
Article https://doi.org/10.1038/s41467-023-41132-w

Systematic transcriptional analysis of human
cell lines for gene expression landscape and
tumor representation

Han Jin 1,5, Cheng Zhang 1,5, Martin Zwahlen 1, Kalle von Feilitzen 1,
Max Karlsson 1, Mengnan Shi 1, Meng Yuan1, Xiya Song1, Xiangyu Li 1,
Hong Yang 1, Hasan Turkez2, Linn Fagerberg 1, Mathias Uhlén 1,3 &
Adil Mardinoglu 1,4

Cell lines are valuable resources as model for human biology and translational
medicine. It is thus important to explore the concordance between the
expression in various cell lines vis-à-vis human native and disease tissues. In
this study, we investigate the expression of all human protein-coding genes in
more than 1,000 human cell lines representing 27 cancer types by a genome-
wide transcriptomics analysis. The cell line gene expression is compared with
the corresponding profiles in various tissues, organs, single-cell types and
cancers. Here, we present the expression for each cell line and give guidance
for the most appropriate cell line for a given experimental study. In addition,
we explore the cancer-related pathway and cytokine activity of the cell lines to
aid human biology studies and drug development projects. All data are pre-
sented in an open access cell line section of the Human Protein Atlas to
facilitate the exploration of all human protein-coding genes across these
cell lines.

With the sharp increase in the application of (multi-)omics technol-
ogy and computational modeling of biological systems, novel ther-
apeutic targets and drug candidates for human diseases have been
identified through in silico analysis1–4. Cell line experiments, which
often serve as the first step in translational research for clinics, are
extensively used in verifying potential drug candidates and newly
identified targets. In the past decades, more than ten thousand cell
lines were established for various studies with the same goal: to
simulate the actual disease mechanism. Due to metabolic alterations
in cell line models5 and reduced biological availability in humans,
drug candidates may still have a high chance of failing in the in vivo
studies and clinical trials, even though they are successfully tested
in vitro based on more than one cell line. Therefore, whether and to
what extent each cell line model can reflect a disease phenotype,

especially after establishing immortalized and stabilized cell lines
from primary cells and culturing them in vitro, remains a critical
question in life science.

Tremendous efforts have been made to reveal the molecular
characteristics and genetic specificity of cell lines, including the
transcriptomics data (RNA-sequencing; RNA-seq) of human cell lines
in the Cancer Cell Line Encyclopedia (CCLE)6,7 and in the cell line
section of the Human Protein Atlas (HPA) project8. The tran-
scriptomics data generated by these studies enabled the comparison
of global gene expression between the cell lines and the corre-
sponding tumor based on the transcriptomics data (RNA-seq) in The
Cancer Genome Atlas (TCGA) project. Despite a few studies that have
attempted to map cancer cell lines to the corresponding diseases
based on the molecular signatures9–11, which facilitates the selection
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of appropriate cell lines for cancer research, these studies did not
further extend their comparison of cell line gene expression to nor-
mal tissues and individual cell types—a critical step which will help us
to understand the characteristics and representative of cell lines to
their origin12.

In this study, we first analyze the transcriptomics data of more
than 1000 human cell lines and compare the global gene expression
landscape of the human cell lines with the gene expression data
from human tissues, tumors, and single-cell types. Second, we sys-
tematically evaluate if and which cell lines are representative of
specific cancer types. Next, we analyze the cell line characteristics at
pathway and cytokine levels for providing a deeper understanding
of the cell phenotype as well as generating a reference state for a
better design of in vitro experiments. We finally provide all the
information in the cell line section of the HPA portal (https://v22.
proteinatlas.org/humanproteome/cell+line) in an open access
format.

Results
Establishment of the HPA cell line section
Previously, the HPA cell line section included transcriptomics data of
45 cancer cell lines from 20 cancer types, 16 non-cancerous cell lines,
and 8 uncategorized cell lines in which the disease types have not yet
been classified (marked as “Unknown”; see Supplementary Data 1)8,13.
The CCLE 2019 cell line database6 provides the transcriptomics data of
a total of 1,019 cell lines collected from 35 sites in the human body
(Fig. 1a) including 973 primary andmetastatic cancer cell lines derived
from 26 cancer types, 44 non-cancerous cell lines (mostly fibroblasts;
see Fig. 1b), and 2 cell lines with uncategorized disease types (denoted
as “unknown”) (Supplementary Fig. 1 and Supplementary Data 2). We
found that transcriptomics data of 33 cancer cell lines were present
both in the HPA and CCLE databases (Fig. 1a). To create a compre-
hensive transcriptomic atlas of human cell lines, we added the tran-
scriptomic data for 1,019 cell lines from the CCLE 20196 to the HPA cell
line section, which extended the number of non-cancerous cell lines
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Fig. 1 | Establishment of theopen access cell line section. aRNA-seqdata of 1,019
cell lines from the CCLE6 and 69 cell lines from the HPA (33 overlapped) were
jointly analyzed in this study. These cell lines were collected from around 40
different human body sites. Figure created with BioRender.com. b Pie chart

showing the number of cell lines per disease in the CCLE 2019 database. c UMAP
plot showing the relationship between the 1,019 CCLE cell lines color-coded by
primary disease. Source data are provided as a Source Data file.
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from 16 to 60, cancer cell lines from45 to 985, uncategorized cell lines
from 8 to 10, and cancer types from 20 to 27 (Fig. 1a).

We retrieved the raw data from the CCLE and HPA database and
calculated the expression values nTPM (TMM-normalized pTPM;
where pTPM is the TPM for protein-coding genes, see Methods; TMM,
trimmed mean of M values; TPM, transcripts per million) of these cell
lines using the same pipeline for RNA-sequencing data preprocessing.
We then applied principal component analysis to extract 398 PCs
preserving 80% of the total variance in the full dataset, followed by
UniformManifold Approximation and Projection (UMAP)14 to visualize
sample distribution. We found that all cell lines were evenlymixed and
almost every pair of the common cell lines both in the CCLE and HPA
databases stayed tightly close with each other (Supplementary Fig. 2).
To further confirm the closeness of these common cell lines, based on
the 398 PCs, we calculated the Euclidean distance from CCLE to HPA
cell lines, and found that for the 33 common cell lines, 32 have their
counterpart as the first neighbor in HPA. We further examined the
relationship between all the analyzed cell lines (CCLE +HPA) by
Spearman’s correlation and found that 33 pairs of the common cell
lines between CCLE and HPA were clustered together, except for a
single cell line, U-251MG (Supplementary Fig. 3a). The high correlation
of the transcriptomics data of the common cell lines suggested that
the batch effects can hardly be observed between the two different
datasets. This may be attributed to the fact that cell lines generally
exhibit more stable characteristics than animal models where hetero-
geneity must be taken into account. Considering the high consistency
of transcriptomicsdata in theCCLE andHPAdatasets, we incorporated
the CCLE transcriptomics data into the HPA database without further
processing for batch correction.

As shown in Fig. 1c, cell lines from blood cancers such as lym-
phoma, leukemia, and myeloma (all derived from hematopoietic and
lymphoid cell systems), as well as bone cancer and skin cancer, formed
separated clusters fromthemajor cluster for all the other cancer types,
suggesting distinct characteristics of these cell lines to the other can-
cer cell lines. Within the major cancer cell line cluster, several cancer
types such as neuroblastoma, kidney cancer, and breast cancer
showed clear cancer-specific sub-clusters, implicating that these can-
cer cell lines may also have their own features distinguishing them
from the others. In addition, cell lines of gastric cancer and colon/
colorectal cancerwhichbothbelong to theupper digestive systemalso
displayed close relationships with each other, highlighting the simi-
larity between these two types of cancer cell lines. Indeed, this was also
demonstrated by the significantly higher correlations between the cell
lines from the same disease than the ones from different diseases
(Supplementary Fig. 3b). In addition, using the top 5000most variable
genes, 74% and 68% of the cell lines can be correctly classified (5-fold
cross-validation) for their cancer types by logistic regression and
random forests, respectively. Taken together, these results suggested
that cell lines preserve the cancer phenotype at the transcrip-
tional level.

Classification of protein-coding genes in human cancer cell lines
Next, we explored the gene expression distribution across all the CCLE
(n = 1019) or HPA (n = 69) cell lines and independently categorized the
genes based on their specificity of expression in the HPA and CCLE
datasets (see Table 1 for criteria). We found that the number of non-
detectable genes (638) in the CCLE dataset is strikingly lower than the
number of non-detectable genes (2,066) in the HPA dataset (Fig. 2a).
The number of genes expressed specifically in a single cell linewas also
lower in the CCLE dataset compared to the HPA dataset (283 vs. 856).
Hence, by incorporating the CCLE dataset into the HPA database to
significantly increase the total number of cell lines, we found that the
number of cell line-specific or not detected genes became smaller,
suggesting that the integration of the two cell line datasets may reflect
a broader coverage of gene expression. In addition, we found that

5,366 genes (with 5,209 overlapping with those 6,799 genes in HPA;
Fig. 2a) are expressed in all 1,019 CCLE cell lines (nTPM> 1), suggesting
these genes are essential in the cell line models.

Notably, we found that the number of these “housekeeping”
genes is indeed significantly higher than the number of essential genes
identified based on the genome-wide CRISPR-Cas9 screening15,16. In
this context, we interrogated the 5,366 genes expressed in all 1,019
CCLEcell lineswith the previously reported 1,912 essential genes based
on CRISPR gene screening results (DepMap 22Q2, CRISPR_commo-
n_essentials.csv from https://depmap.org/portal/download/all/)15, and
found that 1,614 genes were overlapped between two different data-
sets. Based on gene set overrepresentation analysis (GSOA)17, these
genes were strongly associated with DNA replication and nuclear
division, suggesting these genes are indispensable for cell cycle pro-
gression and cell proliferation (Fig. 2c, SupplementaryData 3). Of note,
we found that 3,751 genes are specifically present in the CCLE dataset
(Fig. 2b), and their functions were significantly associated with the
basic biological processes in different cellular compartments (Fig. 2c
and SupplementaryData 3).Hence, weobserved that silencing of these
genes may not directly induce cell death; the wide expression of these
genes, however, indicates that these genes are fundamental for
maintaining basic cellular functions.

Focusing on cancer research, here we integrated 45 HPA cancer
cell lineswith 973CCLE cancer cell lines (33 pairs of common cell lines)
toobtaina total of 985 cancer cell lines to study cancer-specific cell line
characteristics. Specifically, twelve cancer cell lines and one cancer
type (i.e., testis cancer) were only available in the HPA dataset but not
in the CCLE dataset. By averaging the gene expression nTPM in cell
lines within each cancer type (defined by the primary disease of a
cancer cell line), 985 cancer cell lines were aggregated into 27 groups
based on cancer types. Hereafter, we termed CLD (cell line disease) to
represent cell lines grouped by the same cancer type. Subsequently,
protein-coding genes were categorized into five different groups
according to the expression specificity in CLDs (Table 1), including (i)
CLD-enriched genes with at least fourfold higher expression levels
(based on nTPM values) in one CLD as compared with any other ana-
lyzed CLD; (ii) group-enriched genes with enriched expression in a few
CLDs (2 to 10); (iii) CLD-enhanced geneswith onlymoderately elevated
expression; (iv) lowCLD specificity genes showing elevated expression
in at least one of the analyzed CLDs; and (v) not detected genes at the
CLD level. Similarly, we analyzed the TCGA transcriptomics dataset
including 6,082 primary tumors from 26 cohorts with high tumor
purity scores18 (>0.7), and applied gene expression specificity classifi-
cation to the TCGA dataset at the cohort level, which enabled the
comparison of the gene expression specificity between CLDs and the
TCGA cohorts.

Based on the criteria in Table 1, a total of 1,340 enriched genes
showed at least fourfold higher expression in one CLD as compared to
any other CLD (Fig. 2d). In addition, 927 genes were defined as group-
enriched genes since these genes have elevated expression in up to
10 CLDs. Another 3,511 genes were categorized as enhanced genes in
CLDs since they showed at least a fourfold increase in expression
compared to the average. Taking these into account, a total of 5,778
genes were elevated in at least one of the 27 CLDs. Meanwhile, 11,770
and 2,542 genes showed lowCLD specificity and low expression across
27 CLDs, respectively. The number of genes differently distributed in
CLDs is similar to what was observed in the 26 TCGA cohorts (Fig. 2d),
with 13,331 (66.47%) genes being classified as exactly the same cate-
gory between CLDs and TCGA cohorts, suggesting a high similarity of
gene expression distribution and specificity between cell line and
TCGA datasets.

At the cancer type level, CLDs were hierarchically clustered based
on the averaged expression of cell lines from the same cancer type,
resulting in three distinct clusters of CLDs (Fig. 2e). In line with early
analysis in Fig. 1c, three blood cancers (i.e., myeloma, lymphoma, and
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leukemia) formed an independent cluster, with a high number of ele-
vated genes compared to the others. The second major cluster con-
sisted of CLDs mainly derived frommajor human internal organs such
as the lung, colon, and breast. Notably, gastric and colon cancers again
showed a very close relationship in the hierarchical dendrogram. The
last cluster of CLDs involved 10 cancer types including liver and kidney
cancers.

Comparison between cancer cell lines and tissues/tumors/
cell types
To evaluate if cell lines are representative of the corresponding
tumors, we compared the CLD-enriched genes with the corresponding
TCGA cohort-enriched genes, meanwhile including tissue-enriched
and single-cell type-enriched genes defined by the HPA19,20 for com-
parison. The tissue-enriched and single-cell type-enriched genes were
derived from 56 tissues and 51 cell types from 13 human tissues (both
are non-disease), respectively, with similar gene expression specificity
strategies applied. As shown in Fig. 3a, a high concordance can be
observed between cell line cancers and their corresponding tissues,
TCGA cohorts, and single-cell types. For example, genes enriched in
liver cancer cell lines were strongly overrepresented in liver tissue,
TCGA-LIHC (liver cancer), and hepatocytes (Fig. 3a). After examina-
tion, we found thatmore thanhalf of the enriched genes in liver cancer
cell lines were also enriched in liver tissue, TCGA-LIHC cohort, and
hepatocytes (Fig. 3b), suggesting a high concordance of enriched
genes between liver cancer cell lines and the corresponding tissue,
tumor, and cell type. Another example is leukemia, where the genes
that were enriched in the cell line cancers were found strongly over-
represented in TCGA leukemia cohort (LAML), bone marrow, lym-
phoid tissue, erythroid cells, granulocytes, and T-cells (Fig. 3a). In
addition, genes enriched in neuroblastoma, testis, skin, prostate, and
breast cancers can also be mapped to the corresponding tissues,
cancers, or single-cell types (Fig. 3a), suggesting a high concordance
between CLD-enriched genes and the enriched genes obtained from
bulk tissues, tumors, and single-cell types.

Apart from the overrepresentation analysis of the enriched genes,
additionally, we deployed a correlation-based analysis to evaluate the
consistency between the genome-wide transcriptomic expression of
cell line cancer types and the one from the corresponding TCGA
cancer cohorts. In brief, gene expression of the TCGA samples from
the same cohort was averaged, and the correlations betweenCLDs and
TCGA cohorts were calculated by Spearman’s ρ. As shown in Fig. 3c,
most of the TCGAcohorts can bematched to the corresponding CLDs,
such as LAML to leukemia, SKCM to skin cancer, READ and COAD to
colon/colorectal cancer, and HNSC to head and neck cancer. Taken
together, despite that cell lines from the same primary disease are to
some extent heterogeneous (primary vs. metastatic, different collect-
ing sites, etc.), both overrepresentation analysis of enriched genes

and correlation analysis based on all protein-coding genes suggested
a high concordance between CLDs and the corresponding TCGA
cohorts.

We then compared primary andmetastatic cell lines to investigate
the changes in gene expression induced by metastasis. In terms of
primary cell lines, the high concordance between CLDs and tissues/
cancers/single-cell types ismaintained, with similar significant levels of
overrepresentation (Supplementary Fig. 4, lower). Although the sig-
nificance level slightly decreased, when only including metastatic cell
lines for analysis, the levels of overrepresentation between the cell line
cancers and the corresponding tissues/cancers/single-cell types were
still high (adj. P-value < 1E-30 for the most significant ones in Supple-
mentary Fig. 4 upper part), implicating that metastatic cell lines pre-
serve the majority of the transcriptomic features of their primary
cancer types. We also observed that the metastatic cell lines (from the
same disease or same site) showed lower sample-wise correlations
than the primary cell lines (Fig. 3d), which suggested a higher het-
erogeneity among metastatic cell lines in general. In addition, meta-
static cell lines from the same site showed lower sample-wise
correlations compared to metastatic cell lines from the same primary
cancer type, which implicated that the origin of the cancer cell lines
has a greater effect on their overall transcriptomic expression as
compared to the environment in the metastatic site.

Prioritizing cell lines as models for human cancer
Given the high concordance of gene expression between cell lines and
the corresponding tumors (Fig. 3a, c), we evaluated how similar a cell
line is to its corresponding cancer type and prioritized the most
representative cell lines for the 26 TCGA cancer cohorts (Supple-
mentary Data 4). In order to do that, we evaluated the cell line simi-
larity to its bulk tumor by two different approaches: (1) correlation-
based, i.e., Spearman’s correlation between the gene expression of cell
lines and the averaged expression of the bulk tumor samples from the
samecancer type; and (2) enrichment-based, i.e., the enrichmentof the
expression level of the TCGA cohort elevated genes (i.e., the union of
the enriched, group enriched and enhanced genes of a TCGA cohort,
also named as “cohort signature”; see Supplementary Fig. 5) in a cell
line. For the second approach, in brief, we calculated the genome-wide
relative expression of every cell line by comparing it to the baseline
expression (i.e., the average expression of all CLDs), and evaluated the
expression of the TCGA cohort elevated genes in the disease-matched
cell lines by gene set enrichment analysis (GSEA) (see Methods for
details). It is expected that a good cell line model should have a high
expression of the corresponding TCGA cohort elevated genes (indi-
cated by a high normalized enrichment score, NES).

In fact, the correlation-based and enrichment-based approaches
agree well with each other, with the cell line highly ranked by one
measurement also ranked high by the other (Fig. 4). We then

Table 1 | Categories used for cell line gene expression specificity and distribution

Category Description

Specificity Enriched A single CLD (cell line gene expression averaged by disease) has 4 times higher expression than any other CLD

Group enriched 2-10 CLDs have 4 times higher expression than any other CLD

Enhanced One or more CLDs have 4 times higher expression than the average of all other CLDs

Low specificity The gene does not belong to any of the above categories and is detected above cut-off (nTPM = 1) in at least one CLD

Not detected All CLDs have an expression value less than 1

Distribution Detected in single Detected in a single cell line above cut-off (nTPM = 1)

Detected in some Detected in more than one but less than one third of the cell lines

Detected in many Detected in at least a third but not all cell lines

Detected in all Detected above cut-off (nTPM = 1) in all cell lines

Not detected All cell lines have an expression value less than 1

For gene expression specificity, gene expression in cell lines was averaged by cancer types.
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integrated the two approaches above and prioritized the top 5
(including tied for fifth) highest-ranked cell lines as candidate models
for each TCGA cohort (Fig. 4 and Supplementary Data 5), resulting in a
total of 114 cell lines selected as good candidates for cancer research.

To validate the selected candidates, we compared the results with a
previous study using 5,000 most variable genes for correlation-based
cell line selection (TCGA-110-CL;n = 100 selected cell lines for the same
cohorts analyzed in this study)9. We found that 65 of our selections
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genes (5,365with gene symbols) detected in all 1,019cell lines inCCLE 2019 and the
1,912 essential genes based on CRISPR gene screening results. c GSOA (hyper-
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vided as a Source Data file.
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were also included in the TCGA-110-CL panel, with a p-value of 1.55E-44
based on hypergeometric testing (Supplementary Fig. 6a), under-
pinning the validity of the selected cell lines by our approach. Of note,
our study relied on all protein-coding genes rather than a subset of
genes for correlation analysis, which could provide a more compre-
hensive and precise evaluation of the similarity between cell lines and
tumors.

For some cancer types, e.g., liver cancer (LIHC), the commonly
used cell lines such as Hep-G2 and Huh-7 for in vitro study were
selected as the best candidates out of the total 24 liver cancer cell lines.
We then specifically inspected the expression of the TCGA-LIHC sig-
nature (867 genes elevated in TCGA-LIHC cohorts compared to the
others) in the 24 liver cancer cell lines, and found that the expressionof
the TCGA-LIHC signature was generally higher in the top-ranked cell
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lines than in the lowly ranked cell lines (Fig. 5a). For instance, the
Albumin (ALB) gene—one of the TCGA-LIHC signature genes, which is
also a hallmark gene of liver functions21, was highly expressed in the
top-ranked liver cancer cell lines (Fig. 5b), distinguishing prioritized
cell lines from lowly ranked cell lines. Indeed, based onGSOA, the LIHC
signature was associated with basic metabolic functions in liver
(Fig. 5c), suggesting that the expression of the LIHC signature is
mechanistically critical for liver cancer cell lines.Moreover, we plotted
the correlation of gene expression between three representative cell
lines (two highly ranked cell lines, Huh-7 and Hep-G2; and one lowly
ranked cell line, SNU-398) and the TCGA-LIHC cohort (Fig. 5d). We
observed that the two highly ranked cell lines demonstrated a high
correlation to the TCGA-LIHC (ρ = 0.774 and 0.772, respectively) while
the lowly ranked cell line, SNU-398, had a relatively low correlation
(ρ =0.665). Meanwhile, the TCGA-LIHC signature was also found
relatively lowly-expressed in the SNU-398 cell line, suggesting that the
hallmark of TCGA-LIHC might be weaker in this cell line. Indeed, a
previous study reported that some cell lines presented an undiffer-
entiated state and may be derived from undifferentiated tumor10. In
our ranking list for the 24 liver cancer cell lines, only the SNU-886
(ranked 12th)was reported as “undifferentiated” in thefirst 12 cell lines,
but 9 of the last 12 cell lines were reported as “undifferentiated”. The
imbalance between highly- and lowly-ranked cell lines regarding their
differentiated state possibly explains why some cell lines are lowly
prioritized. Taken together, these results demonstrated the validity of
the use of the approaches for cell line prioritization.

In addition, for each TCGA cohort, we also applied our cell line
prioritization algorithm to evaluate cell line fidelity at the pathologic
stage and molecular subtype levels (Supplementary Data 6 and 7). We
then validated our results by comparing them with the TCGA-110-CL
cell lines ranked for subtypes based on two TCGA cohorts (the same
subtype categorization as in this study), and found that the correla-
tions between the rank of the cell lines in this study and in the TCGA-
110-CL were generally high (all p-value < 0.05; Supplementary Fig. 6b).
When focusing on the stage and subtype of the TCGA-LIHC cohort, we
found that Huh-7 was ranked as the first 5 cell lines and outperformed
Hep-G2 in all conditions except for tumor stage II. For this particular
tumor stage, in the total 24 liver cancer cell lines, theHuh-7 was ranked
6th and the Hep-G2 was ranked 2nd. While showing a relatively low
performance than Hep-G2, the Huh-7 still outperformed most of the
cell lines, suggesting a broader scopeofusage, thus theHuh-7 could be
a good candidate for the research for all the tumor stages and mole-
cular subtypes.

Cancer-relatedpathway and cytokine activity inhuman cell lines
To evaluate the cell lines froma functional perspective, we inferred the
cancer-related pathway and cytokine activity for all 1,055 unique cell
lines included in this study. PROGENy22 and CytoSig23 were employed
for this analysis, and they allowed us to investigate the association

between the cell line expression profiles and 14 cancer-related path-
ways as well as 43 cytokine signaling cascades (SupplementaryData 8),
respectively. Results of the pathway and cytokine activity were pre-
sented as z-scores, representing the strength of the corresponding
signal relative to the average across all the 1,055 unique cell lines
(Fig. 5a and Supplementary Data 8; seeMethods for details). We found
that most of the non-cancerous cell lines, i.e., fibroblasts, displayed
high levels of fibrotic pathway TGF-β and cytokines TGF-β1/-β3 activity
(Fig. 6a)24. Meanwhile, the MAPK signaling pathway—the key pathway
and therapeutic target in melanoma25, was highly activated in skin
cancer (Fig. 6a). In addition, hematopoietic and lymphoid cells, such as
myeloma, lymphoma, and leukemia cell lines, showed high levels of
apoptosis-related signaling including the tumornecrosis factor-related
apoptosis-inducing ligand (TRAIL) and TWEAK cytokine (Fig. 6a),
suggestive of a particular role of the TRAIL signaling and TWEAK
cytokine in blood cancer.

We also projected the results of pathway and cytokine analysis for
all cell lines on a UMAP plot to investigate whether cell lines with the
same cancer of origin showed similar pathway and cytokine features.
In both analyses, blood cancer cell lines (i.e.,myeloma, lymphoma, and
leukemia) formed a distant cluster that can be easily separated from
the other cell lines (Supplementary Fig. 7a, b), which is in line with the
expression-based UMAP visualization (Fig. 1c). The pathway and
cytokine activity was validated by a previously published independent
dataset26 (Genentech; n = 610, with 461 overlapping with the cell lines
analyzed in this study). Based on the mean squared error (MSE) of the
pathway and cytokine activity between each pair of the cell lines from
this study and the Genentech datasets, the 461 common cell lines
showed significantly lower MSE than all the pairs of the non-common
cell lines at both pathway and cytokine levels (Supplementary Fig. 7c,
d). Further, we also calculated the pathway and cytokine activity for
the TCGA cohorts, and similarly, prioritized cell lines based on theMSE
to the matched TCGA cohorts (Supplementary Data 9). We found a
significant overlap (n = 31; hypergeometric testing p-value = 4.14E-07)
of the prioritized cell lines between pathway/cytokine analysis and
transcriptome-wide analysis (Fig. 4). Taken together, these results
demonstrated that these two computational tools were able to extract
meaningful pathway and cytokine signaling levels from the cell line
transcriptomics datasets.

The pathway and cytokine profiles of the 1,055 cell lines also
provided the opportunity to investigate the relationship between
pathways and cytokines. Based on the pathway analysis of 1,055 cell
lines, pro-inflammatory pathways TNF-α and NF-κB27 were highly
correlated with each other (Supplementary Fig. 7e). Meanwhile, the
hypoxia pathway which promotes angiogenesis and metabolic
reprogramming was strongly associated with TGF-β, a pathway
playing important roles in tissue repair (Supplementary Fig. 7e). At
the cytokine level, pro-inflammatory cytokines such as IFN-γ, TNF-α,
tumor necrosis factor-like weak inducer of apoptosis (TWEAK), and

Fig. 3 | Comparison of transcriptomics between cancer cell lines and TCGA
cohorts, HPA tissues, and single-cell types. a Dot plot showing the significance
(estimated by hypergeometric testing) of the overlapping genes between the
enriched genes in CLDs (y-axis) and TCGA cohorts, HPA tissues, and single-cell
types (x-axis). P-valueswere adjusted basedon the Benjamini-Hochbergprocedure.
Non-significant overlaps (adj. P-value > 0.05) are not shown in the figure, and CLDs
that are not significantly overlapped with any TCGA cohorts, tissues, single-cell
types, or the other way around, are removed. b Venn diagram showing the inter-
sected genes between the enriched genes in cell line-based liver cancer and the
TCGA liver cancer, HPA-analyzed liver tissue, and hepatocytes in single-cell type
analysis. cCorrelation between theCLDs andTCGAcohorts calculatedbasedon the
average expression per CLD and TCGA cohort. For each CLD, we used one-sided
one-sample Wilcoxon signed-rank test to investigate if the correlations to its
unmatched TCGA cohorts were significantly lower than the correlation to its
matched TCGA cohort. Based on the information in Supplementary Data 4,

26 statistical tests were performed. *P <0.05. d Correlation between cell lines by
different categorizations. Primary: correlations between primary cell lines. Corre-
lations between cell lines were calculated per cancer type and were summarized
(n = 7,189 correlations). Metastatic—same disease: correlations between metastatic
cell lines. Correlations between cell lines were calculated per cancer type and were
summarized (n = 6,864 correlations). Metastatic—same site: correlations between
metastatic cell lines. Correlations between cell lines were calculated per sample
collection site andwere summarized (n = 7,627 correlations). Statistical significance
was evaluated by two-sidedWilcoxon rank-sum test. The lower, middle, and upper
hinges correspond to the 25th, 50th, and 75th percentiles. The upper whisker
extends from the hinge to the largest value no further than 1.5 * IQR from the hinge
(where IQR is the inter-quartile range, or distance between the first and third
quartiles). The lower whisker extends from the hinge to the smallest value at most
1.5 * IQR of the hinge. Source data are provided as a Source Data file.
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IL-1α/−1β were highly correlated with each other (Supplementary
Fig. 7e). Pathways and cytokines also showed nice correlations cor-
respondingly. For example, the TGF-β pathway was highly correlated
with the TGF-β1 and TGF-β3 cytokines, whereas pro-inflammatory
pathways TNF-α and NFκB were highly correlated with pro-
inflammatory cytokines TNF-α and IL-1α (Fig. 6b). In addition, the
immune-related pathway JAK-STAT was highly correlated with type 1
interferon (IFN1), IFN-γ, and IL-27 (Fig. 6b), the latter of which can
induce IFN-γ and regulate the immune system via the JAK-STAT
signaling28.

We can also investigate the pathway and cytokine signaling levels
from a cell line-centric perspective. As an example, here we investi-
gated the pathway and cytokine activity in three individual cell lines of

breast cancer. By comparing the highest prioritized cell line BT-483
with the commonly used cell line MCF-7 for breast cancer, we found
both cell lines showed a high estrogen signaling activity (Fig. 7a),which
is in line with the report that both cell lines are estrogen receptor (ER)-
positive29. The ER-negative breast cancer cell line BT-549 did not show
a significantly high level of estrogen signaling (Fig. 7a) but demon-
strated a high pro-inflammatory (TNF-α, IL-1α/−1β) and a low anti-
inflammatory response (IL-4) relative to BT-483 and MCF-7 (Fig. 7b).
The levels of pathway activity were similar between BT-483 andMCF-7,
with the MAPK pathway significantly inhibited in only BT-483 (Fig. 7a).
But the two cell lines demonstrated different cytokine levels (Fig. 7b).
Interestingly, at the cytokine level, our results identified elevated
BMP4 signaling in these three and other breast cancer cell lines
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Fig. 4 | Prioritizing cancer cell lines asmodels for human cancer. For each TCGA
cohort, the top five highest-ranked cell lines for the same cancer type were prior-
itized based on the integration of correlation-based rank (y-axis) and GSEA-based
rank (x-axis; NES normalized enrichment score). Names of the selected cell lines are
shown (top-5 including tied for fifth for each cohort), with these cell lines in the dot

plot highlighted in red. The correlation between the testis cancer cell line SuSa and
theTCGA testis cancer cohortTGCT is0.77,with anNESof 1.97 (adj. P-value = 9.37E-
81) for theTCGA testis cohort elevated genes in the SuSa cell line (data not shown in
this figure, see Supplementary Data 5). Source data are provided as a Source
Data file.
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(Figs. 6a and 7b), whichwaspreviously reported as a therapeutic target
in the ER-positive breast cancer30.

To further underpin the depiction of the cell line characteristics
by pathway and cytokine analyses, we compared the 1st rank cell line
VCaP with PC-3, both of which are common prostate cancer cell lines
used in drug repositioning31. As an important feature, prostatic ade-
nocarcinoma cells express androgen receptor (AR)32, and this can be
observed inour analysis as demonstratedby thehigh level of androgen
signaling in VCaP (Fig. 7c). However, the PC-3 did not show this feature
and displayed different characteristics to VCaP at both pathway and
cytokine levels (Fig. 7c, d). This suggested that this cell linemay not be
suitable for testing the drugs for androgen suppression therapy for
prostate cancer33,34. Taken together, the pathway and cytokine ana-
lyses provided a complementary and interpretable view of the cell line
characteristics, and it will be a great resource for the design of in vitro
experiments for drug-target validation.

Discussion
In the last few years, several studies have been launched to align cancer
cell lines to disease tumors based on (multiple) omics profiling9–11,35–38.
While these studies have substantially deepened our understanding of
the cell line representative of human cancers, they mostly lack
answering a fundamental question, that is, how well is the repre-
sentative of cell lines to the corresponding tissues, tumors, and cell
types. In this study, by investigating the expression of 20,090 protein-
coding genes in around 1,000 human cancer cell lines, we compre-
hensively compared gene expression of cancer cell line models with
the corresponding tissues, tumors, and single-cell types. In general,
cell lines exhibited high consistency with the matched cancer types,
with the disease signature maintained in the corresponding cell lines.
Given the high concordance between cell lines and the corresponding
tissues, tumors, and single-cell types, based on twoevaluationmetrics,

we prioritized individual cell lines for different cancer types based on
the TCGA cohort definition. Compared to the previousmethodswhich
often rely on batch correction and manifold alignment between tran-
scriptomics of cell line and TCGA data, our approach adopts two
metrics tomeasure (1) the global similarity between cell line and TCGA
cohort (correlation-based); and (2) the preservation of disease sig-
nature in cancer cell lines (GSEA-based). Especially the adoption of the
GSEA, which showed discriminative in estimating fundamental tumor
biological processes in cell lines (Fig. 5c), has not yet been investigated
in the previous correlation-based study9. Indeed, the results of the two
metrics concur with each other, demonstrating the validity of our
approach for cell line scoring. The prioritized cell lines displayed
remarkable differences from the commonly used cell lines in the NCI-
60 panel and the LINCS L1000 drug repositioning platform31, sug-
gesting a need of improvement of the cell line panel for in vitro study.

As a showcase, we explored the details of the selection procedure
in liver cancer cell lines and elucidated the reasons why the commonly
used cell lines Huh-7 and Hep-G2 outperform the others for liver
cancer studies. Results showed non-ignorable differences between
24 liver cancer cell lines, in terms of the correlation (similarity) to the
corresponding TCGA cohort LIHC, and the preservation of the ele-
vated genes in the TCGA-LIHC cohort. This suggested that cell lines,
even derived from the same primary diseases, are rather hetero-
geneous with diverse phenotypes. The major differences between cell
lines could be induced by the donors, the processes during the
establishment of the cell line models, and the culture procedure,
however highlighting the importance of choosing the best cell line
models for cell experiments.

In some cases, the selection of the most appropriate cell line may
not completely follow the computational prioritization given in this
study. For example, for drug-target selection, researchersmaywant to
know if a specific gene, cytokine, or pathway is highly expressed in a
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cell line. To help interpret cell line characteristics, we calculated the
pathway and cytokine activity scores. As demonstrated in several
prostate and breast cancer cell lines for their AR-/ER-specificity and
different levels of pro-/anti-inflammatory cytokines, these results can
preciously depict the phenotypic features of the cell lines. As a com-
plement, recent studies have enabled large-scale proteomic profiling

in human cancer cell lines39,40, providing direct evidence of the
expression and translation of the biomarkers for the disease pheno-
type. Integrating cell line proteomics and metabolomics41 will
undoubtedly benefit the comprehensive depiction of cell line char-
acteristics. Nevertheless, since our approaches for pathway and cyto-
kine inference were based on biodata mining from publicly available
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transcriptomics, these results are important resources for cell line
comparison that could not be derived from other omics platforms.

For all the cell lines analyzed in this study, we processed the gene
expression normalization using the same pipeline applied to the other

HPA resources, and present the normalized expression nTPM of these
cell lines in the HPA database. Based on our previous analysis13, the
TMM normalized gene expression can minimize the batch effects
caused by sampling and different technology platforms, especially
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Fig. 7 | Cancer-related pathway and cytokine activity in human breast cancer
and prostate cancer cell lines. a–d The levels of the PROGENy pathways and
Cytosig cytokines for the human breast cancer cell line BT-483, MCF-7, and BT-549

are presented in (a) and (b), respectively, and for the human prostate cancer cell
line VCaP and PC-3 are presented in (c) and (d), respectively. Source data are
provided as a Source Data file.
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when a small number of genes are very highly expressed, facilitating
the sample-wise comparison between gene expression in cell lines and
tissues, organs, single-cell types, and cancer biopsies. In addition, key
features of the cell lines have been demonstrated by the pathway and
cytokine analysis and will be presented aside to provide a deep
understanding of cell line phenotype and to aid the better design of
preclinical experiments. Furthermore, we provided RRID for the cell
lines in the HPA database, linking them to the information page of the
Cellosaurus database42. This will help users to bypass the selection of
mislabeled or transdifferentiated cell lines due to historical reasons35.
By incorporating more than 1,000 transcriptional profiles of human
cell lines in the HPA database, the newly launched cell line section
facilitates the exploration and comparison of the expression of human
protein-coding genes across cell lines and HPA tissues19, tumors43,
single-cell types20, and blood immune cells13.

We here report that cell lines derived from metastatic cancers
from the same tissue of origin are more similar to each other as
compared to the cell linesmetastasized to the same site fromdifferent
origins. This suggests that although thought to be largely dediffer-
entiated, tumorcells keep somekey features of theiroriginal cell types.
This reinforces the idea that the treatment strategy for metastatic
cancer should be designed based on the primary site and emphasizes
the importance of the identification of cancers of the unknown
primary site. Future works would focus on multi-omics analysis of
cell lines using genomics and recently released proteomics39,
metabolomics41 and drug response datasets44–46 to comprehensively
evaluate and expand the main findings in this study.

Despite advanced cell culture techniques such as 3D culture
which enable a better simulation of the true in vivo environment47,
cell line models still face inherent limitations. For example, in most
cases, a maximum of two cell lines can be co-cultured together,
limiting the study of cellular interactions between different cell types
as a whole system, the latter of which plays an important role in the
tumor microenvironment and progression. Furthermore, as exten-
sively evaluated by the recent single-cell sequencing studies, tumor
cell type composition is rather heterogeneous, which also compli-
cates the design of the in vitro preclinical experiments. Advanced
cancer models such as patient-derived xenografts and organoids48

may overcome this pitfall. Nevertheless, our study demonstrated
that cell lines, as a single cell type, preserve the most discriminative
and informative signatures of the corresponding cancer types, thus
could be properly used as a starting point for cancer researchwith an
appropriate selection of cell lines, the latter of which couldmuch rely
on the newly launched cell line section of the Human Protein Atlas—a
comprehensive resource for the characterization and exploration of
human cell lines.

Methods
Cell line annotation and categorization
A total of 1,019 cell lines fromCCLE6 were included in this study. CCLE
cell lines were annotated based on the publicly available DepMap
2022Q2 annotation file (https://depmap.org/portal/download/all/)
(Supplementary Data 2). All the cell lines were uniquely annotated by
the Cellosaurus Research Resource Identifier (RRID) (https://www.
cellosaurus.org/)42. Based on the DepMap annotation, cell lines were
categorized by primary disease (i.e., cancer type), primary or metas-
tasis, lineage, and sample collection site. This assigned the 1,019 cell
lines into 26 cancer types and one non-cancerous group consists of
mostly fibroblast cell lines. Two cell lines without disease information
were denoted as “Unknown”.

A total of 69 cell lines from HPA were included in this study. HPA
cell lines were annotated by unique internal ID, RRID, cell line name,
tissue, and origin. Additional publicly available information (including
sex) obtained from the DepMap 2022Q2 annotation file was added to
extend the HPA cell line annotation (Supplementary Data 1).

RNA-seq data preparation and processing
The SRA files of the 1,019 cell lines from the CCLE 2019 data6 were
downloaded from the GEO using SRA Toolkit (v2.11.3) and were sub-
sequently converted into raw fastq files. The RNA-seq data processing
followed the same pipeline as the HPA project. Transcript expression
levels were quantified by mapping sequences to the human reference
genome GRCh38.p13 cDNA using Kallisto (v0.46.2)49. Based on the
Ensembl version 103 annotation, the transcript abundances were
aggregated into gene level as transcripts permillion (TPM) by tximport
(v1.22.0)50 without the inclusion of non-protein-coding transcripts.
This resulted in a total of 20,090 protein-coding genes included for
further analysis, and their expression was converted into pTPM (i.e.,
TPM for protein-coding genes) by scaling the sum of the TPM to 1
million per sample. The pTPM expression was normalized by trimmed
means ofM (TMM)51 using the tmm function provided in theR package
NOISeq (v2.38.0)52 with a median column as the reference, with the
parameters doWeighting = T and logratioTrim =0.3, and the resulting
expression was denoted as nTPM.

The 69 human cell lines from the HPA database13 were processed
using the same pipeline.

To compare cell line transcriptional characteristics with TCGA
cancers, a total of 9,476 RNA-seq transcriptomics profiles (count and
TPM values) of primary tumors and primary blood-derived cancers
from 27 TCGA cohorts were retrieved using the R package TCGAbio-
links (v2.27.2)53. Tumor purity of the TCGA tumors was estimated
basedon the ESTIMATE18 algorithm. TCGAsampleswith a tumorpurity
score <0.7 were considered highly infiltrated by immune and stromal
cells and were thus removed from the analysis, resulting in 6,082
qualified samples from 26 TCGA cohorts for downstream analysis
(SupplementaryData 4). Basedon the pipeline described above for cell
line RNA-seq data, gene expression nTPM values were calculated from
TPM for each TCGA sample.

Machine learning prediction
Based on the nTPM expression of HPA+CCLE cell lines, logistic
regression (solver = “lbfgs”) and random forests (number of estima-
tors = 100) were used to test the ability of the expression data in cor-
rectly classifying cell line disease types. The test was performed under
stratified 5-fold cross-validationwith 100 repeats, hence, only a disease
type that has no less than five cell lines was included in this analysis
(n = 1076 cell lines for 26 disease labels including “non-cancerous”).
The top 5000 most variable genes were selected and scaled before
classification. The analysis was performed by the scikit-learn package
(v1.0.2; https://scikit-learn.org/stable/index.html) in Python (v3.9.7).

Gene expression landscape
Based on the normalized expression nTPM, genes were categorized
into five groups for their expression distribution, i.e., how many cell
lines a specific gene is expressed in (see Table 1 for criteria). This was
done independently on the 1,019 CCLE and 69 HPA cell lines. To
understand if a gene is highly expressed in one specific CLD, gene
expression of cell lines was summarized per CLD (denoted by the
primary disease) by average expression, followed by gene categor-
ization for disease specificity (seeTable 1 for criteria). Thiswasdoneon
the 973 CCLE cell lines (excluding 44 non-cancerous and 2 cell lines
without disease annotation) plus 45 HPA cancer cell lines. Of these
cancer cell lines, 33 pairswereoverlapped betweenHPA andCCLE, and
their nTPM expression was combined by average value. Based on the
aggregated gene expression of 27 CLDs from the 985 cancer cell lines,
geneswere categorized into five groups for their expression specificity
in CLDs, i.e., if a gene shows higher expression in one or a group of
CLDs (see Table 1 for criteria).

In addition, CLDs were hierarchically clustered based on the dis-
tance converted from Spearman’s correlation coefficient between
cancer types (1—Spearman’s ρ). The agglomeration method was set as
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“complete-linkage” for hierarchical clustering. The same hierarchical
clusteringwas applied onall analyzed 1,019CCLE and69HPAcell lines.

The same approach for gene specificity categorization was
applied to the gene expression data of the HPA tissue19 and single-cell
type20 based on the HPA version 21, as well as TCGA cohorts analyzed
in this manuscript. Details can be found accordingly in our previously
published papers aswell as in theHPAwebsite resources (https://www.
proteinatlas.org/about/download).

The CLD-enriched genes were comparedwith the tissue-enriched,
TCGA cohort-enriched, and single-cell type-enriched genes by hyper-
geometric testing for significance, with the adjusted P-values cor-
rected by the Benjamini-Hochberg procedure. In addition, functional
analysis of gene sets was performed by gene set overrepresentation
analysis (GSOA) based on the Gene Ontology biological process terms
by the R package clusterProfiler (v4.2.2)17.

Cell line prioritization for cancer type
The 985 cancer cell lines from both HPA and CCLE were analyzed for
their representability of the corresponding TCGA cohorts (Supple-
mentary Data 4). The similarity between cell lines and the corre-
sponding TCGA cohorts was estimated by two different approaches.

We calculated gene-level Spearman’s correlation coefficient (ρ)
between the cancer cell lines and their corresponding TCGA cohorts
for the first. For this, for each gene in a TCGA cohort, the nTPM values
were averaged per cohort. Then, for each TCGA cohort, Spearman’s ρ
was calculated based on the TCGA averaged nTPM values and the
nTPM values of the disease-matched cell lines based on the common
20,056 protein-coding genes.

For the second approach, we calculated the enrichment of the
TCGA cohort elevated gene (i.e., the union of enriched, group-enri-
ched, and enhanced genes in the TCGA cohort) in cell lines by gene set
enrichment analysis (GSEA). The concept is that genes that have an
elevated expression in a TCGA cohort can be considered as the cohort
signature and their high expression should be reflected by cell line
models. To test this, similar to the approach where we calculated gene
specificity, for the 27 CLDs, gene expression was averaged per disease,
resulting in the mean expression for each of the 27 CLDs. Then,
the average expression per diseasewas further averaged as the disease
baseline expression. After that, for every cell line, we calculated the
fold change of every gene relative to the disease baseline expression,
followed by the log2 transformation of the fold change. Finally, for
each cell line, gene log2 fold changes were sorted from high to low,
followed by the GSEA of the TCGA cohort elevated genes against the
sorted gene list. It is expected that cell lines showing high concordance
to the matched TCGA cohort should present high log2 fold changes of
the TCGA cohort elevated genes relative to the disease baseline
expression. The results were represented as the normalized enrich-
ment score (NES), with a positive value showing high consistency
between a cell line and a disease-matched TCGA cohort. The sig-
nificance levels of the enrichment were presented as adjusted P-values
corrected from the raw P-values based on the Benjamini-Hochberg
procedure. The GSEA was performed by the R package fgsea
(v1.20.0)54.

For both approaches, cell lines were ranked based on Spearman’s
(ρ) and NES from high to low, respectively. Then, the two ranking lists
were combined, and cell lines were reordered according to their
average rank (Supplementary Data 5).

In addition, we also analyzed cell line similarity to the TCGA
cohorts at the disease stage andmolecular subtype levels. For this, the
AJCC (American Joint Committee on Cancer) pathologic stages and
molecular subtypes of the analyzed TCGA samples were retrieved
using the R package TCGAbiolinks. Specifically, molecular subtypes
were retrieved using the package function PanCancerAtlas_subtypes(),
and the column “Subtype_Selected” was selected as the final categor-
ization. For each TCGA cohort, gene expression nTPM was averaged

per stage, respectively. Then, Spearman’s correlation was calculated
between stages and cohort-matched cell lines. Considering the limited
number of pathologic stages per cohort, here we selected genes hav-
ing fourfold higher expression in one stage than any other stagewithin
a TCGAcohort as the stage signature, and calculated the enrichment of
the stage signature in the cohort-matched cell lines using the same
approach to the GSEA of TCGAdisease signature in all cancer cell lines.
Finally, correlation-based andGSEA-based ranking listswere combined
to obtain the final ranking list for cell line prioritization for the disease
stage (Supplementary Data 6). The molecular subtype-level analysis
was performed in the same manner (Supplementary Data 7).

Pathway and cytokine analysis
A total of 14 cancer-related pathways activity for all analyzed cell lines
were inferred based on the PROGENy, a package that relies on biolo-
gical data mining of publicly available data to obtain cancer-related
pathway-responsive genes for human and mouse22. For this, read
counts for HPA and CCLE cell lines quantified by Kallisto were re-
analyzed without filtering out the non-protein-coding genes to ensure
a broadened coverage of cancer pathway-responsive genes. Specifi-
cally, read counts were aggregated by tximport, and 33 common cell
lines between HPA and CCLE were combined by summing up the read
counts, resulting in 36,498 genes for 1,055 unique cell lines (1,019 from
CCLE plus 69 from HPA minus 33 common cell lines) for pathway
analysis. Then, the read counts were normalized by DESeq2 (v1.34.0)55

with respect to the size factor of each cell line and were further
transformed by variance stabilizing transformation into log2 space. To
calculate the relative pathway’s activities across all cell lines, the nor-
malized values were centered by subtracting themean value per gene.
Then, the R package decoupleR (v2.0.1)56 was used to calculate the
relative pathway’s activities based on the top 100 signature genes per
pathway obtained from the R package progeny (v1.16.0) as suggested
by the original publications22,57. By default, the decoupleR was exe-
cuted using the top performer methods benchmarked (i.e., mlm for
multivariate linear model, ulm for univariate linear model, and wsum
for weighted sum)56, and the results were integrated to obtain a con-
sensus score presented as z-score to represent the pathway activity.
Here, a consensus z-score above 1 or below −1 was considered sig-
nificant, resulting in 4,352 (29%) significant pathways among the total
14,770 (14*1055) calculated pathways (Supplementary Data 8).

Similarly, the activity of the 43 CytoSig cytokines was inferred
based on the gene expression profile of the 1,055 unique cell lines by
the package CytoSig (v0.0.2)23. Gene expression data were processed
in the same way as for PROGENy analysis. Also, DESeq2 normalized
expression values were centered per gene as suggested23. The CytoSig
programwas executedwith 10,000permutations, and the results were
presented as z-scores to represent the relative cytokine activities, with
a p-value < 0.05 as significant. In total, 25,391 (56%) of the total 45,365
(43*1055) cytokine activities were significant (Supplementary Data 8).

In addition, PROGENy and CytoSig analyses were applied to an
independent cell line RNA-seq dataset from Genentech Inc.26 (n = 610
cell lines) as well as the TCGA dataset analyzed in this study. For this,
the expression of the Genentech and TCGA datasets was indepen-
dently processed and analyzed for the pathway and cytokine activities
in the same way as for the HPA and CCLE cell lines. After averaging the
gene expression nTPM of the TCGA dataset per cohort, the pathway
and cytokine activities were inferred for TCGA at the cohort level.
The mean squared error was calculated based on the pathway and
cytokine activities, respectively, between theHPA +CCLE cell lines and
the Genentech cell lines aswell as thematched TCGA cohorts. Further,
similar to the transcriptomics-based cell line prioritization, HPA and
CCLE cell lines were prioritized for the corresponding TCGA cohorts
based on the combined ranking list of pathway and cytokine similarity
represented by mean squared error (the lower, the more similar)
(Supplementary Data 9).
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Sample visualization
Dimensionality reduction was performed on the nTPM expression
data, the PROGENy pathway activity, and the CytoSig cytokine activity
for sample visualization. First, we applied principal component ana-
lysis (PCA) using the R package pcaMethods (v1.86.0)58 on the
z-normalized values, with the cut-off of the total ratio of variance that
is being explained by the principal components (PCs) no less than 0.8
for the number of selected PCs. After PCA, the Uniform Manifold
Approximation andProjection (UMAP)14 analysiswas performedby the
R package uwot (v0.1.11) to compress the PCs into two dimensions for
visualization.

Statistical analysis
Wilcoxon rank-sum test (after Shapiro-Wilk test for data normality)
was used to evaluate the statistical difference between groups. Sta-
tistical tests were performed in R (v4.1.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The CCLE publicly available RNA-seq data used in this study are
available in the Sequence Read Archive (SRA) database under acces-
sion code PRJNA5233806. The RNA-seq data of the HPA cell lines
generated for this study have been deposited in the Gene Expression
Omnibus database under accession code GSE240542. The Genentech
RNA-seq data is available under restricted access, access can be
obtained by request from the European Genome-phenome Archive
(EGA) under accession number EGAS0000100061026. The TCGA data
are publicly available at https://portal.gdc.cancer.gov/. The processed
gene expression data for CCLE and HPA cell lines are available to
download on the Human Protein Atlas resource download page
[https://v22.proteinatlas.org/about/download]. The remaining data
are available within the Article, Supplementary Information or Source
Data file. Source data are provided with this paper.

Code availability
The scripts required to reproduce the results presented in this paper
are available in the GitHub repository (https://github.com/jha14/HPA_
cell_line)59.
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