been checked by two
statisticians.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the mass spectrometry proteome and phosphoproteome raw
datasets have been deposited to the ProteomeXchange Consortium
(dataset identifier: PXD043775) via the iProX partner repository
(https://www.iprox.cn/) under Project ID: IPX0004596000. The raw
WES and RNA data are available in the Genome Sequence Archive
(GSA) under restricted access HRA004224. The raw sequencing data
are available under controlled access due to data privacy laws related
to patient consent for data sharing and the data should be used for
research purposes only. According to the guidelines of GSA-human, all
non-profit researchers are allowed access to the data, and the Principle
Investigator of any research group can apply for Controlled access of
the data. The user can register and login to the GSA database website
(https://ngdc.cncb.ac.cn/gsa-human/) and follow the guidance of
“Request Data” to request the data step by step (https://ngdc.cncb.ac.
cn/gsa-human/document/GSA-Human_Request_Guide_for_Users_us.
pdf). The approximate response time for accession requests is about 2
weeks. The access authority can be obtained for Research Use Only.
The user can also contact the corresponding author directly. Once
access has been granted, the data will be available to download for
3 months. Human reference genome (GRCh38.p13 assembly) was
downloaded from NCBI (https://www.ncbi.nlm.nih.gov/assembly/
GCF_000001405.39/). TCGA BLCA data were downloaded from Xena
(https://xenabrowser.net/)20. UROMOL cohort data were downloaded
from the European Genome-phenome Archive (https://ega-archive.
org/) under the accession code EGAS0000100469319. The information
of kinase-substrate relationships were available in PhosphoSite
(https://www.phosphosite.org/homeAction.action)106, Phos-pho.ELM
(http://phospho.elm.eu.org/dataset.html)107, and PhosphoPOINT
(http://kinase.bioinformatics.tw/)108. The remaining data are available
within the Article, Supplementary Information, and Source Data
file. Source data are provided with this paper.
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