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Heterogeneous changes of soil microclimate
in high mountains and glacier forelands

Silvio Marta 1,2 , Anaïs Zimmer 3, Marco Caccianiga 4, Mauro Gobbi 5,
RobertoAmbrosini1, RobertoSergioAzzoni1,6, FabrizioGili 1,7, FrancescaPittino8,
Wilfried Thuiller9, Antonello Provenzale2 & Gentile Francesco Ficetola 1,9

Landscapes nearby glaciers are disproportionally affected by climate change,
but we lack detailed information onmicroclimate variations that canmodulate
the impacts of global warming on proglacial ecosystems and their biodiversity.
Here, we use near-subsurface soil temperatures in 175 stations from polar,
equatorial and alpine glacier forelands to generate high-resolution tempera-
ture reconstructions, assess spatial variability in microclimate change from
2001 to 2020, and estimate whether microclimate heterogeneity might buffer
the severity of warming trends. Temporal changes in microclimate are tightly
linked to broad-scale conditions, but the rate of local warming shows great
spatial heterogeneity, with faster warming nearby glaciers and during the
warm season, and an extension of the snow-free season. Still, most of the fine-
scale spatial variability of microclimate is one-to-ten times larger than the
temporal change experienced during the past 20 years, indicating the poten-
tial for microclimate to buffer climate change, possibly allowing organisms to
withstand, at least temporarily, the effects of warming.

Mountain ecosystems provide multiple goods and services to
humankind and act as fundamental regulators of regional climate and
hydrology1–3. The topographic and climatic heterogeneity ofmountain
areas, as well as their geological history, deeply influence several bio-
logical processes (i.e. adaptation, speciation, dispersal, persistence,
and extinction4); as a result, mountain ecosystems are biodiversity
hotspots with unique levels of endemism, adaptations and lifeforms5.
For instance, despitemountain regions coveringonly one-fourth of the
Earth continental surface (excluding Antarctica), they host > 80% of
the world’s species of terrestrial vertebrates, many of which are
entirely restricted tomountains5–7. However, ongoing climatic changes
are causing unprecedented modifications of mountain systems2,3. At
the highest elevations, glaciers are losingmass, and the pace of glacier

retreat has been globally accelerating during the past decades8. This
dramatic glacier shrinkage has multiple impacts on all biotic and
abiotic components of ecosystems3,9–12. Glacier forelands are new
landscapes emerging after the retreat of glaciers3 that undergo rapid
geomorphological transformations, with loose sediments from the
early-successional stages rapidly developing into structured soils9,13,14.
In turn, soil development facilitates the colonization of recently
deglaciated terrains by multiple lifeforms12,15. However, climatic varia-
tions affect the rates of change of these ecosystems. For instance,
temperature influences the rate of rock weathering16,17 and warmer
areas experience faster soil development14. High temperatures can also
affect temporal dynamics of communities, by increasing colonization
success by termophilic species and favouring evolution towards more
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complex community structures18–20, and influence carbon fluxes
between soil, vegetation and the atmosphere21,22.

In areas with complex terrain, regional climate (i.e. macroclimate)
interacts with topography, potentially resulting in local temperatures
partially decoupled from the regional average23. Microclimate can be
defined as the fine-scale spatial and temporal offsets of the local cli-
mate from the macroclimate24. The decoupling between micro- and
macroclimate is particularly pronounced near and, to a lesser extent,
below soil surface25,26, where microclimate best represents the set of
climatic conditions actually experienced by organisms. In mountain
areas, topographic elements (i.e. elevation, mainly via lapse-rates;
aspect; slope and topographic shading) locally regulate temperature,
incoming solar radiation, evapotranspiration, wind speed, cold air
drainage, and snow accumulation and melt at fine spatial scales, gen-
erating complex patterns of local climatic conditions23,27,28. Along gla-
cier forelands, additional factors influence local climate, such as
vegetation cover and height, distance from the ice mass, and soil
texture, creating heterogeneous microhabitats inhabited by different
biotic assemblages29. Snow cover is a further key driver of the func-
tioning of mountain ecosystems30, affecting biogeochemical and
hydrological processes, and controlling the life cycle of many organ-
isms by determining the duration of their growing / activity season30–32,
with potential impacts on ecosystem productivity31.

At fine spatial scales, spatial variability of local temperature and
snow can be strong, creating a mosaic of nearby micro-habitats that
host different communities31,33. Microclimate differences between
nearby areasmight at least temporarily buffer the severity of warming
impacts on populations. Microclimatic buffering is the dampening of
macro-climatic fluctuations due to local conditions (e.g. topography
and vegetation cover), such that larger-scale fluctuations still exist at
themicroclimatic scale, but have lower intensity and a reduced impact
on organisms34,35. Clearly, microclimate heterogeneity can limit the
impacts of macroclimate change only if organisms are able to move
between neighbouring sites having different microclimates35–38.
Detailed informationonmicroclimate and snowcover is thus pivotal to
understand the impacts of climate change on organisms living in
mountain ecosystems and the potential buffering effect favoured by
microclimatic heterogeneity. Still, this requires global scale, high-
resolution analyses that were so far lacking.

Here, we used a unique dataset of near-subsurface soil tempera-
tures collected in 175 stations from polar, equatorial and alpine glacier
forelands to produce a high-resolution, global reconstruction of
monthly average soil temperatures during the snow-free season (i.e.,
when snow cover is strongly reduced or absent) in highmountains and
proglacial environments (Fig. 1). To combine the accuracy of
empirically-calibrated relationships with the transferability of process-
based models, we implemented a correlative hybrid approach based
on the mechanistic understanding of the main drivers of
microclimate39,40. Terms were introduced in the modelling framework
to account for both the horizontal (elevation, topography, topo-
graphic shading, permafrost occurrence, katabatic winds, monthly
frequency of snow-free days) and vertical (depth and tree cover)
processes driving microclimate variability41. To account for inter-
annual variability and temporal change, and produce dynamic esti-
mates of soil microclimate, our model was combined with time-series
for macroclimate, frequency of snow-free days, shortwave radiation
and glacier forefront position. Empirically-estimated coefficients were
validated with an external dataset26, and then used to assess temporal
variation of microclimatic conditions between 2001–2005 and
2016–2020. The comparison between these two periods allowed
measuring long-term annual and seasonal microclimate variations,
provided estimates of the global-scale buffering effects of micro-
climate, and revealed that recently deglaciated habitats (those closer
to the glacier forefront) are experiencing a much faster microclimatic
change compared to other high-elevation environments.

Results
Temperature modelling
The 175 microclimatic stations provided 706,810 temperature records
in theperiod 2011–2021 (seeMethods). Soil temperaturewaspositively
related to macroclimatic temperature (downscaled using elevational
lapse rate, see Methods), downward shortwave solar radiation, fre-
quency of snow-free days and distance from the glacier forefront
(indicating an effect of katabatic winds), while negative relationships
were found with depth of burial and tree cover. Statistically significant
interactions showed that the increase of soil temperature with mac-
roclimatic temperature and solar radiation was faster as the frequency
of snow-free days increased (e.g. moving from spring to summer;
Fig. 2a, b). The decrease of soil temperature with increasing depth
depended on the frequency of snow-free days, deep soil being rela-
tively warmer at the beginning and the end of the season (low fre-
quency of snow-free days - sfd) and colder during summer, and
shallower soil responding faster to air temperatures (Fig. 2c). We
detectedno significant effectof permafrostoccurrence (Fig. 2d), of the
interaction between tree cover and solar radiation, and of the inter-
action between the monthly frequency of snow-free days and the
distance from the glacier (Supplementary Table 1). The model pro-
vided a very good fit to the training dataset and explained a very high
portion of microclimatic variations (R2

m = 0.71, R2
c = 0.85).

Downscaledmacroclimate, solar radiationand frequencyof snow-
free days were the strongest drivers of soil temperature, considering
either variable importance scores (i.e. joint contribution of both
additive and interactive terms; Supplementary Fig. 1a), or semi-partial
R2 (Supplementary Fig. 1b). Among the remaining predictors, depth of
burying explained a substantial portion of the total variance in soil
temperature, especially when interacting with the frequency of snow-
free days, while the contribution of tree cover, distance from the gla-
cier forefront and permafrost occurrence was small (Supplemen-
tary Fig. 1).

Soil temperature values, predicted by averaging model coeffi-
cients across the 26 leave-one-out models (Supplementary Table 2),
were in good agreement with the observed ones, and returned excel-
lent predictions of temperature in the glacier forelands used for
internal validation (Fig. 2e; wR2 =0.85; wMAE= 1.47 °C; wRMSE = 1.84 °
C). The high transferability of the model, and its good predictive
power, were confirmed by the validation on the independent dataset
(Fig. 2f; wR2 =0.91; wMAE = 1.95 °C; wRMSE = 2.73 °C).

To understand how adding variables besides macroclimate
improves the prediction of soil temperature, for both the training and
independent datasets we compared observed temperatures with i)
those predicted by the complete model, and the time-series of two
widely used climate products: ii) TerraClimate42 and iii) CHELSA43

(Supplementary Fig. 2). Our model limited the underestimation of soil
temperature that occurs with macroclimatic products during cold
periods (Supplementary Fig. 2d vs 2e-f) and outperformed both of
traditional climate products in predicting soil temperature, in terms of
variance explained (wR2 = 0.86 and 0.91 vs 0.60 to 0.91), mean abso-
lute error (wMAE= 1.45 and 1.95 °C vs 2.37 to 3.19 °C) and root mean
square error (wRMSE = 1.85 and 2.73 °C vs 3.00 to 4.49 °C).

Global projections
Building upon the high transferability of our model, we upscaled it at
the global scale for the periods 2001–2005 and 2016–2020. During
2001–2020, we detected substantial temperature increases in North
America, the Andes and the higher latitudes of the Eastern Palaearctic,
as well as in the European Alps and some areas of the Himalayas
(Fig. 3a; Supplementary Fig. 3). When looking at different latitudinal
bands (Fig. 3b), the pattern of temperature change showed differences
between the Inter-tropical zone, the Northern and the Southern
hemispheres. Temperature increase was particularly marked in the
Inter-tropical zone and the Southern hemisphere (mean ± sd:
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0.75 ± 0.53 and 1.02 ±0.88 °C, respectively), with a generally higher
increase nearby glaciers. For instance, in the Inter-tropical zone the
mean increasewas 1.13 ± 0.70 °Cwithin 100m from the glacier outline,
while it was 0.57 ± 0.31 °C at 3 km from glaciers. The change was
smaller in the Northern hemisphere (0.43 ±0.61 °C), still temperature
increase remained higher nearby glaciers compared to areas located
3 km away from the glacier (0.63 ± 0.84 °C vs. 0.34 ±0.44 °C; Fig. 3b).
These temperature changes were not identical to macroclimatic
observations of climate change. The difference between microclimate
and macroclimate was distinctly larger and more positive nearby gla-
ciers and in tropical regions, highlighting the particularly fast warming
of such areas (Supplementary Fig. 4).

The analysis of seasonal trends provided comparable results, in
terms of spatial patterns of temperature changes (Supplementary
Fig. 5). In the mountain ranges of the Northern hemisphere, the
strongest temperature increase occurred during September-Novem-
ber, with a particularly intense increase at the higher latitudes (Sup-
plementary Fig. 5b–d). In the Southern hemisphere, temperature
changes were especially strong from December to February (Supple-
mentary Fig. 5). Conversely, in the Inter-tropical zone temperature
changewas homogeneously distributed throughout the year, owing to
the reduced effect of seasonality. A decrease of changes with
increasing distance from the glacier was evident during the period
September–February (Supplementary Fig. 6a, d). Seasonal trends
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Fig. 1 | Study area, distribution of the recording sites and examples of model
output. Black areas in the map and insets represent glaciers (source: GLIMS
database73); green dot size is proportional to the per-glacier number of sampled
months (loggers ×months). For each example glacier, we report the coordinates of
the centroid of the recording sites (EPSG:4326), the altitudinal rangeof themapped

area, and the observed (dots: August 2020 - Yanamarey; September 2019 - Glacier
deGebroulaz; September 2018 - Ferdinandbreen) and estimated (averagedover the
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(ESRI:54009); grid: 20*20 degrees. Source data are provided as a Source Data file.
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confirmed a stronger temperature increase nearby glaciers (Supple-
mentary Fig. 6); this effect was evident for all latitudinal bands, and
more evident during warm seasons.

We estimated the potential for microclimatic buffering as the
ratio between the current spatial variability and the temporal change
experienced during the last 20 years. The sign of this relationship
returns the direction of the temporal change (i.e. either temperature
increase or decrease), while its absolute value measures the buffering
potential (e.g. values of +2 or −2 indicate spatial variability twice the
temporal variation, given increasing or decreasing temperatures,
respectively). In the majority of cases, the fine-scale spatial variability
of soil temperature within 250mwas larger than the temporal change,
suggesting that it can play a relevant role for microclimatic buffering
(Fig. 3c). Most buffering values (44.4% to 70.1%, depending on the
latitudinal band and the distance from the glacier) had absolute
values > 1 and ≤ 10 indicating that, in the last 20 years, spatial variability
was one-to-ten times larger than the temporal temperature change.
When considering all values ≤ −1 or > 1 (i.e., looking at all the sites
potentially guaranteeing buffering), percentages ranged between 52.9
to 80.2%.

The duration of the snow-free season estimated from satellite
images increased between 2001–2005 and 2016–2020. At the global
scale, themean increase of season duration was 9.7 days (sd: 19.5 days;

Fig. 3d). Such an increase was larger nearby glaciers (16.2 ± 22.6 days)
compared to areas located 3 km from a glacier (5.3 ± 15.7 days). In the
Inter-tropical zone, the effect of distance fromglacierswas particularly
marked. Here, almost no change in season duration occurred in sites
located more than 1 km away from a glacier, probably because in the
tropics areas far from glaciers are almost constantly without snow.

Discussion
Understanding the effects of climate change on high-elevation eco-
systems is pivotal to predict the future of these threatened environ-
ments. Accurate microclimatic information is crucial to identify the
conditions that are effectively experienced by living organisms, as
changes in microclimate strongly influence local distribution and
survival of individuals24. At the same time, the extreme environmental
heterogeneity of mountain habitats, mainly generated by the altitu-
dinal gradients, the complex topography and the variability of vege-
tation (from mature forests to grasslands, peatlands and tundra to
bare soils) determines patchy microhabitats with a striking range of
microclimatic conditions in relatively small areas, potentially buffering
the severity of warming impacts on populations35–37.

As expected, temporal changes in microclimate are tightly linked
to climate trends at the regional or global scale, with macroclimate
playing the major role in driving local temperatures. Our results
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highlighted a generalized increase in soil temperature between 2001
and 2020 at all latitudes and distances from the glacier front, with the
presence of clear seasonal trends. In both hemispheres, microclimate
variation was stronger during warm seasons, while it was reduced
during coldmonths. In the sameperiod, we recorded an increase in the
duration of the snow-free season, confirming at the global scale the
results of regional analyses31. Both these changes were particularly
evident in areas close to glaciers, where temperature is rising faster
than expected on the basis of macroclimate (Supplementary Fig. 4).
Such accelerated warming is probably linked to the shrinkage of ice
with the consequent reduction of its cooling effect, and to the pro-
longation of the snow-free season31. The increasing number of days
with snow-free terrains deeply influences soil temperature, mainly
through the interaction with other drivers of temperature (Fig. 2). The
absence of snow increases heat exchanges between air and soil, and

the lower albedo facilitates absorption of solar radiation, resulting in
steeper relationships25. This amplifies the temperature increase along
elevational gradients44, and likely has major impacts on the whole
ecosystem, such as an increase in vegetation productivity, and a
change of biotic communities31,33.

Owing to the mechanism of elevation-dependent warming, tem-
perature increase is often faster inmountain areas than in surrounding
lowlands44,45. Such accelerated warming poses strong challenges to
mountain ecosystems, potentially leading to species altitudinal
migrations, phenological changes and mismatches between different
components of the ecosystem46. However, the impact of increasing
soil temperatures and duration of snow-free season on local alpine
biota may be partially counterbalanced by the spatial variability of
microclimate conditions. For example,Maclean47 recorded differences
in temperature of almost 20 °C across a four-hectares study area,
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corresponding to differences in average temperature across entire
continents. When analysing the potential for microclimate buffering,
we found conspicuous variations in soil temperature, with a mean
value of about 1.2 °C within a narrow spatial range (250m), i.e., one-to-
ten times the recorded change during the last 20 years. Such spatial
variability in microclimate conditions has key effects on local
communities33,48, andmight allow individuals andeven communities to
withstand, at least temporarily, the effects of climate warming by
modifying their distribution over relatively short distances. Never-
theless, fine-scale heterogeneity is probably not enough to buffer
warming patterns expected to occur in the long term, as several cli-
mate change scenarios suggest that most mountain regions will
experience a warming >4 °C by the end of the century2. Worryingly,
microclimate is warming even faster than macroclimate in the areas
closer to glaciers, with a particularly strong pattern in the tropical and
Southern hemisphere mountains (Supplementary Fig. 4). In these
regions, the probability of long-term persistence in microrefugia is
particularly low, as climate change risks are amplified by the faster
microclimate warming.

Our analysis focused on soil temperature, but water availability is
a further parameter that should be taken into account when assessing
microclimatic changes, as it influences multiple ecosystem traits such
as biodiversity distribution12,19,49, nitrogen mineralization50, and the
fluxes of carbon across the soil-vegetation-atmosphere interface21. Soil
moisture can also influence local temperature, with moist soils having
higher thermal inertia51. The combined effects of differences in soil
moisture and temperature may result in microclimate patterns even
more complex than those generated by temperature alone; still, the
lack of high-resolution data on soil properties (e.g., texture, compo-
sition) hampered so far the modelling of soil water content at regional
and global scale40.

As far as we know, the dataset we assembled is themost complete
collection of soil temperature recordings in proglacial areas. Although
we tried to cover areas at different latitudes and with diverse climatic
conditions,weacknowledge thatdata used todevelop and validate our
model are not truly global, thus may not be fully representative of the
conditions in othermountain ranges with very different climatological
characteristics. For instance, in some region glaciers are not currently
retreating, owing to the combination of locally stationary tempera-
tures, increasing precipitation and/or heavy debris cover (e.g.,
Karakoram 52); in others they are retreating considerably, but following
local dynamics (e.g., the southern Himalayas, conditioned by the
Indian monsoon). A further extension of the dataset and its imple-
mentation with other initiatives (e.g., in ref. 41) might improve the
global representation of the soil temperature dynamics, and possibly
allow to better define the effect of some parameters (i.e., vegetation,
permafrost) on soil temperature in glacier-related environments. Our
analysis provides much better information on the microclimate of
high-mountain environments than any currently available climate
product (Supplementary Fig. 2), and enables anunprecedented viewof
the fine-scale spatial and temporal heterogeneity of climate change.

During the last decades, we boosted our understanding of the
drivers of microclimate24. A huge amount of information is already
available at the macro- and meso-scales for long time-series (e.g.,
monthly temperatures from TerraClimate), while others can be
retrieved using remotely-sensed data. This information is fundamental
to account for both interannual climate variability and long-term cli-
matic trends. However, the effective and consistent modelling of
microclimatic conditions over large areas still requires important
efforts. Blending process-based models (e.g., in ref. 53) with data-
driven empirical models (e.g., in ref. 21) and assimilating the data flow
producedby remote sensing couldbe afirst step to the constructionof
a “digital twin” of alpine ecosystems, as a specific contribution to
global programs such as the EU initiative Destination Earth (https://
digital-strategy.ec.europa.eu/en/policies/destination-earth). This, in

turn, will be fundamental to model and understand relationships
between mountain species and their environment, and to quantify
their responses to climate change.

Methods
Temperature data and predictors
We focused our analyses on glacier forelands, i.e. the landscapes
emerging after glacier retreat3. Data on soil temperature were col-
lected at 175 sites from 26 glacier forelands located in the Svalbard
archipelago (Norway; 2 forelands), European Alps (Italy, Austria,
Switzerland and France; 21 forelands), and the Andes (Peru; 3 fore-
lands), between 15th July 2011 and 24th August 2021 (Fig. 1). In each
foreland, 1 to 16 devices (mean: 6.7; sd: 4.3; total: 175) were buried with
no shielding at 5, 10 or 15 cm (mean: 9.2; sd: 3.0) below soil surface. The
distance between devices within the same foreland ranged from 0.1 to
1798m (mean: 149; sd: 223). Devices recorded temperatures for 33 to
763 days (mean: 501.9; sd: 191.7) with a recording frequency varying
between 6 and 480 recordings/day (mean: 11.1; sd: 36.5). The total
dataset was composed by 706,810 recordings; geographic attributes,
devicemodel, recordingparameters andburyingdepth are reported in
Supplementary Table 3. All months sampled for less than 90% of time
were removed, and monthly averages were calculated based on the
remaining data. The final dataset was composed of 2739 monthly
average temperatures from 26 glacier forelands, ranging between
August 2011 and July 2021. For each glacier foreland, the region of
interest (ROI) was defined as the extent enclosing all the sampling
stations, with a 750m buffer as this enabled to include areas from the
glacier tongue to downstream areas; a larger buffer (1500m) was set
up for Morteratsch and Dammagletscher forelands in order to include
part of the glacier tongue within the ROI.

Macroclimate information for the sampled months and years was
retrieved from the medium-resolution climate product TerraClimate42

(resolution: 150 arcsec). TerraClimate was chosen as it provides time-
series of monthly temperatures from 1958 to present, with yearly
updates. This allowed relating soil temperature to macroclimate con-
ditions in any given year and month between 2011 and 2021. Monthly
mean temperatures were calculated as the midpoint between Terra-
Climate monthly minimum and maximum temperatures. To produce
high-resolution macroclimatic surfaces while accounting for the adia-
batic decrease of temperature, we downscaled monthly temperatures
applying a fixed environmental lapse rate of −0.0065 °C/m54. To
understand how sensitive the downscaled surface to the chosen lapse
rate is, we also produced estimates using different lapse rates (−0.005
and −0.008 °C/m55). Estimates obtained using the different lapse rates
showed very high pairwise correlation (minimum Pearson’s r >0.98),
thus we decided to use the standard value of −0.0065 °C/m as sug-
gested by Barry54. The high-resolution digital elevation data needed for
downscaling macroclimate were retrieved from the ASTER GDEM v3
(resolution: 1 arcsec, i.e. approx. 30m at the equator; latitudinal
extent: 82° N to 83° S) via the NASA Earthdata interface (https://doi.
org/10.5067/ASTER/ASTGTM.003; last accession on 24th March
2020). The high-resolution temperature surfaces obtained by down-
scaling TerraClimate simply represented the fine-scale variability of
macroclimate related to altitudinal differences, rather than the effec-
tive topo- or micro-climates.

To account for the effect of absorbed solar radiation, we calcu-
lated the downward shortwave solar radiation following the approach
implemented in the shortwavetopo function39, with slope and aspect
data retrieved from ASTER GDEM v3. The total shortwave radiation
absorbed by a surface for a given hour, month and location is the sum
of the diffuse and the direct components of radiation, taking into
account the proportion of sky in view, solar altitude, azimuth, topo-
graphic shading and surface albedo. Monthly-averaged hourly esti-
mates of total downward and net (i.e. albedo-free) radiation, as well as
of surface albedo were retrieved from the ERA5-Land product56
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(available at https://developers.google.com/earth-engine/datasets/
catalog/ECMWF_ERA5_LAND_MONTHLY_BY_HOUR) using Google
Earth Engine and the rgee R package57. The ERA5-Land product does
not provide direct-diffuse separation (i.e. estimates refer to the sumof
direct and diffuse components). To overcome this issue, we imple-
mented the Yao2 separation method58, as it showed the best perfor-
mance in high-elevation and high-latitude (i.e., high-albedo) areas59.
Specifically, we: i) used total downward radiation to estimate the
hourly clearness indexKt; ii) used the Yao2polynomialmodel to obtain
the hourly diffuse solar radiation fraction Kd; iii) estimated hourly
diffuse and direct net radiation (MJ m−2 h−1) by multiplying ERA5-Land
net radiation for Kd and (1-Kd), respectively. Coarse-grained direct and
diffuse components of net radiation were then used to obtain high-
resolution estimates of effective absorbed hourly shortwave radiation
for the 15th of each month and year following the shortwavetopo
approach39; we used the ERA5-Land forecast albedo product to
represent the albedo from adjacent surfaces, contributing to the dif-
fuse local component, and further partitioned the diffuse radiation in
its isotropically-distributed, anisotropically-distributed and reflected
back components. The above-detailed procedure was used to obtain
24 estimates of hourly shortwave radiation (i.e., we calculated one
estimate for each hour of the 15th day of each month). The hourly
estimates were finally summed up to obtain the monthly-averaged
daily cumulative shortwave radiation (MJ m−2 d−1).

Snow cover (i.e. the presence of snow on the ground) causes local
soil temperatures decoupled from regional climate26, due to the
insulating effect of the snowpack. To quantify this thermal effect on
soil temperatures, for each month we assessed the proportion of days
in which the device was under the snow. When a device is under the
snow, it shows a very limiteddaily variation.We tested several values of
diurnal range, assuming that a sensor was under snow when it showed
a range below different threshold values (0.5, 1, 1.5, 2, 2.5, and 3 °C),
and calculated the corresponding number of days with no snow on the
ground for each of these thresholds. These estimates were compared
with theones obtained, for the samemonths and years, using theNDSI-
derived coarse-grained MODIS Terra 500m daily fractional
snowcover60 (available at https://developers.google.com/earth-
engine/datasets/catalog/MODIS_006_MOD10A1). Fractional snow-
cover was converted to snow occurrence using the conservative
threshold of 40%61, and the monthly frequency of snow-free days was
estimated. Monthly estimates were based upon different number of
images, mainly due to cloudiness and polar night (mean ± sd:
11.34 ± 5.37), consequently we sequentially discarded estimates based
upon less than 1, 5, 10, 15, and 20 images, and tested the agreement
between the number of days under the snow estimated from sensor
and from the MODIS data. Differences in sample size between regions
(Polar, Mid-Latitudes and Equatorial) and glaciers, as well as those in
the monthly frequency of snow-free days within each glacier may
inflate agreement scores. To account for these differences, we thus
conservatively downweighted each observation, so that observations
from each region sum up to 1, observation from each glacier within
each region sum up to 1/G (G being the number of glaciers in the
region) and observation within each glacier × region sum up to 1/M (M
being the number of sfd categories for the glacier). The agreement
between snow estimates from sensor and MODIS data was measured
using i) the coefficient of determination from a weighted linear
regression (wR2), ii) the weighted mean absolute error (wMAE) and iii)
the weighted root-mean-square error (wRMSE). We found a good
match between sensor and MODIS estimates (maximum wR2 =0.91;
minimum wMAE = 5.13%; minimum wRMSE = 13.96%). The proportion
of snow-free days was thus calculated based on the threshold value of
1.5 °C, considering months with at least 15 images, as this combination
provided the most robust estimates of snow-free days (wR2 =0.91;
wMAE = 6.58%;wRMSE = 13.96%). In principle, this approachmight bias
the model toward less cloudy areas, as they generally have a larger

number of images permonth. Nevertheless, we had to limit analyses to
months with a minimum number of images to avoid inaccurate sfd
estimates.

The presence of nearby glaciers represents a further driver of
local temperature, for instance because of katabatic winds. To account
for this cooling effect, we measured the distance between each sam-
pling station and the glacier front, under the assumption of decreasing
cooling effects with distance62. For each glacier, the most recent
outline was retrieved from Marta et al.63, checked against glacier
position between 2015 and 2019 using USGS Landsat 8 imagery
(available at https://developers.google.com/earth-engine/datasets/
catalog/LANDSAT_LC08_C01_T1_TOA) and eventually updated to
include other nearby glaciers or more recent outlines. Outlines were
transformed to polygons, rasterized, and distance maps at 30m
resolution were calculated using the function gridDistance from the
raster R package64. Three categorical variables were calculated to
account for the effect of (i) tree cover, (ii) permafrost occurrence and
(iii) differences in the depth of logger burying. Tree shading can
decrease soil temperature, mainly reducing absorbed radiation, thus
we used the 30m resolution Hansen Global Forest Change v1.865

(available at https://developers.google.com/earth-engine/datasets/
catalog/UMD_hansen_global_forest_change_2020_v1_8) to assess if a
loggerwas in a tree-covered area or not. Original cover data, expressed
as percentage of per-cell canopy closure were converted to tree
occurrence for all the cells with > 0 tree cover. Coarse-grained data on
permafrost extent (30 arcsec) were retrieved from Gruber66 and dis-
aggregated at the 30m resolution. To convert permafrost extent
(expressed as the proportion of a cell that is underlain by permafrost)
to occurrence of continuous/extensive discontinuous permafrost we
used the conservative 0.9 threshold, i.e. we considered permafrost
present when its probability of occurrence was ≥0.9. Lack of high-
resolution, global data on vegetation cover and height hampered the
introduction of modelling terms accounting for both longwave radia-
tion and soil shading by herbs and mosses.

Model calibration
Monthly-averaged observed soil temperature (soilT) was modelled
using linear mixed models (LMM). As independent variables we used
downscaled macroclimate (mT), monthly-averaged daily cumulative
shortwave solar radiation (rad), monthly frequency of snow-free days
(sfd), distance from glacier forefront (dg), tree cover (tc), permafrost
occurrence (pf) anddepthofburying (d). Interactive termswereadded
to account for the effects of a varying frequencyof snow-freedays (sfd)
on mT, rad, and dg, as well as for the potential effects of tc on rad and
of d on sfd. To include geographical factors not explicitly accounted
for by the selected set of predictors, we additionally incorporated a
random intercept on glacier (1|gl). Consequently, the full model takes
the form:

soilT ∼mT + rad + sf d +dg + tc+pf +d + sf d : mT

+ sf d : rad + sf d : dg + sf d : d + tc : rad + 1jgl ð1Þ

Winter snowpack decouples air and soil temperatures causing no
relationshipbetween soilTand several predictors (e.g. air temperature,
solar radiation) during seasons with snow. To remove the effects of
this decoupling, while reconstructing soilT during the snow-free sea-
son, we i) classified sfd in 10 intervals between 0 and 100%; ii) run
iteratively themodel retaining only records with sfd > 10%, 20%,…, and
iii) plotted fitted values vs residuals to evaluate the residual structure
at each step. With sfd > 20% the effect of decoupling was almost
completely erased. Consequently, all the months with sfd ≤ 20% were
discarded, and the resulting dataset included 1,516 monthly average
temperatures from 26 glacier forelands. Before running the final
model, dg was square-root transformed to linearize the relationship
with the response variable and all the continuous predictors were
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scaled to zero mean and unit variance. Linear mixed models were run
using the lme467 and lmerTest68 R packages. Model residuals
approximated a normal distribution (Shapiro-Wilk test; W=0.994),
and the variance inflation factor was low (GVIFadjmax = 2.79, including
interaction terms), indicating thatmulticollinearity did not posemajor
issues. Model performances were evaluated using Nakagawa and
Schielzeth69 R2, as implemented in MuMIn R package70. The amount of
variance explainedby singlemodel termswas quantified by calculating
the semi-partial R2 using the partR2 R package71, with 1000 bootstrap
replicates. partR2 iteratively removes predictors and compares the
change in variance of the linear predictor to the variance explained by
the full model; higher the difference between the two values, higher
the amount of variance explained uniquely by a given predictor. We
followed Thuiller et al.72 to account for the overall effect of single
predictors (i.e. considering their joint contribution to both additive
and interactive terms). Each predictor was randomized 1000 times,
and the predictions obtained using original and randomized datasets
were compared via the Pearson’s correlation coefficient (r). Strong
correlations indicate that randomizations had little effect on model
performances; for each permutation, variable importance was finally
expressed as 1-r.

Model validation
The performance of the model was assessed using both internal (with
the data used to build the model) and external validation (with fully
independent data). For internal validation, we used a leave-one-out
approach. We iteratively run the full model, retaining all glaciers
except one, and the estimated fixed coefficients were stored. We then
used the average coefficient to predict expected temperature without
accounting for glacier identity. The agreement between observed and
predicted temperatures was measured using wR2, wMAE and wRMSE,
following the sameweighting schemeapplied during the calculation of
monthly frequency of snow-free days.

External validation, using data that are fully independent from the
ones used to calibrate the model, is pivotal to assess the actual
transferability of models, and thus its applicability at the global scale.
External validation was based on an updated version of the SoilTemp
database26 (available at https://doi.org/10.5281/zenodo.4558663). To
obtain data comparable to those used during model training, we
selected siteswith depthof burying 5–15 cmanddistance fromglaciers
(measured using theGLIMS glacier outlines73) ≤ 3000m; the validation
dataset was further cleansed removing all stations on water bodies /
rivers or human infrastructures (i.e. roads). The resulting dataset was
composed of 6472 monthly recordings from 170 stations, distributed
in Europe (Alps, Pyrenees and Scandinavia) and Asia (Himalayas, with
stations in India and Nepal). For each record, predictions of soil tem-
perature in a given month and year were obtained on the basis of the
mean coefficients from the leave-one-out analysis, following the pro-
cedure described for the global projection of soil temperature (see
below). Depths were associated to the nearest group (5, 10, or 15 cm).
We discarded records with estimated snow-free days based upon < 15
images, and months with sfd ≤ 20%. This reduced the dataset to
1518 monthly recordings in 161 stations. To obtain spatially unbiased
goodness-of-fit statistics, we implemented a weighting scheme similar
to that used for the training dataset. Given the lack of the “glacier”
level, we grouped all devices closer than 1000m each other in one
cluster. All observations were then downweighted, so that observation
from the same region (southern Europe, Scandinavia or Himalayas)
sumup to 1, observation from the same geographic cluster within each
region sum up to 1/C (C being the number of clusters in the region),
and observation within each cluster × region sum up to 1/M (M being
the number of sfd categories for the cluster).

To confirm that temperatures estimated by our model approx-
imate the actual temperature better than other already available pro-
ducts, we also compared observed temperatures of both the training

and validation datasets to the ones predicted by our model and the
time-series of TerraClimate42 (resolution: 150 arcsec) and CHELSA43

(resolution: 30 arcsec). For each observation, we extracted climate
data for the corresponding year and month, after excluding the
observations from 2020 and 2021 (the CHELSA time-series being lim-
ited to 1979–2019), and calculated wR2, wMAE and wRMSE.

Our model focused on mean monthly temperature, but other
parameters (e.g., minimum or maximum temperature) can be impor-
tant for organisms. We thus checked the correlation between mean
temperatures of both training and validation datasets, and minimum
and maximum monthly temperatures. Following Lembrechts et al.26,
we calculatedminimumandmaximummonthly temperature as the 5%
and 95% quantiles of monthly values. Monthly mean temperature was
highly correlated to temperature extremes (Pearson’s r > 0.91 for both
minimum and maximum temperature). This strong relationship
between temperature average and extremes is possibly due to the
rather scarce and homogeneous soil cover, which is mostly occupied
by sparse vegetation and high-elevation tundra and has a different
behaviour from what is observed in forests34. This suggests that mean
temperature provides a good representation of the overall pattern
within each month.

Global projection of soil temperature
Obtaining high-resolution estimates of soil temperature in glacier
forelands, at the global scale and in several periods, allows estimating
soil microclimate variability and temporal variation, measuring the
impacts of climate change on microclimate and the potential for
microclimate buffering. The aim of this analysis was to assess the
variation of microclimate during the last decades, thus we compared
microclimate between the periods 2001–2005 and 2016–2020. We
used themean coefficients obtained from the leave-one-out analysis to
generate predictions of soil temperature at the global scale, using
Google Earth Engine and the rgee R package57. Due to data availability,
the analysis was spatially constrained between 60° S and 72° N. We
focusedonproglacial landscapes, thuswe limitedprojections towithin
3 km from glacier outlines. It is worth noting that some differences
exist between the training and global projection for: the digital ele-
vation products, the approach to glacier outline identification, the
definition of the monthly frequency of snow-free days and the calcu-
lation of shortwave solar radiation.

Digital elevation data are needed for downscaling macroclimate
and for calculating the daily cumulative shortwave solar radiation.
For the global projection, we used a coarser resolution (90m instead
of 30m) to limit computation time. From 60° S to 60° N we used the
90m resolution composite of Shuttle Radar Topographic Mission
v474 (available at https://developers.google.com/earth-engine/datasets/
catalog/CGIAR_SRTM90_V4), while from 60° to 72° N we used
the Global Multi-resolution Terrain Elevation Data 201075 (available
at https://developers.google.com/earth-engine/datasets/catalog/USGS_
GMTED2010), given that the SRTMmodel was not available above 60°
N. Monthly mean temperature was calculated from TerraClimate
(https://developers.google.com/earth-engine/datasets/catalog/IDAHO_
EPSCOR_TERRACLIMATE). Monthly mean temperatures were obtained
by averaging monthly minimum and maximum values across each five-
year period, and downscaled to 90m resolution following the same
approach used for the calibration data.

Information on shortwave solar radiationwas obtained asdetailed
in the previous section, but the shortwavetopo function was re-coded
to be launched directly in GEE via the rgee interface (see Supplemen-
tary Software 1). For each cell, daily cumulative solar radiation was
estimated for the 15th day of each month in the years 2003 (for
2001–2005) and 2018 for (2016–2020), and considered representative
of the whole month and period. The monthly frequency of snow-free
days was calculated using the NDSI-derived daily fractional snowcover
as detailed in the previous section. For each month, we estimated the
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percent snow occurrence using monthly values averaged over each
five-year period and bilinearly-interpolated at the 90m resolution. All
cells with sfd values ≤ 20% or with sfd values based upon less than 15
images over the five-years period were excluded. To account for dis-
tance from the glacier, we used glacier outlines of the GLIMS dataset73

(available at https://developers.google.com/earth-engine/datasets/
catalog/GLIMS_current). Glaciers may have been retreating between
2001–2005 and 2016–2020; consequently, for each period and glacier
(“glac_id” field), we selected the outline with the temporally closer
source image (“src_date” field), and calculated distances according to
thosepositions. Permafrost extentwas uploaded inGEE, andbilinearly-
interpolated at the 90m resolution, while tree coverwas aggregated at
the same 90m resolution. In projections, we estimated soil tempera-
ture at 5 cm depth (d = 5). Despite the methodological differences,
shortwave radiation and temperatures estimated with the global
model (90m resolution) showed excellent agreement with the ones at
the 30m resolution (Pearson’s r = 0.93 and 0.97, respectively).

Maps of predicted soil temperatures at 2001–2005 and
2016–2020 pose some problems in handling and obtaining summary
statistics at the global scale (2 periods × 12months × 6.628 × 1010 pixels;
approximate size ≈ 4.7 TB). To overcome these limitations and obtain a
spatially unbiased representation of microclimate variability and var-
iation, instead of using all the cells we subsampled them using a stra-
tified grid sampling by i) building a regular 50 × 50 km grid (Mollweide
projection; ESRI:54009); ii) retaining all the grid cells containing gla-
ciers or within 3 km from glacier outlines (2,604 cells), and iii) defining
five classes of distance from the most recent glacier outline (0–100,
400–600, 900–1100, 1900–2100 and 2900–3100m). The most recent
glacier outline was the one used for calculating the distances for the
2016–2020 projection. Within each cell, we randomly sampled 10
points, two for each distance class. The resulting dataset was composed
of 26,040 points, each associated with 12 × 2 (2001–2005 and
2016–2020) measures of monthly soil temperature. After removing
points with missing temperature estimates for all the months in one or
both periods, and cells with < 10 points (e.g. because some points were
in the sea), the final dataset was composed of 19,440 records from 1944
cells. For this set of points, we extracted the monthly average tem-
perature for the two periods. Based on temperature data, we calculated
both annual and seasonal (Dec–Feb; Mar–May; Jun–Aug and Sep–Nov)
microclimate variation (ΔT) between the two periods (ΔT=T2016–2020 -
T2001–2005). For the same set of points, we also extracted the annual
duration of the snow-free season for the two periods. Wemeasured the
snow-free season as the total number of days with no snow on the
ground (i.e., with fractional snowcover < 40%61) during the whole year,
averaged over each of the two periods.

Short-distancemovement of individualsmight allowbuffering the
severity of warming impacts on populations, if suitable climatic con-
ditions occur nearby35. To understand the potential for microclimate
buffering of proglacial environments, we compared the recorded
microclimate variation between 2001–2005 and 2016–2020 (ΔT) to
the spatial variability of soil temperatures. The spatial variability of
microclimate was calculated as the 80% inter-percentile range within a
250m buffer (Tvar). Due to computing limitations, the analysis only
considered the average microclimate (mean annual temperature) of
2016–2020. Microclimate buffering potential (Tbp) was calculated as:
Tbp = Tvar /ΔT. This formula allowsmeasuring both the direction of the
change and the buffering potential, as it retains the sign from ΔT (e.g.
positive values indicate temperature increase), but returns (absolute)
values > 1 ( | Tbp | > 1) when the spatial microclimate variability is larger
than the temporal microclimate variation.

Extrapolation beyond the conditions experienced during training
and validation datasets can determine limited transferability of model
predictions76,77. In order to assess extrapolation issues, we tested
whether independent variables used for global projections have values
falling outside the range observed in the training and validation

datasets76. The majority of independent variables (distance from gla-
cier, permafrost and tree occurrence, percent of snow-free days) did
not show extrapolation issues, as their values were within the range
experienced during training. Some extrapolation occurred for down-
scaled macroclimatic temperature and shortwave solar radiation, still
extrapolation levels were very limited. For temperature, just 0.75% of
values were outside the range, while for solar radiation just 2.35% of
values were outside the range, suggesting no major transferability
issues76.

Data availability
Soil temperature data used in this study to train and validate themodel
have been deposited in a FigShare repository at https://doi.org/10.
6084/m9.figshare.2373696678. The data generated in this study and
used to build the Figures are provided in the Source Data file. Source
data are provided with this paper.

Code availability
Main code to run the global projection is made available as Supple-
mentary Software 1. The code used to run the model, the internal and
external validation and to produce Fig. 2, Supplementary Fig. 1 and
Supplementary Tables 1 and 2 has been deposited in a FigShare
repository at https://doi.org/10.6084/m9.figshare.2373696678.
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