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Dopamine regulates decision thresholds in
human reinforcement learning in males

Karima Chakroun1, Antonius Wiehler 2, Ben Wagner 3, David Mathar 4,
Florian Ganzer 5, Thilo van Eimeren6, Tobias Sommer1 & Jan Peters 1,4

Dopamine fundamentally contributes to reinforcement learning, but recent
accounts also suggest a contribution to specific action selection mechanisms
and the regulation of response vigour. Here, we examine dopaminergic
mechanisms underlying human reinforcement learning and action selection
via a combined pharmacological neuroimaging approach in male human
volunteers (n = 31, within-subjects; Placebo, 150mgof the dopamine precursor
L-dopa, 2mg of the D2 receptor antagonist Haloperidol). We found little
credible evidence for previously reported beneficial effects of L-dopa vs.
Haloperidol on learning from gains and altered neural prediction error signals,
which may be partly due to differences experimental design and/or drug
dosages. Reinforcement learning drift diffusion models account for learning-
related changes in accuracy and response times, and reveal consistent decision
threshold reductions under bothdrugs, in linewith the idea that lowerdosages
of D2 receptor antagonists increase striatal DA release via an autoreceptor-
mediated feedback mechanism. These results are in line with the idea that
dopamine regulates decision thresholds during reinforcement learning, and
may help to bridge action selection and response vigor accounts of dopamine.

The neurotransmitter dopamine (DA) plays a central role in a range
of cognitive and motivational processes, including cognitive
control1, reinforcement learning2 and decision-making3. Phasic
responses of midbrain dopamine neurons encode reward predic-
tion errors, the discrepancy between obtained and expected
reward2. Prediction error signals play a central role in formal rein-
forcement learning theory4,5. On a neural level, positive prediction
errors are thought to be signaled by phasic burst firing of DA
neurons2, predominantly activating low-affinity striatal D1 receptors
in the direct pathway that facilitates go learning6–8. In contrast,
negative prediction errors are thought to be signaled by phasic dips
of DA neuron firing rates below baseline2, predominantly affecting
high affinity striatal D2 receptors in the indirect pathway that
facilitates no go learning6–8.

Target regions of midbrain dopaminergic projections9 in dorsal
and ventral striatum reliably exhibit activation patterns in functional
neuroimaging studies that correspond to reward prediction error
coding10,11. Likewise, animal work has shown a causal role of dopamine
neuron signaling in reinforcement learning12. On the other hand, causal
evidence for a role of DA in human reinforcement learning is primarily
based on pharmacological work and studies in patients with dysfunc-
tions in the dopamine system, e.g. Parkinson’s disease (PD).

More generally, the contributions of dopamine to reinforcement
learning have focused on two aspects, learning (value updating) and
performance (action selection)13,14.With respect to learning, behavioral
and neural effects of pharmacological manipulation of DA appear
heterogeneous, replications of specific effects are scarce15 and many
studies suffer from small sample sizes15. Elevation of dopamine
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transmission via the DA precursor L-dopa has been suggested to
improve in particular go learning in healthy participants16,17 and PD
patients7,18. Such effects might be driven by enhanced neural reward
prediction error responses under L-dopa15–17. However, other studies
did not find increased striatal reward prediction error responses fol-
lowing L-dopa administration19,20, and one study even observed
increased punishment-related striatal responses21. Other evidence
suggests blunted prediction error responses following L-dopa admin-
istration in PD patients22. Conversely, D2 receptor antagonists have
sometimes been reported to impair reinforcement learning17,23,
whereas other studies have reported no effects24, or effects restricted
to post-learning decision-making25,26. Interpretation of D2 receptor
antagonist effects are complicated by the fact that lower dosages
predominantly affect presynaptic D2 autoreceptors27, which, via an
inhibition of negative feedback27, likely increases (rather than decrea-
ses) striatal DA release28–32. In line with this idea, lower dosages of D2
receptor antagonists in some cases improve learning from positive
feedback8 (similar to some reported effects of L-dopa17), enhance
prediction error signaling25 and increase overall stimulus-locked
striatal responses33. Higher dosages might lead to the reverse
effects23. This is consistent with attenuated go learning and reduced
striatal prediction error responses in schizophrenia patients who
receive antipsychotics13.

But dopamine may also critically contribute to action selection
per se. One account suggests that increased striatal DA availability
during choice increases activation in the striatal go pathway, and
reduces activation in the no go pathway13,14, thereby facilitating action
initiation vs. inhibition. This resonates with accounts that emphasize a
role of DA in regulating response vigor34–37. This account is con-
ceptually related to a recent proposal that striatal DA regulates deci-
sion thresholds during action selection38, which is also supported by
basal ganglia circuit models39. It is also related to theoretical accounts
emphasizing a role for DA in encoding the (subjective) precision of
actions and/or policies40–42. Decision thresholds play a central role in
sequential sampling models43 such as the drift diffusion model44. In
these models, choice behavior arises from a noisy evidence accumu-
lation process that terminates as soon as the accumulated evidence
exceeds a threshold. Decision threshold adjustments are thought to be
at least in part regulated by basal ganglia circuits39,45–51. In line with a
more specific role of DA38,39, rodent response time distributions fol-
lowing amphetamine infusion in the striatum change in a manner that
is consistent with a threshold reduction52. Likewise, increased DA
availability in mice increases response rates in the absence of
learning53, again consistent with a threshold reduction. In humans,
administration of the catecholamine precursor tyrosine reduces
decision thresholds across different value-based decision-making
tasks54, and the DA agonist ropinirole reduces decision thresholds
during inhibition55. In contrast, Bromocriptine (a DA agonist) does not
affect thresholds during perceptual decision-making56, suggesting that
such effects might be task-dependent. Finally, gambling disorder, a
putatively hyperdopaminergic disorder57, is associated with altered
adjustment of decision thresholds over the course of learning58.
However, direct causal evidence for the role of DA in regulating
decision-thresholds in human reinforcement learning is still lacking.

The present study is part of a larger project fromwhich a different
learning task has been published previously19. The study was initially
conceptualized as a replication of the gain condition of Pessiglione
et al.17. In that study, participants receiving L-dopa (n = 13) showed
improved learning from rewards, and enhanced striatal coding of
positive vs. negative prediction errors, compared to participants
receiving Haloperidol (n = 13). We scanned a larger sample (n = 31)
using fMRI, and employed a within-subjects design using slightly
higher drug dosages (L-dopa: 150mg, Haloperidol: 2mg). Because the
primarybehavioral effect in the original studywasobserved in the gain
condition, the loss and neutral conditions from the original studywere

omitted here. Note that in particular the isolation of the gain condition
likely contributed to our unsuccessful replication of behavioral and
neural effects (see discussion). Although replicationwas the initial goal
of this project, recent developments of combined reinforcement
learning drift-diffusion models59–63 (RLDDMs) allowed us to leverage
this data set to examinedopamine effects on action selection. Thus,we
jointly tested DA accounts of learning (replication analysis) and action
selection (de-novo analysis)within the samedata set. First, we aimed to
test (and replicate) previously reported effects of DAon reinforcement
learning and associated neural prediction error responses17. Second,
we directly tested the potential role of DA in regulating decision
thresholds during reinforcement learning38,52,54 by leveraging hier-
archical Bayesian RLDDMs, and by directly testing for drug effects on
model parameters in a combined model across all three drug
conditions.

Here we show that pharmacological increases in dopamine neu-
rotransmission result in reductions in decision thresholds (reduced
boundary separation parameter) in a stationary reinforcement learn-
ing task. This effect was observed across a range of RLDDMmodeling
schemes, and resonateswith recent accounts of the contribution ofDA
to action selection38 and the regulation of response vigour36,37,42.

Results
Healthymale volunteers (n = 31) performed a stationary reinforcement
learning task under three drug conditions (Placebo, L-dopa (150mg)
and Haloperidol (2mg), double-blind, counterbalanced) during func-
tional magnetic resonance imaging (fMRI), following completion of a
previously published reinforcement learning task19.

Model-agnostic analysis
Participants failed to respond within the allocated response time
window on average less than once (mean [range] number of misses
Placebo: .61 [0 – 10], L-dopa: .61 [0 – 7], Haloperidol: .45 [0 – 4]). RT
distributions per drug condition are shown in Fig. 1a–c, with choices of
the suboptimal option coded as negative RTs. A Bayesian signed rank
test64 provided substantial evidence for performance above chance
level under all drugs (see Fig. 1d, all BF10 > 4000). Summary descrip-
tive statistics for model-agnostic performance measures (accuracy,
total rewards earned, median RTs) are shown in Fig. 1d–f and Table 1,
and results from Bayesian repeated measures ANOVAs64 are listed in
Table 1. Numerically, both accuracy andmedianRTswere higher under
Placebo compared to both L-dopa and Haloperidol, but Bayesian
repeated measures ANOVAs with a within-participant factor of drug
and covariates of linear and quadratic effects of working memory
capacity as well as linear effects of body weight revealed inclusion
Bayes Factors (BFincl) < 3 for all effects (Table 1).

Given the within-subjects design, we also tested for a potential
meta-learning effect across sessions. This analysis revealed moderate
evidence in favour of the null model without a session effect (Sup-
plemental Figure S1, BF01 = 8.41).

To directly replicate the analysis of the primary behavioral effect
reported in Pessiglione et al.17 (difference in total rewards earned
between L-dopa and Haloperidol conditions), a two-tailed frequentist
Wilcoxon signed-rank test between L-dopa and Haloperidol was con-
ducted (as the assumption of normality was not met, according to
Shapiro-Wilk test), which revealed little credible evidence of a differ-
ence between conditions (z = .668, p = .510, r = .140, 95% CI = [−.263,
.501]). This was also the casewhen restricting the analysis to only those
participants who received L-dopa and Haloperidol on the first session
via a two-tailed frequentist two-sample t-test (assumption of normality
was met, according to Shapiro-Wilk test, t19 = −.943, p = .358, Cohen’s
d = .412, 95%CI = [−.459, 1.273]), which shows that, even in participants
where meta-learning across sessions can be ruled out, little credible
evidence for a performance difference between L-dopa and Haldol
was found.
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Model comparison
We next compared three computational models (see methods section
for details). As a reference, we first fit a null model (DDM0) without a
learning component (i.e. constant drift rates across trials). We then
examined two reinforcement learning drift-diffusion models
(RLDDMs) that included a linear mapping from Q-value differences to
trial-wise drift rates59,60,62 with either a single learning rate η (RLDDM1)
or dual learning rates η for positive vs. negative prediction errors
(RLDDM2). Model comparison was performed using the estimated log
pointwise predictive density (-elpd)65. The RLDDM with dual learning
rates outperformed both the single learning rate model and the DDM0

model without learning, and this model ranking was replicated across
all three drug conditions (Table 2).

Posterior predictive checks
We next ran posterior predictive checks to examine the degree to
which the best-fitting model (RLDDM2) accounted for key patterns in
the data, in particular the increase in accuracy and the reduction in RTs
over the course of learning. 10k datasets were simulated from each
model’s posterior distribution. Trials were binned into ten bins over
the course of learning, and mean accuracies and RTs were computed
per bin for both the observed data and across a 1k subset of simulated
data sets, separately for each drug condition (Fig. 2).

As the DDM0 predicts constant accuracies and RTs over trials, it
cannot reproduce the observed increases in accuracy and reductions
in RTs over the course of learning (Fig. 2). In contrast, both RLDDMs
reproduced learning-related reductions in RTs (Fig. 2, left) and
increases in accuracy (Fig. 2, right). However, RLDDM1 tended to
underestimate both effects. In particular, it underpredicted accuracies
(Fig. 2, right), and somewhat overpredicted RTs (Fig. 2, left). RLDDM2
provided a better account of these effects. In line with the model
comparison, this pattern was observed in all drug conditions.

It was recently suggested that RLDDMs might fail to account for
the full RT distributions66. Additional posterior predictive checkswere,
therefore, performed that examinedpredictions of 17th, 50th and83rd
percentiles of the RT distributions (Supplemental Fig. S2). Again,
RLDDM2 reproduced these data well. RLDDM2 also reproduced indi-
vidual subject RT distributions (Supplemental Figs. S3–S5), and
accounted for the evolution of RTs over the course of learning in
individual participants (Supplemental Figs. S6–S8), where for all par-
ticipants the observed data fell within the 95% prediction interval of
the simulated RTs.

Analysis of drug effects on model parameters
We next analyzed the posterior distributions of the RLDDM2, focusing
on a combined model in which the Placebo condition was modeled as
the baseline, and drug effects were modeled as additive changes from
the baseline, for each parameter (see methods section). Figure 3 (top
row) depicts the posterior distributions of the group mean of each
parameter under Placebo, whereas the mid- and center rows show
effects of L-dopa andHaloperidol on eachparameter (see alsoTable 3).
Drug effects were quantified in three ways. First, we computed the
posterior probabilities of each drug effect being <0 (see Table 3). This
probability exceeded 97.5% for L-dopa and Haloperidol effects on
boundary separation (decision threshold), and for Haloperidol effects
on the negative learning rate. Next, we computed regions-of-practical
equivalence67 (ROPEs) in terms of ± 0.1 SD of each parameter under
placebo (shaded areas in Fig. 3). Whereas the 95% highest posterior
density interval (HDI) did not overlap with the ROPE or zero for the
effect of Haloperidol on boundary separation (Fig. 3a), a small effect

Table 1 | Descriptive statistics

Condition Accuracy Total rewards Median RT

Placebo .871 (.163) 40.839 (7.781) .820 (.188)

L-dopa .843 (.161) 39.710 (6.394) .788 (.143)

Haloperidol .840 (.136) 39.645 (5.395) .789 (.126)

BFincl <1.349 <1.401 <.943

[Mean (STD)] for model-agnostic performance measures and results from Bayesian repeated
measures ANOVAs with linear and quadratic effects of working memory capacity and linear
effects of body weight as covariates. Inclusion Bayes Factors (BFincl) for all terms were <3,
providing little credible evidence for effects of these terms on behavioral measures.

Fig. 1 | Behavioral data. Response time (RT) distributions (n = 31, within-subject
design) under Placebo (a), L-dopa (b), and Haloperidol (c). Choices of the sub-
optimal (20% reinforced) options in (a–c) are coded as negative RTs, whereas
choices of the optimal (80% reinforced) options are coded as positive RTs.
d Accuracy per drug condition (chance level is 0.5). e Total rewards earned per

condition. f Median RT per drug condition. Pl – Placebo, L – L-dopa, H – Haloper-
idol. For boxplots, lines represent the median, the box covers the upper and lower
quartiles, and the whiskers denote the range of datapoints falling within 1.5 times
the interquartile range.
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size could not be ruled out with 95% confidence for L-dopa effects on
boundary separation, and Haloperidol effects on the negative learning
rate (Table 3 and Fig. 3a, e). Finally, Bayes Factors testing for direc-
tional effects are reported for each drug effect in Table 3.

The analysis of drug effects was repeated using a modeling
scheme in which separate models were fit to the data from each drug
condition. This reproduced the effects observed in the combined
model (Supplemental Fig. S9, Supplemental Table S3). The only para-
meter showing drug effects was the boundary separation, which was
reduced in both drug conditions, compared to Placebo.

As a control analysis, effects of working memory capacity (WMC,
the first principal component of a principal component analysis across
listening span, operation span and rotation span tasks, see Supple-
mental Fig. S10) and body weight were included in the hierarchical
model as modulators of the drug effects. This revealed little credible
evidence that any of the drug effects were reliablymodulated by these
covariates (see Supplemental Figs. S11–S13).

Based on the idea that basal ganglia output might convey an
urgency signal38, behavioral data were additionally fitted with an
RLDDMwith linearly collapsing bounds, as implemented in the HDDM
toolbox68–70. In this model, both drugs were again associated with

reduced overall decision thresholds but little credible evidence was
seen for an impact on the degree of threshold collapse (Supplemental
Figs. S14 and S15).

Finally, to link the modeling results back to individual differences
in behavior, we examined the degree to which drug effects on
boundary separation were associated with differences in RTs and
accuracy between conditions, focusing on the slowest third of trials.
Prediction of ldopa effects on boundary separation using Bayesian
linear regression (controlling for WMC, WMC2 and body weight)
revealed evidence for effects of RT differences (Fig. 4a,
BFincl = 290.191) and accuracy differences (Fig. 4c, BFincl = 107.038).
The corresponding analysis for haldol effects revealed only evidence
for an effect of RT differences (Fig. 4b, BFincl > 10.000) but not accu-
racy differences (Fig. 4d, BFincl < 1).

FMRI results
FMRI analyses focused on a single a priori region of interest (ROI)
based on two meta-analyses of value effects (see methods, including
ventral striatum, ventromedial prefrontal cortex, posterior cingulate).
Using parametric measures derived from our computational model,
the first aim was to replicate the effects of model-derived values in

Table 2 | Model comparison results, separately per drug condition

Model η Placebo
-elpd (SE)

Rank L-dopa
-elpd (SE)

Rank Haloperidol
-elpd (SE)

Rank

DDM0 - 296.5 (52.1) 3 375.9 (52.8) 3 480.2 (51.2) 3

RLDDM 1 Single 178.7 (47.7) 2 271.6 (50.0) 2 412.7 (49.5) 2

RLDDM 2 Dual 67.3 (48.5) 1 195.4 (51.2) 1 336.8 (50.7) 1

Weexamined reinforcement learningdrift-diffusionmodels (RLDDMs)with a single learning rate η (RLDDM 1) vs. separate learning rates for positive andnegative prediction errors (RLDDM2).We also
included a null model without learning (DDM0). Model comparison was conducted using the estimated log pointwise predictive density (-elpd)65 where smaller values indicate a better fit.
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Fig. 2 | Group-level posterior predictive checks. DDM0: Null model without
reinforcement learning. RLDDM1η: Reinforcement learning drift-diffusion model
with a single learning rate. RLDDM2η: Reinforcement learning drift-diffusionmodel
with dual learning rates. Data and model simulations are shown for Placebo (a),
L-dopa (b), and Haloperidol sessions (c). Left columns: observedmean group-level

RTs over time (black lines) and model predicted RTs (solid colored lines: means,
dashed lines: +/− 95% percentiles). Right columns: observed mean group-level
accuracies over time (black lines) and model predicted accuracies (solid colored
lines: means, dashed lines: +/− 95% percentiles).
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vmPFC/mOFC and prediction error in the ventral striatum. Main
effects across drug conditions in the reward ROI replicated both
effects (see Table 4, Fig. 4a: average Q-value, Fig. 4b: chosen –

unchosen Q-value, Fig. 5: prediction error). Numerically, the effects of
the average value were more pronounced than the chosen vs. uncho-
sen value (Table 4, Fig. 5).

In the next step, we tested for drug effects on the same three
effects via F-contrasts testing for the main effects of the drug. In none
of the contrasts didwe observe any effects that survived correction for
multiple comparisons across the reward ROI. We also did not observe
drug effects when running an FWE-corrected whole-brain analysis on
these three effects. Finally, we tested for drug effects on stimulus-
onset and feedback-onset-related effects, again usingwhole-brain FWE
correction. No significant effects were observed.

To reproduce the analysis from Pessiglione et al.17, positive and
negative prediction error effects were extracted from bilateral ventral
striatal regions that encoded model-derived prediction errors (see
Fig. 6a and Table 4) in GLM1. Using GLM2 that included separate
predictors for positive and negative prediction errors, the corre-
sponding parameter estimates were extracted (Fig. 6b). While Pessi-
glione et al.17 reported a greater contrast between positive and

negative striatal prediction errors under L-dopa compared to Halo-
peridol, this was not the case in our data. Bayesian ANOVAs with
covariates of bodyweight,WMC, andWMC2 and the factors prediction
error (positive vs. negative) and drug (Placebo vs. L-dopa vs. Halo-
peridol) only revealed evidence for a prediction error effect (left
ventral striatum, BFincl = 142.111, right ventral striatum, BFincl = 6.138, all
other BFincl < 1.045).

Given that no drug effects were observed in our a priori-defined
region of interest, a final exploratory analysis was performed, testing
for drug effects on averageQ-value effects at anuncorrected threshold
of p < .0001. This revealed higher effects under L-dopa and Haldol
compared to placebo in the left anterior insula and the dorsal anterior
cingulate/pre-SMA region (Supplemental Fig. S16 and Supplemental
Table S4).

Discussion
We used a stationary reinforcement learning task17 in combination
with a pharmacological manipulation of dopamine (DA) neuro-
transmission (Placebo, 150mg L-dopa, 2mg Haloperidol) and
fMRI to address two core research questions. First, we examined
a previously reported effect of L-dopa (vs. Haloperidol) on

Fig. 3 | Drug effects on RLDDM2 parameters. a boundary separation (α), b non-
decision time (τ), c value coefficient of the drift rate (vcoeff),d positive learning rate

(η+) in standardnormal space,enegative learning rate (η-) in standardnormal space.
Top row: Posterior distributions for each parameter under Placebo. Center row:
Posterior distributions of L-dopa-effects on each parameter (Mldopa refers to the

mean). Bottom row: Posterior distributions of Haloperidol-effects on each para-
meter (Mhaldol refers to the mean). Solid (thin) horizontal lines denote 85% (95%)
highest posterior densities. Shaded areas denote Regions of Practical Equivalence
(ROPEs)67 ± 0.1 SD (based on the placebo condition).

Table 3 | Drug effects on model parameters

RLDDM2 parameter L-dopa effect Haloperidol effect

M
[95% HDI]

P(effect <0) dBF (<0) M
[95% HDI]

P(effect <0) dBF (<0)

α −.114
[−.219, .001]

.977 37.462 −.125
[−.228, −.022]

.988 72.841

τ .000
[−.033, .034]

.502 1.093 −.013
[−.039, .015]

.840 5.087

vcoeff −.0104
[−1.057, .834]

.588 1.482 −.255
[−.969, .467]

.762 3.181

η+ −.076
[−.283, .127]

.776 3.290 −.046
[−.438, .381]

.606 1.523

η- −.655
[−1.918, .538]

.870 6.192 −1.69
[−3.323, −.125]

.987 78.686

Statistical testing was performed by directly examining the posterior distributions of group-level parameters. Mean posterior drug effects on model parameters (Mdiff) relative to the Placebo
condition, forL-dopa (left) andHaloperidol (right) andposteriorprobabilities that thegivenchange inaparameter is <0, P(effect<0).Directional Bayes Factors (dBF) quantify thedegreeofevidence for
a reduction in a parameter, relative to an increase. No correction for multiple comparisons was applied for these measures99.
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reinforcement learning and striatal prediction error signaling17.
These effects were not observed - therewas no credible evidence for
improved learning under L-dopa. Perhaps unsurprisingly, given the
lack of a behavioral effect, we also did not observe credible evi-
dence for drug effects on positive vs. negative prediction error
coding in the ventral striatum, again contrasting with Pessiglione et
al.17, but in line with recent studies using different reinforcement
learning tasks19,20. Potential reasons are discussed further below.
Second, we leveraged recently developed combined reinforcement
learning drift diffusion models (RLDDMs)59–63 to directly test a
recently proposed computational account of dopamine in regulat-
ing decision thresholds during action selection38. In line with this

account, computational modeling revealed reduced decision
thresholds under both L-dopa and Haloperidol, compared to Pla-
cebo. The latter effect is consistent with the present Haloperidol
dosage of 2mg increasing (rather than decreasing) striatal DA by
blocking presynaptic autoreceptors (see discussion below).

We aimed to replicate the core behavioral finding from Pessi-
glione et al.17, but for practical reasons deviated from their experi-
mental design in a number of ways. First, the drug dosages in the two
projects differed slightly – we used 150mg of L-dopa (compared to
100mg in Pessiglione et al.) and 2mg of Haloperidol (compared to
1mg in Pessiglione et al.). The L-Dopa dosage was chosen to keep drug
dosages comparable to related work71,72. The Haloperidol dosage was
selected to keep drug dosages comparable to planned studies inves-
tigating other effects73,74, and prior to completion of our human work
suggesting that 2mgHaloperidol might elicit effects more compatible
with an increase in DA transmission33,75. Second, we only included the
gain condition, because here, the primary behavioral effect was
observed. Although we doubled the number of gain trials (i.e. we used
two pairs of symbols), our task version was likely still easier than the
one used by Pessiglione et al.17, who used three pairs of symbols.
Furthermore, this isolation of the gain condition might have affected
drug effects on learning. The reason is that, in the present task version,
themean initial reward expectationwaspositive (therewere only gains
or reward omissions), yielding both positive and negative prediction
errors during initial learning. In contrast, in Pessiglione et al., themean
initial reward expectation was zero (there were equally many gain and
loss trials), yielding only positive prediction errors in the gain condi-
tionduring initial learning. Thismight havemaskeddrug effects. Third,
we increased the sample size to n = 31, and applied a within-subjects
design as opposed to a between-subjects design. Although this might
have induced learning across sessions, we observed no credible evi-
dence for performance changes over time, and restricting the analysis
to the first session likewise revealed no drug effects. The most
straightforward replication attempt of the behavioral effect, a com-
parison of total rewards obtained between the L-dopa andHaloperidol

Fig. 4 | Associations between model-based and model-agnostic drug effects.
Associations between drug effects (a, c: ldopa,b,d: haldol) on boundary separation
α from the combined RLDDM2 (y-axis) and behavioral differences between

conditions in the slowest third of trials. A, b: RT difference between placebo and
drug. c, d: difference in arcsine-sqrt transformed accuracy between placebo
and drug.

Table 4 | Replication analysis for three model-derived mea-
sures (main effects across drug conditions), average Q-value
across options, chosen – unchosen Q-value, and model-
derived prediction error

Contrast / Region Coordinates Peak T-value p(FWE)SVC
Average Q-value

vmPFC −6 48 −2 5.06 .002

Chosen-
unchosen value

vmPFC / mOFC 6 24 −12 4.09 .033

Reward prediction error

Left ventral
striatum

−9 9 −9 5.95 <.001

Right ventral
striatum

12 9 −10 4.92 .003

vmPFC / mOFC −6 32 −15 4.19 .027

vmPFC −6 54 3 4.08 .036

Small volume correction for multiple comparisons (SVC) used an a priori region of interest mask
across two meta-analyses of reward value effects97,98 (see methods section).
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conditions via a frequentist paired t-test, yielded no credible evidence
for an effect.

We consider the isolation of the gain condition to be the most
likely reason for the lack of replication, although other accounts are
possible. For example, differences in dosages might account for the
lack of a drug effect on performance, but we consider this unlikely,
for several reasons. First, 150mg of L-dopa yielded positive beha-
vioral effects in a range of other studies15. Second, 2mg of Halo-
peridol is a dosage that likely predominantly affects presynaptic
autoreceptors and thus likely increases (rather than decreases)
striatal DA release8,28–33,75. Note that this generally questions a

common interpretation of a downregulation of striatal DA using
even lower dosages of Haloperidol17,71. Nonetheless, even if one
would argue in favor of a DA-downregulation account of 1mg or
2mg of haloperidol (which we consider unlikely), in this case one
would, if anything, expect more pronounced effects of our 2mg
dosage compared to Pessiglione et al.’s 1mg dosage. Yet, incon-
sistent with this idea, no credible evidence for drug effects on
performance was observed. Also, the relatively small sample size of
the original study might have led to an increased risk of false
positives. Finally, there are substantial individual differences with
respect to pharmacological effects of DA drugs1 and it is possible

Fig. 6 | Model-based FMRI results for prediction error coding (n = 31). Striatal
regions coding for model-based prediction errors were identified by computing a
main effect of prediction error across all drug conditions using GLM1 (a, flexible
factorial model in SPM12 with within-subjects factor of drug condition). Correction
for multiple comparisons was performed using a meta-analysis-based region-of-
interest mask (see Table 4 and methods section). To reproduce the analysis of
Pessiglione et al.17, we then extracted parameter estimates at left and right striatal
peak voxels (see Table 5) fromGLM2 (flexible factorialmodel in SPM12 withwithin-

subjects factors of drug condition and prediction error sign) to obtain parameter
estimates for positive (+) and negative (−) prediction errors, separately for each
drug condition (b). Themap in (a) is thresholded at p < .001 uncorrected for display
purposes, and projected onto the group mean T1 scan. Pl – Placebo, L – Levodopa,
H – Haloperidol; +: positive prediction error, −: negative prediction error. For
boxplots, lines represent themedian, the box covers the upper and lower quartiles,
and the whiskers denote the range of datapoints falling within 1.5 times the
interquartile range.

Fig. 5 | Model-based FMRI results for Q-values. (n = 31, flexible factorial model in
SPM12 with within-subjects factor of drug condition) for model-derived average
Q-value (a, contrast testing for an effect > 0 across all drug conditions) and chosen
– unchosenQ-value (b, contrast testing for an effect > 0 across all drug conditions).
Correction for multiple comparisons was performed using a meta-analysis-based

region-of-interestmask (seeTable 4 andmethods section).Maps are thresholded at
p < .001 uncorrected for display purposes, and projected on the group mean T1
scan. Pl – Placebo, L – Levodopa, H –Haloperidol. For boxplots, lines represent the
median, the box covers the upper and lower quartiles, and the whiskers denote the
range of datapoints falling within 1.5 times the interquartile range.
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that such individual differences might have also contributed to the
inconsistencies between studies.

Extending previouswork, we applied RLDDMs to directly examine
the effects of DA on the dynamics underlying action selection. The
model comparison revealed that the data were best accounted for by
an RLDDM with separate learning rates for positive and negative pre-
diction errors (RLDDM2), and themodel rankingwas replicated ineach
drug condition. Good parameter recovery for RLDDMs was recently
confirmed for data from the task used here58. Posterior predictive
checks likewise confirmed that RLDDM2 provided a good account of
learning-related increases in accuracy and decreases in RT. Likewise,
additional checks across different percentiles of the RT distributions
revealed that RLDDM2 provided a good account of the data (Supple-
mental Fig. S2). Although RLDDMs have been suggested to provide a
comparatively poor account of full RT distributions66, this was not
observed here. Finally, we confirmed that RLDDM2 also provided a
good account of individual-participant RT distributions in each drug
condition (Supplemental Figs. S3–S5), consistent with prior work75,76.
The model also reproduced learning-related changes in RTs over the
course of learning in individual participants (Supplemental
Figs. S6–S8). In contrast to earlier work54,61,63,75,77, models with a non-
linear mapping from value differences to trial-wise drift rates failed to
converge (potentially due to lower trial numbers), and we, therefore,
focused on a model with a linear linkage function59,62.

RLDDM2 revealed that, compared to Placebo, both L-dopa and
Haloperidol reduced decision-thresholds. This effect was observed
both in the combined model across all drug conditions (Fig. 3), in a
control analysis using separate models for each drug condition (Sup-
plemental Fig. S9, Supplemental Table S3), and when stable bounds
were replaced with a collapsing bounds mechanism (Supplemental
Figs. S14 and S15). Although we did not observe strong evidence for
drug effects on model-agnostic behavioral measures, the overall pat-
tern of behavioral results is nonetheless consistent with the observed
reduction in decision thresholds: numerically, under both L-dopa and
Haloperidol, accuracy was lower, and median RTs were faster. Fur-
thermore, individual differences in drug-induced decision threshold
reductions accounted for individual differences in RT differences
between conditions. This argues against the idea that e.g. excessive
shrinkageof parametersmodeling drug effectsmight havedrivendrug
effects in the combined RLDDM. Notably, for learning-related effects,
previously reported drug effects did not replicate (see discussion
above),whereas, for action selection, consistent reductions in decision
thresholds were observed. Learning-related effects may be more
affected by the omission of the loss condition than action-selection
effects.

We observed similar reductions in decision thresholds following
L-dopa and Haloperidol administration, two very different dopami-
nergic agents. By increasing substrate availability, L-dopa is assumed
to generally increase DA availability. In contrast, Haloperidol is a D2
receptor antagonist that likely exhibits dose-dependent effects on
striatal DA release. Specifically, lower dosages are thought to pre-
dominantly affect presynaptic inhibitory autoreceptors27, thereby
increasing DA release8,28–33. Along similar lines, other D2 antagonists
potentiate striatal effects at lower dosages25, and attenuate them at
higher dosages23. A Haloperidol dosage of 2mg has been shown to
substantially upregulate human striatal responses33. Notably, however,
the dose-dependency of Haloperidol might additionally be region-
dependent24, which further complicates the interpretation of the
effects.

Our finding of reduced thresholds following pharmacological
increases in DA also resonates with some findings in Parkinson’s Dis-
ease (PD). PD patients when tested ON vs. OFF their DA medication
sometimes show increased speed but impaired accuracy78, and a
reduced ability to suppress premature actions79, consistent with
reduced decision thresholds. However, other studies did not find

evidence for reduced decision thresholds in PD patients ON vs. OFF
medication during perceptual decision-making80.

This null-effect in perceptual decision-making in PD patients
might also point to amore general pattern – the specific domain of the
decisionproblemmightdetermine thedegree towhichDAcontributes
to threshold adjustments. During perceptual decision-making, Bro-
mocriptine, a DA agonist, did likewise not modulate decision
thresholds56. As noted by the authors, this might also be due to dose-
dependent presynaptic effects of Bromocriptine, which might have
resulted in a net reduction inDA transmission56. But another possibility
is that DA might specifically contribute to threshold adjustments in
value-based decision settings54. This idea resonates with the role of
dopamine in regulating response vigor34–37. In some of these accounts,
DA is thought to signalwhether increases in cognitiveorphysical effort
(in some cases equivalent to increases in response rate) are
worthwhile37,42,81,82. Adjustments in decision thresholds would con-
stitute a simple computational mechanism to accomplish this.
Reductions in decision thresholds during decision-making under high
DA and increases in response vigor in effort-related tasks might thus
both serve the same purpose of (potentially) increasing the reward
rate. Such an account would predict that action selection in the con-
text of high reward options (where the cues themselves likely elicit
phasic DA release during the choice phase13) would likewise lead to a
downregulation of decision thresholds. Notably, this is exactly what
has been observed in recent work63,83.

Increased DA is thought to shift the activation balance between
striatal go and no go pathways towards the go pathway13,14,39, thereby
facilitating action execution vs. inhibition. In somemodels, separate go
andnogo actionweights aremodeled foreach action13,14. An increase in
DA during choice (be it pharmacological, as in the present study, or
incentive-based63,83) would then for each action boost the contrast of
go and no go action weights13,14, leading to a general increase in the
probability of action initiation. In a sequential sampling modeling
framework, this could be captured by a reduction of decision
thresholds14 (reduced boundary separation). Conceptually, this is
related to the idea that DA signals the (subjective) precision of
beliefs40–42. If one’s belief in the precisionof actionweights is increased
under high DA, this would naturally lead to accepting less evidence
prior to committing to a decision. However, given the lack of drug
effects on striatal activation, our imaging results remain agnostic with
respect to a modulation of striatal computations. Furthermore, given
the different mechanisms of action, there remains a possibility that
both drugs might have affected decision thresholds via different
routes.

Haloperidol also reduced the negative learning rate, although this
effect was only observed in the combinedmodel. This might be linked
to a decrease in the no go pathway, and resonates with some earlier
findings8,23. However, another study did not observe changes in
learning rate under Haloperidol, but here only a single learning rate
was estimated, and no RLDDM modeling scheme was applied24.

Exploratory analyses implicated a circuit involving anterior insula
and ACC / preSMA in the drug-induced decision thresholdmodulation
(Supplemental Figure S16), such that average value effects in these
regions were higher under L-dopa and Haloperidol compared to pla-
cebo. Caution is warranted when interpreting these condition-
dependent differences in parametric effects84, in particular, given
their exploratory nature. Nonetheless, the dorsal anterior cingulate /
pre-SMA region has previously been implicated in control
adjustments85, including decision threshold modulation45,51,86,87, and is
densely interconnected with subcortical dopaminergic circuits9. A
contribution of this circuit to the observed decision threshold
adjustments under elevated DA would therefore be in line with these
previous findings, but further confirmatory evidence is required.

The present study has a number of limitations that need to be
acknowledged. First, we only tested male participants, limiting the
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generalizability of our findings. Second, the present sample size of
n = 31 is still too low to comprehensively examine potential non-linear
baseline-dependent drug effects1,19,88. Third, the task was performed
following completion of a separate learning task19, i.e. about 60min
post ingestion of L-dopa. L-dopa reaches peak plasma levels around
30-60min post ingestion, with a plasma half-life of about 60-90
min89,90. The present task was therefore likely performed past the time
point of peak L-dopa plasma levels, but likely before the plasma half-
life was reached. Although it is possible that this timing may have
contributed to the lack of L-dopa effects on learning and neural pre-
diction error signaling, we consider this unlikely, for several reasons.
First, in the learning task performed directly prior to the task reported
here19, as well as in other studies20, L-dopa likewise failed to modulate
striatal prediction error signaling. Second, the robust L-dopa effect on
boundary separation argues against a drug timing account to explain
the lack of modulation of the prediction error response. Finally, under
some conditions, dopaminergic manipulations can also affect evi-
dence accumulaton75,91, such as the impact of benefits and costs on
choice92. Further work is required to determine the degree to which
these effects depend on the task or the specifics of the pharmacolo-
gical manipulation.

To conclude, we observed no credible evidence for a beneficial
effect of L-dopa (vs. Haloperidol) on reinforcement learning in a
reward context, as well as the proposed mechanistic account of an
enhanced striatal prediction error response mediating this effect.
Differences in experimental design between studies likely account at
least in part for this. In contrast, across a variety of modeling schemes,
RLDDMs revealed robust reductions in decision thresholds under both
L-dopa and Haloperidol. This provides evidence for a recently pro-
posed computational account of the role of DA in action selection38,39,
and is consistent with both drugs boosting action-specific activation
contrasts between striatal go and no go pathways during choice13,14,
which might have impacted subsequent action selection mechanisms
in ACC / pre SMA. Such a threshold modulation account of DA can
potentially bridge circuit-level accounts of action selection in the basal
ganglia13,39 with a proposed role of dopamine in regulating response
vigour34–37.

Methods
General procedure
All study procedures were approved by the local ethics committee
(Hamburg Board of Physicians) and participants provided informed
written consent prior to participation. Data were obtained in the
context of a larger multi-day combined pharmacological fMRI study19

with four testing sessions, performedon separate days. Day 1 consisted
of a behavioral testing session, during which working memory
(operation span, listening span, rotation span, see Chakroun et al.
(2020) for details19) and questionnaire data were obtained. On days 2 –
4 (each performed exactly 1 week apart), healthy self-identified male
participants (n = 31, age 19-35, M = 26.85, SD = 4.01) received either
Placebo, L-dopa or Haloperidol (in counterbalanced order, see below
for details) and then performed two tasks while brain activity was
measured using fMRI. The first task was a restless four-armed bandit
task measuring exploration/exploitation behavior. Data from this task
have been reported elsewhere19. Following a short break, participants
then completed the stationary reinforcement learning task based on a
previous study17, which is reported here.

Drug administration
Participants performed three fMRI sessions (in counterbalanced
order) under three drug conditions: Placebo, L-dopa (150mg), and
Haloperidol (2mg). They arrived in the lab 2.5 h prior to the com-
mencement of fMRI scanning. Upon arrival, they received a first pill
containing either 2mg haloperidol or placebo (maize starch). Exactly
two hours later, participants received a second pill containing either

Madopar (150mg L-dopa + 37.5mg benserazide) or Placebo. That is,
during the Placebo session, participants received maize starch/maize
starch. During the Haloperidol session, they received Haloperidol/
maize starch, and during the L-dopa session, they received maize
starch / L-dopa.

Half an hour after ingesting the second pill, participants entered
the fMRI scanner, where they first performed a restless four-armed
bandit task reported elsewhere19. Following a short break inside the
scanner, they then performed 60 trials of the stationary reinforcement
learning task reported here.

Physiological parameters, well-being, potential side effects, and
mood were assessed throughout each testing session19. No participant
reported any side effects.

Reinforcement learning task
During each fMRI session, participants performed a simple stationary
reinforcement learning task (see Supplementary Figure S17) basedon a
previous study17. The task involved two pairs of fractal images (n = 30
trials per pair). Per pair, one stimulus was associated with a reinfor-
cement rate of 80% (“optimal” stimulus) whereas the other was asso-
ciated with a reinforcement rate of 20% (“suboptimal” stimulus). On
each trial, options were randomly assigned to the left/right side of the
screen, and trials from the two options pairs were presented in ran-
domized order. Following the presentation of the two options, parti-
cipants had amaximumof 3 seconds to log their selection via a button
press. Participants received binary feedback, either in the form of the
display of a 1€ coin (reward feedback) or as a crossed 1€ coin (no
reward feedback). Jitters of variable duration (2-6 sec, uniformly dis-
tributed) were included following presentation of the selection feed-
back and following the presentation of the reward feedback. Prior to
scanning, participants performed a short practice version of the task
with a different set of stimuli in order to familiarize themselves with
the procedure.

Statistical analyses
Drug effects on model-free performance measures and fMRI para-
meter estimates extracted at specific peaks were analyzed via Bayesian
repeated measures ANOVAs using the JASP software package (Version
0.16.3)64. The normality of residuals was verified via Q-Q-plots, which
showed no credible evidence for deviations from normality (see Sup-
plemental Fig. S18).

Q-learning model
We applied a simple Q-learning model4 to formally model the learning
process. Here, participants are assumed to update the value (Q-value,
Eq. 1) of the chosen option based on the rewardprediction error that is
computed on each trial as the difference between the obtained reward
and the expected reward. The degree of updating is regulated by the
learning rate η (Eq. 2):

Qchosen,t + 1 =Qchosen,t +η � δt ð1Þ

δt = rt �Qchosen,t ð2Þ

Q-values of unchosen actions remain unchanged. All Q-values
were initializedwith values of .5. As learning frompositive andnegative
reinforcement is thought to depend on distinct striatal circuits7,93, we
comparedmodelswith a single learning rate (η) anddual learning rates
(η+, η-) for positive vs. negative prediction errors. Learning rates were
estimated in standard normal space [−6, 6] and back-transformed to
the interval [0, 1] via the inverse cumulative normal distribution
function.
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Reinforcement learning drift-diffusion models (RLDDMs)
We used combined reinforcement learning drift-diffusion models
(RLDDMs)59,60,63 to link participants' choices and response times (RTs)
to the learningmodel. In the drift-diffusionmodel, choices arise froma
noisyevidence accumulationprocess43,44 that terminates as soon as the
accumulated evidence exceeds a threshold, i.e. crosses one of two
response boundaries. The upper response boundary was defined as
the selection of the optimal (80% reinforced) stimulus, whereas the
lower response boundary was defined as the selection of the sub-
optimal (20% reinforced) stimulus. RTs for choices of the suboptimal
option where multiplied by -1 prior to model estimation, and we dis-
carded for each participant the fastest 5% of trials in order to ensure
that implausibly fast trials do not exert an undue influence on the
modeled RT distributions. For comparison with the RLDDMs, we first
examined a null model without learning (DDM0). Here, the RT on each
trial t is distributed according to the Wiener First Passage Time (wfpt):

RTt ∼wfpt α,τ, z,vð Þ ð3Þ

The boundary separation parameter α controls the speed-
accuracy trade-off (decision threshold), such that smaller values of α
lead to faster but less accurate responses. The drift rate v reflects the
quality of the evidence, such that greater values of v give rise to more
accurate and faster responses. Note that in theDDM0, v is constant and
unaffected by learning. The non-decision time τ models RT compo-
nents related to motor and/or perceptual processing that are unre-
lated to the evidence accumulation process. The starting point
parameter z models a bias towards one of the response boundaries.
Following earlier work54,59,61–63 and based on the assumption that par-
ticipants donothave an apriori bias foroptimal vs. suboptimal options
prior to learning, z was fixed to .5. Because a bias might nonetheless
develop over the course of learning59, we also explored a model
with variable starting point. However, this model failed to converge
(maximum R̂ > 7), even when restricting the analysis to the data from
the placebo condition, andwhen samplingwas increased by a factor of
ten. This model was therefore not explored further.

Following earlier work58,59,62,63 we then incorporated the learning
process (Eqs. 1 and 2) into theDDMby setting trial-wisedrift rates to be
proportional to the difference in Q-values between the optimal and
suboptimal options via a simple linear linkage function:

vt = vcoef f � Qoptimal,t �Qsuboptimal,t

� �
ð4Þ

In theRLDDM, theRTon trial t thendependson this trial-wisedrift
rate:

RTt ∼ wfpt α,τ, z,νt
� � ð5Þ

Here, vcoef f models the degree to which trial-wise drift rates scale with
the value differencebetweenoptions. In thismodel, increasingQ-value
differences lead to both increased accuracy and faster RTs. Con-
versely, when Q-values are similar, choices will be both less accurate
and slower.

Previous work also examined non-linear linkage functions63,75,77.
However, in the present data,modelswith non-linear linkage functions
failed to converge. We therefore focused on Eq. 4, as originally pro-
posed by Pedersen and colleagues59 and successfully applied in other
learning tasks62. This simpler model nonetheless reproduced key pat-
terns in the data, in particular the increase in accuracy over trials, the
decrease in RTs over trials, as well as individual-participant RT
distributions.

In an earlier report58, we additionally examinedmodels in which α
and/or τ were allowed to vary over the course of the experiment
according to a power function. This modification of the RLDDM was
motivated by the observation that, in participants suffering from

disordered gambling, reinforcement learning only accounted for a
relatively small part of the observedRT reductions over time, such that
an additional mechanism was required to account for these data. In
contrast, in the present study, posterior predictive checks revealed
that this was not the case in any drug condition. Therefore, we
refrained from examining these more complex models, instead
focusing on models with constant α and τ.

Hierarchical Bayesian models
Models were fit to all trials from all participants using a hierarchical
Bayesian modeling approach with separate group-level Gaussian dis-
tributions for all parameters. We ran two types of models. First, we fit
separate hierarchicalmodels to the data from eachdrug condition and
compared the model ranking across conditions. After confirming that
the model ranking was unaffected by the drug, we set up a combined
hierarchical model in which parameters in the Placebo condition were
modeled as the baseline, and deviations from placebo under L-dopa
and Haloperidol weremodeled for each parameter using additive shift
parameters with Gaussian priors centered at 0. Posterior distributions
were estimated using Markov Chain Monte Carlo via JAGS (Version
4.3)94 using the Wiener module95, in combination with Matlab (The
MathWorks) and thematjags interface (https://github.com/msteyvers/
matjags). For group-level parametermeans in the placebo condition in
the combined model, as well as in the separate models per drug con-
dition, we used uniform priors defined over numerically plausible
parameter ranges (see Supplemental Table S1). For drug-effects in the
combined model we used Gaussian priors centered at zero (see Sup-
plemental Table S1). For group-level standard deviations, we used
uniform priors over numerically plausible ranges (see Supplemental
Table S2).

For each model, we ran 2 chains with a burn-in period of 100k
samples and thinning factor of 2. 10k additional samples were then
retained for analysis. Chain convergence was assessed by examining
the Gelman-Rubinstein convergence diagnostic R̂, and values of
1≤ R̂≤ 1:01 were considered as acceptable for all group-level and
individual-participant parameters. Relative model comparison was
performed via the estimated log pointwise predictive density (elpd)65,
an approximation of the leave-one-out cross-validation accuracy of
a model.

For comparison, RLDDMswith both stable and collapsing bounds
were additionallyfitted using theHDDM toolbox68,69 (version 0.9.8) via
the HDDMRL and HDDMnnRL functions. Note that for these analyses,
only models with a single learning rate were examined, since dual
learning rates are not implemented in HDDMnnRL.

Analysis of posterior distributions
Posterior distributions were analyzed in three ways. Posterior prob-
abilities for drug effects <0 (i.e. the proportion of the posterior dis-
tributions falling below zero) as well as posterior means and 95%
highest posterior density intervals are reported. Additionally, for drug
effects, Bayes Factors testing for directional effects (dBF) are reported
that quantify the degree of evidence for a reduction in a given para-
meter relative to the evidence for an increase.

Parameter recovery
Wehavepreviously reportedparameter recovery analyses for RLDDMs
in the context of the same task studied here58. These analyses revealed
good parameter recovery for both individual-level and group-level
parameters using the same Bayesian estimationmethods applied here.

Posterior predictive checks
Toensure that thebest-fittingmodels captured key aspects of thedata,
in particular the increases in accuracy and reductions in RTs over the
course of learning, we performed posterior predictive checks as fol-
lows. We simulated 10k data sets from each model’s posterior
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distribution, separately for each drug condition. For group-level pos-
terior predicitive checks, per drug condition, we selected 1k simulated
data sets, and for each simulated participant split trials into ten-time
bins. For each bin, we then calculated group average accuracy and RT
as well as means and 2.5% and 97.5% percentiles over the simulated
data. Simulated data were then overlaid over the observed data. For
individual participant posterior predictive checks, per drug condition,
we again selected 1k simulated data sets. In first step, we simply
overlaid observed and simulated RT distributions, separately for each
condition. To examine how themodels accounted for learning-related
RT changes in individual participants,we then split both simulated and
observed trials into five time bins. For each bin, we again calculated
individual-participant means as well as means and 2.5% and 97.5%
percentiles over the simulated data.

FMRI data acquisition
MRI data were collected on a Siemens Trio 3 T system using a 32-
channel head coil. In each session, participants performed a single run
of 60 trials (following a short break after completion of our previously
reported task19), yielding a total of 180 trials per participant. Each
volume consisted of 40 slices (2 × 2 x 2mm in-plane resolution and
1-mmgap, repetition time=2.47 s, echo time26ms).We tilted volumes
by 30° from the anterior andposterior commissures connection line to
reduce signal dropout in the ventromedial prefrontal cortex and
medial orbitofrontal cortex96. Participants viewed the screen via a
head-coil-mounted mirror, and logged their responses via the index
and middle finger of their dominant hand using an MRI-compatible
button box. High-resolution T1-weighted structural images were
obtained following the completion of the cognitive tasks.

FMRI preprocessing
All preprocessing and statistical analyses of the imaging data were
performed using SPM12 (Wellcome Department of Cognitive Neurol-
ogy, London, United Kingdom). Volumes were first realigned and
unwarped to account for head movement and distortion during
scanning. Second, slice time correction to the onset of themiddle slice
was performed to account for the shifted acquisition time of slices
within a volume. Third, structural images were co-registered with the
functional images. Finally, all images were smoothed (8mm FWHM)
and normalized to MNI space using the DARTEL tools included in
SPM12 and the VBM8 template.

FMRI statistical analysis
Error trials were defined as trials where no response was made within
the 3 sec response window, or trials that were excluded from the
computational modeling during RT-based trial filtering (see above, for
eachparticipant, the fastest 5% of trials were excluded).We then set up
first-level general linear models (GLMs) for each participant and drug
condition.We usedGLM1 andGLM3 for allmain analyses, andGLM2 to
reproduce a key analysis from Pessiglione et al.17.

GLM1 included the following regressors:
1. onset of the decision option presentation
2. onset of the decision option presentationmodulated by chosen –

unchosen value
3. onset of the decision optionpresentationmodulatedby (chosen –

unchosen value) squared
4. onset of the feedback presentation
5. onset of the feedback presentation modulated by model-derived

prediction error
6. onset of the decision option presentation for error trials and
7. onset of the feedback presentation for error trials.

To separate out the effects of positive vs. negative prediction
error coding, asdone inPessiglione et al.17, a secondfirst-level GLMwas
set up. GLM2 included the following regressors:

1. onset of the decision option presentation
2. onset of the decision option presentationmodulated by chosen –

unchosen value
3. onset of the decision optionpresentationmodulatedby (chosen –

unchosen value) squared
4. onset of the feedback for positive prediction errors
5. onset of the feedback for negative prediction errors
6. onset of the decision option presentation for error trials and
7. onset of the feedback presentation for error trials.

GLM3 explored the effects of average Q-values during the choice
phase. To this end, for regressors 2 and 3 in GLM1, the chosen –

unchosen value was replaced with the mean Q-values across options.
To reproduce the analysis depicted in Fig. 3 of Pessiglione et al.17,

striatal activation peaks encoding model-derived prediction errors
were first identified using contrast 5 in GLM1 (see below for the
metanalysis-based region of interest mask that was applied). Para-
meter estimates for positive and negative prediction errors at these
peak voxels were then extracted from GLM2.

Following Pessiglione et al. (2006), values and prediction errors
were calculated using the condition-specific group-mean learning
rates of the best-fitting model RLDDM2 (see Supplemental Table S5).
All parametric regressors were z-scored within participants prior to
entering the first level model84. Single-participant contrast estimates
were then taken to a second-level random effects analysis using the
flexible factorial model as implemented in SPM12 with a single within-
subject factor of drug condition.

Analyses focused on reward-related circuits using a region of
interest (ROI) mask provided by the Rangel Lab (https://www.rnl.
caltech.edu/resources/index.html) which is based on two meta-
analyses97,98. This mask was used for small-volume correction for our
analyses of average Q-value, chosen – unchosen Q-value, and predic-
tion error, as well as for testing for drug effects. For all effects, we plot
single-participant contrast estimates extracted from group-level
activation peaks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Behavioral data generated in this study as well as fitted models have
been deposited onOSF (https://osf.io/8vzgh/). Unprocessed fMRI data
are protected and are not available due to data privacy laws. The
processed 2nd-level fMRI data are deposited on OSF (https://osf.io/
8vzgh/).

Code availability
Model code is available on OSF (https://osf.io/8vzgh/).
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