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Beta traveling waves in monkey frontal and
parietal areas encode recent reward history

Erfan Zabeh1,2, Nicholas C. Foley2, Joshua Jacobs 1,3,6 &
Jacqueline P. Gottlieb 2,4,5,6

Brain function depends on neural communication, but themechanisms of this
communication are notwell understood. Recent studies suggest that one form
of neural communication is through traveling waves (TWs)—patterns of neural
oscillations that propagate within and between brain areas. We show that TWs
are robust in microarray recordings in frontal and parietal cortex and encode
recent reward history. Two adult male monkeys made saccades to obtain
probabilistic rewards and were sensitive to the (statistically irrelevant) reward
on the previous trial. TWs in frontal and parietal areas were stronger in trials
that followed a prior reward versus a lack of reward and, in the frontal lobe,
correlated with the monkeys’ behavioral sensitivity to the prior reward. The
findings suggest that neural communication mediated by TWs within the
frontal and parietal lobes contribute to maintaining information about recent
reward history and mediating the impact of this history on the monkeys’
expectations.

Neural oscillations have long been proposed to regulate communica-
tion among neuronal ensembles within and across different brain
structures1,2. Traditionally, neural oscillations have been interpreted as
indicating so-called zero-lag synchrony, whereby large groups of
neurons respond rhythmically with the same timing across cells.
However, with the advent of multichannel recording technologies,
mounting evidence shows that many oscillations are, in fact, traveling
waves (TWs)—oscillatory patterns of activity that propagate across
neural tissue at biologically plausible speeds consistent with axonal
conduction velocities3,4.

TWs have been found in multichannel recordings of local field
potentials (LFPs) across multiple animal species, frequencies, brain
states, and brain systems, suggesting that they are a widespread fea-
ture of neural activity. Importantly, TWs are foundduring sleep5–7 and a
variety of active behaviors—including in the hippocampus of rodents
that are freely moving8 or performing goal-directed navigation9, visual
regions ofmonkeys performing perceptual tasks10,11 and the neocortex
of humans performing visual12–14 and memory tasks15–17. In some of
these studies, specific TW properties (e.g., strength or direction)

correlate with accuracy and reaction times10,17,18, suggesting that TWs
are functionally significant in linking behavior with neural activity.

Given the near ubiquity of TWs, improving our understanding of
their functional significance is of considerable interest. Because TWs
activate ensembles of cells in succession, a key hypothesis is that they
facilitate the integration of information across cells. The LFPs that form
TWs reflect the average activity of the neurons underneath a local
electrode9,19. Thus, a propagating TW indicates that there is a spatio-
temporal pattern of neural activity—a wave of neuronal spiking—that is
moving in a particular direction across broader populations of cells20–22.
Supporting this view, studies proposed that TWs in topographically
organized visual maps facilitate the integration of visual information
across neurons encoding different retinotopic locations, providing
support to the idea that TWs integrate information across space10,23,24.

An open question, however, is whether TWs may also integrate
information in time—e.g., by conveying information about recent
events that influence the evaluation of future events. Temporal inte-
gration is particularly important for learning from recent rewards, a
cornerstone of the mechanism for learning and decision-making.

Received: 16 May 2022

Accepted: 22 August 2023

Check for updates

1Department of Biomedical Engineering, Columbia University, New York, NY, USA. 2Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia
University, New York, NY, USA. 3Department of Neurological Surgery, Columbia University, New York, NY, USA. 4Department of Neuroscience,
Columbia University, New York, NY, USA. 5Kavli Institute for Brain Science, Columbia University, NewYork, NY, USA. 6These authors contributed equally:
Joshua Jacobs, Jacqueline P. Gottlieb. e-mail: joshua.jacobs@columbia.edu; jg2141@columbia.edu

Nature Communications |         (2023) 14:5428 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-1807-6882
http://orcid.org/0000-0003-1807-6882
http://orcid.org/0000-0003-1807-6882
http://orcid.org/0000-0003-1807-6882
http://orcid.org/0000-0003-1807-6882
http://orcid.org/0000-0001-6507-4375
http://orcid.org/0000-0001-6507-4375
http://orcid.org/0000-0001-6507-4375
http://orcid.org/0000-0001-6507-4375
http://orcid.org/0000-0001-6507-4375
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41125-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41125-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41125-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41125-9&domain=pdf
mailto:joshua.jacobs@columbia.edu
mailto:jg2141@columbia.edu


Animals, including humans and monkeys, are exquisitely sensitive to
recent rewards and track these rewards in a so-called “model-free”
fashion—even when they are statistically irrelevant and non-predictive
of futureoutcomes25–27. Frontal andparietal areas contain neurons that
encode recent rewards and are thought to be important for mediating
the effects of reward history27–31, but the mechanisms underlying this
role are incompletely understood.

Here we examined this question by analyzing LFPs in microelec-
trode arrays implanted in the monkey lateral prefrontal cortex (LPFC)
and parietal area 7A. Monkeys performed a task in which they made
saccades to obtain probabilistic rewards, and although reward history
was not predictive of the current trial reward, their behaviors were
strongly sensitive to the prior trial reward. We show that, in both
frontal and parietal areas, neural oscillations in the beta frequency
band formed reliable TWs propagating in specific directions. More-
over, the strength of TWs was enhanced by receipt of a prior trial
reward and, in the LPFC, reflected the influence of the reward on the
monkeys’ expectations, showing that TWs convey distinct information
about recent reward history

Results
Monkeys are sensitive to irrelevant prior rewards
Two monkeys (Macaca Mulatta) performed a visually guided saccade
task in which they obtained probabilistic rewards predicted by visual
cues28. In each trial, the monkeys saw a visual cue specifying the trial’s
expected value (EV; the product of rewardmagnitude and probability)
and, after maintaining fixation for an additional delay period, made a
saccade to a target to obtain the reward (Fig. 1A). The cue and target
stimuli each appeared at two possible locations to the right and left of
fixation. Their locations were independently randomized so that the
cue signaled reward expectations but not the saccade motor plan (see
“Methods” for details).

We recorded themonkeys’ anticipatory licking as an index of their
reward expectations. After the presentation of the reward cue, licking
rates increased with the EV signaled by the cues, confirming that the
monkeys were familiar with and attentive to the cues (Fig. 1B, right).
Surprisingly, although the reward on the current trial could not be
predicted from that on a previous trial, lickingwas also highly sensitive
to the prior-trial reward. During an early period before the onset of the
current reward cue, licking was more vigorous if the prior trial ended
with a reward (PR) versus a lack of reward (PNR; Fig. 1B, left). A sig-
nificant influence of the previous outcome persisted after cue onset
when it co-existed with the effect of EV (Fig. 1B, right). The prior trial
effect on licking did not merely reflect consumption of the reward
because licking ceased during the inter-trial interval and resumed at
the start of the next trial (“Methods”; Foley et al., 2020). Licking rates
significantly correlated with rewards on the previous trial (Mj:
r =0.342, p <0.001; Mc: r =0.332, p <0.001) but not with those further
removed in the past (2 trials back, monkey Mj: r = 0.001 p =0.46;
monkey Mc: r =0.003 p =0.43; 3 trials back, all p’s > 0.8). The robust
effect of the prior trial reward is consistent with findings that humans
and monkeys are highly sensitive to recent reward history even when
this history is irrelevant (unpredictive) of future rewards26,29,32.

Oscillatory activity in the LPFC and PPC shows TWs
To understand the neural basis of the prior trial effect, we recorded
activity using electrode grids implanted in the dorsolateral prefrontal
cortex (LPFC) and posterior parietal cortex (PPC) in each monkey
(Fig. 2A)33,34. Analysis of LFPs showed that many electrodes showed
prominent oscillatory activity in the beta-band (~15Hz). In addition,
across electrodes, the oscillations had phase shifts with a consistent
spatial gradient, suggesting the presence of TWs, or plane waves that
propagated in consistent directions. Figure 2B shows an example of
this phenomenon in one trial from the PPC of monkey Mc. The LFP
signals showed an oscillation waveform that appeared similar on

neighboring electrodes (Fig. 2B, top two rows) but showeda systematic
phase shift across adjacent electrodes when measured quantitatively
(Fig. 2B, bottom row, electrodes 1–5). The phase shift had a consistent
orientation across the array, suggesting that the oscillation propagated
in an anterior-to-posterior direction across the electrode grid (Fig. 2C).

To quantitativelymeasureTWs,we used circular–linear statistics35

to extract the phase gradient directionality (PGD) index17 (see “Meth-
ods”; Supplemental Movie S1). The index measures TW strength—the
consistency with which oscillations propagate in a specific direction—
andwe thus refer to it interchangeably as PGDorwave strength. A PGD
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Fig. 1 | Task and behavior. A Timeline of trial events. On each trial after achieving
fixation, themonkeys saw a reward cue colored checkerboard) indicating the trial’s
EV. After a 600-ms delay period, a saccade target appeared, and after making the
required saccade, the monkeys received the outcome (reward or lack of reward)
according to the cued probability. Two gray laceholders were continuously present
on the screen, marking the possible locations of the cue and target (which were
randomized independently across trials). B Probability of anticipatory licking as a
function of EV and prior trial reward. The traces show the king probability as a
function of EV during two task epochs: an early pre-cue epoch (left, the 200ms
epoch ending at reward cue inset) and a late post-cue epoch preceding reward
delivery (right: 400ms epoch prior to reward onset). Blue traces indicate trials that
followed aprior reward (PR), and red indicates trials that followed aprior no reward
(PNR). The thin traces show the mean and EM across all correct trials for each
monkey (Mj PR, N = 7685; Mj PNR, N = 4341; Mc PR, N = 4023; Mcj PNR, N = 2104)
and thick traces show the average across monkeys. The effect of the prior reward
was significant in each monkey and epoch (linear regression, all p <0.001).
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with a value near 1 indicates highwave strength, i.e., a TWwith a highly
coherent propagation pattern across the electrode grid. In contrast, a
PGD of 0 indicates the absence of a TW—e.g., a situation in which there
is high LFP power, but the phase shifts show randomvariations that are
not spatially organized across the electrode grid. Similarly, we calcu-
lated the speed and direction of the TW (“Methods”).

To analyze the properties of the TWs,wecalculated themeanPGD
at each frequency between 2 and 50Hz at time points from 1.2 s before
to 2 s after cue onset. This showed that TWs were robust throughout
the pre-cue, cue, and delay epochs and were most prominent in the
alpha-beta frequency band in both areas (10–30Hz; Fig. 3A), with the
frequency showing the largest PGD values being positively correlated
with the frequency showing the highest LFP power (Fig. 3C; see
“Discussion”).

The directions of the TW propagation were not random but were
oriented along anaxis approximately perpendicular to the nearby sulci
—i.e., the principal sulcus in the LPFC and the intraparietal sulcus for
the PPC (Fig. 3E). TWs were equally likely to occur in both directions
along these axes, resulting in a bimodal distribution, with peaks in
anterior-dorsal and posterior-ventral directions (non-uniformity of
circular distributions: p <0.001 for each array, Omnibus circular test).
For all propagation directions, the speed of TW propagation was
0.1–0.6 meters/second, consistent with conduction velocities in
unmyelinated axons36,37 (Fig. 3D).

Although TWs were pronounced in both the frontal and parietal
areas, their properties significantly differed between the two areas. The
frequency showing the strongest TWs was significantly higher in the
LPFC relative to the PPC (Mc: 19.1 Hz vs. 15.6Hz;Mj:13.6Hz vs. 11.5Hz; all
p’s <0.001, rank-sum test; Fig. 3A–C). TW speed was higher in the LPFC
relative to the PPC (Wilcoxon rank-sum test: p <0.001). Finally, the
directional distributions were significantly broader in the LPFC relative
to the PPC (the mean and standard error (SEM) of the angular distance
from themain axis of the distributionswas, inMc, PPC: 26.93 ±0.03° vs.
LPFC: 37.88 ±0.04°, p<0.01; and in Mj, PPC: 26.64 ±0.03° vs.
LPFC:43.58 ±0.04°, p <0.01, circular Kuiper test). These differences
suggest that the frontal and parietal TWs are more likely to reflect local
activity within each lobe rather than a single extended TW that propa-
gates across the fronto-parietal network (see “Discussion”).

Pre-cue TW strength correlates with PRs
Analyses of the relation between TW properties and behavior showed
that TW strength was specifically modulated by the reward the mon-
keys received in the previous trial. Figure 4A illustrates this result in
two representative trials from the PPC of monkey Mj. The trial in the
top panel occurred immediately after a trial in which the monkey had
received a reward; the trial in the bottom panel occurred immediately
after a trial in which the monkey received no reward. In the PR trial
(Fig. 4A, top panel), during the initial fixation period before the reward
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Fig. 2 | Spatial organization of oscillations and traveling waves (TW) in LPFC
and PPC. A Locations of implantedUtahmicroarrays. The bottompanel shows the
locations of the PPC (purple) and LPFC (yellow) grids, as estimated from stereo-
tactic coordinates and intra-operative photographs and projected on a canonical
3D lateral view of the cortex from the diffusion tensor MRI atlas of the Rhesus
macaque brain33,34. The top panel shows a closeup of the PPC array from Monkey
Mc, highlighting the electrodes analyzed in (B).BATW in a representative trial. The
toppanel shows theunfiltered continuous LFP signals fromeveryother electrode in

the group highlighted in (A). Themiddle panel is an expanded viewof the same LFP
traces, focusing on a smaller time window aligned on cue onset (0ms). The bottom
panel shows the signals at all five electrodes filtered at 14Hz (Bandwidth 1.5 Hz).
The peak phases of these oscillations (black dots) occur at successively later times
for electrodes 1–5, thus demonstrating a TW. C Visualization of the TW across the
recording array. The color shows several snapshots of the relative (cosine) phase of
the 14-Hz LFPs across the array at 10-ms intervals. The blue arrow indicates the TW
direction at −20ms.
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cue was presented, the propagation gradients at individual electrodes
were organized in consistent directions, resulting in a TW propagating
towards 180° (PGD=0.42). In contrast, in the PNR trial (bottompanel),
TW propagation directions were inconsistently organized across
electrodes, resulting in a low TW strength (PGD =0.12).

Confirming these individual-trial examples, TWs in pre-cue peri-
ods were stronger on PR than PNR trials in each area and monkey
(Fig. 4B, C). Two-tailed Wilcoxon rank-sum tests revealed that TW
strength was significantly higher for PR than PNR trials in all cases
(LPFC: Mc, p < 0.01, Mj, p < 0.05, PPC: Mc: p < 0.01, Mj, p < 0.01), with
effect-sizes measured in d’ ranging between 0.12 and 0.31 (LPFC, Mc,
d’ 0.26; Mj, 0.12; Mc, 0.31; Mj, 0.24). To examine the time and fre-
quency range of this effect, we used a generalized linearmodel (GLM)
to fit PGD strength as a function of the prior-trial reward across
frequencies and time points (Fig. 4D). The coefficients indicating the
prior trial effect were significant in a frequency range near the
dominant frequency of the TW and during a time window limited to
the fixation epoch preceding cue onset (i.e., −1000 to 0ms in
Fig. 4D, E).

To rule out the possibility that these apparent links between TW
strength and reward were due to confounds, we next fit the average
PGD strength in this time-frequency range with an expanded GLM that
not only modeled prior trial reward as before but also included addi-
tional regressors for pre-cue licking rate and prior-trial EV. The prior
trial regressor continued to produce significant positive coefficients in
all arrays (coefficients: 0.09, 0.16, 0.23, and 0.26, respectively, for the
LPFC ofMc andMJ and the PPC ofMC andMJ, all p’s < 0.001;Methods)
and accounted for the vast majority of the total variance explained by

the GLM (variance explained by prior trial regressor: LPFC: Mc 79.3%,
Mj: 90.4%; PPC: Mc 99.7%, Mj 94.9%). In contrast, the coefficients for
the other covariates explained much less variance than prior
trial reward (variance explained, pre-cue licking: 19.9%, 7.7%, 0.1%, and
4.7%; prior-trial EV: 0.7%, 1.8%, 0.2%, and 0.3%) and were themselves
not significantly above chance (prior trial EV,p >0.35 for all arrays; pre-
cue licking, p > 0.3 in LPFC of monkey Mj and PPC of monkey Mc).
Thus, TW strength significantly encoded the outcome of the previous
trial, and there was no evidence that this effect was driven by
confounds.

Analyses of other task epochs showed that PGD did not change
upon reward delivery (see black line in Fig. 4E and Fig. S4A), ruling out
that the prior-trial effects were merely passive continuations of a
response to the previous outcome. Moreover, during the post cue
(visual and delay) epochs, there were no significant modulations
related to the cue or target locations, ruling out visuo-spatial con-
founds (Fig. S4B). Finally, PGD was not sensitive to the current trial EV
(Fig. 4E; Fig. S4A), indicating that they conveyed specific information
about the recent reward history independently of other reward
feature.

TW strength predicted PRs independently of other physiologi-
cal markers
As shown in Fig. 3, TWs showed not only variable strength but also
variable speed and direction, and their peak frequencies correlated
with those of LFP oscillations. This raises the question of whether the
associationbetween PGD and PR remained significant after controlling
for additional properties of TWs and LFP oscillations. To examine this
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question, we used a multivariate approach to simultaneously model
prior trial reward as a function of several TW features—TW strength
(PGD), speed, and direction—aswell as the power of LFP oscillations. In
addition, we included alternativemeasures of TWpropagation that did
not use circular statistics—the bipolar-LFP, defined as the instanta-
neous voltage differences between two adjacent electrodes that were
oriented parallel or perpendicular to the main direction of TW pro-
pagation (“Methods”).

In thismultivariate model, all the TW and LFP features competed
to predict PR, and the regressors were standardized. Thus, the sig-
nificance and magnitude of the fitted coefficients show the unique
variance explained by each measure. As shown in Fig. 4F, the largest
coefficients corresponded to PGD and were significant in all grids,
whereas the coefficients for TW direction and speed and most of the
bipolar LFP measures did not significantly differ from zero. Several
LFP measures did produce significant coefficients, including the
parallel bipolar LFP in the PPC and LFP power in each area, but these
coefficients were significantly smaller than the PGD coefficients
(all p’s < 0.05, rank-sum tests). To quantitatively measure these dif-
ferences, we computed the variance explained by each factor relative
to the model as a whole (“Methods”). PGD strength was the strongest
predictor of prior trial reward, explaining 75.8% of all variance
explained in the LPFC and 39.8% in the PPC. LFP power accounted for
amuch smaller amount of variance (respectively, 6.8% and 27.2%), and
all the other metrics accounted for less than 4%. Thus, TW strength
explained a substantial unique portion of the variance in explaining
PR that was not explained by other features of TWs and LFP
oscillations.

TWs in the LPFC encode the prior trial effect on the monkeys’
expectations
Given the specific association between PGD and the prior trial reward,
we asked if this modulation predicted the animals’ behavioral sensi-
tivity to the PR. To examine this question, we focused on themonkeys’
licking response during the pre-cue epoch as an index of their sensi-
tivity to the PR and used a receiver operating characteristic (ROC)
analysis to identify trials in which licking rates were consistent versus
inconsistent with the PR (Methods). This analysis identified trials in
which the monkeys showed licking consistent with the prior trial
reward (high licking on PR trials and low licking on PNR trials), sug-
gesting that they correctly Retrieved the PR (Fig. 5A, pale green) and
trials inwhich they showed inconsistent licking (low licking onPR trials
and high licking on PNR trials), suggesting they Neglected the PR
(Fig. 5A, gray/dark green).

We reasoned that a relation between PGD and behavior would
manifest as a statistical interaction, whereby the PR modulation in the
PGD would be larger when licking was consistent versus inconsistent
with the PR. This effect was visible in the fit from the GLMmodel in the
LPFC (Fig. 5B), as the coefficients measuring the PR effect were sig-
nificantly larger on Retrieved vs. Neglected trials (Mj andMc: p <0.01).
To confirm the interaction effectdirectly, wefit an alternativemodel of
PGD that included regressors for PR, behavior (Retrieved/Neglected),
and theirmultiplicative interaction. In the LPFC, the PR and interaction
terms each produced significant coefficients and accounted for more
than 30% of the explained variance in all cases (PR: Mc: 50%, p =0.007;
Mj: 42%, p =0.09; interaction: Mc: 33%, p =0.03; Mj: 49%, p =0.06; Full
model fit: Mc R2 = 0.080; Mj R2 = 0.017, all F-test p’s < 10−4). In contrast,
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PPC Mc: PR 2987, NPR 1580; PPC Mj: PR 2681, NPR 924.
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there was no significant effect of the Retrieved/Neglected factor alone
(variance explained, Mc: 17%, p =0.1; Mj: 9%; p =0.4), which is con-
sistent with our interpretation that the behavior was evident in the
LPFC PGD by modulating the strength of the prior trial effect. As
additional confirmation, we conducted a session-level analysis in
which we split the sessions into two equal groups based on a median
split between their correlation between licking and PR. The PR coef-
ficients for PGD were higher in sessions with higher behavioral sensi-
tivity to PR, consistent with the trial-level results (Fig. S5).

These behavioral modulations were specific to the PGD of TWs in
LPFC. Similar effects were not present in the PPC, where the behavior
and interaction terms were not significant (p’s > 0.4; <3% variance
explained). An ANOVA analysis with factors for area (LPFC/PPC), PR,
and behavior (Retrieved, Neglected) produced significant 3-way
interactions in each monkey between PR × area × behavior (Mj < 0.05,
Mc <0.01), confirming that the effect was stronger in the LPFC.
Moreover, LFP power showed no significant behavioralmodulations in
any array (Fig. 5D; GLM p’s for interaction effect: all >0.3). Thus, the
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relation between PR and the animal’s behavioral sensitivity was only
reflected by the strength of TWs in the LPFC and not by TW’s strength
in the PPC nor the power of LFPs in either region.

Discussion
We show that TWs of beta-band oscillations are present in the monkey
frontal and parietal cortex and convey information about recent
rewards. These results are consistentwithprevious evidence implicating
beta-band oscillations in cognitive control, working memory, and
reward computations38–43 but suggest that at least some of the beta-
band oscillations in frontal and parietal areas reflect signals that pro-
pagate in specific directions as planar TWs44. Moreover, the correlations
between TW strength and PRs show that, in addition to their associa-
tions with motor function, navigation, and memory4,8–10,17,18,22,45–48, TWs
convey information about reward processing.

Behavioral sensitivity to statistically irrelevant PRs like that shown
by ourmonkeys has been well-documented in several species andmay
contribute to reward learning in some contexts while producing
decision biases in others26,32. While the neural underpinnings of this
sensitivity are not fully understood, our results provide several specific
clues about the possible contributions of TWs. First, we show that TWs
specifically signaled the prior trial reward or lack of reward rather than
the expected value of the reward on the current or previous trial.
Second, TWs encoded PR information de novo at the start of a trial
rather than responding to reward delivery and maintaining this
response through the following trial. Third, TWs encoded the PRs
transiently before the presentation of the current trial’s reward cue.
Finally, TW strength in the frontal lobe correlated with the impact of
the PR on the monkeys’ future reward expectations as indexed by
anticipatory licking behavior. Together, these properties suggest that
TWs in the frontal and parietal lobes contribute to the active retrieval
of reward history information at the start of a trial and, in the frontal
lobe, also signal the use of this information to adjust future expecta-
tions. Interestingly, the effect of behavior seemed to differ by a mon-
key, since in monkey Mj, the primary effect of successful retrieval was
the enhancement of TW after a PR, while in monkey Mc it was the
suppression of TW strength after a prior no reward (Fig. 5C). We
hypothesize that these differences may reflect the monkeys’ beha-
vioral strategies (perhaps their attention to different task attributes),
an idea that can be examined with future behavioral tests.

Recent results fromour laboratory suggest a potentialmechanism
by which these TWs influence behavior. We found that, in the same
behavioral task, individual cells in these areas responded to the
delivery of an outcome (a “current reward”) in ways that depended on
the PR28. The highest firing rates were evoked when the current trial
failed to deliver a reward but followed a prior trial that did produce a
reward—i.e. when there was a decline in reward rate across consecutive
trials28. Based on the role of the frontoparietal network in executive
monitoring, these findings suggest that its neurons signal downstream
areas to increase cognitive effort upon detecting a decline in reward
rates49–51. We can speculate, therefore, that these “requests for
adjustment” are carried by spiking responses, which represent the
output of an area; in contrast, TWs may be part of the mechanism for
producing these responses. TW strength, which transiently encoded
PRs at the start of a trial, may produce sustained changes in neuronal
excitability that last until the end of the trial and facilitate the com-
parison of the current and PRs (consistent with Foley et al. 2020)28. An
important question for future research is thus whether and how TWs
interact with spiking activity to set the context for evaluating a current
reward—more specifically, facilitate comparisons between sequential
outcomes for the purpose of monitoring reward rates and triggering
adjustments in behavior.

Previous studies have shown that individual cycles of neural
oscillations and TW are coupled to the spiking of individual
neurons19,52–56. Thus, a spatially propagating TW produces neuronal

spiking and/or subthreshold activity that moves across the cortex in a
consistent direction21,22, providing a mechanism by which multiple
features of a TW, including their strength and direction, can be phy-
siologically and behaviorally significant. The literature provides mixed
results about the specific aspects of TWs that are consequential, with
some studies showing that behavior is more strongly correlated with
TW propagation direction12,57–60 and others showing stronger beha-
vioral correlations with TW strength10,21,47,61,62.

Our results combine elements of both views. We show that PRs
enhanced only the strength of the TWs without changing their pro-
pagation direction, suggesting that TW strength specifically encoded
the previous outcome. However, rather than being uniformly dis-
tributed, TWs propagated primarily in two opposite directions along a
single spatial axis, suggesting an additional role for propagation
direction. This patternmay reflect the joint action of twomechanisms.
BecauseTWs are associatedwith spatial gradients in synapticweights11,
the non-uniform directional distributions may reflect preferential
anatomical connectivity along axes that are orthogonal rather than
parallel to a sulcus47. The modulations of TW strength, on the other
hand, may reflect the upregulation of general network processes, like
the strengthening of local phase coupling3 or an overall increase in
inhibitory activity11, which, when combined with the connectivity gra-
dients,may preferentially strengthen TWs along the connectivity axes.

Decoding cognitive variables from neural oscillations can be
challenging63–66 because multiple oscillation features, such as power,
phase, speed, and direction, can appear intertwined. We show that the
peak frequencies for LFPpower andTWstrengthswere correlated.Note
that although Fig. 3C suggests that the frequencies of power peakswere
lower than the frequencies of peak PGD, this may have been a mea-
surement issue caused by the 1/f tilt in the LFP power, which causes
power peaks to be extracted at lower frequencies67,68, without affecting
the frequencies extracted for phase or TWs. Thus, these results are
largely consistent with the notion that there is a single underlying
oscillation whose power and TW strength vary independently (as
explained in Fig. 1), although it remains theoretically possible that there
are separate oscillators underlying the power and TW strength effects.
We used multivariate modeling to statistically distinguish the con-
tributions of different TW features to encoding PRs and confirmed that
TW strength conveys information that is independent of TW speed and
direction, as noted above, and, importantly, is also independent of LFP
power. The PGD of beta-band TWs remained the strongest predictor of
reward history even after controlling for LFP power and, in the pre-
frontal cortex, uniquely predicted the monkeys’ behavioral sensitivity.
This strongly supports our conclusion that measuring TWs provides
additional useful information that supplements established analysis
methods for oscillations at individual electrodes.

We further examined the issue of how best to measure TWs by
comparing our primary methods based on circular statistics versus a
bipolar LFP measure that is often used for measuring cortical
gradients54,69. Because TWs propagate in particular directions across
the cortex, a bipolar voltage differential across a pair of adjacent
electrodes in the direction of propagation can measure a TW. We
considered two forms of bipolar LFPs, with contacts referenced par-
allel and perpendicular to the main direction of TW propagation.
However, the PGD proved to be a more reliable marker than both of
the bipolar measures in all areas. The bipolar-measured signal was
significant only in the PPC, and even there, it showed a much smaller
coefficient relative to that of the PGD. We hypothesize that the PGD
provided a more accurate measure of the TW’s properties because it
captured amoregeneral pattern of LFP gradients across the entire grid
rather than just leveraging a single bipolar electrode pair.

It is important to note that because TWs can propagate over large
cortical distances, the TWs we measured with our microarrays may
reflect a partial view, through narrow ~10 mm2 apertures, into larger
and more complex patterns3,39. In our data, the peak frequencies of
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TWs differed between the frontal and parietal areas. Because of this
difference, it is likely that the TWswemeasuredwere restricted to each
area rather than being part of a larger TW pattern that propagates
across the fronto-parietal network. Nonetheless, an important direc-
tion for future research is to measure the spatial properties of oscil-
lations on both small and large scales to understand how the local,
micro-scale TWs we describe relate to larger mesoscale circuits.

In sum, our findings show that TWs reflect distinct aspects of
reward computations relative to the information represented by the
power of local LFP oscillations. This emphasizes the importance of
understanding the spatio-temporal organization of LFP oscillations
across multichannel recording arrays beyond conducting univariate
measurements from individual electrodes4. The spatial organization
of oscillations and TWs may reflect fundamental aspects of neural
computation. For example, some recent studies suggested that TWs
are specifically important for neuronal computations involving spa-
tially distributed neural assemblies (e.g.,70,71), and our findings sug-
gest that they may also be fundamentally informative for explaining
how the brain supports types of neural computations involving
events that are distributed in time. Going forward, leveraging their
distinctive and widespread correlations with various aspects of
behavior, TWs, and spatial patterns of oscillations may be important
practically for brain-computer interfaces. Our demonstration that
TW strength conveys unique behavioral information that is not pre-
sent in LFP power suggests that a wide range of brain-computer
interface challenges may benefit from measuring the spatial propa-
gation of oscillatory activity for improved decoding of variables
relevant to behavior and cognition.

Methods
General methods
Data were collected from two adult male rhesus monkeys (Macaca
mulatta; 9–12 kg). Themonkeys weremotivated to perform the task by
fluid restriction, and their weights and health weremonitored daily. All
methods were approved by the Animal Care and Use Committees of
Columbia University and New York State Psychiatric Institute as
complying with the guidelines within the Public Health Service Guide
for the Care and Use of Laboratory Animals. Visual stimuli were pre-
sented on an MS3400V XGA high-definition monitor (CTX Interna-
tional, INC., City of Industry, CA; 62.5 by 46.5 cm viewing area). Eye
position was recorded using an eye-tracking system (Arrington
Research, Scottsdale, AZ). Licking was recorded at 1 kHz using an in-
house device that transmitted a laser beambetween the tip of the juice
tube and themonkey’s snout and generated a 5 V pulse upon detecting
interruptions of the beam when the monkey extended his tongue to
obtain water.

Task
A trial started with the presentation of two square placeholders
(1° width) located along the horizontal meridian at 8º eccentricity to
the right and left of a central fixation point (white square, 0.2° dia-
meter). After the monkey maintained gaze on the fixation point for
1300–1500ms (fixation window, 1.5–2° square), a randomly selected
placeholder was replaced for 300ms by a reward cue—a checkerboard
pattern indicating the trial’s reward contingencies. After a 600ms
delay period, the fixation point disappeared simultaneously with an
increase in luminance of one of the placeholders (the target), whose
location was randomized independently from that of the cue. If the
monkey made a saccade to the target with a reaction time (RT) of
100–700 ms and maintained fixation within a 2.0–3.5° window for
350ms, he received awater rewardwith themagnitude andprobability
that had been indicated by the cue. An auditory tone (200ms, 500Hz)
signaled the end of the post-saccadic hold period on all trials, pro-
viding a temporal marker for the onset of the outcome/ITI period
whether a reward was received or omitted. Rewards, when delivered,

were linearly scaled between 0.28 and 1.12mL. The ITI—from tone
onset to the onset of the fixation point on the following trial lasted for
1200–1600ms. Error trials (resulting from fixation breaks, premature,
late, or wrong-direction saccades) were immediately repeated until
correctly completed, precluding the monkeys from aborting trials in
which they anticipated lower rewards.

Monkeys were extensively familiarized with the task and all the
cues before recordings began. The full setwas comprisedof 20distinct
cues, including cues that indicated rewards with maximal size at 0.25,
0.5, or 0.75 probability, rewards with half size at 0.25 and 0.75 prob-
ability, and rewards of different magnitudes delivered deterministi-
cally with 0 or 100% probability.

Neural recording
After completing behavioral training, each monkey was implanted
with two 48- 48-electrode Utah arrays, positioned in the frontal and
parietal areas, in the left hemisphere for monkey Mj and the right
hemisphere for monkey Mc. In all the arrays, the electrodes were
1.5mm long, had an impedance of 0.1–0.8 Ohms, and were arranged
in rectangular grids with 1-mm spacing (monkey Mj, 7mm× 7mm;
monkey Mc, 5mm× 10mm). The frontal grids were positioned
between the anterior bank of the arcuate sulcus and the posterior tip
of the principal sulcus. Because of constraints posed by themonkeys’
individual vasculature, the frontal array was implanted slightly dorsal
to the PS tip in monkey Mj and slightly ventral to it in monkey McD.
Both locationswerewithin the pre-arcuate portion of the frontal lobe
that is considered a single functional unit72, and we refer to it here as
the LPFC. The parietal grid in each monkey was positioned in the
posterior portion of area 7A immediately lateral to the intraparietal
sulcus (area OPT).

The electrode signals were referenced to a separate wire posi-
tioned over the dura. Data were recorded using the Cereplex System
(Blackrock, Salt Lake City, Utah) over 18 sessions spanning 4 months
after array implantation in monkey Mj and 12 sessions spanning
2 months after implantation in monkey Mc.

Neuronal spiking from this dataset was analyzed previously, as
described in a pre-print28. However, that paper is not yet published,
and the data arenot public. Thepresent paper is thefirst description of
LFP oscillations and TWs from this data set.

Statistics and reproducibility
Details on statistical analyses and criteria for excluding data points are
given below. Data were recorded for as long as the arrays were viable
(i.e., provided a sufficiently large signal-to-noise ratio to identify indi-
vidual cells), which allowed 18 daily behavioral sessions spanning
4 months after array implantation in monkey Mj and 12 sessions
spanning 2 months after implantation in monkey Mc. No statistical
method was used to predetermine the sample size. All experimental
variables were randomized, as described in the Task section. The
investigators were blinded, as they could not assign an experimental
condition to any given electrode.

Spectral analysis of the LFP
The raw LFP from each electrode and trial were low pass filtered at
200Hz and notch filtered at 60 Hz to remove line noise. We removed
trials with artifacts (e.g., step-like artifacts in LFP traces) by identifying
the peak-to-peak amplitude of the broadband LFP trace and removing
trials for which this z-transformed measure was more than half a
standard deviation away from the mean across all trials. All the neural
analyses arebasedon the remaining trials inwhich the LFP signalswere
uncontaminated by artifacts (N trials: LPFC Mc: PR 2852, NPR 1516;
LPFC Mj: PR 5165, NPR 2940; PPC Mc: PR 2987, NPR 1580; PPC Mj: PR
2681, NPR 924). The dominant oscillation frequency was calculated
based on the multitaper power spectral density estimation73 imple-
mented with Chronux74. Power spectra were computed separately for
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each channel and trial, and the background power spectrum was
removed through 1/f slope estimation75.

To identify the power of oscillations at different frequencies
throughout the task, the spectrograms were computed using the
continuous wavelet transform (CWT) with analytic Morse wavelet
family scales76 corresponding to center frequencies of 1–60Hz. The
hyperparameters of the wavelet transform were optimized auto-
matically based on the wavelet’s energy spread [gamma = 3, voice per
octave = 10, time-bandwidth = 60, and signal sampling rate = 200Hz].
For follow-up analyses at specific frequencies, we applied a zero-phase-
lag Butterworth second-order filter with a bandwidth of 1.5 Hz, which
prevents relative phase deformation.

Characterizing TW
We implemented a version of the TW characterization method from
Zhang et al.17 applied across frequencies and time points. As illustrated
in Fig. S1, at frequencies ranging from 2 to 50Hz, we first applied a
zero-phase band-pass filter with a fixed width of ±1.5Hz. We used this
approach to extract the signals at each electrode and then applied the
Hilbert transform to the filtered voltage signal, V(x, y, t), recorded by
an electrode located at position x, y on the array

V ðx, y, tÞ+ iHb½V ðx, y , tÞ�=Aðx, y, tÞeiϕðx,y,tÞ ð1Þ

Here is the Hilbert transform operator, A(x, y, t) is the instantaneous
recorded voltage and is the instantaneous phase for the electrode at
position x, y at time t. Next, to model phase propagation across the
simultaneously measured electrodes at each time point, we use a
regression model to fit a plane that models the shift across electrodes
at different locations x and y:

ϕ̂ðx, y, tÞ= kx :x + ky:y+ϕrefðtÞ: ð2Þ

After fitting this model, and are coefficients that reveal the
direction of the plane that best describes the phase propagation in the
x and y axes. Next, to measure the consistency of wave propagation
across electrodes, we calculated the PGD47. We compute PGD as the
Pearson correlation between the actual phase of the TW at each
timepoint t and the predicted phase from the best-fitting planar wave
model:

PGDðtÞ=
P

x,yððϕðx,y,tÞ � �ϕðtÞÞðϕ̂ðx,y,tÞ � ϕ̂ðtÞÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

x,yðϕðx,y,tÞ � �ϕðtÞÞ2Px,yðϕ̂ðx,y,tÞ � ϕ̂ðtÞÞ
2

r : ð3Þ

Here is the predicted phase of the signal at each location and
timepoint, and is the actual phase. Then, using the slope of the fitted
plane wave, we identified the propagation direction as below:

PropagationdirectionðtÞ=Arctan ky

kx

� �

: ð4Þ

Finally, wemeasured the spatial propagation speed, following the
equation for measuring wave speed in physical systems77 based on the
temporal frequency of the traveling waves () and the wave constants
(and

ν =
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x + k

2
y

q : ð5Þ

Generalized linear models (GLM) and regression analysis
To determine how PGD correlates with behavioral variables, we con-
structed individual GLM models to extract coefficients for each vari-
able of interest—PR, expected value (EV), current reward (CR), and cue

and target locations—at each frequency and time-point (Fig. 4D,
Fig. S4). To control for potential confounds, we constructed an addi-
tional GLM in which we fit the average PGD in the time-frequency
region of interest (Fig. 4D) as a function of PR. This model also inclu-
ded as nuisance regressors the licking rate during the pre-cue epoch
and the EV of the previous trial (across the 4 arrays: all F’s > 5 and all
p’s < 10−5; Mc LPFC: R2 = 0.062, Mj LPFC: R2 = 0.011, Mc PPC: R2 = 0.074,
Mj PPC: R2 = 0.065).

To determine if the PR was better predicted by TW strength or
other physiological indicators, we constructed an additional GLM
model with a binomial link function and the following structure:

Prior reward =a0 +a1PGD+a2 TWDirection+a3 TWSpeed

+a4 LFPPower +a5 LFPBipolarTWparallel +a6 LFPBipolarTWorthogonal
:

ð6Þ

PR was an indicator variable with a value of 1 if the prior trial was
rewarded and 0 otherwise. The dependent variables weremeasured as
described above in the time-frequency region that showed the highest
PR effect (Fig. 4D)Directionwas coded as the absolute value of the sine
of the angular difference between the TW direction on each trial and
the dominant axis of wave propagation across trials, allowing us to
enter it as a linear (non-circular) regressor in themodel. LFP powerwas
the mean power at the peak frequency, calculated using multitaper
power spectral density estimation73. The LFP Bipolar regressors were
constructed by taking the voltage difference between a pair of
electrodes that were selected randomly on each trial, with the
constraints that the axis connecting the electrodes was parallel to
the primary axis of TW propagation direction and that the axis was
orthogonal to this axis. These measures do not require circular
statistics and provide alternate measures of the gradient of propagat-
ing voltage patterns similar to methods used in EEG field analyses
(e.g.,78). For all GLM model analyses, the regressors were z-scored,
allowing us to compare the coefficient magnitudes across regressors.
This model produced, for LPFC: p < 10−163, F = 33.8, R2 = 0.02 and for
PPC F = 7.5, R2 = 0.11, p < 10−27.

In addition, to measure the proportion of the explained variance
for each individual predictor in the linear model, we used MATLAB
function fitlm to calculate for each predictor:

η2 =
SSeffect
SStotal

: ð7Þ

is the sum of squares for the effect of interest and is the total sum of
squares for all effects, errors, and interactions in the linear model79,80.
We calculated the variance explained () for each variable and reported
in the text the percentage of the total variance explained by the full
model that is explained by each variable independently.

To verify the validity of our GLMmodels, we computed standard
model assessment procedures. First, to ensure that the data fit by our
model was not collinear, we calculated Variance Inflation Factors
(VIF81); Large VIF values indicate that an independent predictor is
explained by a linear combination of the other predictors. VIF values
start at 1, and values above ~5 are considered to indicate a pro-
blematically high degree of multicollinearity82. Across all our regres-
sion models, the VIFs were strictly less than 1.24, indicating that
collinearity was not an issue for interpreting our models. We repli-
cated our assessment of regressor collinearity directly using a cor-
relation matrix and verified that there was not a high degree of
collinearity in any pair of variables (all correlations < 0.51). Second, to
confirm that the assumption of independence was confirmed for our
regression models, we ran Durbin–Watson tests for autocorrelations
across trials83. For all regressionmodels, Durbin–Watson test p values
were not significant (all p’s > 0.26), indicating that our data fit
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conformed to the assumption of independence of residuals required
by the GLM.

Receiver operating characteristic (ROC) analysis of behavioral
sensitivity
We used an ROC analysis to determine the reliability with which the
presence of a PR across a group of trials could be inferred from the
monkeys’ licking behavior. Based on the distributions of licking rates
across trials (measured from [0 to -500ms] before cue onset), we
constructed an ROC curve. This curve traced, across a range of deci-
sion criteria, the frequencyof hits (licking rate higher than the criterion
and PR delivered) against the frequency of false alarms (licking rate
higher than the criterion and PR not delivered). The Area Under the
Curve (AUC) was higher than 0.5 in bothmonkeys (Mc, 0.85; Mj, 0.89],
indicating that licking behavior was a reliable indicator of PR. From the
ROCcurve,we selected the optimaldecisioncriterion for eachmonkey
(the selected threshold where the ROC curve was furthest from the
main diagonal).We then defined trialswith consistent and inconsistent
licking, as explained in the text.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data sets generated during and analyzed during this study are
deposited on the Open Science Framework at https://doi.org/10.
17605/OSF.IO/ERD8Q. Source data are provided in this paper.

Code availability
Anopen-source code repository for allmethods is available onGitHub.
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