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Quantifying thermal adaptation of soil
microbial respiration

Charlotte J. Alster 1,2 , Allycia van de Laar1,3, Jordan P. Goodrich1,4,
Vickery L. Arcus 1, Julie R. Deslippe 5, Alexis J. Marshall1 & Louis A. Schipper1

Quantifying the rate of thermal adaptation of soil microbial respiration is
essential in determining potential for carbon cycle feedbacks under awarming
climate. Uncertainty surrounding this topic stems in part from persistent
methodological issues and difficulties isolating the interacting effects of
changes in microbial community responses from changes in soil carbon
availability. Here, we constructed a series of temperature response curves of
microbial respiration (given unlimited substrate) using soils sampled from
around New Zealand, including from a natural geothermal gradient, as a proxy
for globalwarming.Weestimated the temperatureoptima (Topt) and inflection
point (T inf ) of each curve and found that adaptation of microbial respiration
occurred at a rate of 0.29 °C ± 0.04 1SE for Topt and 0.27 °C ± 0.05 1SE for T inf

per degree of warming. Our results bolster previous findings indicating ther-
mal adaptation is demonstrably offset from warming, and may help quanti-
fying the potential for both limitation and acceleration of soil C losses
depending on specific soil temperatures.

Soils contain the largest reservoir of carbon in the terrestrial
biosphere1, 2. This store of carbon is broken down by soil microbes and
released to the atmosphere through heterotrophic respiration3 at a
rate roughly ten times larger than the carbon dioxide (CO2) emitted
from anthropogenic sources4. Climate warming is expected to accel-
erate heterotrophic soil microbial respiration, greatly increasing car-
bon losses from soil to the atmosphere5–7. However, large uncertainty
remains surrounding rates of soil carbon loss6,8–10, including how
microbial communities will adapt to higher temperatures7,11,12. Thermal
adaptation of soilmicrobial respiration is central to understanding the
resilience of natural systems to climate warming since adaptation of
microbial temperature responses may further accelerate, or dampen,
carbon cycle-climate feedbacks6,13. We note that it is the soil microbial
communities that adapt to warming, with changes in the temperature
response of respiration being an expected outcome of this adaptation;
we refer to this here as the thermal adaptation of soil microbial
respiration. Soil microbial communities may thermally adapt to

warming through shifts in community composition or physiological
adaptations13,14. While the literature in this area is vast, contradictory
findings obscure whether soil microbial respiration will adapt to
warming (e.g., refs. 11,15–17). Recently important progress toward
resolving this conundrum has been made by measuring potential
respiration rates across climate gradients (e.g., refs. 7,12,18). However,
we still lack the ability to make predictions about soil microbial
respiration as the climate warms, in part because we lack the con-
tinuous data to do so. Thus, the central question remains—does soil
microbial respiration adapt to warming, and if so, by how much?

Several factors contribute to the inconsistencies found in prior
work on thermal adaptation of the temperature response of soil
microbial respiration. First, there are persistent methodological issues
in the measurement and characterisation of temperature responses of
respiration in soil systems19–22. In brief, the temperature response is
typically measured over a narrow temperature range and modelled
withdisregard for biological thermal optima19. Persistent use of theQ10
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temperature coefficient, for example, leads to an oversimplification of
the microbial temperature response as binary (increasing or decreas-
ing). These issues are problematic because when characterisation of
the initial temperature response is poor, comparing results across
treatments, sites, and timescales for understanding thermal adapta-
tion becomes futile. Confusion also remains regarding the relative
versus absolute temperature sensitivity (Methods), which contributes
to discrepancies in the literature19,20,23. Second, it is difficult to isolate
the interacting effects of changes in microbial community responses
from changes in soil carbon availability with warming12,24. As warming
increases carbon limitation may also increase, making it difficult to
evaluate changes in the intrinsic temperature response of soil micro-
bial respiration from apparent changes23,24. Third, long-term warming
studies are often accompanied by methodological challenges and
artefacts that are often difficult to overcome25,26. For example, soil
drying and changes in vegetation accompanying the warming
treatment26 can also influencemicrobial adaptation27–32. Mostwarming
experiments are also limited to two treatments (warmed and control),
which means that isolating a metric for the size of adaptation with
increasing temperature is not possible. This lack of power, in both
defining the temperature response and in selecting enough sites or
treatments to discern changes, also provides a challenge and con-
tributes to the uncertainty19,33,34. Consequently, while many studies
predict an increase, decrease, or no change in microbial respiration
with warming, few provide a quantitative metric for characterising the
rate of this change.

Long-term soil geothermal gradients in Aotearoa New Zealand
offer a unique opportunity to quantify rates of thermal adaptation
across relatively controlled environmental conditions. Here, we con-
structed a series of temperature response curves (n = 47) from soils
sampled along a natural geothermal gradient and from a range of soil
temperatures across New Zealand (Fig. S1) as a proxy for global
warming. Mean annual soil temperatures from these sites ranged from
11–35 °C, which is representative of many temperate ecosystems35,
making New Zealand an ideal case study for understanding soil
microbial thermal adaptation to climate warming. To construct the
temperature response curves, we incubated each of these soils with
and without added glucose at >11 discrete temperatures ranging from
~4–42 °C using a temperature gradient block and then measured CO2

flux (Fig. 1; Methods). The CO2 flux from the added glucose fraction
was mathematically separated from the soil organic matter (SOM)
fraction to determine the temperature response of respiration by the

microbial community independently of carbon availability36

(Methods).
We fit a modified version of macromolecular rate theory (MMRT)

to each temperature response curve to estimate the temperature
optima (Topt) and inflection point (T inf ) as indicators of temperature
sensitivity (Methods). Employing this approach, we were able to
eliminate the confounding effects of measuring changes in tempera-
ture sensitivity across a narrow temperature range. We then estimated
the rate of adaptation of Topt and T inf for microbial respiration across
the environmental temperature gradient, accounting for spatial auto-
correlation, and compared these values to differences in microbial
community composition along the geothermal gradient (Methods).
We hypothesised that as mean annual environmental temperature
(MET) increases, the Topt and T inf of soil microbial respiration will also
increase because microbial communities will thermally adapt to war-
mer soil conditions. By explicitly quantifying the rate of thermal
adaptation in this study, we were able to make predictions about how
thermal adaptation may alter rates of soil microbial respiration with
climate warming.

Results and discussion
Thermal adaptation of soil microbial respiration
We found clear evidence for thermal adaptation of soil microbial
respiration when measurements were not confounded by varying
substrate availability (Fig. 2). Adaptation of the microbial respiration
occurred at a rate of 0.29 and 0.27 degrees for Topt and T inf , respec-
tively, per degreeofwarmingwith a high level of confidence (±0.04 1SE
for Topt and ±0.05 1SE for T inf , n = 47; Fig. 2) when accounting for
spatial relatedness. The relationships between Topt and T inf with MET
were highly constrained despite the wide variety of climatic and
edaphic properties of the sites sampled, demonstrating the general
importance of long-term environmental temperature in determining
the temperature response. Our results suggest that thermal adaptation
of soil microbial respiration is occurring at a rate disparate from the
rate at which global temperatures arewarming (i.e., the rate changes in
Topt and T inf is not 1 to 1 per degree of environmental warming).

While the vast majority of studies have been unable to explicitly
quantify rates of thermal adaptation for soil microbial respiration in
the absence of substrate limitation, there is some supporting evidence
for slower thermal adaptation than the rateofwarming, particularly for
microbial growth rates. For example, Rinnan et al.37 and Rijkers et al.38

observed an increase inTopt of 0.07 to 0.27 °Cper 1 °C increase inMET
for soil bacterial growth from polar ecosystems. Others have observed
an increase in Tmin (see Methods for definition) of 0.19 to 0.8 °C per
1 °C increase inMET for bacterial and fungal growth inmore temperate
ecosystems39–41, averaging around 0.3 °C per 1 °C increase across
ecosystems42. Li et al.43 also found an increase of approximately 0.2 °C
per 1 °C increase in MET for Tmin for soil microbial respiration mea-
sured from soils around China. Additionally, a meta-analysis of
microbial temperature sensitivity from a variety of ecosystems and
processes found an increase in Topt andT inf of slightly under 0.5 °C per
1 °C increase in MET44.

The subtle shift in the temperature response identified here may
also explain why previous studies of thermal adaptation of soil
microbial respiration have frequently reported null results (e.g.,
refs. 17,45–47). Since thermal adaptation occurs at less than 0.3 °C per
1 °C increase in MET, and because most published experiments were
not designed to detect such small shifts, it is unsurprising that evi-
dence of thermal adaptation has rarely been reported. Data generated
from ecological experiments are often inherently noisy and warming
experiments are typically measured with minor differences in tem-
perature (less than two degrees) between the warmed and control
treatments (e.g., refs. 11,33,48). These factors make the detection of a
warming response technically challenging. For example, 2 °C of
warming would only elicit a 0.58 °C shift in Topt , makingmeasurement
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Fig. 1 | Example temperature response curve. Example temperature response
curve for glucose-induced respiration from soil with a mean environmental tem-
perature of 17.1 °C. Each black point represents themeasured respiration rate from
a different incubation temperature. The black, solid curve corresponds to the
modifiedMMRTmodel fit and the dashed line corresponds to the first derivative of
the respiration rate. The red linesmark theTopt (32.9 °C) andT inf (22.4 °C). TheTopt

is the peak of the MMRT curve and also where the derivative is zero. The T inf is the
peak of the derivative and also where the slope is steepest on the MMRT curve.
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of a significant change in the temperature responsepotentially difficult
to detect. In the future, it would be prudent to design studies mea-
suring the thermal adaptation of microbial communities with this
in mind.

The mechanisms behind this incommensurate response of ther-
mal adaptation of soil microbial respiration with warming remain
elusive. Dispersal limitation is unlikely to have contributed to the offset
in the warming response as the geothermal site has been active for
decades49 and the adapted communities were located within a few
metres of each other. Additionally, microbial communities exhibit
large genetic diversity and short generation times enabling their rapid
evolution50,51. In contrast, a greater disconnect between thermal
adaptation and the rate of warming is predicted for larger
organisms52–54, where evolutionary adaptation and migration rates are
slower due to their longer lifespans. Perhaps the limitations to
microbial thermal adaptation occur because the genomic regions
encoding for respiratory proteins are highly conserved55,56. Respiration
is a chemical pathway involving multiple enzymes that work in a
coordinated manner57. Prentice et al.58 hypothesised that the T inf of
enzymes involved in metabolism are under strong selection pressure
to maintain coordinated reaction rates across different environmental
temperatures. If supported, the need to maintain coordinated activity
across all respiratory enzymes could constrain thermal adaptation to
warming, resulting in the offset of thermal adaptation and MET we
observed.

Although the rate of thermal adaptation is relatively low, overall
these results provide support for the optimum-driven hypothesis for
thermal adaptation since Topt and T inf increase at approximately the
same rate19. This suggests that the potential for soil C losses with
warmingmay be buffered due to the shift in the temperature response
curve, however, this buffering disappears as environmental tempera-
tures approach the thermal optima (see Implications for climate
change). The parallel shift in Topt and T inf deviates from what is pre-
dicted in the enzymatic literature, which finds slower thermal adap-
tation ofT inf than of Topt59,60. Given thatwe demonstrate thatT inf shifts

more quickly than would be expected based on the thermodynamic
properties of respiratory enzymes, our results suggest that other fac-
tors, such as the composition of the microbial community may con-
tribute to the thermal adaptation of the temperature response. The
differences observed between the enzymatic versus microbial com-
munity temperature response highlight the importance of testing
hypotheses across scales since mechanisms can differ.

Notably, we also observed that the range of Topt values fell
between 31 and 43 °C, which is an offset of 8–20 °C from the MET.
While it is not entirely surprising that the Topt is higher than the
MET61–63, prevailing dogma posits that organismal evolution of
enzymes should match their habitat64,65. The question then follows:
why is the Topt so much greater than the mean environmental
temperature? As was suggested earlier, underlying thermodynamic
or environmental constraints may preclude perfect adaptation to
environmental conditions due to fundamental physiological trade-
offs58,61,66. Alternatively, perhaps it is not strategic for microbial
respiration to evolve to match Topt to MET and a higher Topt pro-
vides some sort of biological safety under variable environmental
temperatures67,68. It may be more advantageous for microbial
adaptation of respiration to more closely match T inf , as we see in
this study, or coincide with maximum environmental temperature
or reflect large temperature fluctuations instead19,58. Whatever the
case, these results demonstrate that the position of Topt could be
governed by factors additional to MET and provide further evi-
dence that the thermal adaptation of microbial respiration is
constrained.

The role of the microbial community
The geothermal gradient provides an opportunity to explore the
thermal adaptation of microbial respiration under long-term warming
in the field, while minimising confounding factors (e.g., air tempera-
ture, vegetation, precipitation, soil type)69. Analysing the temperature
response of soil microbial respiration from along the geothermal
gradient independently of the other soils collected from around New
Zealand to control for this variation, we found an increase of 0.22 and
0.23 degrees for Topt and T inf , respectively, per degree of warming
(±0.08 1SE for both for Topt and T inf ). These results corroborate the
findings from the full dataset (Fig. 2). As the temperature range of the
soil geothermal gradient was large while other differences were mini-
mal, these data improve confidence in our results and diminish the
likelihood that other factors within the full dataset bias our inter-
pretation. Additionally, because the soils from around New Zealand
consisted of distinct locations and soil types, we could assume these
microbial communities differed70,71. We confirmed variation in micro-
bial community structure along the geothermal by characterising
bacterial DNA and lipids.

Despite only subtle shifts in the temperature response of micro-
bial respiration, we found large variations in microbial community
composition along the geothermal gradient (Fig. 3; Fig. S2), reflective
of a shift in the relative dominance of heterotrophic to autotrophic
taxa. Bacterial and archaeal richness and diversity significantly
decreased with increasing MET (Fig. 3a–c; P <0.0001), corroborating
findings from Nottingham et al.72 It is likely that these changes occur-
red due to decreases in pH along the geothermal gradient (correlation
of r = −0.91 with MET; P <0.0001) as pH is a well-known driver of
microbial community composition73,74. Similarly, we observed changes
in total bacterial and fungal biomass along the geothermal gradient
(Fig. 3d; Fig. S2). Regardless of the driving mechanism, this informa-
tion provides strong evidence that although microbial adaptation is
occurring through changes in the microbial community along the
geothermal gradient, corresponding changes to the temperature
response of microbial respiration remain limited. This begs the ques-
tion: why do only modest changes in the temperature response occur
despite major changes in the microbial community?
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Fig. 2 | Thermal adaptation of Topt and Tinf. Regressions between mean envir-
onmental soil temperature and the Topt and T inf of soil microbial respiration of
glucose. Square points indicate Topt values and triangle points indicate T inf values.
Black points represent soils collected from geographically distributed sites across
New Zealand and pink points represent soils collected from the geothermal gra-
dient. For each regression (forTopt andT inf ), lines indicate the bestfit with the grey,
shaded regions indicating the 95% confidence intervals. Regressions account for
spatial relatedness (Methods) and x indicates mean environmental soil tempera-
ture in the equations.
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The modest shift in the temperature response despite large
changes in microbial diversity and composition point to high levels of
functional redundancy (i.e., the ability of different microbial taxa to
carry out the same functional process at similar rates regardless of
composition75, 76) among respiring microbes. This finding is consistent
with the idea that specific features of the temperature response of soil
microbial respiration are highly conserved among organisms and
communities55,56,58.

Alternatively, environmental temperaturemay not be the primary
factor controlling the temperature response curve of soil respiration.
While many factors were similar along the geothermal temperature
gradient, notably pHand some soil nutrients didvary (Fig. S3; Tables S1
and S2). It is possible that these edaphic factors contribute to selecting
whichorganismsadapt and survive along the temperature gradient73,77,
driving the selection of a subset of organisms with a specific type of
temperature response. However, while pH is known to be a primary
determinant of microbial community composition73,74, and the
microbial community composition may influence the temperature
response of respiration78, there is no direct mechanism by which pH
would determine the temperature response of respiration. Prior stu-
dies have also failed to link pH and microbial temperature responses
for respiration44,79, however, it remains possible that an interaction
between low pH and high temperature could cause stress to the
microbe, indirectly affecting its temperature response. Interestingly,
despite the fact that in our study pH is an important predictor of
bacterial biomass, and possibly diversity, our models reveal that pH
was not an important predictor of the temperature response
(Table S3). Rather, the most parsimonious models of Topt and T inf

included MET over pH (Table S3).
The increases in Topt and T inf we observed with warming could

reflect changes in microbial community composition, as we hypothe-
sised. Community composition may shift in order to match new
environmental conditions; for example, we found thermophilic
organisms like thermoplasmata occurring primarily at the warmest
temperatures (Fig. S2; Tables S4 and S5). Alternatively, the increase in

Topt and T inf could simply reflect the observed decrease in prokaryotic
diversity over the geothermal gradient, affecting the temperature
response. In diverse soil microbial communities, the temperature
response of respiration should reflect the sum of all single species’
temperature response curves80. In simpler microbial communities,
such as those we found in the warmest soil temperatures, the sum-
mation of the smaller number of species’ individual temperature
response curves may have resulted in differences in the measured
temperature response parameters. The shift in temperature response
within and between the different microbial communities may also
reflect changes in the dominant glucose metabolising pathway along
the gradient81. Large changes in microbial diversity and biomass, not
accompanied by large changes in the temperature dependence of
respiration, imply that respiration is a universal process whose tem-
perature response is largely independent of community composition
and abundance.

Implications for climate change
Next, we explored what thermal adaptation of soil microbial respira-
tionmeans in the context of climate change.We consolidated all of the
temperature response curves into a single plot (Fig. 4a) to evaluate
how thermal adaptation may alter respiration rates with warming.
Current hypotheses about the thermal adaptation of soil microbial
community are one dimensional in that only a single respiration rate is
considered along with changes in MET12,18,82. By considering the full
temperature response curve we are able to generate more dynamic
hypotheses about how changes in MET affect respiration rates along a
range of potential temperatures experienced in a given environment
over the day and year.

To explain this concept in greater detail, we provide an example
based on data presented in Fig. 4. If we have a soil with an annual
temperature of 20 °C, on an average day (i.e., 20 °C), respirationwould
be roughly half of the total potential microbial respiration assuming
substrate is not limiting (Fig. 4a). In contrast, on awarmer than average
day (e.g., 32 °C) in the same soil with aMET of 20 °C, respiration would
be closer to the maximum rate of potential respiration (Fig. 4a). For
illustrative purposes, assuming that same soil warms 4.5 °C as is pre-
dicted by RCP 8.5 by the end of the twenty-first century83, mean soil
temperature in our example would increase to 24.5 °C. Without ther-
mal adaptation, microbial respiration at 24.5 °C would increase by
18.1% compared to respiration rates pre-warming (Fig. S4). With ther-
mal adaptation, there would only be a 14.1% increase in potential
respiration at 24.5 °C (Fig. S4). However, on awarmer than average day
(e.g., 32 °C), thermal adaption would cause 0.6% more potential
respiration than was to be expected without thermal adaptation
(Fig. 4b; Table S6). In contrast, on a cooler-than-average day (e.g.,
17 °C), thermal adaptation would cause 7.0% less potential respiration
than was to be expected without thermal adaptation (Fig. 4b;
Table S6). This means that depending on the Topt , T inf , and instanta-
neous environmental temperature, the size of the change in soil
microbial respirationwithwarming could be over or underestimated if
thermal adaptation is not considered. These over and under-
estimations may be particularly accentuated during winter and sum-
mer months or day-night cycles.

Understanding of the temperature response curve at a range of
different mean environmental temperatures for soil microbial
respiration (Fig. 4a) also has other utilities. With knowledge of the
MET, this approach could be used to estimate the percent of total
potential respiration occurring at a given point in time at a particular
site. Note, that it is potential respiration rate, because these experi-
ments were conducted without substrate limitation and do not
account for potential changes in substrate supply or microbial bio-
mass, which may also adapt differentially to warming. Nonetheless,
these values could beused formodel parameterisation, for example by
replacingQ10 in relevantmicrobial andbiogeochemicalmodels7,13,84, to
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account for changing temperature responses across temperature
ranges13,85.

Overall, our work demonstrates the importance of considering
the entire temperature response curve when assessing the implica-
tions of thermal adaptation of soil microbial respiration on soil C loss.
Depending on the specific mean and instantaneous soil temperatures,
thermal adaptation of microbial respiration could either limit or
accelerate potential soil C losses (Fig. 4b). This presents a theoretical
expansion beyond the compensatory versus enhancement hypotheses
leading to acceleration or dampening of C loss12,18. Here, we find that
thermal adaptation could lead to both increased and decreased
respiration from soil depending on the temperature range experi-
enced by that soil. A large number of warmer-than-average days could
potentially accelerate C losses from thermally adapted soil microbial
communities. We should therefore be cautious about thinking of
adaptation of microbial communities as either strictly compensating
or enhancing soilmicrobial respiration; this binarywayof thinkingmay
also explain past empirical inconsistencies47,86–88.

Further considerations
In this study, we characterised thermal adaptation for soil microbial
respiration with high precision across a wide temperature range and
removed the confounding factors associated with substrate avail-
ability. We found that the rate of adaptation was significantly lower
than the rate of warming despite significant changes in the large and

diverse soilmicrobial communities,which are characteristics generally
thought to increase the efficiency of adaptation and buffer against
consequences of environmental change50,51.

Although reasons for the offset of the temperature response of
microbial respiration from warming remain unclear, the implications
of our findings are important in the context of climate change. If the
rate of adaptation were faster, it would lead to slower rates of
respiration with thermal adaptation within most of the environmental
temperature range (i.e., Fig. 4b would have a larger proportion of
negative differences if the ratio of warming to adaptation was 1:1).
Ultimately, thismeans greater potential for soil C losses compared to if
rates of microbial adaptation were faster. Without considering the
potential for thermal adaptation, we also risk underestimating poten-
tial respiration rates at temperatures above ~30 °C and overestimating
potential respiration rates at temperatures at temperatures below
~30 °C (Fig. 4b). While this study lays the groundwork for under-
standing the temperature response of soil respiration, future work
should aim to integrate substrate availability with thermal adaptation
to better understand future soil C losses with warming, further
understanding of changes in the temperature response of carbon use
efficiency with warming, and investigate mechanisms behind the dis-
connect between thermal adaptation and warming. In summary, this
research provides a rigorous quantification of the rate of thermal
adaptation of soil microbial respiration by explicitly measuring full
temperature response curves for a wide range of in situ soil
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panels a and b in Fig. S4) with 4.5 °C of warming. The black point and arrows
represent an example with aMETof 24.5 °C and a higher-than-average temperature
time point (32 °C) and a lower-than-average time point (17 °C). Differences between
thermally adapted and non-thermally adapted potential respiration rates are also
presented in Table S6.
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temperatures. Our results contribute to understanding how thermal
adaptation may alter soil microbial respiration in a warming world.

Methods
Temperature sensitivity definitions and explanations
Multiple definitions of temperature sensitivity have long contributed
to confusion in the discussion of the temperature dependence of soil
microbial processes19,20,42. The Q10 metric, which is the ratio of rates
with a 10 °C increase in temperature, is most commonly used as an
indicator of temperature sensitivity7,19, despite the fact that Q10 esti-
mates only a relative temperature sensitivity (i.e., the temperature
sensitivity changes based on the temperature measured). An alter-
native approach is to measure soil microbial respiration across a full
range of biologically relevant temperatures as an indicator of absolute
temperature sensitivity. By doing so we can capture the full tempera-
ture dependence of soil respiration, thus summarising all of the tem-
perature sensitivities that can be attributed to a particular soil
microbial process. The main benefit of this approach is that it makes
comparisons among different soils, treatments, and studies more
reliable19, including comparisons for understanding thermal adapta-
tion. While several different non-linear models may be appropriate to
describe the temperature dependence of soil respiration19,42,46, herewe
use a modified version of macromolecular rate theory (where heat
capacity is temperature dependent58,89,90) to describe the temperature
dependence of soil microbial respiration. The temperature sensitivity
metrics used here to describe the temperature response curve are the
temperature optimum and inflection point, which can also be esti-
mated with other non-linear approaches46,91.

Temperature optimum (Topt): The Topt describes the point of
maximum activity, which in this study corresponds to the maximum
point of respiration.

Temperature inflectionpoint (T inf ): TheT inf describes thepoint of
greatest change in respiration (i.e., point of maximum absolute tem-
perature sensitivity) and has also been referred to as the point of
maximum temperature sensitivity (TSmax)

44,55,78. This point corre-
sponds to the maximum of the first derivative (Fig. 1).

Tmin (the theoreticalminimum for growth and activity): TheTmin is
another commonly used metric to describe temperature sensitivity
and corresponds to the theoretical minimum temperature for micro-
bial growth and activity. Tmin is typically estimated using the square
root (Ratkowsky) model42 and has also been used as a proxy to
describe thermal adaptation of soil microbial communities42,43,67. To
estimate Tmin from the square root (Ratkowsky) model, values above
Topt are removed for better estimation42. While Tmin cannot be calcu-
lated from MMRT since the x-intercept is not crossed, a positive rela-
tionship between Tmin and Topt has been observed37,41,67. However, this
relationship is likely not 1 °C to 1 °C37,41,67. Even so, drawing compar-
isons between thermal adaptation for Tmin, Topt , and T inf may have
some use for furthering our understanding of thermal adaptation. As
Tmin is theoretical, in this study, we chose to focus on MMRT and
parameters derived from MMRT (i.e., Topt and T inf ) in order to inves-
tigate how the entire temperature response curve adapts and influ-
ences C cycling.

Study sites and soil sampling
The soil was collected at 48 locations, comprising 28 soils from
farmland sampled across New Zealand and 20 samples from along a
natural geothermal gradient located on the Arikikapakapa golf course
in Rotorua, New Zealand (Fig. S1). These 48 soil samples spanned a
mean annual temperature range of 11–35 °C.

The Arikikapakapa golf course is located in the Taupō Volcanic
Zone, which has been geothermally active for thousands of years92,93.
The soil geothermal gradient begins at a heated ground feature
approximately 5.1m long and 3.8m wide, situated off the main golf
course94 (Fig. S5). Aerial photographs provide evidence that this

feature has existed since at least 2003, but likely for the past several
decades49,95. The soil consists of Tikitere siblings, which is an inactive
hydrothermal recent soil of sandy loam texture96. Vegetation is
dominated by Axonopus affinis and Elymus repens grasses, and uni-
dentified mosses. The geothermal gradient and adjacent golf course
are not fertilised or limed, but are frequently mowed.

Recorded temperatures along the gradient ranged from63 to 5 °C
and were continuously monitored using DS1922L iButton thermo-
chrons (iButtonLink Technology). Five iButtons were buried at ~5 cm
depth and data collection occurred every 3-4 weeks beginning in
August 2020. We observed a stable, long-term temperature gradient
that changed both seasonally (highest in summer) and daily by about
5 °C. All of the rapid temperature variations observed near the geo-
thermal sourcewere linked to large rainfall events thatoccurredon the
same day or the day before97. Temperature estimates for each of the
soil sampleswere extrapolated from themean annual values of the five
iButtons using an exponential decay curve (R2 = 0.99). The maximum
andminimumaverage daily temperatures were also extrapolated from
hourly means from the five iButtons. Soils selected for sampling from
the geothermal gradient were randomly chosen to ensure roughly
equal coverage of pre-determined thermal zones.

Elemental data from along the geothermal gradient was char-
acterised using an Agilent 89,000 inductively coupled plasma mass
spectrometry (ICP-MS) (Agilent Technologies, Santa Clara, Cali-
fornia, United States). In brief, two soil samples were collected from
14 locations along the geothermal gradient and subsequently
sieved, ground, and dried. Each sample (1 g) was acid digested with
HCl and HNO3 for 30min at 80 °C. The samples were diluted with
100mL of water and filtered through a 0.45 µM filter. The samples
were diluted again to a 1 acid: 5 water solution. Ultrapure HNO3

(200 µL) was then added to 10mL of each diluted sample for the ICP-
MS analysis. We also measured the pH for every sample. The pH
correlated strongly with temperature along the geothermal gra-
dient (Fig. S3).

Soils not collected from the geothermal gradient were collected
by Manaaki Whenua—Landcare Research as part of a large, multi-year,
nation-wide soil survey. In brief, to select the sites for the New Zealand
soil survey a statistical analysis was conducted of historic soil organic
carbon (SOC) data to estimate the sample size needed to detect
changes in SOC across five land use classes. A sample size of 500 was
selected to exceed the statistical requirements for analysis. Subse-
quently, sampling sites were determined using balance acceptance
sampling, where sampling sites were selected to maximise the geo-
graphic distance between sites. These details are described in Hedley
et al.98. A set number of sites in each land use class were selected for
sampling each year, ensuring national representation each year, but
there was no set sampling schedule within the year. These samples
were placed on ice or refrigerated, and processed at the University of
Waikato in the order in which they arrived. Due to the length of nation-
wide soil sampling campaign and the intensity of the incubation
measurements we conducted, not all of the samples collected by
Manaaki Whenua—Landcare Research were included in this experi-
ment. Once a sufficient sample size hadbeen obtained for our analysis,
as determined by a post-hoc power analysis (power >0.99), we ceased
data collection for this experiment.

Soil classification information for each sample was obtained
through S-map96. To estimate the annual soil temperature at ~5 cm
depth for each sampling location not located along the geothermal
gradient, we used station data from New Zealand’s National Institute
for Water and Atmospheric Research (NIWA). We extracted NIWA cli-
mate monitoring network data (https://cliflo.niwa.co.nz/) using the
clifro package in R99 by locating the nearest operational station with at
least 20 years of available daily soil temperature data. The mean of
these daily soil temperatures was averaged from the past two years to
use for our mean environmental temperaturemeasurements for these
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data. The maximum and minimum average daily temperatures were
also obtained from this data.

All soil samples were collected over an approximately 12-month
period (Table S1). Soils were sampled from the top 7.5 cm, however,
methods of collection varied depending on soil type (Table S1). Once
samples entered the laboratory, they were mixed and sieved to 2mm
to increase homogeneity for the temperature responsemeasurements.
Samples were either refrigerated at 10 °C until the temperature
responsemeasurements could occur or placed at room temperature if
temperature response measurements would be occurring within one
week of collection.

Measuring the temperature response of respiration
Tomeasure the temperature response of soil microbial respiration, we
incubated soil samples in a temperature gradient block for 5 h. Soil
(2 g) was weighed into 36–80 Hungate tubes (24mL). We used two
different temperature gradient blocks for this experiment, so the
number of Hungate tubes depended on a number of factors, including
the number of tubes that the temperature block could
accommodate36,100. Each temperature gradient block was equipped
with a heater on the end and a cooler on the other, and a solid alu-
minium block between with holes drilled to fit the Hungate tubes;
however, the placement of the holes within the temperature blocks
differed. One of the blocks consisted of three rows of 44 holes where
control and treatment tubes were placed side-by-side in each row. This
temperature block is described in detail in Robinson et al.100. The other
block consisted of 18 larger holes where the control and treatment
tubes were placed in the same slot. This temperature block is descri-
bed in detail in Numa et al.36. The temperature blocks ranged from ~2
and 50 °C with 1–2 °C increments in each hole. Half of the Hungate
tubes received 0.25mL of distilled water (control) and the other half
received 0.25mL of a 450mM glucose solution (treatment)36. These
tubes were capped with rubber septa, sealed with aluminium crimps,
and vortexed. The tubes (plus four blanks) were then incubated for 5 h
in the temperature gradient block, with a pair of control and treatment
tubes placed at the same temperatures within the gradient block. We
repeated this setup for each of the 48 soils sampled.

After the 5-h incubations, the tubeswere placed on ice and 1mLof
gas was removed from each headspace using an insulin syringe (Bec-
ton-Dickinson and co). The gas was then measured on an Infrared Gas
Analyser (IRGA; LI-COR, LI-7000 CO2/H2O Analyser) to determine the
CO2 concentrations100. To separate out the temperature response of
non-substrate limited microbial respiration, we subtracted the CO2-C
of the control sample from the treatment sample at each measured
temperature.

We chose this approach for measuring the temperature response
of microbial respiration to eliminate the confounding effects of both
differences in substrate availability between soil samples and changes
in substrate availability with increasing temperature. Reaction rates in
soils are governed by both abiotic (e.g., sorption/desorption) and
biotic (i.e., enzyme-regulated activities) processes. Temperature
affects both of these processes, but in different ways. Biological
reactions are unimodal (i.e., have a temperature optimum), while non-
biological reactions typically increase exponentially with increasing
temperature101. If C becomes more available at higher temperatures
due to increasing sorption/desorption processes (for example), then
the measured temperature response would be conflated between
these various biotic and abiotic mechanisms. There is also evidence to
suggest that substrate availability in soils is a major factor influencing
the temperature response of heterotrophic microbial respiration (e.g.,
ref. 102). By adding an excess of the readily available substrate and
subtracting the control at each temperature, we eliminate the issue of
more C becoming available at higher temperatures due to increasing
abiotic processes and minimise potential discrepancies between soil
samples when characterising the microbial temperature response.

To confirm that respiration rates increased linearly over time (and
were not confounded by microbial growth at warmer temperatures),
we alsomeasured respiration from two soils (one from the geothermal
gradient and one froman agricultural soil) every hour for 6 h at several
temperatures with the added glucose. If microbial growth rates
increased over the incubation period, we would have expected to see
exponential increases in respiration. We found that respiration
increased linearly with time (Fig. S6), minimising the likelihood that
microbial growth during the short-term incubations significantly
affected the respiration measurements.

Estimating Topt and T inf
To determine the temperature response, we used MMRT to fit the
CO2-C concentrations for the control and treatment samples with
temperature:

ln Rs

� �
= ln

kBT
h

� �
�

ΔHz
T0

RT
� ΔCz

P T � T0

� �
RT

+
ΔSzT0

R
+
ΔCz

P lnT � lnT0

� �
R

ð1Þ
In this equation, Rs is respiration rate, kB is Boltzmann’s constant,

T is temperature (K), h is Planck’s constant, R is the universal gas
constant,ΔHz

T0
(z superscript denotes transition state) is the change in

enthalpy (Jmol−1),ΔSzT0
is the change in entropy (Jmol−1 K−1),ΔCz

P is the
change heat capacity (Jmol−1 K−1), and T0 is the reference temperature
(set to 300K)103. We used a non-linear least-squares regression in R
version 4.1.1104 to fit MMRT and allowed ΔCz

P to vary linearly with
temperature:

ΔCz
P =A T � T0

� �
+B ð2Þ

Here, the slope is A and B is the value of ΔCz
P at T0. We chose to

vary ΔCz
P linearly with temperature instead of holding it constant

because ΔCz
P is temperature dependent across this wide temperature

range58,89,90.
Because of anomalies observed for a few of the temperature

response curves at the highest temperatures (i.e., a second increase in
respiration rate following the initial decrease), we restricted model
fitting to less than 42 °C for consistency, although data for all of the
measured temperatures are available in the Table S7. A secondary
increase in respiration rate at high temperatures could be due to the
upregulationofmetabolicpathways under thermal stress andhas been
observed previously36,105,106. However, investigating this phenomenon
is beyond the scope of the current experiment. To comparemodel fits
for varying ΔCz

P versus maintaining a constant ΔCz
P we used Akaike

information criterion values corrected for a finite sample size (AICc).
We found that varying ΔCz

P was best or equivalent to keeping it con-
stant for themajority of the soils (Table S8). Thus, we chose to use this
version of the model to analyse our temperature response data. We
also removed one of the samples from the analysis because the model
would not converge during fitting, leaving us with a total of 47 tem-
perature response curves in the final analysis (Fig. S7; Table S9). We
estimated the Topt and T inf based on the MMRT curve fits, by identi-
fying the largest predicted value and the largest difference between
values generated along the modelled temperature response curves.

Next, we used Moran’s I to determine if Topt and T inf varied spa-
tially (P < 0.0001). We then fit two spatial simultaneous autoregresion
(SAR) models using the spatialreg package107 with Topt and T inf as the
dependent variables and MET as the independent variable to account
for the location effect. SARmodels incorporate spatial autocorrelation
using a neighbourhoodmatrix specifying the relationship between the
residuals at each site and between neighbours to analyse data with
unequal spatial distributions. We also assessed if changes in pH could
better explain Topt and T inf thanMET using a series of linear regression
models for both the geothermal gradient data separately and for the
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full dataset. We checked models for both pH and MET independently
and together, and compared them using AIC.

Additional methodological analyses with Topt and T inf
To check if seasonal variability or differences in sampling date
influenced Topt or T inf we conducted linear regressions replacing
the annual MET with the average temperature from 30-days prior to
the sampling date for the geothermal gradient samples. We found
no significant differences between the slopes of these regression
lines (MET versus the 30-day temperature average) for either Topt or
T inf (P > 0.05). For simplicity, we decided to use MET as the main
environmental parameter analysed in this study since it is a com-
monmeasure of environmental temperature and a relatively simple,
gross measure of temperature at annual scales. Because soils were
sampled at different dates and had slightly different storage peri-
ods, we also examined the effect of these on Topt and T inf and found
no differences in either the sampling date or incubation date on Topt

or T inf (P > 0.05). Lastly, we also conducted a t-test to confirm that
Topt and T inf did not vary significantly between the two temperature
blocks (P > 0.05).

Scaling the temperature response curves
To combine all of the temperature response curves we scaled each
curve individually so that respiration rates fell between zero and one,
according to:

scaled bRs =
bRs �minð bRsÞ

maxð bRsÞ �minð bRsÞ
ð3Þ

This allowed us to visualise the results from different soils toge-
ther without changing any of the parameters associated with a given
model fit. We generated the contour plot of scaled respiration rates as
a function of environmental and instantaneous temperature using a
cubic spline with three degrees of freedom to smooth the fitted curves
over a continuous environmental temperature surface.

Microbial community characterisation across the geothermal
gradient
We assessed changes in the microbial community abundance and
composition across the geothermal gradient using microbial phos-
pholipid fatty acids (PLFA) and DNA analysis. For the microbial com-
munity analyses, soil cores (7.5 cm depth, 2.5 cm diameter) were taken
from14points along the geothermal gradient (5, 10, 20, 30, 50, 80, 150,
200, 350, 500, 650, 1000, 1300, and 1600 cm from the geothermal
feature). At each location, ~3 adjacent soil cores were taken from the
left and right sides of the gradient (n = 2 at each sampling location) for
a total of 28 samples. The corer was wiped with ethanol between each
use. The sampling design here differed slightly from the sampling
design for the respiration measurements. This was mainly to avoid
oversampling at this unique site (less soil was needed for themicrobial
community characterisation) but still capture variability, and to avoid
sampling from locations that were backfilled with other soil after
sampling for the respirationmeasurements. After collection, soils were
placed on ice in the field and then immediately mixed and sieved to
2mm for consistency in the laboratory.

We used PLFA to estimate microbial biomass and community
structure in each soil sample, which enabled the quantification of PLFA
biomarkers for living microbial biomass108 in μg fatty acid per g−1 dry
weight soil (μg g−1 DW soil). Soils were collected for the PLFA analysis
on the 31st of May 2021 and shipped on ice to Victoria University of
Wellington for processing. Soil samples were lyophilised overnight
(FreeZone 2.5 L Benchtop Freeze Dryer, Labconco, US) before ~0.5 g
subsamples were weighed to 0.1mg precision and subjected to the
high-throughput PLFA method described by Lewe et al.109 with slight
modifications of the lipid extraction procedure. The low soil pH

required a doubling of the phosphate-buffer concentration used in the
initial extraction stage. Lipids were extracted from freeze-dried soil
samples using a chloroform:methanol:phosphate-buffer (1:2:1.6, v/v/v,
pH 7.4). All other chemistry follows Lewe et al.109. In addition, samples
were run in “split-less”mode during GC-MS analysis. We characterised
35 microbial PLFAs, designated according to standard
nomenclature110,111, and assigned these biomarkers to 6 microbial
groups as per Table S10. Overall, we found total biomass to be rela-
tively low in these samples, perhaps due to the acidic soil
conditions112,113.

To further analyse microbial community composition, we
extracted total DNA from the soil samples using the PowerSoil DNA
Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA). Soils were col-
lected for DNA sequencing on the 29th of March 2021. The sieved
samples were frozen at −20 °C until DNA extraction could occur. DNA
extraction, amplification, and sequencing all occurred at theUniversity
of Waikato.

We amplified the V4 region of the 16S rRNA gene in triplicate
using the fusion-primer set 515F/806R114. For DNA extraction, we
followed manufacturer instructions from the PowerSoil DNA Isola-
tion Kit (MoBio Laboratories, Carlsbad, CA, USA) and quantified
using a DeNovix DS-11 NanoDrop (Thermo Fisher Scientific). PCR
reactions consisted of 20 µL reaction mixtures that included:
0.24 µM bovine serum albumin, 240 µM dNTP, 1.2x PCR buffer,
6mM MgCl2, 0.2 µM forward and reverse fusion primers, 1 U Plati-
num Taq polymerase (Thermo Fisher Scientific), and 2 ng of DNA.
PCR thermocycling conditions were: initial 3 min at 97 °C for
denaturation, followed by 27 cycles of 45 s at 94 °C, 1 min at 50 °C,
and 1.5 min at 72 °C, and finally a 10min incubation at 72 °C. The
expected amplicon size of the PCR products was confirmed via
electrophoresis with a 1% agarose TAE gel. Triplicate PCR products
were pooled and normalised with SequalPrep™ (Thermo Fisher
Scientific, United States) at an equimolar concentration into a single
library for sequencing.

Amplicon sequencing was performed using the Ion PGM™ System
for Next Generation Sequencing (Thermo Fisher Scientific, United
States). Raw sequences were filtered with Ion PGM™ software to
remove low-quality and polyclonal reads. For each sequence, the for-
ward and reverse PCR primers were identified and trimmed with
Cutadapt v2.3115. Those sequences without both primers were dis-
carded. Amplicon Sequence Variants (ASVs) were processed using
DADA2 v1.14.1116 in R104 with reads <230bp, quality score <2, and
expected error >2 removed. Taxonomy was assigned to ASVs with
DECIPHER v2.22.0117 using the SILVA v138 database118. Sequences were
aligned using Multiple Alignment using Fast Fourier Transform
(MAFFT) v7119, and ASVs that were unclassified at the domain level or
were Eukaryawere removed from the analysis. A phylogenetic treewas
generated using FastTree v2.1.11120.

After sequence reads were quality filtered, seven samples were
removed from the analysis since they had low sequence reads (<1200).
Therefore, 21 samples were used in the final analysis. Singletons were
also removed from each of the samples. Several diversity indices were
used to assess differences in the microbial communities along the
geothermal gradient. These analyses were conducted using the R
packages phyloseq (version 1.42.0)121, vegan (version 2.6.4)122, and
picante (version 1.8.2)123. We evaluated ASV richness using Chao1,
phylogenetic diversity using Faith’s PD, and beta diversity using the
first principal coordinates axis of the unweighted UniFrac analysis. We
ran a series of linear regressions to determine if MET or pH best
explained eachof these diversity andbiomassmeasures and compared
them using AIC.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The data generated in this study is available in the Supplementary
Data and can also be accessed at: https://figshare.com/s/
3746ef75599e608a5984. The raw DNA sequences presented in
this study can be found at: https://www.ncbi.nlm.nih.gov/sra/
PRJNA1002820 under the BioProject accession number
PRJNA1002820.

Code availability
All codes used in this study are openly available at Zenodo: https://doi.
org/10.5281/zenodo.8248107.
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