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Here we provide a comprehensive response to the Comment written
by Stefan Boettcher. We argue that the Comment did not account for
the fairness of the comparisonbetweendifferentmethods in searching
for the spin-glass ground states. We demonstrate that, with a reason-
ably larger number of initial spin configurations, our results agree with
the asymptotic scaling form assumed by finite-size corrections.

3D Edwards-Anderson (EA) model
In Fig. 5 of our paper1, we plotted the disorder-averaged energy
per spin (denote as e0) as a function of the number of initial spin
configurations (denoted as ninitial) for different methods to
benchmark those methods on large 3D EA Ising spin glass
instances with Gaussian disorder. The Comment pointed out that
DIRAC-SA (a variant of our DIRAC method) did not reach the
ground states for those systems, as indicated by the large devia-
tion of the three red points from the asymptotic scaling form
assumed by finite-size corrections (FSC), see Fig. 1 of the Com-
ment and this response letter. However, as we explicitly men-
tioned in the caption of Fig. 5 in our paper1, we only ran all the
tested algorithms up to a small ninitial = 2.0 × 104, which is much
smaller than the number required to reach the ground state, as
reported in the literature. For instance, Ref. 2 reported that, to
reach the ground state for 3D, L = 10 systems, the parallel tem-
pering (PT) method requires ninitial = 3.2 × 107, which is 1600 times
larger than the number of initial spin configurations we used. Such
a big difference in terms of ninitial is certainly not inconsequential.
We did not expect any of the methods to reach the ground state
with ninitial = 2.0 × 104 for large 3D EA instances with Gaussian dis-
order. Indeed, for 3D, L = 10 systems, with ninitial = 2.0 × 104, PT and
simulated annealing (SA) did not reach the expected ground state
either (see the magenta and cyan points in Fig. 1 of this response).

In fact, with the same ninitial, results of these two methods are even
farther away from the FSC line than DIRAC-SA for 3D,
L = 10 systems (see the third red point in Fig. 1 of this response).
Without specifying the number of initial spin configurations, we
think it is unfair and meaningless to compare different methods in
searching for the ground states of large spin-glass instances.

In our paper1 we did not try a larger ninitial for two reasons.
First, we had already demonstrated the ability of DIRAC to reach
the exact ground states for small systems (which can be confirmed
by the branch-and-bound-based solver Gurobi), as shown in Fig. 4
of our paper1. Second, we did not find it necessary to invest
extensive computational resources in an “arms race” fashion of
computing the “ground states” of these large systems for which
exact solvers cannot confirm the results. Also, to achieve the
(true) ground states the required ninitial may be exponential in the
system size. There is no exception for DIRAC or any other heur-
istic methods. Our paper aimed to demonstrate the effectiveness
and efficiency of DIRAC over other methods at the same ninitial,
rather than to confirm the asymptotic scaling form assumed by
FSC. We appreciate the “larger picture” mentioned in the Com-
ment. But it was beyond the scope of our paper.

Since the Comment questioned the ability of our method to
reach the ground state for large systems, we think it is necessary
to perform heavier computations with a larger ninitial to directly
address the Comment. For 3D, L = 10 systems with n = 50 instan-
ces, we found that, with ninitial = 6.5 × 105, about 2% as that needed
for PT, the average energy per spin computed by DIRAC-SA could
indeed reach the asymptotic scaling form assumed by FSC (see the
leftmost green point in Fig. 1). We also plotted e0 computed by
DIRAC-SA for 3D, L = 4, 5, 6, 7, 8, with n = 850, 900, 820, 120, 221
instances respectively, in the same figure. We found that they
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agree well with the FSC line. These results clearly demonstrate
that the importance of using a large ninitial to achieve results
consistent with the prediction of FSC. We are grateful that the
Comment helped us clarify this point. As mentioned above, con-
firming the asymptotic scaling form assumed by FSC was not the
original goal of our paper.

Sherrington-Kirkpatrick (SK) model
Fig. 2 of the Comment acknowledged that our results for the SK
model are consistent with the asymptotic scaling form assumed by
FSC, although in the figure we could still see a deviation from the
FSC line for SK model of N = 64. We believe this deviation is simply
due to the small number of instances (n = 50) used in our calculation.
We notice that with n = 50 instances the results offered by the
extremal optimization (EO) heuristic also deviate from the FSC line,
especially for N = 125. We argue that DIRAC needs more instances to
reach the FSC line, just like the EO case. After all, only the average
over many different instances may be expected to behave as a
smooth function of N3.

The Comment also pointed out that the system sizes we con-
sidered are relatively small. We emphasize that, as a reinforcement-
learning framework based on graph neural network, DIRAC was not
specifically designed for SK models with a complete graph topology.
We believe that, to compute ground states for larger SK instances,
DIRAC would have to be modified to explicitly consider the complete
graph topology. However, this was beyond the scope of our paper.

Competitive methods
It is a pity that in our paper we did not explicitly cite any papers on the
genetic algorithm3,4 (GA) or extremal optimization (EO) heuristic5–7.We
did cite a book8 on the use of those heuristic methods for computing
the spin-glass ground state though, as also pointed out by the Com-
ment. In our paper, we did not compare the performance of DIRAC
with that of GA and EO either. This is mainly because PT and GA were
commonly used to compute the ground state of the EA Ising spin glass
model with Gaussian disorder2,9, and Ref. 9 reported that a simple PT
algorithm performs as well as GA found in the literature. Hence, we
chose PT as a competitive method of DIRAC. We did consider two

classical heuristicmethods: SA andGreedy algorithm.Overall, we think
comparing DIRAC with those methods is sufficient to demonstrate its
superiority.

Running time
In ourmain text, we primarily focused on comparing the value of ninitial
among different methods. We believe this is a fair comparison since
this metric remains unaffected by the computational environment,
programming language, or system load during testing. It can also be
interpreted as the number of ‘exploration steps’ taken by each algo-
rithm, which, to some extent, reflects the algorithm’s level of ‘intelli-
gence’. As an extreme example, Fig. 7 in our main text demonstrates
that even a simple DIRAC1 method can achieve the ground state of an
anti-ferromagnetic model with the theoretically minimal number of
exploration steps.

Nevertheless, we understand that some readers may inquire
about the actual running time or ‘wall clock time’ of our algorithm.
Therefore, we have provided two tables, Tables 1 and 2, which present
the typical running times of DIRAC and SA on a laptop equipped with
an Intel(R) Core(TM) i5-10400 processor and Nvidia(R) Geforce(R)
RTX 2070 graphics card, and also a server equipped with an Intel(R)
Xeon(R) Gold 6278C processor and Nvidia(R) Tesla(R) V100 graphic
card. The running times of other algorithms, suchasDIRAC-SA,DIRAC-
PTor PT, canbe roughly estimatedbasedon these values. For instance,
for ninitial = 5000, the time cost of DIRAC-SA is roughly the sumof 2500
DIRAC1 and 2500 SA sweeps. Also, it is expected that the time required
for an SA sweep and a PT sweep would not exhibit a significant
difference.

We acknowledge that our DIRAC code was not optimized for
achieving the shortest running time. However, even in such case,
in terms of the running time taken to reach the same energy,
DIRAC’s running time is not at a disadvantage, if not in an advan-
tageous position. For example, a comparative test was conducted
on the same 3D, L = 10 systems for SA and DIRAC-SA. An average
energy density of approximately −1.6956 can be achieved with 104

SA (with ninitial = 5 × 107), while reaching the same energy level only
requires 47 DIRAC-SA (with ninitial = 2.35 × 105). Even after taking
into account the running time differences between DIRAC1 and SA
sweep shown in Table 2, we can estimate that the MATLAB version
of DIRAC-SA is still ~2.5 times faster than the C++ version of SA.

Fig. 1 | With a reasonably large ninitial, our DIRAC-SA results agree well with
larger picture suggested by FSC. FSC assumes that the average ground state
energy per spin of a given d-dimensional EA system of size N = Ld has the form
<e0>N = <e0>N =1 +Ax + � � � , where x = 1/Ld−θ and d − θ ≈ 2.76. Ignoring the higher
order terms, this form is shown as the dashed line here. The red,magenta and cyan
points are <e0>N for N = 103 computed by DIRAC-SA, PT, and SA, respectively, all
with ninitial = 2.0 × 104. The green points represent <e0>N for N = 43, 53, 63, 73, 83, 103,
with n = 850, 900, 820, 120, 221, 50 instances respectively, computed by DIRAC-SA
with ninitial ≤ 6.5 × 105. Adapted from Figure 1 of Boettcher, S., Nat Commun.
(submitted)11.

Table 1 | Average running time for ninitial = 1 on Intel(R) Cor-
e(TM) i5-10400@2.9GHz and Nvidia(R) Geforce(R) RTX 2070

3D, L = 10 3D, L = 20 3D, L = 30

DIRAC1(Python,C++;GPU) ~2.7s ~47s ~320s

DIRAC1(MATLAB;GPU) ~1.2s ~4.8s ~14s

SA sweep(Python,C++) ~0.014s ~0.13s ~0.45s

SA sweep(MATLAB) ~0.020s ~0.18s ~0.77s

SA sweep(C++) ~0.0024s ~0.03s ~0.11s

This table (and also Table 2) presents the typical running times,measured in seconds, for various
system sizes, different methods, and different implementations

Table 2 | Average running time forninitial = 1 on Intel(R) Xeon(R)
Gold 6278C CPU @ 2.60GHz and Nvidia(R) Tesla(R) V100

3D, L = 10 3D, L = 20 3D, L = 30

DIRAC1(Python,C++;GPU) ~2.8s ~49s ~330s

DIRAC1(MATLAB;GPU) ~0.5s ~1.1s ~3.2s

SA sweep(Python,C++) ~0.015s ~0.18s ~0.61s

SA sweep(MATLAB) ~0.01s ~0.09s ~0.41s

SA sweep(C++) ~0.003s ~0.034s ~0.13s
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Despite the additional use of GPU, we believe that compared to
SA, DIRAC can more naturally benefit from GPU acceleration, as
the time consumption of DIRAC is primarily on matrix
multiplication.

The running time of DIRAC is influenced by many factors, so
there may still be room for improvement. In fact, during the
development of DIRAC, we discovered a significant time overhead
due to communication between C++ modules, the Tensorflow
session, and the Python code. (As an indirect evidence, it can be
observed that for this code, there is no significant difference in
the running time between the RTX 2070 and V100 GPU). Hence,
employing a unified programming language could greatly improve
performance, as demonstrated by the MATLAB running times lis-
ted in Tables 1 and 2. In addition to these findings, we have
identified several other ways to accelerate the code:

• Implement the code in an incremental way. For instance, in
the context of SA, when attempting to flip a spin, it is suf-
ficient to compute the energy of that specific spin. However,
in the current version of the DIRAC code, whenever the spin
configuration is altered, all the Q values need to be recom-
puted, which is clearly not efficient. To improve this, we can
modify the code to update only the affected Q values when a
spin is flipped, rather than recomputing all of them. This
incremental approach will optimize the computation
process.

• Matrix chain multiplication. In the current version of the DIRAC
code, we did not optimize the order of thematrixmultiplication.
This could also possibly be a way to optimize the computation
running time.

• Programming language. We believe that if the entire code is
written in C++/CUDA, the running time should be further
reduced.

On the other hand, for the DIRAC1 code written in MATLAB, the
performance difference of GPUs is still very noticeable, compared to
the insignificant differences in single-core performance among mod-
ern CPUs; for instance, see the SA sweep running time on different
machines. For instance, when we replaced the RTX 2070 with the
V100 server GPU, the running time was reduced by nearly 2–4 times.
Furthermore, from the table, we can observe that for the DIRAC1 code
written in MATLAB, its time complexity appears to be even less than
linear. This may suggest that the performance of GPUs is not fully
utilized, at least in smaller systems. In general, we believe that DIRAC
has significant potential for further development in terms of
computational time.

Methods
The hyperparameters used in the DIRAC-SA algorithm mentioned in
this paper are the same as the default hyperparameters in the GitHub
code1. In addition, the MATLAB version of DIRAC1 that we used for the
running time test has also been updated on GitHub1. The details of the
computing environments have been provided in the section
“Running Time”.

Data availability
The data used to reproduce the results in this paper are publicly
available10.

Code availability
The source code of DIRAC (and its variants), as well as the two baseline
methods, SA and PT, are publicly available10 or on GitHub (https://
github.com/FFrankyy/DIRAC.git).
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Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.
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