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Synthesize high-dimensional longitudinal
electronic health records via hierarchical
autoregressive language model

Brandon Theodorou1,2, Cao Xiao2 & Jimeng Sun 1,2

Synthetic electronic health records (EHRs) that are both realistic and privacy-
preserving offer alternatives to real EHRs for machine learning (ML) and sta-
tistical analysis. However, generating high-fidelity EHRdata in its original, high-
dimensional form poses challenges for existing methods. We propose Hier-
archical Autoregressive Language mOdel (HALO) for generating longitudinal,
high-dimensional EHR, which preserve the statistical properties of real EHRs
and can train accurate MLmodels without privacy concerns. HALO generates a
probability density function over medical codes, clinical visits, and patient
records, allowing for generating realistic EHR data without requiring variable
selection or aggregation. Extensive experiments demonstrated that HALO can
generate high-fidelity data with high-dimensional disease code probabilities
closely mirroring (above 0.9 R2 correlation) real EHR data. HALO also enhances
the accuracy of predictive modeling and enables downstream ML models to
attain similar accuracy as models trained on genuine data.

The widespread adoption of electronic health record (EHR) systems
has established the foundation formachine learning (ML) and artificial
intelligence (AI) applications in healthcare. The EHR data is highly
complex, comprising over 10,000 unique medical codes for diag-
noses, procedures, and medications, as well as thousands of lab mea-
surements. Each patient record can include multiple visits with
combinations of diagnoses, procedures, medications, and labs.
These combinations create intricate relationships and complex
patterns across tens of thousands of medical codes. AI and ML tech-
niques are used to learn and model complex patterns in EHR
data, enabling applications such as clinical predictive modeling1,2,
health monitoring3,4, computational phenotyping5,6, treatment
recommendations7–9, andmore. However, the progress of AI andML in
healthcare is often impeded by the difficulty of accessing and sharing
large real EHRdatasets. Sharing EHRdata is challenging due to privacy,
security, and legal constraints. While patient de-identification can
alleviate some of these concerns by removing obvious patient identi-
fiers such as name, address, and birth date10,11, studies have shown
that the risk of re-identification remains high even after thorough
de-identification12–14.

Using synthetic patient data canoffer a safer alternative to sharing
real EHR data. Generative models can produce synthetic datasets as
substitutes for real patient data15–21. Various methods have been pro-
posed in the literature, including structured patient record
generation19,20,22–24 and longitudinal record generation15,16,21.

To date, existingmethods cannot generate realistic EHRdata in its
original, high-dimensional form. The high dimensionality of EHR data,
along with rare and sparse variables and complex relationships among
variables, makes the generation task a difficult one. Consequently,
existing approaches all concede to creating lower-dimensional data by
either aggregating variables or using a subset of more common vari-
ables of a manageable size. For example, the MedGAN method19

modeled 615 disease categories without longitudinal information; the
SynTEGmodel15 aggregates codes to higher level phenotypes and then
removes rare phenotypes, resulting in only 1276 variables; the ehrM-
GAN approach21 reduced the variable dimension to be <100, and EVA16

models frequent co-occurrence patterns in the original EHR data
as one-hot vectors, limiting its ability to generate diverse and novel
co-occurrence patterns. Our supplementary information provides
a table of these dimensionalities of existing methods. While these
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low-dimensional approaches may capture the proper statistics on a
small number of variables and support narrow ML use cases relying
solely on those variables, the resulting synthetic data is inadequate for
broader applications that require high-dimensional data including
comprehensive statistical analysis, patient phenotyping, billing pre-
diction and analysis, disease staging, and comprehensive data sharing.

We propose an approach for generating high-dimensional EHR
data in its native form: the Hierarchical Autoregressive Language
Model (HALO). Thismodel, shown in Fig. 1, takes an autoregressive and
probabilistic approach and can capture the hierarchical distribution of
EHR records and their temporal relationships. Using a hierarchical
approach to model binary sequences of over a million variables, HALO
can efficiently learn and represent complex patterns in EHR data.

HALO works by utilizing a pair of modules to represent both the
visit- and code-level structures of a patient record. First, it uses a
coarse, visit-level module to factorize the probability along each of a
patient’s visits and to efficiently process and represent a patient’s past
medical history. It then adds fine, code-level modeling to generate
each variable in a given visit based on both that past history and also
the previous variables in the same visits for maximum intra-visit
cohesion.

We evaluate the performance of HALO by training it on a com-
prehensive outpatient claims dataset, as well as theMIMIC-III inpatient
EHR data25, and compare the results with a diverse set of existing
synthetic EHR data generation techniques such as refs. 15,16,26.

We evaluate the data quality based on its utility in modeling the
statistical data distribution and for supporting ML models. HALO can
accurately synthesize high-dimensional EHR data viamodeling disease
code probabilities (d ≈ 10,000), disease code co-occurrence prob-
abilities within a visit (d ≈ 1,000,000), and conditional probabilities
across consecutive visits (d ≈ 5,000,000). In our experiments, we
found that HALO achieves a correlation coefficient of above 0.9R2 when
compared to real EHR data, demonstrating its ability to generate
realistic data.

In addition to generating high-fidelity and granular EHR data, we
show that HALO improves predictive modeling on our EHR dataset by
more than 17% compared to the leading baseline. We evaluate the
predictive accuracy and perplexity of HALO on a hold-off test set,
demonstrating its superiority. Furthermore, the synthetic data gener-
ated by HALO enable downstream phenotyping ML models to achieve
comparable accuracy to models trained on real data, with an AUC of
0.938 for HALO data versus 0.943 for real data. We then demonstrate
that combining real and syntheticdata generatedbyHALO can improve
the accuracy ofMLmodels evenmore compared to using just real EHR
data. Furthermore, we show that HALO generates realistic data while
simultaneously protecting patients’ privacy in the training data, as
evaluated by a series of privacy metrics.

Results
Problem formulation
Structured EHRs are multi-level longitudinal records, where each
patient is represented by a sequence of visits. Each visit is character-
ized by a set of medical codes, reflecting the diagnoses, procedures,
and medications administered during that visit. Additional patient
information, such as demographics, disease phenotype labels, lab test
results, and inter-visit time, can also be included. We begin by for-
malizing the problem and introducing key notations that will be used
throughout.

EHR data. We represent a patient recordR as a sequence of visits over
time such that

R=Vð1Þ,Vð2Þ, � � �VðTÞ ð1Þ

where each visit VðtÞ contains a varying number of medical codes

mðtÞ
1 ,mðtÞ

2 , � � � ,mðtÞ
jVðtÞ

C j 2 C, lab values lðtÞ1 , � � � ,lðtÞjVðtÞ
L j 2 L, and the inter-visit

time gap g(t). C is then the set of all medical codes in our vocabulary,

Fig. 1 | The proposed HALO model. The architecture of HALO utilizing an auto-
regressive multi-granularity approach which analyzes at both the visit and code
level to generate next code probabilities based on the history of all previous visits

as generated through a stack of transformer decoder layers and the previous codes
in the current visit through a series of masked linear layers.
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including diagnoses, procedures, and medications and L is the set of
all labs. Beyond the longitudinal records, a patient record also
possesses some static information S containing demographics such
as gender, race, and birth year and disease phenotype label D
indicating major and persistent disease conditions.

Matrix representation. To allow input to HALO and other machine
learning models, we then convert R,S, and D into a matrix repre-
sentation R. Specifically, we build R = [vs, vl, v1,⋯ , vT, ve], a matrix
containing a sequence of the vector representations for each of the
patient’s T visits, a preceding start visit, label visit, and a succeeding
end visit.

The start visit vs is a one-hot vector containing a special start code
added to C to signify the start of the record often required for certain
model architectures.

The label visit vl similarly contains special codes added to C
representing demographic and chronic disease phenotypes from S
and D, respectively. For example, this label visit will have codes
representing the patient’s gender, racial and ethnic groups, birth year,
and any chronic labels.

Each subsequent visit vt 2 RjCj is then represented as a multi-hot
binary vector representing medical codes, lab values, and inter-visit
gaps present in that visit. To represent continuous lab values and visit
gaps in a discrete form, we employ a granular discretization. This is
achieved by adding multiple range codes to C for each lab test and for
the intervals between visits. By converting all medical information into
binary variables, cit represents the presence of the ith code in C in the
tth visit of the patient recordR.

Finally, to signal the end of the patient record in ve, a special last
visit code is added to C, serving a similar purpose to a stop token in
natural language generation. This not only enables generative models
to learn when to terminate records but also allows for R to be padded
through additional columns into a constant length for batch input
without altering its content.

Figure 2 depicts the format of the visit vector and the EHR
representation, andweprovide a table of notations for reference in our
supplementary information.

Generation task. is to create R0, a synthetic patient record that is
statistically similar to and offers the utility ofRwithout any one-to-one
mapping to a real patient. Our HALOmethod does this by learning the
distribution P(R).

Experimental design
We evaluate our method and compare it to several baselines
comprising both recently proposed models and other logical
autoregressive model architectures on a series of experiments
on both outpatient and inpatient EHR datasets. To maintain the
fidelity of the original EHR data, our experiments focus on synthe-
sizing original granular medical codes without aggregating or
combining codes. Specifically, we seek to answer the following
questions.

• Is HALO effective at modeling the underlying data distribution of
electronic health records?

• Can HALO produce a synthetic dataset that is statistically similar
to real EHR data?

• Can HALO augment real data for more accurate disease pheno-
typing prediction?

• Can HALO generate realistic continuous variables such as lab
results and visit time gap?

• Can HALO preserve patient privacy in the training?

Datasets and experimental setup
Datasets. We use two datasets for our experiments:
(1) The outpatient EHR is from a large real-world US claims data. It

contains 929,268patients and binary labels for 11 chronicdiseases
(specific diseases and patient counts are included in the
supplementary information). This yields a final real-world

Fig. 2 | The data formatting. a The visit representation. Each visit is represented as
a multi-hot vector containing indices for medical codes, static label codes to cover
demographics anddisease phenotypes, and special codes describing the shape and

temporal ordering of the patient’s visit. b The EHR representation. An EHR is then
represented as a matrix constructed as a series of temporally ordered visit vectors.
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outpatient EHR dataset with an average of 34.16 visits per record
and 3.52 codes per visit with 9882 unique ICD-10 codes.

(2) The inpatient EHR is from the MIMIC-III ICU stay dataset25. It
contains 46,520 patients with 25 disease phenotype labels
as defined by theMIMIC benchmark27. This dataset has an average
of 1.26 visits per record and 15.11 codes per visit with 6841
unique ICD-9 codes. Note that this includes patients with just
a single visit (and as we will show, HALO’s Code-Level Module
allows it to be very effective on those patients).Both datasets
share the same patient representation as a series of visits
along with chronic disease phenotype labels. We keep the ICD
codes in the data without code aggregation or removing any
infrequent codes.

Experiment setup. We use a 0.8–0.2 training-test split with an addi-
tional 0.9–0.1 training-validation split during training for both out-
patient and inpatient datasets. We use the Adam optimizer with a
learning rate 1e–4 (which was arrived upon through experimentation).
We use a batch size of 48 and train for 50 epochs, saving the model
with the lowest loss on the validation set.We implement themodel and
train in the Python 3.6.9 coding language using the PyTorch
1.9.0+cu111 framework28 along with the scikit-learn 0.24.2 and NumPy
1.17.2 packages. Finally, all experiments are done via oneNVIDIA TESLA
V100GPU with 32GB RAM. The HALO source code is publicly available
on GitHub at https://github.com/btheodorou99/HALO_Inpatient.

Baseline methods
Below we outline the baseline methods and the necessary alterations
to those baselines to adapt to our problem setting.

• HALO-Coarse: This baseline is an ablation baseline consisting of
just the coarse, visit-level granularity module of the full HALO
architecture. It generates each code probability based on all
previous visits (grouped into a multi-hot representation) but
without the fine, inter-visit modeling such that PðciiÞ is modeled
by Pðciijv1, � � � ,vt�1Þ instead of Pðciijv1, � � � ,vt�1,c

1
i , � � � ,ci�1

i Þ. It
consists predominantly of 12 transformer decoder blocks in the
model of Radford et al.29 augmented to support multi-hot as
opposed to one-hot inputs and outputs within the embedding
layer and final activation layer.

• GPT model29: We applied the GPT model without any augmen-
tation to support multi-hot inputs and outputs but instead with
the conversion of EHRs to a fully one-hot sequential representa-
tion. However, this model had to be shrunk down to 3 blocks
from 12 to fit into memory because this greatly expanded the
length of the sequences.

• LSTM EHR model30: is a deep, autoregressive LSTM model,
adapted to generate structured patient records rather than
unstructured text as it had previously been utilized, which is
directly analogous to the HALO-coarse model but uses LSTM
blocks instead of transformer decoder blocks.

• SynTEG15: is a GAN-based model that uses a transformer and
LSTM-based encodermodel to generate embeddings of EHRsup

to a given visit before feeding those embeddings into a
conditional GAN which generates the next visit.

• EVA16: is a VAE-based model that uses a bidirectional-LSTM
encoder and CNN-based decoder (using deconvolutions to
expand the latent encoding to the proper temporal dimension
and thenmasked, diluted 1D convolutions to build the records in
an autoregressive manner). The only change we made was to
convert the output from one-hot code combinations to multi-
hot code probabilities to allow for greater representative power.

Evaluating EHR language modeling
The first evaluation is conducted by predicting the probabilities and
outputs of the test set. In this phase, we assess the performance of
HALO against two multi-hot language model baselines, namely HALO-
Coarse and LSTM. These baselines explicitly generate a probability
distribution without accessing the entire input. It’s worth noting that
other baselinemodels, such as the GAN-based SynTEGmodel, the VAE-
based EVAmodel, and the GPTmodel, cannot be directly compared in
this task because those methods do not make a single probability
prediction for each code within the visit.

Our first evaluation aims to assess the capability of the models to
predict the presence of potential medical codes, given a patient’s past
medical history and the previous codes from the current visit. Note
that we explore different orderings of codes (such as most to least
prevalent, alphanumeric, random, etc.) but find no noticeable differ-
ences, displaying the results of such an exploration in our supple-
mentary information and settling on a random ordering throughout
our experiments. This evaluation is crucial in showcasing a model’s
ability to learnpatterns from thepatient population and its potential to
perform well in various patient simulation and extension applications.
We show the results inTable 1wherewe see thatHALOoutperforms the
two compared language model architectures. Upon closer examina-
tion, we observed that the LSTM baseline model struggled with the
complexity and size of the outpatient EHR dataset, while our proposed
model HALO performed comparably to the HALO-Coarse ablation
baseline. In contrast, in the inpatient EHR setting, where the visits are
shorter but contain more codes, HALO’s multi-granularity approach
proved to be highly effective. Specifically, the model achieved a
notable 4% reduction in binary cross-entropy (BCE) loss and a 17%
increase in F1 Score on test data when compared to the single granu-
larity HALO-Coarse model. Notably, both HALO models significantly
outperformed the LSTMbaseline in this setting. These results highlight
the significant value of our multi-granularity approach in handling the
complex anddiverse nature ofmedical codes in different EHR settings.

Additionally, we present perplexity, which evaluates the prob-
ability or likelihood of the test set as quantified by a model trained on
the training set, normalized by the unit of consideration that we are
interested in. In our case, this normalizing unit is the number of
medical codes in a patient’smedical record (or equivalently number of
ones in R). Perplexity is a metric found commonly in the wider gen-
erative modeling domain, especially on the task of natural language
generation (e.g. ref. 29). We introduce it to the task of synthetic EHR

Table 1 | Test set modeling metrics

Outpatient EHR Inpatient EHR

BCE loss F1 score PP per code BCE loss F1 score PP per code

LSTM 7.744 × 10−4 0 660.204 2.600 × 10−4 0.193 74.565

HALO-Coarse 1.631 × 10−4 0.829 3.927 2.019 × 10−4 0.343 28.448

HALO 1.624 × 10−4 0.828 3.903 1.932 × 10−4 0.414 24.664

We include each of our autoregressive, predictive, and likelihood-basedmodels. The bold value denotes the best results. Baselinemethods SynTEG, EVA, andGPT are all omitted here because they
either donot produceaprobabilitydistribution, peekat theoutputs, or utilize adifferent, non-comparable data representation.HALOoutperformsbothof thebaselines, achievingup toa4%decrease
in testset BCE loss, a 17% increase in F1 score, and a 13% lower perplexity per present code as compared to the leading HALO-Coarse baseline. Source data are provided as a Source Data file.
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generation here. Perplexity is defined mathematically by

PP ðDÞ=
ffiffiffiffiffiffiffiffiffiffi
1

PðDÞ
N

s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

PðRð1Þ, � � � ,RðjDjÞÞ
N

s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

PðRð1ÞÞ � � �PðRðjDjÞÞ
N

s
ð2Þ

whereD is the test dataset and R(t) is the tth record inD. In practice we
calculate the values by summing their log probabilities, using the
equivalent form

PP ðDÞ= exp � 1
N

X

R2D
log PðRÞ

 !
ð3Þ

The normalized value then also corresponds to how many of the dif-
ferent normalizing units (medical codes) one would have to randomly
pick between on average to achieve the same probability. The results
of the perplexity evaluation are shown in Table 1 as well. We see similar
results as with the classification evaluation with both HALO and HALO-
Coarse performing verywell on the outpatient EHR dataset (with HALO
performing slightly better) as the LSTM baseline struggles, and HALO
easily outpacing both baseline methods in this likelihood evaluation
for the inpatient EHR dataset, producing a 13% lower perplexity per
present code as compared to the HALO-Coarse architecture without
the inter-visit modeling. Thus, in both of these test set evaluations, we
see that HALO is much more effective in terms of modeling the
underlying distribution of EHRs.

Statistical similarity to real EHRs
The second analysis evaluates the statistical similarity of the generated
and real data. For each method, we generate a synthetic dataset of the
same size as the training dataset. We then compare the unigram and
bigram (both within the same visit and across consecutive visits)
probabilities for each unique code andpair of codeswithin the real and
synthetic datasets.

Statistical comparison results. We evaluate the data at the visit and
record level, considering approximately 10,000 individual codes and
over a million bigram codes. We also compare various aggregate sta-
tistics, such as the number of visits per record, medical codes per visit,
and prevalence of chronic disease labels. The code probability results
are presented in Fig. 3, and the aggregate statistics are in Table 2.

Additionally, we provide R2 values for visit-level normalized code
probabilities in our high-dimensional outpatient EHR dataset and a
lower-dimensional setting. The details can be found in Table 3.

Furthermore, an interactive visualization of 1000 randomly
selected code-level disease prevalence comparisons between our
method and real data is accessible at https://vega.github.io/. It allows
zooming, panning, and hovering over points for specific disease
names. Finally, we provide chronic disease label probabilities, full visit
level code probability plots, probability densities underlying the
aggregated statistics, and a discussion of the various failure modes of
our baseline methods for that evaluation in our supplementary infor-
mation. HALO again outperforms the baseline methods in each
evaluation.

Key findings. We observe that besides the GPT baseline struggling
with the complexity of the outpatient EHRdataset in terms of stopping
the record generation (as is common to many language models in the
text generation domain as their overall quality decays for long
sequences, and the lack of visit level grouping in its data

representation causes its sequences to be considerably longer), the
language model architectures (GPT, LSTM, HALO-Coarse, and HALO)
can model both the shape of the synthetic records and the temporal
dependencies much better on average than the VAE and especially
GAN-based baselines. While each of the compared methods models
the unigram code probabilities relatively well, the temporal modeling
is better shown in the overall synthetic record and visit lengths, the
generation of chronic disease labels, and the sequential bigram eva-
luation. SynTEG, EVA, and the LSTM baseline thus struggle with these
evaluations (with the LSTM baseline struggling largely due simply to
overall weakness).

The LSTM and HALO-Coarse language model baselines then falter
with respect to same-visit bigram probabilities due to their lack of
intra-visit dependencymodeling while the GPT baseline which models
each code individually and so offers that intra-visit modeling can
maintain relatively stronger performance there. HALO can combine
and build on each baseline’s strengths without any weaknesses, using
the compact multi-hot representation to offer a powerful model that
does not struggle with any length or feature of data while simulta-
neouslymaintaining the intra-visit modeling in an evenmore powerful
and structured way. As such, it can best maintain performance in this
high-dimensional setting and produces state-of-the-art results that
closelymodel the true training data in all settings from record and visit
lengths, label probabilities, and all combinations of code probabilities.
This signifies that HALO is capable of generating data that looks
realistic.

Accurate disease phenotyping using synthetic EHRs
The final evaluation explores the utility of the synthetic datasets
for training disease classifiers. To this end, we utilize two different
synthetically supplemented data setups and machine learning classi-
fiers to predict chronic disease labels based on patients’ visits. In each
of the two setups, we use a simple bidirectional LSTM with a single-
layer fully connected head classifier to predict chronic disease label(s)
based on a patient’s visits.

Accurate disease phenotyping. In the first data setup, we assess
model performance in real-world scenarios using synthetic training
data.We conduct experiments for each of the 11 chronic disease labels
in the outpatient EHR dataset, sourced from the Centers for Medicare
and Medicaid Services and the SynPUF dataset31. Additionally, we
perform experiments for each of the 25 chronic diseases in the inpa-
tient EHR dataset, based on the benchmark proposed in ref. 27.

For each chronic disease, we randomly extract 2500 records for
training, ensuring a balanced distribution of positive and negative
labels (50–50). This process is repeated across our six synthetic data-
sets (one for eachmethod) and one real training dataset, resulting in a
total of seven balanced training datasets. The selected size of 2500
records strikes a balance between having enough training data for
machine-learningmodels andmaintaining sufficient positive labels for
each disease.

We train classifiers on each of these datasets and select the best
model for each dataset using a validation set of 250 records, equally
representing both classes. Finally, we evaluate the models on test sets
consisting of 500 records, equally representing both classes, from the
original test set comprising real patient data.

We display the average accuracy and F1 score for each synthetic
dataset from each of the compared models as well as the real training
data across each of the chronic disease labels in Table 4. Note that we
provide the standard deviations of each metric in either table as well,
butmost of thatdeviation stems fromdifferences between tasks rather
than inconsistent performance within each model.

We provide a full set of results by chronic disease label and also
additional synthetically augmented outpatient results in our supple-
mentary information. In both datasets, we can see that each synthetic
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R2: 0.908R2: 0.973R2: 0.986

R2: 0.958 R2: 0.896 R2: 0.661

R2: 0.024R2: -0.383R2: -0.714

R2: -7.462R2: -1.130R2: -12.979

R2: -9.911 R2: -0.884 R2: -6.357

R2: -95.535 R2: -21.832 R2: -314.721

Outpatient EHR Training DataOutpatient EHR Training Data

Outpatient EHR Training DataOutpatient EHR Training DataOutpatient EHR Training Data

Outpatient EHR Training DataOutpatient EHR Training DataOutpatient EHR Training Data

Outpatient EHR Training DataOutpatient EHR Training DataOutpatient EHR Training Data

Outpatient EHR Training DataOutpatient EHR Training DataOutpatient EHR Training Data

Outpatient EHR Training DataOutpatient EHR Training DataOutpatient EHR Training Data

Fig. 3 | Code probability plots. These plots show the Unigram, Sequential Visit
Bigram, and Same Record Bigram probabilities for each synthetic dataset. With the
exception of SynTEG, all models exhibit some correlation in the unigram and
temporal bigram evaluations, but many have weak correlations or consistently

yield higher synthetic probabilities due to a lack of temporal consistency and
repetition across visits in the records. HALO and to a lesser extent, HALO-Coarse
perform the best in all settings, while HALO is the only one that can realistically
produce pairs of codes within and across visits and achieve state-of-the-art results.
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data of GPT, HALO-Coarse, and HALO largely maintains the perfor-
mance of real data and offers large improvements over the SynTEG,
EVA, and LSTM baselines. HALO’s synthetic data offers the best pre-
diction results.

Phenotyping of rare conditions. We evaluate the utility of synthetic
EHR data in identifying uncommon conditions. We created a highly
imbalanced dataset of patients labeled with cancer chronic disease
from the outpatient EHR dataset. The dataset comprised 50,000 EHR
records without the cancer chronic disease label and only 1000
records with the label.

Using this imbalanced data, we trained a classifier and compared
its performance to classifiers trained on balanced datasets. For bal-
ancing, we added 49,000 positively labeled synthetic records and also
used another classifier trained on a dataset balanced using real
records.

The evaluation results are summarized in Table 5. Notably, HALO
outperformed all baselines, exhibiting significant improvements on
the original unbalanced dataset as well as the synthetically augmented
datasets. It approached the upper bound performance of the ideal
balanced dataset.

This experiment underscores the potential of synthetic EHR data
in supporting the identification of uncommon conditions.

Realistic continuous variables in synthetic EHRs
We conclude with a brief exploration to demonstrate the viability of
our discretized representation of continuous values, and HALO’s
effectiveness in using it to model those variables. We build new

training datasets including visit gaps in the outpatient EHR dataset and
lab values in the inpatient EHR dataset.We use these datasets to train a
new version of our model and generate another synthetic dataset of
250,000 and 45,000 records, respectively.

Table 3 | Code probability correlations R2 between training and synthetic datasets

High-dimensional outpatient EHR Low-dimensional outpatient EHR

Unigram code
probabilities

Sequential visit bigram
probabilities

Same visit bigram
probabilities

Unigram code
probabilities

Sequential visit bigram
probabilities

Same visit bigram
probabilities

EVA 0.910 0.082 0.128 0.957 0.134 0.225

SynTEG 0.915 0.355 0.082 0.784 0.315 0.211

LSTM 0.900 0.077 0.127 0.962 0.135 0.225

GPT 0.743 0.382 0.262 0.924 0.626 0.515

HALO-
Coarse

0.794 0.357 0.176 0.882 0.503 0.247

HALO 0.914 0.508 0.362 0.949 0.686 0.562

The values are R2 values to measure the correlations of the three types of code probabilities for different synthetic datasets against the training data in both high-dimensional and low-dimensional
settings.Boldvaluesdenote thebest results.Although the results showedadrop inperformance for eachmethod in thehigh-dimensional setting,HALOwas able tomaintain strongperformancewith
minimal decline.Overall, ourproposedmethod achieved state-of-the-art performance, outperforming the baselines inboth bigramevaluations in low andhigh-dimensional settings. Sourcedata are
provided as a Source Data file.

Table 2 | Aggregate statistics regarding the shape of training
and compared synthetic datasets

Outpatient EHR Inpatient EHR

Record length
mean
(std. dev.)

Visit length
mean
(std. dev.)

Record length
mean
(std. dev.)

Visit length
mean
(std. dev.)

EVA 29.49 (28.88) 3.35 (1.71) 1.20 (0.723) 11.92 (3.665)

SynTEG 93.00 (2.30) 3.70 (4.10) 27.55 (3.34) 5.93 (10.96)

LSTM 32.04 (27.14) 3.22 (1.64) 1.30 (0.56) 9.53 (2.91)

GPT 95.72 (3.37) 2.70 (1.73) 1.26 (0.73) 9.67 (5.45)

HALO-
Coarse

35.26 (31.87) 3.77 (2.23) 1.13 (0.39) 11.21 (3.91)

HALO 36.19 (33.41) 3.93 (2.72) 1.31 (0.84) 11.93 (6.45)

Train data 34.18 (32.35) 3.52 (2.18) 1.27 (0.92) 11.68 (5.70)

Aggregate statistics on the number of visits per record and the number of codes per visit. The
values are mean (std). HALO outperformed all the baselines while closely approximating the
distribution of the true training data. Source data are provided as a Source Data file.

Table 4 | Chronic disease classification model performance
trained on synthetic data

Outpatient EHR Inpatient EHR

Avg. accuracy Avg. F1 score Avg. accuracy Avg. F1 score

EVA 0.508 ±0.02 0.283 ± 0.26 0.5356 ±0.05 0.580 ±0.05

SynTEG 0.507 ±0.03 0.514 ± 0.20 0.539 ±0.06 0.438 ±0.06

LSTM 0.506 ±0.02 0.467 ± 0.28 0.522 ± 0.04 0.565 ±0.04

GPT 0.851 ± 0.03 0.854 ±0.03 0.877 ±0.05 0.881 ±0.05

HALO-
Coarse

0.867 ± 0.03 0.863 ±0.03 0.863 ±0.05 0.865 ±0.05

HALO 0.879±0.03 0.878 ±0.03 0.882 ±0.04 0.884 ±0.04

Real data 0.891 ± 0.03 0.895 ±0.03 0.938 ±0.04 0.937 ± 0.04

We compared the average performance in terms of accuracy and F1 Score for each of the 11
chronic disease labels in our outpatient dataset and 25 chronic disease labels in our inpatient
dataset. Themodels were trained on each of our synthetic datasets and tested on real data. The
reported values represent the mean and standard deviation across the tasks, with bold values
indicating the best results. GPT, HALO-Coarse, and HALO’s data offer large improvements over
theother baselines andperformsimilarly to real trainingdata.HALO’s syntheticdata performs the
bestwith thehighest averageperformanceof all syntheticmethods. Sourcedata areprovidedas
a Source Data file.

Table 5 | Rare disease detection performance on synthetic
balanced datasets

BCE loss Accuracy F1 score AUROC

Original
imbalanced

0.693 0.497 0.013 0.417

Balanced with
real data

0.127 0.951 0.951 0.989

EVA 0.615 0.695 0.705 0.730

SynTEG 0.598 0.735 0.758 0.786

LSTM 0.593 0.702 0.714 0.743

GPT 0.472 0.880 0.869 0.956

HALO-Coarse 0.265 0.918 0.916 0.959

HALO 0.192 0.931 0.931 0.976

Wepresent the classification results on the test set for the simulated rare-disease detection task.
We compare models trained on datasets balanced using each synthetic dataset against models
trained on the original imbalanced data (representing the rare disease dataset). Additionally, we
compare the results against an upper-bound ideal dataset balanced using real data. The best
results are highlighted in bold. Among the evaluated models, EVA and SynTEG exhibit limited
utility, while the language model architectures LSTM, GPT, and HALO-Coarse offer substantial
value. HALO achieves state-of-the-art performance, closely approaching the results of a true,
balanced dataset. The source data can be found in the provided Source Data file.
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We then show that the distributions of those variables match the
real values. In Fig. 4a and b, we show that HALO accurately replicates
the distribution of gaps between patient visits and the pattern of
shorter gaps for longer records, respectively. These captured nuanced
patterns are on top of the aggregate mean gaps being very similar as
well. There are 33.53 days between visits on average within the real
outpatient EHR data and 35.77 days on average for HALO’s syn-
thetic data.

Using the inpatient dataset, we then demonstrate that HALO
replicates not only the presence (in Fig. 4c) but also the average values
(in Fig. 4d) of performed lab tests. Specific labs included (corre-
sponding to points in those two plots) are included in our supple-
mentary information. Overall, HALO’s approach to continuous
variables is effective, and it has the potential to generate compre-
hensive synthetic patient records with multiple variables of differ-
ent types.

Privacy evaluation of synthetic EHRs
In addition to demonstrating the high fidelity of synthetic EHRs gen-
erated by HALO, we want to ensure that the privacy of the patients
within the original training dataset is protected. To that end, we con-
duct a commonly used membership inference attack to test its

identification risk, and we provide the results of two more evaluations
in our supplementary information.

Membership inference attack. The evaluation is the ability to thwart a
membership inference attack. These attacks aim to determinewhether
any specific real patient record was used in the training dataset to
generate the synthetic records. Membership inference attacks are a
well-known privacy test in the field of synthetic EHR generation, and
addressing them is crucial to ensure the privacy and confidentiality of
patient identities.

To demonstrate that HALO is not susceptible to such an attack,
we show that we can prevent two different attempts at a member-
ship inference attack based on the synthetic data generator and the
synthetic dataset itself. We generate an attack dataset by first
selecting 100,000 records from each real dataset used for training
and assigning them a positive label. Then we select 100,000 records
from the remaining records not used for training as the negative
label set.

Next, we conduct two attacks:
• In the Model Attack, we label the 100,000 records with the

highest log probability from the model as positive, predicting
that they were part of the training dataset.

a b

c d

Fig. 4 | Continuous variable generation performance:HALO effectively captures
the distribution of continuous variables through its discretization approach,
as demonstrated in four scenarios. a Inter-visit gap probability density: The
probability density of inter-visit gaps indicates that HALO closely approximates the
true shape of real data. b Inter-visit gap by visit number: The mean visit gap, as per
visit number, across both real and synthetic datasets reveals that HALO accurately

captures the pattern of patients with many records, showing shorter gaps in their
subsequent visits. c Lab presence probabilities: The probability of binary lab pre-
sence demonstrates that HALO accurately generates lab variables, even when dis-
cretized across multiple variables. d Mean lab values: The average value of labs,
whenpresent, confirms thatHALO’s synthetic labs closely resemble those of the real
dataset. Values in parentheses are R2.
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• In the Dataset Attack, we label the 100,000 records with the
lowest hamming distance to the closest record in the synthetic
dataset as positive. We pick a hamming distance (equivalent to
Manhattan Distance in our binary setting) as our distancemetric
between patient records throughout our privacy evaluations in
accordance with Yan et al.32, but any distance metric could be
substituted interchangeably.These two attacks allow us to test
the ability of the synthetic dataset to prevent an attacker from
inferring whether a real record was used in the training dataset.

We show the results of the classifications from the attacks in
Table 6. The accuracy of both attacks onbothdatasets is ~50%,which is
similar to a random guess. This shows that neither the model nor the
synthetic dataset reveals any meaningful or compromising informa-
tion about the patient identity in the training dataset. We also perform
the dataset attack with each of our baseline datasets and see that each
similarly accomplishes it, achieving a similar probability at around
50%. Note that we do not perform the model attack with the baseline
models because most of them cannot offer a probability output of
input patient records, and the dataset-based attack is the standard one
used throughout literature in this domain.

Beyond themembership inference attack, we also show thatHALO
passes attribute inference attack and nearest neighbor adversarial
accuracy33 evaluations in our supplementary information.

Discussion
In this paper, we proposed a method HALO for generating high-
dimensional synthetic longitudinal EHR data. Our method is specifi-
cally designed to handle the sequential, multi-granular, and high-
dimensional nature of electronic health records by generating an
explicit probability distribution over the codes, visits, and records, and
HALO can generate realistic data without needing to aggregate or
remove any codes as past approaches have unanimously done. We
then showed that HALO can produce incredibly realistic synthetic EHR
data. Specifically, we showed that HALO can capture the probability
distribution underlying the records better than other language model
baselines and then produce a synthetic dataset that both looks similar
to and offers the utility of real patient records asmeasured bymedical
code occurrence probabilities and machine learning classification
tasks augmented with synthetic data. Finally, we also show that our
method offers this performance without compromising privacy
through several privacy evaluations.

In conclusion, one of the key advantages of HALO is its ability to
generate binary sequences that are over a million variables in length.
Its impressive performance makes it a promising avenue for develop-
ing and sharing realistic but synthetic EHR datasets that can support
diverse applications. This represents an exciting opportunity to
expand the use of synthetic data in the healthcare field and could help

address some of the challenges associated with data privacy and
security.

While we have shown the impressive performance of HALO in both
producing high-quality, high-fidelity, and privacy-preserving, we now
briefly discuss some remaining limitations. First, the architecture is
designed in the model of a large language model. While the multi-
modal setup allows the model to condition on more patterns per data
point and learn more efficiently, our high-performing generator still
requires relatively large training datasets which might not be available
in some settings.

Another important aspect of our model is that it generates syn-
thetic records through a probabilistic process. While it learns real-
world patterns during training, there is still a chance that some gen-
erated recordsmay not be clinicallymeaningful. However, this risk can
be mitigated through postprocessing with clinical rules that validate
the synthetic records. If our model is deployed in the real world, it is
important to consider implementing such postprocessing steps to
ensure that only clinically relevant synthetic records are produced.

Finally, our HALO model focuses on generating longitudinal EHR
data, such as medical codes and lab results. However, other crucial
data modalities, such as clinical notes and medical images, are not yet
covered by the model. To generate fully comprehensive patient
records that include all modalities, it will be necessary to use diverse
training data and develop multiple models to handle each modality.
This exciting avenue of research is a promising future direction.

Methods
Our study has acquired exempt status from Institutional Review Board
(IRB) approval. This study has been found to be exempt pursuant to
45CFR46.104(d)(4) “Secondary research for which consent is not
required: Secondary research uses of identifiable private information,
if (i) The identifiable private information is publicly available; AND (ii)
Information is recorded by the investigator in such a manner that the
identity of the human subjects cannot readily be ascertained directly
or through identifiers linked to the subjects, the investigator does not
contact the subjects, and the investigator will not re-identify subjects."

Background and related work
Of all the EHR generation methods, rule-based approaches, such as
Synthea34 or SynPUF31, have proven to be the most effective in deli-
vering practical value. These simple approaches either offer de-
identification of real records by combining data across multiple
patients in a sufficiently privacy-preserving way31, simulation of
patients within a complex yet constrained rule-based system34, Baye-
sian probabilistic modeling of aggregated, non-temporal patient
records35, or proprietary method without detailed explanation36–38.
Many of these systems can only produce synthetic patient data with

Table 6 | Membership inference attack results

Outpatient EHR Inpatient EHR

Acc. Precision Recall Acc. Precision Recall

HALO Dataset Attack 0.501 0.501 0.501 0.492 0.491 0.477

HALO Model Attack 0.509 0.509 0.509 0.515 0.515 0.515

EVA Dataset Attack 0.498 0.498 0.496 0.493 0.493 0.477

SynTEG Dataset Attack 0.500 0.500 0.500 0.491 0.491 0.467

LSTM Dataset Attack 0.499 0.499 0.496 0.494 0.494 0.481

GPT Dataset Attack 0.500 0.500 0.500 0.492 0.491 0.455

HALO-Coarse Dataset Attack 0.500 0.500 0.499 0.491 0.491 0.462

For each record in the attack dataset, we find both the log probability of the record from the trainedmodel (Model Attack) and the hamming distance to the closest record in the synthetic dataset
(Dataset Attack). The attacks then label half of the recordswith the highest probability or lowest distance records, respectively, as in the training set.We see that the accuracy for either attack is right
around 50%,which is similar to a randomguess. This indicates that the synthetic dataset and themodel do not reveal any patient-identifying information about the original training datasets.We also
find that each baseline synthetic dataset similarly thwarts the dataset attack. Source data are provided as a Source Data file.
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limited capacity in realismandutility.We focus insteadonMLmethods
that have the potential to generate realistic high-dimensional synthetic
patient data.

GAN-based methods. Many synthetic data generation methods use
generative adversarial networks (GANs), which involve a generator
that creates realistic data, and a discriminator that decides if the data
is real or fake39. The GANs have been applied to patient record
generation first in ref. 19 followed by many other GAN-based
approaches15,17,18,20–24,40. However, GANs have limitations when gen-
erating sequential data like EHRs. They usually only produce one
output (no time connections) and so most EHR generation methods
aggregate EHR data into one time step22–24, create a representation of
EHR data18, or do both19,20.

GANs also struggle with high dimensional and sparse data like
real-world EHR, limiting all existing synthetic EHR GAN approaches to
produce relatively low dimensional data through the aggregation of
visits and medical codes or removal of rare codes. For example, there
are a few methods in this category which do generate longitudinal
data. LongGAN40 and EHR-M-GAN21 both focus only on dense lab time
series of under a hundred dimensions. CorGAN17 generates records
with 1071 distinct codes, and the current state-of-the-art GAN
approach that we baseline against, SynTEG15, both combines and
removes rare codes before arriving at a final dimensionality of 1276.

While GANs have the potential to be conditioned on external
factors and labels, such as demographics or disease phenotype labels,
the ability to do so has not been extensively explored in existing works
on EHR generation. Moreover, there are only a limited number of
approaches that can generate synthetic EHR data tailored to specific
diseases. For example, SmoothGAN24 focuses on aggregated lab and
medication information and does not model individual visits; EHR-M-
GAN21 offers conditional and sequential capabilities but for low
dimensional (under 100 dimensions) lab time-series information;
CONAN and MaskEHR18,41 model only a single rare-disease population
for data augmentation; and EMR-WGAN and HGAN22,23 can only model
low-dimensional (both under 1000 dimensions) aggregated EHRs.

Deep sequential methods. Accurately modeling the longitudinal
nature of EHRs is crucial for realistic EHR generation. In recent years,
two methods have shown progress in generating sequential EHRs by
using either a GAN or a VAE to condition representations of past
patient visits to generate current visits15,16. Specifically, SynTEG15

models the time between visits, and EVA16 offers a conditional variant.
In our experiments, we compare HALO to these twomodels. However,
both SynTEG and EVA often need to perform preprocessing steps to
reduce the dimensionality of the vocabulary by aggregating medical
codes and removing rare codes.

Language models. Our objective is to develop an improved method
for generating realistic and high-dimensional EHR data by drawing
inspiration from natural language generation. Language generation
models predict the next word based on the preceding words, thereby
learning a probability distribution of languages. Similarly, EHRmodels
predict the next visit based on past visits. Also our proposed method
provides an explicit probability output that allows for direct modeling
and evaluation of the underlying data distribution. This approach is
particularly beneficial in accurately capturing the complex and high-
dimensional nature of EHR data.

The Transformer architecture, introduced in ref. 42, has revolu-
tionized natural language processing and enabled the development of
large, attention-based models like BERT43 and GPT26,29,44. Among these
models, we draw inspiration from GPT, which relies on a stack of
Transformerdecoder blocks thatusemasking topredict thenext set of
probabilities in parallel, allowing for fast training and scalability.
However, applying languagemodels directly to EHRdata poses unique

challenges. Unlike natural language sequences, EHR data exhibits a
hierarchical structure that must be captured, with medical codes
associated with specific patient visits, and visits associated with indi-
vidual patients. Additionally, EHR data contains heterogeneous ele-
ments, including demographic variables, structured medical codes,
and numeric lab measures, not all of which are discrete tokens.
Addressing these challenges requires approaches that leverage the
strengths of language models while adapting them to the peculiarities
of EHR data.

Hierarchical autoregressive language model (HALO)
We model the probability of patient record R, P(R), via a hierarchical
autoregressive model, which utilizes both visit- and code-level struc-
tures of a patient record. First, it factorizes the probability along the
visit level using the autoregressive identity by

PðRÞ=Pðvs,vl, � � � ,vT ,veÞ
=PðvsÞPðvljvsÞPðv1jvs,vlÞ � � �Pðvejvs,vl, � � � ,vT Þ

ð4Þ

to produce what we call our coarse autoregressive sequence. We then
continue to factorize the probability of visits further along the code
level by converting

Pðvt jvs, � � � ,vt�1Þ=P c1t jvs, � � � ,vt�1

� �
P c2t jvs, � � � ,vt�1,c

1
t

� �

� � �P cCt jvs, � � � ,vt�1,c
1
t , � � � ,cC�1

t

� � ð5Þ

into what we call our fine autoregressive sequence. This final prob-
ability is then rewritten as the product

PðRÞ=
Y

t

YC

i

P cit jvs, � � � ,vt�1,c
1
t , � � � ,ci�1

t

� � ð6Þ

where the probability of each code is based on each of the previous
visits and each of the previous codes in the current visit. Our multi-
granularity approach enables the modeling of high-dimensional
sequences of many binary variables per record. This is achieved by
grouping prior information into significantly fewer multivariate time
steps for previous visits while retaining the full autoregressive
modeling capability for each current visit. Our HALO architecture is
designed to reflect this powerful yet compact model, with a powerful
and efficient structure divided into two distinct granularity levels: visit
level and code level. This allows for each code to be conditioned on all
previous visits and the past codes of the current visit.

Visit-level module. We begin with the coarse, visit-level granularity.
We use a stack ofM transformer decoder blocks, which have shown to
be effective in the high-dimensional domain of natural language pro-
cessing, to generate a sequence of visit-level histories, where the t-th

element in the sequence, hðMÞ
t 2 R

nemb, is an embedding that repre-
sents all of a patient’s medical history through their t-th visit. Those

histories then combine to form HðMÞ 2 R
ðT + 3Þ×nemb (where the 3 in

T + 3 includes the start, label, and end visits), the output of the first
module which serves the purpose of the vs, vl, v1,⋯ vt−1 priors in
Eq. (6).

To encode each of the multi-hot visit representations [v1⋯ vn]
into a fixed-length vector in R

nemb, we employ an embedding layer
that includes two trainable parameter matrices: a code embedding
matrix Wc and a positional embedding matrix Wp. The code embed-
ding matrix maps each visit code to a dense vector representation,
while the positional embedding matrix captures the relative position
of each visit in the sequence. Next, we use a decoder model consisting
of M = 12 transformer decoder blocks to generate a series of visit his-
tory representations, which summarize the information contained in
all previous visits in the coarse, visit-level sequence. The transformer
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decoder blocks employ masked multi-head self-attention, which
allows the model to attend to all previous visits while preventing
information leakage from future visits. This process is written more
formally as

Hð0Þ =RWe +Wp

HðmÞ = transformer blockðHðm�1ÞÞ 8m 2 ½1,M�
ð7Þ

where R 2 RðT + 3Þ×C is the patient record matrix representation,We 2
R

C ×nemb is the code embedding matrix, Wp 2 R
ðT + 2Þ×nemb is the

positional embedding matrix (to recapture the position and order of
the sequence of visits), and each transformer block is based on a
decoder block from the original transformer architecture42 which we
describe in more detail in our supplementary information.

Thus, having processed the multi-hot patient visits through the
initial, coarse visit-level module of our architecture, we obtain a
sequence of visit history representations H(M), which capture the col-
lective information of all previous visits up to each time step. These
representations provide a compressed summary of the patient’s visit
history, enabling downstream modules to make predictions based on
the patient’s medical trajectory.

Code-level module. However, we still need to add in the code-level
priors andgenerate output probabilities. Toconstruct the input for the
fine, code-level module, we offset and concatenate the previous
module’s visit history embedding outputs with the original record
input, R. Specifically, we append the first T + 2 visit histories with the

last T + 2 visit representations [vl, v1,⋯ , vT, ve] to create H0ð0Þ. Each of

the T + 2 inputs in H0ð0Þ has a representation of the history of all the
previous visits and the codes of the current visit, mirroring both the
visit and code priors in Equation (6). The final input representation

H0ð0Þ has size R
ðT + 2Þ× ðnemb +CÞ

.
To model the distribution of each PðcitÞ, this H0ð0Þ is then fed

through N = 2 masked linear layers which maintain the same dimen-
sionality and use upper triangular masking of the weight matrix to
ensure that they preserve the autoregressive property of the prob-
abilities (and have a ReLU activation function between layers). These
linear layers are able to efficiently model the high-dimensional, intra-
visit patterns where other sequential approaches such as additional
recurrent or transformer modules would run out of memory. The
probabilities are generated formally by

H0ð0Þ =offset and concatðHðMÞ,RÞ
H0ðnÞ =masked linearðH0ðn�1ÞÞ 8n 2 ½1,N�

O= sigmoid ðH0ðNÞ½ : , nemb :�Þ
ð8Þ

where the submatrix indexing at the end removes the visit-level history
embedding portions of each vector to extract just the code
probabilities, and the masked linear layers are achieved by

H0ðnÞ = maxð0,H0ðn�1ÞðWðnÞ �MÞ+bðnÞÞ ð9Þ

where the max function is omitted for the final fine layer (sigmoid is
used instead),⊙ is element-wise matrix multiplication, M 2
R

ðnemb +CÞ× ðnemb +CÞ
is the upper triangular masking matrix (with

ones in the upper triangular portion and zeros in the lower portion) to
preserve the autoregressive property, and WðnÞ 2
R

ðnemb +CÞ× ðnemb +CÞ
and bðnÞ 2 R

nemb +C
are the trainable para-

meters of the module.
The output O 2 RðT + 2Þ×C is then a matrix of probabilities of each

code for each visit after the start visit built from the visit histories and
each previous code in the same visit. Each code corresponds to a
conditional probability in the product fromEq. (6).We train ourmodel
using the binary cross-entropy loss function over each medical code

(treating the problem as a multi-label classification problem) with
masking applied such that the start visit as well as any padded visits (of
all zeros) do not contribute to the loss. The architecture of our model
is shown in Fig. 1.

Additional features and considerations
Finally, We discuss different variants and add-on features of HALO.

Conditional generation. Our method generates electronic health
record (EHR) data by using demographics S and chronic disease
phenotypesD as labels, which are represented in our label vocabulary
and applied to individual visits, as shown in Fig. 2. We selected these
labels based on their relevance to downstream use cases. Each label is
represented as a binary variable in vl, indicating the presence of the
corresponding disease or demographics group indicator. These indi-
cators are defined by concepts such as specific categories of genders,
races, ethnicity, age groups, and more. We can easily extend this
strategy to include other labels of interest, such as various biomarkers,
patient outcomes, or even abstract patient embeddings.

Unconditional generation. Our setup generates electronic health
record (EHR) data with conditional labels by incorporating a “label
visit" in thedata format, as illustrated inFig. 2. This format enables easy
generation of labeled and conditional data, which are highly valuable
for using synthetic data in machine learning tasks and as an augmen-
tation tool, particularly for rare cohorts. However, it’s important to
note that this formatting is optional. If desired, the “label visit" com-
ponent can be removed from the EHR representation, and the archi-
tecture can be trained to generate unconditioned EHRs without any
modification.

Generationof continuous variables. Ourmodel cangenerate not only
medical codes but also continuous variables, such as lab values and
temporal gaps between visits. However, the availability of these addi-
tional variables in the generated data depends on their presence in the
original dataset used for training. For example, the outpatient EHR
dataset used in our study includes the time between visits, while the
inpatient EHR dataset includes lab values.

In previous models, continuous values were typically generated
using either GANs, which lack the autoregressive probabilistic mod-
eling that we employ, or value predictors (such as time series analysis
models), which we often found to produce average values with insuf-
ficient variance. To overcome these limitations, we model continuous
variables within the healthcare domain by discretizing lab values and
temporal gaps into clinically equivalent buckets. The resulting binary
variables are included in the model’s context, denoted as C, before
being converted back to continuous values through random uniform
sampling within the corresponding bucket range. By using this
approach, our model generates more realistic and diverse continuous
variables than previous methods.

More specifically, to generate discrete versions of continuous
variables, such as lab values and temporal gaps, we divide the range of
each variable into several “buckets", as represented by the values
b1,b2, � � � ,bjlðtÞj j, where jlðtÞj j refers to the number of buckets required.
We determine the bucket ranges by either seeking advice from clin-
icians on practical ranges, creating granular but equivalent groupings,
or using a histogram construction algorithm45. The same approach is
applied to temporal gaps as well.

For example, the heart rate lab test with possible values ranging
from 0 to 400 beats per minute down could be broken down into
twenty different buckets splitting the overall span into smaller ranges
that offer the samemedicalmeaning for all their contained values. This
breakdown could have b1 = (0, 40) and b7 = (90, 100). These buckets
then convert the single continuous variable intomanybinary variables.
Whenever the continuous variable is present in the original EHR, a
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single one of those variables representing the corresponding bucket is
set to 1 with the rest remaining 0. For instance, if a patient has a heart
rate lab measurement of 93 bpm on their seventh visit, the seventh of
the new heart rate variables would be 1 and the rest would remain 0. If
there was no such lab measurement in the visit, they would all be 0.

These new binary variables are added to the wider code vocabu-
lary C and treated in the same way as all of the other medical codes in
the vocabulary by our HALO model during learning and generation.
After generation, the specific lab values and inter-visit gaps are con-
verted back into a continuous value by uniformly sampling from the
corresponding bucket range at the very end.

This discretization allows us to maintain the same powerful and
probabilistic modeling process, matching the probabilistic variance of
real continuous values in the same way we match the variance of
medical code presences. However, by building appropriately granular
buckets, we can avoid losing meaningful information and maintain a
full representation of a patient. We explore the performance of this
approach further in our experiments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MIMIC-III inpatient EHR dataset25 that we use is publicly available
andmay be downloaded and used freely after performing training and
applying on physionet.org. Furthermore, we also released the syn-
thetic data for each of our compared methods for both the inpatient
and outpatient datasets at https://figshare.com/articles/dataset/
HALO_Synthetic_Data/23811162. These datasets can then be used to
reproduce the results and data statistics.

Code availability
We make our code for the inpatient dataset experiments, including
dataset construction, modeling building, training, and evaluation,
available at https://github.com/btheodorou99/HALO_Inpatient46.
Between this and the public availability of that dataset, all inpatient
results can be fully reproduced. Furthermore, HALO is also included in
the open-source machine learning package for healthcare PyHealth47,
where it is available for easy use in concert with various machine
learning tasks.
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