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Projectinggenetic associations throughgene
expression patterns highlights disease
etiology and drug mechanisms
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Wei-Qi Wei 5, Qiping Feng 5, Bahram Namjou 6, Krzysztof Kiryluk7,
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Consortium* & Casey S. Greene 2,16

Genes act in concert with each other in specific contexts to perform their
functions. Determining how these genes influence complex traits requires a
mechanistic understanding of expression regulation across different condi-
tions. It has been shown that this insight is critical for developing new thera-
pies. Transcriptome-wide association studies have helped uncover the role of
individual genes in disease-relevantmechanisms. However, modernmodels of
the architecture of complex traits predict that gene-gene interactions play a
crucial role in disease origin and progression. Here we introduce PhenoPLIER,
a computational approach that maps gene-trait associations and pharmaco-
logical perturbation data into a common latent representation for a joint
analysis. This representation is based on modules of genes with similar
expression patterns across the same conditions. We observe that diseases are
significantly associated with gene modules expressed in relevant cell types,
and our approach is accurate in predicting known drug-disease pairs and
inferring mechanisms of action. Furthermore, using a CRISPR screen to ana-
lyze lipid regulation, we find that functionally important players lack associa-
tions but are prioritized in trait-associated modules by PhenoPLIER. By
incorporating groups of co-expressed genes, PhenoPLIER can contextualize
genetic associations and reveal potential targets missed by single-gene
strategies.

Genes work together in context-specific networks to carry out differ-
ent functions1,2. Variations in these genes can change their functional
role and, at a higher level, affect disease-relevant biological processes3.
In this context, determining how genes influence complex traits
requires mechanistically understanding expression regulation across
different cell types4–6, which in turn should lead to improved
treatments7,8. Previous studies have described different regulatory

DNA elements5,9–12 including genetic effects on gene expression across
different tissues4. Integrating functional genomics data and GWAS
data13–15 has improved the identification of these transcriptional
mechanisms that, when dysregulated, commonly result in tissue- and
cell lineage-specific pathology16–18.

Given the availability of gene expression data across several
tissues4,19–21, an effective approach to identify these biological
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processes is the transcription-wide association study (TWAS), which
integrates expression quantitative trait loci (eQTLs) data to provide a
mechanistic interpretation for GWAS findings. TWAS relies on testing
whether perturbations in gene regulatory mechanisms mediate the
association between genetic variants and human diseases22–25, and
these approaches have been highly successful not only in under-
standing disease etiology at the transcriptome level26–28 but also in
disease-risk prediction (polygenic scores)29 and drug-repurposing30

tasks. However, TWAS works at the individual gene level, which does
not capture more complex interactions at the network level.

These gene-gene interactions play a crucial role in current the-
ories of the architecture of complex traits, such as the omnigenic
model31, which suggests that methods need to incorporate this com-
plexity to disentangle disease-relevant mechanisms. Widespread gene
pleiotropy, for instance, reveals the highly interconnected nature of
transcriptional networks32,33, where potentially all genes expressed in
disease-relevant cell types have a non-zero effect on the trait31,34. One
way to learn these gene-gene interactions is using the concept of gene
module: a group of genes with similar expression profiles across dif-
ferent conditions2,35,36. In this context, several unsupervised approa-
ches have been proposed to infer these gene-gene connections by
extracting gene modules from co-expression patterns37–39. Matrix fac-
torization techniques like independent or principal component ana-
lysis (ICA/PCA) have shown superior performance in this task40 since
they capture local expression effects from a subset of samples and can
handle modules overlap effectively. Therefore, integrating genetic
studies with gene modules extracted using unsupervised learning
could further improve our understanding of disease origin36 and
progression41.

Here we propose PhenoPLIER, an omnigenic approach that pro-
vides a gene module perspective to genetic studies. The flexibility of
our method allows integration of different data modalities into the
same representation for a joint analysis. We show that this module
perspective can infer how groups of functionally related genes influ-
ence complex traits, detect shared and distinct transcriptomic prop-
erties among traits, and predict how pharmacological perturbations
affect genes’ activity to exert their effects. PhenoPLIERmaps gene-trait
associations and drug-induced transcriptional responses into a com-
mon latent representation. For this, we integrate thousands of gene-
trait associations (using TWAS from PhenomeXcan42) and transcrip-
tional profiles of drugs (from LINCS L100043) into a low-dimensional
space learned from public gene expression data on tens of thousands
of RNA-seq samples (recount219,44). We use a latent representation
defined by a matrix factorization approach44,45 that extracts gene
modules with certain sparsity constraints and preferences for those
that align with prior knowledge (pathways). When mapping gene-trait
associations to this reduced expression space, we observe that dis-
eases are significantly associated with gene modules expressed in
relevant cell types: such as hypothyroidism with T cells, corneal
endothelial cells with keratometry measurements, hematological
assays on specific blood cell types, plasma lipids with adipose tissue,
and neuropsychiatric disorders with different brain cell types. More-
over, since PhenoPLIER can use models derived from large and het-
erogeneous RNA-seq datasets,we can also identifymodules associated
with cell types under specific stimuli or disease states. We observe that
significant module-trait associations in PhenomeXcan (our discovery
cohort) replicated in the Electronic Medical Records and Genomics
(eMERGE) network phase III27,46 (our replication cohort). Furthermore,
we perform a CRISPR screen to analyze lipid regulation in HepG2 cells.
We observe more robust trait associations with modules than with
individual genes, even when single genes known to be involved in lipid
metabolism did not reach genome-wide significance. Compared to a
single-gene approach, our module-based method also better predicts
FDA-approved drug-disease links by capturing tissue-specific patho-
physiological mechanisms linked with the mechanism of action of

drugs (e.g., niacin with cardiovascular traits via a known immune
mechanism). This improved drug-disease prediction suggests that
modules may provide a better means to examine drug-disease rela-
tionships than individual genes. Finally, exploring the phenotype-
module space reveals stable trait clusters associated with relevant
tissues, including a complex branch involving lipids with cardiovas-
cular, autoimmune, and neuropsychiatric disorders. In summary,
instead of considering single genes associated with different complex
traits, PhenoPLIER incorporates groups of genes that act together to
carry out different functions in specific cell types. This approach
improves robustness in detecting and interpreting genetic associa-
tions, and here we show how it can prioritize alternative and poten-
tially more promising candidate targets even when known single-gene
associations are not detected. The approach represents a conceptual
shift in the interpretation of genetic studies. It has the potential to
extractmechanistic insight from statistical associations to enhance the
understanding of complex diseases and their therapeutic modalities.

Results
PhenoPLIER: an integration framework based on gene co-
expression patterns
PhenoPLIER is a flexible computational framework that combines
gene-trait and gene-drug associations with genemodules expressed in
specific contexts (Fig. 1a). The approach uses a latent representation
(with latent variables or LVs representing genemodules) derived from
a large gene expression compendium (Fig. 1b, top) to integrate TWAS
with drug-induced transcriptional responses (Fig. 1b, middle) for a
joint analysis. The approach consists of three main components
(Fig. 1b, bottom, see Methods): (1) an LV-based regression model to
compute an association between an LV and a trait, (2) a clustering
framework to learn groups of traits with shared transcriptomic prop-
erties, and (3) an LV-based drug-repurposing approach that links dis-
eases to potential treatments.We performed extensive simulations for
our regression model (Supplementary Note 1) and clustering frame-
work (Supplementary Note 2) to ensure proper calibration and
expected results under a model of no association.

We used TWAS results from PhenomeXcan42 and the eMERGE
network27 as discovery and replication cohorts, respectively (Meth-
ods). PhenomeXcanprovides gene-trait associations for 4091 different
diseases and traits from the UK Biobank47 and other studies, whereas
the analyses on eMERGE were performed across 309 phecodes. TWAS
results were derived using two statistical methods (see Methods): (1)
Summary-MultiXcan (S-MultiXcan) associations were used for the
regression and clustering components, and (2) Summary-PrediXcan (S-
PrediXcan) associations were used for the drug-repurposing compo-
nent. In addition, we also used colocalization results, which provide a
probability of overlap between the GWAS and eQTL signals. For the
drug-repurposing approach, we used transcriptional responses to
small molecule perturbations from LINCS L100043 comprising 1170
compounds.

The latent gene expression representation was obtained from the
MultiPLIER models44, which were derived by applying a matrix fac-
torizationmethod (the pathway-level information extractor or PLIER45)
to recount219—a uniformly-curated collection of transcript-level gene
expression quantified by RNA-seq in a large, diverse set of samples
collected across a range of disease states, cell types differentiation
stages, and various stimuli (see Methods). The MultiPLIER models
extracted 987 LVs by optimizing data reconstruction but also the
alignment of LVs with prior knowledge/pathways.

Each LV or gene module represents a group of weighted genes
expressed together in the same tissues and cell types as a functional
unit. Since LVs might represent a functional set of genes regulated by
the same transcriptional program48,49, we conjecture that the projec-
tion of TWAS and pharmacologic perturbations data into this latent
space could provide a better mechanistic understanding. For this
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projection of different data modalities into the same space, Phe-
noPLIER converts gene associations to an LV score: all genes’ stan-
dardized effect sizes for a trait (from TWAS) or differential expression
values for a drug (from pharmacologic perturbation data) are multi-
plied by the LV genes’ weights and summed, producing a single value.
Insteadof looking at individual genes, this process links different traits
and drugs to functionally related groups of genes or LVs. PhenoPLIER
uses LVs annotations about the specific conditions where the group of
genes is expressed, such as cell types and tissues, even at specific
developmental stages, disease stages or under distinct stimuli.
Although this is not strictly necessary for PhenoPLIER to work, these
annotations can dramatically improve the interpretability of results.
MultiPLIER’s models provide this information by linking LVs to sam-
ples, which may be annotated for experimental conditions (repre-
sented by matrix B at the top of Fig. 1b) in which genes in an LV are
expressed. An example of this is shown in Fig. 1c. In the original Mul-
tiPLIER study, the authors reported that one of the latent variables,
identified as LV603, was associated with a known neutrophil pathway
and highly correlated with neutrophil count estimates from whole
blood RNA-seq profiles50. We analyzed LV603 using PhenoPLIER and
found that 1) neutrophil counts and other white blood cell traits were
ranked among the top 10 traits out of 4091 (Fig. 1c, bottom), and
basophils count and percentage were significantly associated with this
LVwhen using our regressionmethod (Supplementary Table 4), and 2)
LV603’s genes were expressed in highly relevant cell types

(Fig. 1c, top). These initial results suggested that groups of functionally
related and co-expressed genes tend to correspond to groups of trait-
associated genes, and the approach can link transcriptional mechan-
isms from large and diverse dataset collections to complex traits.

Therefore, PhenoPLIER allows the user to address specific ques-
tions, namely: do disease-associated genes belong to modules
expressed in specific tissues and cell types? Are these cell type-specific
modules associated with different diseases, thus potentially repre-
senting a “network pleiotropy” example from an omnigenic point of
view31? Is there a subset of module’s genes that is closer to the defi-
nition of “core” genes (i.e., directly affecting the trait with nomediated
regulation of other genes34) and thus represents alternative and
potentially better candidate targets? Are drugs perturbing these
transcriptional mechanisms, and can they suggest potential mechan-
isms of action?

LVs link genes that alter lipid accumulation with relevant traits
and tissues
Our first experiment attempted to answer whether genes in a disease-
relevant LV could represent potential therapeutic targets. For this, the
first step was to obtain a set of genes strongly associated with a phe-
notype of interest. Therefore, we performed a fluorescence-based
CRISPR-Cas9 in theHepG2 cell line and identified462 genes associated
with lipid regulation (Methods). From these, we selected two high-
confidencegene sets that either caused adecreaseor increaseof lipids:
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Fig. 1 | Schematic of the PhenoPLIER framework. a High-level schematic of
PhenoPLIER (a gene module-based method) in the context of TWAS (single-gene)
and GWAS (single-variant). In GWAS, we identify variants associated with traits. In
TWAS, first, we identify variants that are associated with gene expression levels
(eQTLs); then, prediction models based on eQTLs are used to impute gene
expression, which is used to compute gene-trait associations. Resources such as
LINCS L1000 provide information about how a drug perturbs gene expression; at
the bottom-right corner, we show how a drug downregulates two genes (A and C).
In PhenoPLIER, these data types are integrated using groups of genes co-expressed
across one or more conditions (such as cell types) that we call gene modules or
latent variables/LVs. Created with BioRender.com. b The integration process in
PhenoPLIER uses low-dimensional representations (matrices Z andB) learned from
large gene expression datasets (top).We used gene-drug information L from LINCS
L1000 and gene-trait associations M from TWAS: PhenomeXcan was used as the
discovery cohort, and eMERGE as replication (middle). PhenoPLIER provides three

computational components (bottom): 1) an LV-based regression model that
associates an LV j (Zj) with a trait i (Mi), 2) a clustering framework that learns groups
of traits from TWAS associations projected into the LV space (M̂), and 3) an LV-
based drug-repurposing approach that uses the projection of TWAS (M̂) and LINCS
L1000 (L̂) into the LV space. cGenes that are part of LV603, termed as a neutrophil
signature44, were expressed in relevant cell types (top), with 53 independent sam-
ples expressed in Neutrophils, 59 in Granulocytes, and 20 in Whole blood, 56 in
PBMC, 8 inmDCs, 29 inMonocytes, and 5 in Epithelial cells (the boxplot shows the
25th, 50th and 75th percentiles while the whiskers extend to the minimum/max-
imum values). LV603 was associated in PhenoPLIER with neutrophil counts and
other white blood cells (bottom, showing the top 10 traits for LV603 after pro-
jecting gene-trait associations in PhenomeXcan). eQTLs expression quantitative
trait loci, MVN multivariate normal distribution, PBMC peripheral blood mono-
nuclear cells, mDCs myeloid dendritic cells.
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a lipids-decreasing gene set with eight genes: BLCAP, FBXW7, INSIG2,
PCYT2, PTEN, SOX9, TCF7L2, UBE2J2; and a lipids-increasing gene set
with six genes: ACACA, DGAT2, HILPDA, MBTPS1, SCAP, SRPR (Supple-
mentary Data 2).

Next, we analyzed all 987 LVs using Fast Gene Set Enrichment
Analysis (FGSEA)51, and found 15 LVs nominally enriched (unadjusted
P <0.01) with these lipid-altering gene sets (Supplementary Tables 1
and 2). Among those with reliable samplemetadata, LV246, the top LV
associated with the lipids-increasing gene set, contained genes mainly
co-expressed in adipose tissue (Fig. 2a), which plays a key role in
coordinating and regulating lipid metabolism. Using our regression
framework across all traits in PhenomeXcan, we found that gene
weights for this LV were predictive of gene associations for plasma
lipids, high cholesterol, and Alzheimer’s disease (Supplementary
Table 7, FDR < 1e-23). These lipids-related associations also replicated
across the 309 traits in eMERGE (Supplementary Table 8), where
LV246 was significantly associated with hypercholesterolemia (phe-
code: 272.11, FDR < 4e-9), hyperlipidemia (phecode: 272.1, FDR < 4e-7)
and disorders of lipoid metabolism (phecode: 272, FDR < 4e-7).

Two high-confidence genes from our CRISPR screening, DGAT2,
and ACACA, are responsible for encoding enzymes for triglycerides
and fatty acid synthesis andwere among thehighest-weightedgenesof
LV246 (Fig. 2b, in boldface). However, in contrast to othermembers of
LV246, DGAT2, and ACACA were not associated nor colocalized with
any of the cardiovascular-related traits and thus would not have been
prioritized by TWAS alone; instead, other members of LV246, such as
SCD, LPL, FADS2, HMGCR, and LDLR, were significantly associated and

colocalized with lipid-related traits. This lack of association of two
high-confidence genes from our CRISPR screen might be explained
from an omnigenic point of view34. Assuming that the TWAS models
forDGAT2 and ACACA capture all common cis-eQTLs (the only genetic
component of gene expression that TWAS can capture) and there are
no rare cis-eQTLs, these two genes might represent “core” genes (i.e.,
they directly affect the trait with no mediated regulation of other
genes), andmany of the rest in the LV are “peripheral” genes that trans-
regulate them.

LVs predict drug-disease pairs better than single genes
We next determined how substituting LVs for individual genes pre-
dicted known treatment-disease relationships. For this, we used the
transcriptional responses to small molecule perturbations profiled in
LINCS L100043, which were further processed and mapped to Drug-
Bank IDs52–54. Based on an established drug-repurposing strategy that
matches reversed transcriptome patterns between genes and drug-
induced perturbations55,56, we adopted a previously described frame-
work that uses imputed transcriptomes from TWAS to prioritize drug
candidates30. For this, we computed a drug-disease score by calculat-
ing the negative dot product between the z-scores for a disease (from
TWAS) and the z scores for a drug (from LINCS) across sets of genes of
different sizes (see Methods). Therefore, a large score for a drug-
disease pair indicated that higher (lower) predicted expression values
of disease-associated genes are down (up)-regulated by the drug, thus
predicting a potential treatment. Similarly, for the LV-based approach,
we estimated how pharmacological perturbations affected the gene

Fig. 2 | Tissues and traits associated with a gene module related to lipid
metabolism (LV246). a Top cell types/tissues in which LV246’s genes are expres-
sed. Values in the y axis come frommatrix B in the MultiPLIER models (Fig. 1b, see
Methods). In the x axis, cell types/tissues are sorted by themaximum sample value.
b Gene-trait associations (unadjusted p-values from S-MultiXcan24; threshold at
-log(p) = 10) and colocalization probability (fastENLOC) for the top traits in LV246.

The top 40 genes in LV246 are shown, sorted by their LV weight (matrix Z), from
largest (the top gene SCD) to smallest (FAR2); DGAT2 and ACACA, in boldface, are
two of the six high-confidence genes in the lipids-increasing gene set from the
CRISPR screen. Cardiovascular-related traits are in boldface. SGBS Simpson Golabi
Behmel Syndrome, CH2DB CH2 groups to double bonds ratio, HDL high-density
lipoprotein, RCP locus regional colocalization probability.

Article https://doi.org/10.1038/s41467-023-41057-4

Nature Communications |         (2023) 14:5562 4



module activity by projecting expression profiles of drugs into our
latent representation (Fig. 1b). We used a manually curated gold
standard set of drug-disease medical indications53,57 for 322 drugs
across 53 diseases to evaluate the prediction performance.

It is important to note that the gene-trait associations and drug-
induced expression profiles projected into the latent space represent a
compressed version of the entire set of results. Despite this informa-
tion loss, the LV-basedmethod outperformed the gene-based onewith
an area under the curve of 0.632 and an average precision of 0.858
(Fig. 3). The prediction results suggested that this low-dimensional
space captures biologically meaningful patterns that can link patho-
physiological processes with the mechanism of action of drugs.

We examined a specific drug-disease pair to determine whether
the LVs driving the prediction were biologically plausible. Nicotinic
acid (niacin) is a B vitaminwidelyused clinically to treat lipid disorders,
although there is controversy on its clinical utility in preventing car-
diovascular disease58–60. Niacin exerts its effects on multiple tissues,
although its mechanisms are not well understood61–64. This compound
can increase high-density lipoprotein (HDL) by inhibiting an HDL cat-
abolism receptor in the liver. Niacin also inhibits diacylglycerol
acyltransferase–2 (DGAT2), which decreases the production of low-
density lipoproteins (LDL) either by modulating triglyceride synthesis
in hepatocytes or by inhibiting adipocyte triglyceride lipolysis61. Niacin
was one of the drugs in the gold standard set indicated for athero-
sclerosis (AT) and coronary artery disease (CAD). We observed that
this compound was predicted by the gene-based and LV-based
approach as a medical indication for coronary artery disease (CAD),
with scores above the mean (0.51 and 0.96, respectively). For AT, the
LV-based approach predicted niacin as a therapeutic drug with a score
of 0.52, whereas the gene-based method assigned a negative score of
-0.01 (below the mean). Since LVs represent interpretable features
associated with specific cell types, we analyzed which LVs positively
contributed to these predictions (i.e., with an opposite direction
between niacin and the disease). Notably, LV246 (Fig. 2), expressed in
adipose tissue and liver and associated with plasma lipids and high
cholesterol (Supplementary Table 7), was the 16th most important
module in the prediction of niacin as a therapeuticdrug forAT. Besides
the gold standard set, LV246 was among the top modules for other
cardiovascular diseases, such as ischemic heart disease (wide defini-
tion, 15th module) and high cholesterol (7th module).

The analysis of other top niacin-contributing LVs across different
cardiovascular diseases revealed additional mechanisms of action. For
example, GPR109A/HCAR2 encodes a G protein-coupled high-affinity
niacin receptor in adipocytes and immune cells, including monocytes,
macrophages, neutrophils, and dendritic cells65,66. It was initially

thought that the antiatherogenic effects of niacin were solely due to
the inhibition of lipolysis in adipose tissue. However, it hasbeen shown
that nicotinic acid can reduce atherosclerosis progression indepen-
dently of its antidyslipidemic activity by activating GPR109A in
immune cells67, thus boosting anti-inflammatory processes68. In addi-
tion, flushing, a common adverse effect of niacin, is also produced by
the activation of GPR109A in Langerhans cells (macrophages of the
skin). This alternative mechanism for niacin could have been hypo-
thesized by examining the cell types where the top-contributing
modules are expressed: for instance, LV116 and LV931 (Fig. 4, Supple-
mentary Figure 15, and Supplementary Tables 9 and 10) were the top
two modules for AT, with a strong signature in monocytes, macro-
phages, neutrophils, dendritic cells, among others. In Fig. 4, it can be
seen that LV116’s genes are expressed as an immune response when
these cell types are under different stimuli, such as diarrhea caused by
different pathogens69, samples from multiple sclerosis or systemic
lupus erythematosus70,71, or infected with different viruses (such as
herpes simplex72, West Nile virus73, Salmonella typhimurium74, among
others). These three LVs (LV246, LV116, and LV931) were among the
top 20 modules contributing to the niacin prediction across different
cardiovascular traits (Table 1).

Beyond cardiovascular traits, there are other potentially inter-
esting LVs that could extend our understanding of the mechanisms of
niacin. For example, LV66, one of the top LVs affected by niacin
(Supplementary Figure 16), was mainly expressed in ovarian granulosa
cells. This compound has been very recently considered a potential
therapeutic for ovarian diseases75,76, as it was found to promote follicle
growth and inhibit granulosa cell apoptosis in animal models.

LVs reveal trait clusters with shared transcriptomic properties
We used the projection of gene-trait associations into the latent space
to find groups of clusters linked by the same transcriptional processes.
Since individual clustering algorithms have different biases (i.e.,
assumptions about the data structure), we designed a consensus
clustering framework that combines solutions or partitions of traits
generated by different methods (Methods). Consensus or ensemble
approaches have been recommended to avoid several pitfalls when
performing cluster analysis on biological data77. Since diversity in the
ensemble is crucial for these methods, we generated different data
versions which were processed using different methods with varying
sets of parameters (Fig. 5a). Then, a consensus function combines the
ensemble into a consolidated solution, which has been shown to out-
perform any individual member of the ensemble78,79. Our clustering
pipeline generated 15 final consensus clustering solutions (Supple-
mentary Figure 13). The number of clusters of these partitions

0

Fig. 3 | Drug-disease prediction performance for gene-based and LV-based
approaches. The receiver operating characteristic (ROC) (left) and the precision-
recall curves (right) for a gene-based and LV-based approach. “Random” refers to

the average precision of a hundred classifiers with randomly permuted scores,
where the error band represents the 95% confidence interval. AUC area under the
curve; AP average precision.
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(between 5 and 29) was learned from the data by selecting the parti-
tions with the largest agreement with the ensemble78. Instead of
selecting oneof thesefinal solutionswith a specific number of clusters,
we used a clustering tree80 (Fig. 6) to examine stable groups of traits
across multiple resolutions. To understand which latent variables dif-
ferentiated the group of traits, we trained a decision tree classifier on
the input data M̂ using the clusters found as labels (Fig. 5b, see
Methods).

We found that phenotypes were grouped into five clear branches,
defined by their first node at the top of Fig. 6: (0) a “large” branch that
includes most of the traits subdivided only starting at k = 16 (with
asthma, subjective well-being traits, and nutrient intake clusters), (1)
heel bone-densitometry measurements, (2) hematological assays on
red blood cells, (3) physical measures, including spirometry and body
impedance, and anthropometric traits with fat-free and fat mass
measures in separate sub-branches, and (4) a “complex” branch
including keratometrymeasurements, assays on white blood cells and
platelets, skin and hair color traits, autoimmune disorders, and cardi-
ovascular diseases (which also included other cardiovascular-related

traits such as hand-grip strength81, and environmental/behavioral fac-
tors suchas physical activity anddiet) (see SupplementaryData 3–7 for
all clustering results). Within these branches, results were relatively
stable, with the same traits often clustered together across different
resolutions. Arrows between clusters show traits moving from one
group to another, and thismainly happens between clusterswithin the
“complex” branch (4) and between clusters from the “large” branch (0)
to the “complex” branch. This behavior is expected since complex
diseases are usually associated with shared genetic and environmental
factors and are thus hard to categorize into a single cluster.

Next, we analyzed which LVs were driving these clusters of traits.
For this, we trained decision tree classifiers on the input data using
each cluster at k = 29 (bottom of Fig. 6) as labels (see Methods). This
procedure yielded the top LVs that were most discriminative for each
cluster. Several of these LVs were well-aligned to existing pathways
(Fig. 7), whereas others were not aligned to prior knowledge but still
expressed in relevant tissues (Supplementary Figure 14). In Fig. 7, it can
be seen that some LVs were highly specific to certain traits, while
otherswere associatedwith awide range of different phenotypes, thus

Table 1 | LVs among the top 20 contributors to the prediction of niacin for five cardiovascular diseases and related traits

LV Cell type Disease

LV116 Immune cells, skin Atherosclerosis (ICD10 I70)

Chronic ischemic heart disease (ICD10 I25)

Heart attack, angina, stroke or hypertension

Ischemic heart disease (wide definition)

LV931 Immune cells Atherosclerosis (ICD10 I70)

Heart attack, angina, stroke or hypertension

Ischemic heart disease (wide definition)

LV246 Adipose tissue, liver Atherosclerosis (ICD10 I70)

High cholesterol (self-reported)

Ischemic heart disease (wide definition)

"Heart attack, angina, stroke or hypertension” refers to theUKBiobankdata-field 6150.GWAS sample size: Atherosclerosis (361,194 in total and 566 cases), Chronic ischemicheart disease (361,194 in
total and 12,769 cases), Heart attack, angina, stroke or hypertension (360,420 in total and253,565cases), Ischemicheart disease/widedefinition (361,194 in total and 20,857cases), Highcholesterol/
self-reported (361,141 in total and 43,957 cases).

Fig. 4 | Top cell types/tissueswhere LV116’s genes are expressed. Values in the y
axis come frommatrix B in theMultiPLIERmodels (Fig. 1b). In the x axis, cell types/
tissues are sorted by the maximum sample value. The figure shows a clear immune
response with cell types under different stimuli. MSmultiple sclerosis, HSV-treated
with herpes simplex virus, WNV infected with West Nile virus, IFNa treated with

interferon-alpha, HMDM human peripheral blood mononuclear cell-derived mac-
rophages, Salm infected with Salmonella typhimurium, Yers infected with Yersinia
pseudotuberculosis, ISM Interferon Signature Metric, SLE Systemic lupus
erythematosus.
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potentially involved inmore general biological functions.We used our
regression framework to determine whether these LVs were sig-
nificantly associated with different traits. For example, LVs such as
LV928 and LV30, which were well-aligned to early progenitors of the
erythrocytes lineage82 (Supplementary Tables 12 and 15), were pre-
dominantly expressed in early differentiation stages of erythropoiesis
(Supplementary Figures 17 and 18) and strongly associated with dif-
ferent assays on red blood cells (FDR <0.05; Supplementary Tables 13,
14, and 17). In contrast, other LVs were highly specific, such as LV730,
which is expressed in thrombocytes from different cancer samples
(Supplementary Figures 19 and Supplementary Table 18), and strongly
associated with hematological assays on platelets (FDR <0.05, Sup-
plementary Table 19); or LV598, whose genes were expressed in cor-
neal endothelial cells (Supplementary Figures 20 and Supplementary
Table 21) and associated with keratometry measurements (Supple-
mentary Table 22).

The sub-branches of autoimmune and cardiovascular diseases
merged together at k = 10 (middle of Fig. 6), sowe expected to find LVs

that specifically affect one or both of these types of diseases. For
example, LV57, expressed in T cells (Supplementary Figure 21 and
Supplementary Table 24), was the most strongly associated gene
module with autoimmune disorders in PhenomeXcan (Supplementary
Table 25), with significant associations with hypothyroidism that were
replicated in eMERGE (Supplementary Table 26). However, this LV was
also strongly associated with deep venous thrombosis in both Phe-
nomeXcan and eMERGE. On the other hand, LV844 was more auto-
immune-specific, with associations to polymyalgia rheumatica, type 1
diabetes, rheumatoid arthritis, and celiac disease in PhenomeXcan
(Supplementary Table 28). However, these did not replicate in
eMERGE. This LVwas expressed in a wide range of cell types, including
blood, breast organoids, myeloma cells, lung fibroblasts, and different
cell types from thebrain (Supplementary Figure22 andSupplementary
Table 27).

The cardiovascular sub-branch had 129 significant LV-trait
associations in PhenomeXcan and 23 in eMERGE. LV136, aligned
with known collagen formation and muscle contraction pathways

Fig. 5 | Cluster analysis on traits using the latent gene expression representa-
tion. aTheprojectionofTWAS results on3752 traits into the latent gene expression
representation is the input data to the clustering process. A linear (PCA) and
nonlinear (UMAP) dimensionality reduction techniques were applied to the input
data, and five different clustering algorithms processed all data versions. These
algorithms derive partitions from the data using different parameters (such as the
number of clusters), leading to an ensemble of 4428 partitions. Then, a distance

matrix is derived by counting how many times a pair of traits was grouped in
different clusters across the ensemble. Finally, a consensus function is applied to
the distance matrix to generate consolidated partitions with different numbers of
clusters (from 2 to

ffiffiffi
n

p
≈ 60). These final solutions were represented in the clus-

tering tree (Fig. 6). b The clusters found by the consensus function were used as
labels to train a decision tree classifier on the original input data, which detects the
LVs that better differentiate groups of traits.
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(Supplementary Table 30), was associated with coronary artery
disease and keratometry measurements in PhenomeXcan (Supple-
mentary Table 31). In eMERGE, this LV was associated with coronary
atherosclerosis (phecode: 411.4) (Supplementary Table 32). LV136
was expressed in a wide range of cell types, including fibroblasts,
mesenchymal stem cells, osteoblasts, pancreatic stellate cells, car-
diomyocytes, and adipocytes (Supplementary Figure 23).Within the
cardiovascular sub-branch, we found neuropsychiatric and neuro-
developmental disorders such as Alzheimer’s disease, schizo-
phrenia, and attention deficit hyperactivity disorder (ADHD). These
disorders were previously linked to the cardiovascular system83–86

and share several risk factors, including hypertension, high cho-
lesterol, obesity, smoking, among others87,88. However, our results
grouped these diseases by potentially shared transcriptional

processes expressed in specific tissues/cell types. Alzheimer’s dis-
ease (not present in eMERGE), for instance, was significantly asso-
ciated with LV21 in PhenomeXcan (Supplementary Table 34). LV21, a
gene module not aligned to prior pathways, was strongly expressed
in a variety of soft tissue sarcomas, monocytes/macrophages
(including microglia from cortex samples), and aortic valves (Sup-
plementary Figure 24 and Supplementary Table 33). This LV was
also strongly associated with lipids and high cholesterol in Pheno-
meXcan and hyperlipidemia (phecode: 272.1) in eMERGE (Supple-
mentary Table 35). As discussed previously, macrophages play a key
role in the reverse cholesterol transport and thus atherogenesis89,
and lipid metabolism in microglia have been recently identified as
an important factor in the development of neurodegenerative
diseases90.

Fig. 6 | Clustering treeusingmultiple resolutions for clusters of traits. Each row
represents a partition/grouping of the traits, and each circle is a cluster from that
partition. The number of clusters goes from 5 to 29. Arrows indicate how traits in
one cluster move across clusters from different partitions. Most of the clusters are
preserved across different resolutions, showing highly stable solutions even with
independent runs of the clustering algorithm. RDW red cell (erythrocyte)

distribution width; BMI body mass index; WC waist circumference; HC hip cir-
cumference; RA rheumatoid arthritis; SLE systemic lupus erythematosus; HTN
Hypertension; IBD inflammatory bowel disease; SCZ Schizophrenia; CAD Coronary
artery disease; AD Alzheimer’s disease; The full lists of traits in each cluster in the
last five partitions of the tree (from k = 16 to k = 29) are in Supplementary Data 3-7.
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Discussion
We have introduced a novel computational strategy that integrates
statistical associations from TWAS with groups of genes (gene mod-
ules) that have similar expression patterns across the same cell types.
Our key innovation is that we project gene-trait associations through a
latent representation derived not strictly from measures of normal
tissue but also from cell types under a variety of stimuli and at various
developmental stages. This improves interpretation by going beyond
statistical associations to infer cell type-specific features of complex
phenotypes. Our approach can identify disease-relevant cell types
from summary statistics, and several disease-associated genemodules
were replicated in eMERGE. Using a CRISPR screen to analyze lipid
regulation, we found that our gene module-based approach can
prioritize causal genes even when single-gene associations are not
detected.We interpret thesefindingswith anomnigenicperspective of
“core” and “peripheral” genes, suggesting that the approach can
identify genes that directly affect the trait with nomediated regulation
of other genes and thus prioritize alternative and potentially more
attractive therapeutic targets.

Using our gene module perspective, we also integrated drug-
induced transcriptional profiles, which allowed us to connect diseases,
drugs, and cell types. We showed that the LV-based drug-repurposing
approach outperformed the gene-based one when predicting drug-
disease links for 322 drugs across 53 diseases. Furthermore, and
beyond statistical prediction,we focusedon cardiovascular traits and a
particular drug, niacin, to show that the approach connects

pathophysiological processes with known mechanisms of action,
including those in adipose tissue, immune cells, and ovarian granulosa
cells. Our LV-based approach could be helpful in generating novel
hypotheses to evaluate potential mechanisms of action, or even
adverse effects, of known or experimental drugs.

We found that the analysis of associations through latent repre-
sentations provided reasonable groupings of diseases and traits
affected by shared and distinct transcriptional mechanisms expressed
in highly relevant tissues. Our cluster analysis approach also detected
the LVs that weremost discriminative for each cluster. Several of these
LVs were also significantly associated with different traits. Some LVs
were strongly aligned with known pathways, but others (like LV57)
were not, which might represent novel disease-relevant mechanisms.
In some cases, the features/LVs linked to phenotypes appear to be
associated with specific cell types. Associations with such cell type
marker genes may reveal potentially causal cell types for a phenotype
withmore precision.We observedmodules expressed primarily in one
tissue (such as adipose in LV246 or ovary in LV66). Others appeared to
be expressed in many contexts, which may capture pathways asso-
ciatedwith related complex diseases. For example, LV136 is associated
with cardiovascular disease and measures of corneal biomechanics
and is expressed in fibroblasts, osteoblasts, pancreas, liver, and car-
diomyocytes, among others. Other examples include LV844, expres-
sed in whole blood samples and associated with a range of
autoimmunediseases; or LV57, which is clearly expressed in T cells and
strongly associated with autoimmune and venous thromboembolism.

Fig. 7 | Cluster-specific and general transcriptional processes associated with different diseases. The plot shows a submatrix of M̂ for the main trait clusters at k = 29,
considering only LVs (rows) that are well-aligned with at least one pathway.
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Fromanomnigenicpoint of view, thesepatternsmight represent cases
of “network pleiotropy,” where the same cell types mediate molecu-
larly related traits. To our knowledge, projection through a repre-
sentation learned on complementary but distinct datasets is a novel
approach to identifying cell type and pathway effects on complex
phenotypes that is computationally simple to implement.

We also demonstrated that clustering trees, introduced
initially as a means to examine developmental processes in single-
cell data, provide a multi-resolution grouping of phenotypes
based on latent variable associations. We employed hard-
partitioning algorithms (one trait belongs exclusively to one
cluster) where the distance between two traits takes into account
all gene modules. However, it is also plausible for two complex
diseases to share only a few biological processes instead of being
similar across most of them. Another important consideration is
that our TWAS results were derived from a large set of GWAS of
different sample sizes and qualities. Although the potential issues
derived from this data heterogeneity were addressed before
performing our cluster analyses on traits, data preprocessing
steps are always challenging and might not avoid bias altogether.
Considering groups of related diseases was previously shown to
be more powerful in detecting shared genetic etiology91,92, and
clustering trees provide a way to explore such relationships in the
context of latent variables.

Finally, we developed an LV-based regression framework to detect
whether gene modules are associated with a trait using TWAS p-values.
We used PhenomeXcan as a discovery cohort across four thousand
traits, and many LV-trait associations replicated in eMERGE. In Pheno-
meXcan, we found 3450 significant LV-trait associations (FDR<0.05)
with686LVs (outof 987) associatedwith at least one trait and 1176 traits
associatedwith at least one LV. In eMERGE, we found 196 significant LV-
trait associations,with 116 LVs associatedwith at least one trait/phecode
and81 traitswith at least one LV.Weonly focusedon a fewdisease types
from our trait clusters, but the complete set of associations on other
disease domains is available in our Github repository for future
research. As noted in Methods, one limitation of the regression
approach is that the gene-gene correlations are only approximately
accurate, which could lead to false positives if the correlation among
the top genes in a module is not precisely captured. The regression
model, however, is approximately well-calibrated, and we did not
observe inflation when running the method in real data.

Our approach rests on the assumption that gene modules with
coordinated expression patterns will also manifest coordinated
pathological effects. Our implementation in this work integrates two
complementary approaches. The first is MultiPLIER, which extracts
latent variables from large expression datasets, and these LVs could
represent either real transcriptional processes or technical factors
("batch effects”). We used a previously published model derived from
recount2, which was designed to analyze rare disorders but might not
be the optimal latent representation for the wide range of complex
diseases considered here. Also, the underlying factorization method
rests on linear combinations of variables, which could miss important
and more complex co-expression patterns. In addition, recount2, the
training dataset used, has since been surpassed in size and scale by
other resources20,93. However, it is important to note that our models
impose very few assumptions on the latent expression representation.
Therefore, we should be able to easily replace MultiPLIER with other
similar approaches like GenomicSuperSignature94. The second
approachweused in this study is TWAS,wherewe are only considering
the hypothesis that GWAS loci affect traits via changes in gene
expression. Other effects, such as coding variants disrupting protein-
protein interactions, are not captured. Additionally, TWAS has several
limitations that can lead to false positives95,96. Like GWAS, which gen-
erally detects groups of associated variants in linkage disequilibrium
(LD), TWAS usually identifies several genes within the same locus25,97.

This is due to sharing of GWAS variants in gene expression models,
correlated expression of nearby genes, or even correlation of their
predicted expression due to eQTLs in LD, among others95. Our LV-
based regression framework, however, accounts for these gene-gene
correlations in TWAS reasonably well.

Our findings are concordant with previous studies showing that
drugs with genetic support are more likely to succeed through the
drug development pipeline7,30. In this case, projecting association
results through latent variables better-prioritized disease-treatment
pairs than considering single-gene effects alone. An additional benefit
is that the latent variables driving predictions represent interpretable
genetic features that canbeexamined to infer potentialmechanismsof
action. Hereweprioritized drugs for diseases with very different tissue
etiologies, and a challenge of the approach is to select the most
appropriate tissue model from TWAS to find reversed transcriptome
patterns between genes and drug-induced perturbations.

Ultimately, the quality of the representations is essential to per-
formance. Here we used a representation derived from a factorization
of bulk RNA-seq data. Detailed perturbation datasets and single-cell
profiling of tissues, with and without perturbagens, and at various
stages of development provide an avenue to generate higher quality
andmore interpretable representations. On the other hand, the key to
interpretability is driven by the annotation of sample metadata. New
approaches to infer and annotate with structured metadata are pro-
mising and can be directly applied to existing data98. Rapid improve-
ments in both areas set the stage for latent variable projections to be
widely applied to disentangle the genetic basis of complex human
phenotypes. By providing a new perspective for a mechanistic
understanding of statistical associations from TWAS, our method can
generate testable hypotheses for the post-GWAS functional char-
acterization of complex diseases, which will likely be an area of great
importance in the coming years.

Methods
PhenoPLIER is a framework that combines different computational
approaches to integrate gene-trait associations and drug-induced
transcriptional responses with groups of functionally related genes
(referred to as gene modules or latent variables/LVs). Gene-trait
associations are computed using the PrediXcan family of methods,
whereas latent variables are inferred by theMultiPLIERmodels applied
on large gene expression compendia. PhenoPLIER provides (1) a
regression model to compute an LV-trait association, (2) a consensus
clustering approach applied to the latent space to learn shared and
distinct transcriptomic properties between traits, and (3) an inter-
pretable, LV-based drug-repurposing framework. We provide the
details of these methods below.

The PrediXcan family of methods for gene-based associations
We used Summary-PrediXcan (S-PrediXcan)99 and Summary-
MultiXcan (S-MultiXcan)24 as the gene-based statistical approaches,
which belong to the PrediXcan family of methods25. We broadly refer
to these approaches as TWAS (transcription-wide association studies).
S-PrediXcan, the summary-based version of PrediXcan, computes the
univariate association between a trait and a gene’s predicted expres-
sion in a single tissue. In contrast, S-MultiXcan, the summary-based
version of MultiXcan, computes the joint association between a gene’s
predicted expression in all tissues and a trait. S-PrediXcan and
S-MultiXcan only need GWAS summary statistics instead of individual-
level genotype and phenotype data.

Here we briefly provide the details about these TWAS methods
that are necessary to explain our regression framework later (see the
referenced articles for more information). In the following, we refer to
y as a vector of traits for n individuals that is centered for convenience
(so that no intercept is necessary); ~tl =

P
a2modell

wl
aXa is the gene’s

predicted expression for all individuals in tissue l, Xa is the genotype of
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SNP a and wa its weight in the tissue prediction model l; and tl is the
standardized version of ~tl with mean equal to zero and standard
deviation equal to one.

S-PrediXcan99 is the summary version of PrediXcan25. PrediXcan
models the trait as a linear functionof the gene’s expression on a single
tissue using the univariate model

y= tlγl + ϵl , ð1Þ

where γ̂l is the estimated effect size or regression coefficient, and ϵl are
the error terms with variance σ2

ϵ . The significance of the association is
assessed by computing the z-score ẑl = γ̂l=seðγ̂lÞ for a gene’s tissue
model l. PrediXcan needs individual-level data to fit this model,
whereas S-PrediXcan approximates PrediXcan z-scores using only
GWAS summary statistics with the expression

ẑl ≈
X

a2modell

wl
a
σ̂a

σ̂l

β̂a

seðβ̂aÞ
, ð2Þ

where σ̂a is the variance of SNP a, σ̂l is the variance of the predicted
expression of a gene in tissue l, and β̂a is the estimated effect size of
SNPa from theGWAS. In these TWASmethods, the genotype variances
and covariances are always estimated using the Genotype-Tissue
Expression project (GTEx v8)4 as the reference panel. Since
S-PrediXcan provides tissue-specific direction of effects (for instance,
whether a higher or lower predicted expression of a gene confersmore
or less disease risk), we used the z-scores in our drug-repurposing
approach (described below).

S-MultiXcan24, on the other hand, is the summary version of
MultiXcan. MultiXcan is more powerful than PrediXcan in detecting
gene-trait associations, although it does not provide the direction of
effects. Its main output is the p-value (obtained with an F test) of the
multiple tissue model

y =
Xp
l = 1

tlgl + e

=Tg+ e,

ð3Þ

where T is a matrix with p columns tl, ĝl is the estimated effect size for
the predicted gene expression in tissue l (and thus ĝ is a vector with p
estimated effect sizes ĝl), and e are the error terms with variance σ2

e .
Given the high correlation between predicted expression values for a
gene across different tissues, MultiXcan uses the principal compo-
nents (PCs) of T to avoid collinearity issues. S-MultiXcan derives the
joint regression estimates (effect sizes and their variances) in Equation
(3) using the marginal estimates from S-PrediXcan in Equation (2).
Under the null hypothesis of no association, ĝ> T>T

σ2
e
ĝ∼ χ2p, and

therefore the significance of the association in S-MultiXcan is
estimated with

ĝ>ðT>TÞĝ
σ2
e

≈ γ̂>
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

σϵ

T>T
n� 1

� ��1 ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

σϵ
γ̂

= ẑ>CorðTÞ�1ẑ,

ð4Þ

where ẑ is a vector with pz-scores (Equation (2)) for each tissue avail-
able for the gene, and Cor(T) is the autocorrelation matrix of T. Since
T⊤T is singular for many genes, S-MultiXcan computes the pseudo-
inverse Cor(T)+ using the k top PCs, and thus ẑ>CorðTÞ+ ẑ∼ χ2k . To
arrive at this expression, S-MultiXcan uses the conservative approx-
imation σ2

e ≈ σ
2
ϵ , that is, the variance of the error terms in the joint

regression is approximately equal to the residual variance of the
marginal regressions. Another important point is that Cor(T) is
estimated using a global genotype covariance matrix, whereas

marginal ẑl in Equation (2) are approximated using tissue-specific
genotype covariances. Although S-MultiXcan yields highly concordant
estimates compared with MultiXcan, results are not perfectly
correlated across genes24. As we explain later, these differences are
important for our LV-based regression model when computing the
gene-gene correlationmatrix. We used S-MultiXcan results for our LV-
based regression model and our cluster analyses of traits.

TWAS resources
We used two large TWAS resources from different cohorts for dis-
covery and replication, all obtained from European ancestries.
PhenomeXcan42, our discovery cohort, provides results on 4,091 traits
across different categories. Supplementary Data 1 has all the details
about the included GWAS, sample size, and disease/trait categories. In
PhenomeXcan, these publicly available GWAS summary statistics were
used to compute (1) gene-based associationswith the PrediXcan family
of methods (described before), and (2) a posterior probability of
colocalization between GWAS loci and cis-eQTL with fastENLOC42,96.
We refer to the matrix of z scores from S-PrediXcan (Equation (2))
across q traits andm genes in tissue t asMt 2 Rq×m. As explained later,
matrices Mt were used in our LV-based drug-repurposing framework
since they provide direction of effects. The S-MultiXcan results (22,515
gene associations across 4,091 traits) were used in our LV-based
regression framework and our cluster analyses of traits. For the cluster
analyses, we used the p-values converted to z-scores: M =Φ−1(1−p/2),
where Φ−1 is the probit function. Higher z-scores correspond to
stronger associations.

Our discovery cohort was eMERGE46, where the same TWAS
methods were run on 309 phecodes27 across different categories
(more information about traits is available in ref. 27). We used these
results to replicate the associations found with our LV-based regres-
sion framework in PhenomeXcan.

MultiPLIER and pathway-level information extractor (PLIER)
MultiPLIER44 extracts patterns of co-expressed genes from recount219

(without including GTEx samples), a large gene expression dataset.
The approach applies the PLIER45, which performs unsupervised
learning using prior knowledge (canonical pathways) to reduce tech-
nical noise. PLIER uses a matrix factorization approach that deconvo-
lutes gene expression data into a set of latent variables (LV), where
eachLV represents a genemodule. TheMultiPLIERmodels reduced the
dimensionality in recount2 to 987 LVs.

Given a gene expression dataset Ym×c with m genes and c experi-
mental conditions and a prior knowledge matrix C∈ {0, 1}m×p for p
MSigDB pathways100 (so that Cij = 1 if gene i belongs to pathway j),
PLIER finds U, Z, and B minimizing

jjY� ZBjj2F + λ1jjZ� CUjj2F + λ2jjBjj2F + λ3jjUjjL1 ð5Þ

subject toU >0,Z >0; Zm×l are the gene loadings with l latent variables,
Bl×c is the latent space for c conditions, Up×l specifies which of the p
prior-information pathways inC are represented for each LV, and λi are
different regularization parameters used in the training step.Z is a low-
dimensional representation of the gene space where each LV aligns as
much as possible with prior knowledge, and itmight represent either a
known or novel gene module (i.e., a meaningful biological pattern)
or noise.

For our drug-repurposing and cluster analyses, we used this
model to project gene-trait (from TWAS) and gene-drug associations
(from LINCS L1000) into this low-dimensional genemodule space. For
instance, TWAS associations M (either from S-PrediXcan or S-Multi-
Xcan) were projected using

M̂= ðZ>Z+ λ2IÞ
�1
Z>M, ð6Þ
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where M̂
l ×q

is a matrix where traits are represented by gene modules
instead of single genes. As explained later, we used the same approach
to project drug-induced transcriptional profiles in LINCS L1000 to
obtain a representation of drugs using gene modules.

Regression model for LV-trait associations
We adapted the gene set analysis framework fromMAGMA101 to TWAS.
We used a competitive test to predict gene-trait associations from
TWAS using gene weights from an LV, testing whether top-weighted
genes for an LV aremore strongly associated with the phenotype than
other genes with relatively small or zero weights. Thus, we fit the
model

m = β0 + sβs +
X
i

xiβi + ϵ, ð7Þ

where m is a vector of S-MultiXcan gene p-values for a trait (with
a − log10 transformation); s is a binary indicator vectorwith sℓ = 1 for the
top 1% of genes with the largest loadings for LV ℓ (from Zℓ) and zero
otherwise; xi is a gene property used as a covariate; β are effect sizes
(with β0 as the intercept); and ϵ ~MVN(0, σ2R) is a vector of error terms
with a multivariate normal distribution (MVN) whereR is thematrix of
gene correlations.

The model tests the null hypothesis βs =0 against the one-sided
hypothesis βs >0. Therefore, βs reflects the difference in trait associa-
tions between genes that are part of LV ℓ and genes outside of it.
Following the MAGMA framework, we used two gene properties as
covariates: (1) gene size, defined as the number of PCs retained in
S-MultiXcan, and (2) gene density, defined as the ratio of the number of
PCs to the number of tissues available.

Since the error terms ϵ could be correlated, we cannot assume
they have independent normal distributions as in a standard linear
regression model. In the PrediXcan family of methods, the pre-
dicted expression of a pair of genes could be correlated if they share
eQTLs or if these are in LD95. Therefore, we used a generalized least
squares approach to account for these correlations. The gene-gene
correlation matrix R was approximated by computing the correla-
tions between the model sum of squares (SSM) for each pair of
genes under the null hypothesis of no association. These correla-
tions are derived from the individual-level MultiXcan model
(Equation (3)), where the predicted expression matrix Ti 2 Rn×pi of
a gene i across pi tissues is projected into its top ki PCs, resulting in
matrix Pi 2 Rn× ki . From the MAGMA framework, we know that the
SSM for each gene is proportial to y>PiP

>
i y. Under the null

hypothesis of no association, the covariances between the SSM of
genes i and j is therefore given by 2 ×TraceðP>

i PjP
>
j PiÞ. The standard

deviations of each SSM are given by
ffiffiffiffiffiffiffiffiffiffiffi
2 × ki

p
× ðn� 1Þ. Therefore, the

correlation between the SSMs for genes i and j can be written as
follows:

Rij =
2×TrðP>

i PjP
>
j PiÞffiffiffiffiffiffiffiffiffiffiffi

2 × ki

p
×

ffiffiffiffiffiffiffiffiffiffiffiffi
2 × kj

q
× ðn� 1Þ2

=
2 ×TrðCorðPi,PjÞ×CorðPj,PiÞÞffiffiffiffiffiffiffiffiffiffiffi

2 × ki

p
×

ffiffiffiffiffiffiffiffiffiffiffiffi
2 × kj

q ,

ð8Þ

where columns P are standardized, Tr is the trace of a matrix, and the
cross-correlation matrix between PCs CorðPi,PjÞ 2 Rki × kj is given by

CorðPi,PjÞ =CorðTiV
>
i diagðλiÞ�1=2,TjV

>
j diagðλjÞ�1=2Þ

=diagðλiÞ�1=2Vi

T>
i Tj

n� 1

 !
V>
j diagðλjÞ�1=2,

ð9Þ

where
T>
i Tj

n�1 2 Rpi ×pj is the cross-correlation matrix between the
predicted expression levels of genes i and j, and columns of Vi and
scalars λi are the eigenvectors and eigenvalues of Ti, respectively.
S-MultiXcankeeps only the top eigenvectors using a condition number
threshold of maxðλiÞ

λi
<30. To estimate the correlation of predicted

expression levels for genes i in tissue k and gene j in tissue l, ðtik ,tjlÞ (tik is
the kth column of Ti), we used24

ðT>
i TjÞkl
n� 1

=Corðtik ,tjlÞ

=
Covðtk ,tlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðtkÞcvarðtlÞq

=
CovðPa2modelk

wk
aXa,

P
b2modell

wl
bXbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðtkÞcvarðtlÞq

=

P
a 2 modelk
b 2 modell

wk
aw

l
bCovðXa,XbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðtkÞcvarðtlÞq

=

P
a 2 modelk
b 2 modell

wk
aw

l
bΓab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðtkÞcvarðtlÞq ,

ð10Þ

where Xa is the genotype of SNP a, wk
a is the weight of SNP a for

gene expression prediction in the tissue model k, and
Γ= cvarðXÞ= ðX� �XÞ>ðX� �XÞ=ðn� 1Þ is the genotype covariance matrix
using GTEx v8 as the reference panel, which is the same used in all
TWAS methods described here. The variance of the predicted
expression values of gene i in tissue k is estimated as99:

cvarðtikÞ = ðWkÞ>ΓkWk

=
X

a2modelk
b2modelk

wk
aw

k
bΓ

k
ab: ð11Þ

Note that, since we used the MultiXcan regression model (Equa-
tion (3)), R is only an approximation of gene correlations in
S-MultiXcan. As explained before, S-MultiXcan approximates the joint
regression parameters in MultiXcan using the marginal regression
estimates from S-PrediXcan in (2) with some simplifying assumptions
and different genotype covariance matrices. This complicates the
derivation of an S-MultiXcan-specific solution to compute R. To
account for this, we used a submatrix Rℓ corresponding to genes that
are part of LV ℓ only (top 1% of genes) instead of the entire matrix R.
This simplification is conservative since correlations are accounted for
top genes only. Our simulations (Supplementary Note 1) show that the
model is approximately well-calibrated and can correct for LVs with
adjacent and highly correlated genes at the top (e.g., Supplementary
Figure 2). The simulation also identified 127 LVs inwhich themodelwas
not well-calibrated (e.g., Supplementary Figure 6). As this can be
attributed to limitations in accurately computing a gene correlation
matrix, we excluded these LVs from our main analyses.

In Equation (10), for each gene, we only considered tissue models
present in S-PrediXcan results, aswell as SNPs present in GWASused as
input for the TWAS approaches. This is necessary to obtain more
accurate correlation estimates24. Therefore, we computed different
correlationmatrices for PhenomeXcanand eMERGE. In PhenomeXcan,
most of the GWAS (4049) were obtained from the UK Biobank using
the same pipeline and including the same set of SNPs, so a single
correlation matrix was used for this set. For the rest, we used a single
correlation matrix for each group of traits that shared the same or
most of the SNPs.
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We ran our regressionmodel for all 987 LVs across the 4091 traits
in PhenomeXcan. For replication, we ran the model in the 309 phe-
codes in eMERGE. We adjusted the p-values using the Benjamini-
Hochberg procedure.

LV-based drug-repurposing approach
For thedrug-diseaseprediction,wederived anLV-basedmethodbased
on a drug repositioning framework previously used for psychiatry
traits30, where individual/single genes associated with a trait are
anticorrelated with expression profiles for drugs. We compared our
LV-based method with this previously published, single-gene
approach. For the single-gene method, we computed a drug-disease
score bymultiplying each S-PrediXcan set of signed z-scores in tissue t,
Mt, with another set of signed z-scores from transcriptional responses
profiled in LINCS L100043, Lc×m (for c compounds). Here Mt contains
information about whether a higher or lower predicted expression of a
gene is associated with disease risk, whereas L indicates whether a
drug increases or decreases the expression of a gene. Therefore, these
two matrices can be multiplied to compute a score for a drug-disease
pair. The result of this product isDt,k = − 1 ⋅Mt,kL⊤, where k refers to the
number of most significant gene associations in Mt for each trait. As
suggested in30, k could be either all genes or the top 50, 100, 250, and
500; then,we averaged score ranks across all k andobtainedDt. Finally,
for each drug-disease pair, we took the maximum prediction score
across all tissues: Dij = maxfijtDj8tg.

The same procedure was used for the LV-based approach, where
we projected Mt and L into the gene module latent space using
Equation (6), leading to M̂

t
and L̂

l × c
, respectively. Finally,

Dt,k = � 1 � L̂>
M̂

t,k
, where in this case k could be all LVs or the top 5, 10,

25, and 50 (since we have an order of magnitude less LVs than genes).
Since the gold standard of drug-disease medical indications is

described with Disease Ontology IDs (DOID)102, we mapped Pheno-
meXcan traits to the Experimental Factor Ontology103 using104, and
then to DOID.

Consensus clustering of traits
We performed two preprocessing steps on the S-MultiXcan results
before the cluster analysis. First, we combined results in M (with p
values converted to z-scores, as described before) for traits that
mapped to the sameExperimental FactorOntology (EFO)103 termusing
the Stouffer’smethod:

P
wiMij=

ffiffiffiffiffiffiffiffiffiffiffiffiP
w2

i

q
, wherewi is a weight based on

the GWAS sample size for trait i, and Mij is the z-score for gene j.
Second, we divided all z-scores for each trait i by their sum to reduce
the effect of highly polygenic traits: Mij/∑Mij. Finally, we projected
this datamatrixusing Equation (6), obtaining M̂withn=3752 traits and
l = 987 LVs as the input of our clustering pipeline.

A partitioning of M̂ with n traits into k clusters is represented as a
label vector π 2 Nn. Consensus clustering approaches consist of two
steps: (1) the generation of an ensemble Π with r partitions of the
dataset: Π = {π1,π2,…,πr}, and (2) the combination of the ensemble
into a consolidated solution defined as:

π* = argmax
π̂

QðfjLijϕðπ̂Li ,πiLi Þ j i 2 f1, . . . ,rggÞ, ð12Þ

whereLi is a set of data indiceswith known cluster labels for partition i,
ϕ : Nn ×Nn ! R is a function that measures the similarity between
two partitions, and Q is a measure of central tendency, such as the
mean or median. We used the adjusted Rand index (ARI)105 for ϕ and
the median for Q. To obtain π*, we define a consensus function Γ :

Nn× r ! Nn with Π as the input. We used consensus functions based
on the evidence accumulation clustering (EAC) paradigm79, where Π is
first transformed into a distance matrix Dij= dij/r, where dij is the
number of times traits i and jwere grouped in different clusters across
all r partitions in Π. Then, Γ can be any similarity-based clustering
algorithm, which is applied on D to derive the final partition π*.

For the ensemblegeneration step, we used different algorithms to
create a highly diverse set of partitions (see Fig. 5) since diversity is an
important property for ensembles106–108. We used three data repre-
sentations: the raw dataset, its projection into the top 50 principal
components, and the embedding learned by UMAP109 using 50 com-
ponents. For each of these, we applied five clustering algorithms
covering a wide range of different assumptions on the data structure:
k-means110, spectral clustering111, a Gaussian mixture model (GMM),
hierarchical clustering, and DBSCAN112. For k-means, spectral cluster-
ing, and GMM, we specified a range of k between 2 and

ffiffiffi
n

p
≈60, and

for each k we generated five partitions using random seeds. For hier-
archical clustering, for each k, we generated four partitions using
common linkage criteria: ward, complete, average, and single. For
DBSCAN, we combined different ranges for parameters ϵ (the max-
imum distance between two data points to be considered part of the
same neighborhood) andminPts (theminimumnumber of data points
in a neighborhood for a data point to be considered a core point),
based on the procedure in113. Specifically, we usedminPts values from2
to 125. For each data representation (raw, PCA, and UMAP), we
determined a plausible range of ϵ values by observing the distribution
of the mean distance of the minPts-nearest neighbors across all data
points. Since some combinations ofminPts and ϵmight not produce a
meaningful partition (for instance, when all points are detected as
noisy or only one cluster is found), we resampled partitions generated
by DBSCAN to ensure an equal representation of this algorithm in the
ensemble. This procedure generated a final ensemble of 4428 parti-
tions of 3752 traits.

Finally, we used spectral clustering on D to derive the final con-
sensus partitions. D was first transformed into a similarity matrix by
applying an RBF kernel expð�γD2Þ using four different values for γ that
we empirically determined towork best. Therefore, for each k between
2 and 60, we derived four consensus partitions and selected the one
that maximized Equation (12). We further filtered this set of 59 solu-
tions to keep only those with an ensemble agreement larger than the
75th percentile (Supplementary Figure 13), leaving a total of 15 final
consensus partitions shown in Fig. 6.

The input data in our clustering pipeline undergoes several linear
and nonlinear transformations, including PCA, UMAP, and the
ensemble transformation using the EAC paradigm (distancematrixD).
Although consensus clustering has clear advantages for biological
data77, this set of data transformations complicates the interpretation
of results. To circumvent this, we used a supervised learning approach
to detect which gene modules/LVs are the most important for each
cluster of traits (Fig. 5b). Note that we did not use this supervised
model for prediction but only to learn which features (LVs) weremost
discriminative for each cluster. For this, we used the highest resolution
partition (k = 29, although any could be used) to train a decision tree
model using each of the clusters as labels and the projected data M̂ as
the training samples. For each k, we built a set of binary labels with the
current cluster’s traits as the positive class and the rest of the traits as
the negative class. Then, we selected the LV in the root node of the
trained model only if its threshold was positive and larger than one
standard deviation. Next, we removed this LV from M̂ (regardless of
being previously selected or not) and trained the model again. We
repeated this procedure 20 times to extract the top 20 LVs that better
discriminate traits in a cluster from the rest.

In Supplementary Note 2, we performed several analyses under a
null hypothesis of no structure in the data to verify that the clustering
results detected by this pipeline were real.

CRISPR-Cas9 screening
Cell culture. HepG2 cells were obtained from ATCC (ATCC® HB-
8065™), and maintained in Eagle’s Minimum Essential Medium with
L-Glutamine (EMEM, Cat. 112-018-101, Quality Biology) supplemented
with 10% Fetal Bovine Serum (FBS, Gibco, Cat.16000-044), and 1% Pen/
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Strep (Gibco, Cat.15140-122). Cells were kept at 37oC in a humidity-
controlled incubator with 5% CO2, and were maintained at a density
not exceeding more than 80% confluency in Collagen-I coated flasks.

Genome-wide lentiviral pooled CRISPR-Cas9 library. 3rd lentiviral
generation, Broad GPP genome-wide Human Brunello CRISPR
knockout Pooled library was provided by David Root and John
Doench from Addgene (Cat. 73179-LV), and was used for HepG2 cell
transduction. It consists of 76,441 sgRNAs, and targets 19,114 genes in
the human genome with an average of 4 sgRNAs per gene. Each 20nt
sgRNA cassette was inserted into the lentiCRIS-PRv2 backbone
betweenU6 promoter and gRNA scaffold. Through cell transduction,
the lentiviral vectors that encode Cas9 were used to deliver the
sgRNA cassette containing plasmids into cells during cell replication.
Unsuccessful transduced cells were excluded through puromycin
selection.

Lentiviral titer determination. No-spin lentiviral transduction was
utilized for the screen. In a Collagen-I coated 6-wells plate, ~2.5M cells
were seeded eachwell in the presence of 8μg/ml polybrene (Millipore
Sigma, Cat. TR-1003 G), and a different titrated virus volume (e.g., 0,
50, 100, 200, 250, and 400μl) was assigned to each well. EMEM
complete media was added to make the final volume of 1.24ml. 16-
18hrs post-transduction, virus/polybrene-containing media was
removed from each well. Cells were washed twice with 1x DPBS and
replaced with fresh EMEM. At 24h, cells in each well were trypsinized,
diluted (e.g.,1:10), and seeded in pairs of wells of 6-well plates. At 60 hr
post-transduction, cell media in each well was replaced with fresh
EMEM. 2ug/ml of puromycin (Gibco, Cat. A1113803) was added to one
well out of the pair. 2–5 days after puromycin selection, or the 0 virus
well treated with puromycin had no survival of cells, cells in both wells
with/without puromycin were collected and counted for viability.
Percentage of Infection (PI%) was obtained by comparing the cell
numberswith/without puromycin selectionwithin each pair. Bymeans
of Poisson’s distribution theory, when transduction efficiency (PI%) is
between 30 and 50%, which corresponds to an MOI (Multiplicity of
Infection) of ~0.35–0.70. At MOI close to 0.3, around 25% of cells are
infected, and themajority of those infected cells are predicted to have
only one copyof the virus. Therefore, a volumeof virus (120ul) yielding
30–40% of transduction efficiency was chosen for further large-scale
viral transduction.

Lentiviral Transduction in HepG2 Using Brunello CRISPR Knockout
Pooled Library. In order to achieve a coverage (representation) of at
least 500 cells per sgRNA, and at an MOI between 0.3–0.4 to ensure
95% of infected cells get only one viral particle per cell, ~200 M cells
were initiated for the screen. Transduction was carried out in a similar
fashion asdescribed above. Briefly, 2.5Mcellswere seeded in eachwell
of 14 6-well plates, along with 8ug/ml of polybrene. A volume of 120μl
of the virus was added to each experimental well. 18hrs post-trans-
duction, virus/PB mix medium was removed, and cells in each well
were collected, counted, and pooled into T175 flasks. At 60hr post-
transduction, 2ug/ml of puromycin was added to each flask. Mediums
were changed every two days with fresh EMEM, topped with 2ug/ml
puromycin. Seven days after puromycin selection, cells were collected,
pooled, counted, and replated.

Fluorescent dye staining. 9 days after puromycin selection, cells were
assigned to two groups. 20–30M cells were collected as Unsorted
Control. The cell pellet was spun down at 500 × g for 5min at 4°C. The
dry pellet was kept at –80 °C for further genomic DNA isolation. The
rest of the cells (~200M)were kept in 100mmdishes and stainedwith a
fluorescent dye (LipidSpotTM 488, Biotium, Cat. 70065-T). In Brief,
LipidSpot 488 was diluted to 1:100 with DPBS. 4ml of staining solution
was used for each dish and incubated at 37°C for 30min. Cell images

were captured through fluorescent microscope EVOS for GFP signal
detection (Supplementary Figure 8).

Fluorescence-activated cell sorting (FACS). Cells were immediately
collected into 50ml tubes (From this point on, keep cells cold), and
spun at 500 x g for 5min at 4°C. After DPBS wash, cell pellets were
resuspended with FACS Sorting Buffer (1× DPBS without Ca2+/Mg2+,
2.5mM EDTA, 25mMHEPES, 1% BSA. The solution was filter sterilized,
and kept at 4 °C), with gentle pipetting to make single cells. The cell
solution was then filtered through a cell strainer (Falcon, Cat. 352235)
and was kept on ice, protected from light. Collected cells were sorted
on FACSJazz. 100μm nozzle was used for sorting. ~20% of each GFP-
High and GFP-Low (Supplementary Figure 9) were collected into 15ml
tubes. After sorting, cells were immediately spun down. Pellets were
kept at −80 °C for further genomic DNA isolation.

Genomic DNA isolation and verification. Three conditions of Geno-
mic DNA (UnSorted Control, lentiV2 GFP-High, and lentiV2 GFP-Low)
were extracted using QIAamp DNA BloodMini Kit (Qiagen, Cat.51104),
followed by UV Spectroscopy (Nanodrop) to access the quality and
quantity of the gDNA. A total of 80–160μg of gDNA was isolated for
each condition. sgRNA cassette and lentiviral-specific transgene in
isolated gDNA were verified through PCR (Supplementary Figure 10).

Illumina libraries generation and sequencing. The fragment con-
taining sgRNAcassettewas amplifiedusing P5 /P7 primers, as indicated
in114, and primer sequences were adapted from Broad Institute proto-
col (Supplementary Figure 11). Stagger sequence (0–8nt) was included
in P5 and 8bp uniquely barcoded sequence in P7. Primers were syn-
thesized through IntegratedDNATechnologies (IDT), and each primer
was PAGE purified. 32 PCR reactions were set up for each condition.
Each 100μ l PCR reaction consists of roughly 5μg of gDNA, 5μl of each
10μM P5 and P7. ExTaq DNA Polymerase (TaKaRa, Cat. RR001A) was
used to amplify the amplicon. PCR Thermal Cycler Parameters are set
as Initial at 95°C for 1min; followed by 24 cycles of Denaturation at
94°C for 30 seconds, Annealing at 52.5 °C for 30 seconds, Extension at
72°C for 30 seconds. A final Elongation at 72°C for 10 minutes.
285bp–293bp PCR products were expected (Supplementary Fig-
ure 12A). PCR products within the same condition were pooled and
purified using SPRIselect beads (Beckman Coulter, Cat. B23318). Pur-
ified Illumina librarieswerequantitatedonQubit, and the quality of the
library was analyzed on Bio-analyzer using a sensitivity DNA Chip. A
single ~285bp peak was expected (Supplementary Figure 12B). Final
Illumina library samples were sequenced on Nova-seq 6000. Samples
were pooled and loaded on an SP flow cell, along with a 20% PhiX
control v3 library spike-in.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the main datasets generated in this study are available at https://
doi.org/10.5281/zenodo.8071382115 and the GitHub repository https://
github.com/greenelab/phenoplier. The main input datasets used are
TWAS from PhenomeXcan42 for 4,091 traits and from the Electronic
Medical Records and Genomics (eMERGE) network phase III27 for 309
traits; transcriptional responses to small molecule perturbations from
LINCS L100043 that were further preprocessed and mapped to Drug-
Bank IDs from54; latent space/gene module models fromMultiPLIER44.
The data used from PhenomeXcan, LINCS L1000, and MultiPLIER are
publicly available. All significant results reported for the eMERGE and
Penn Medicine BioBank (PMBB) phenome-wide TWAS are contained
in27. The individual-level PMBB raw datasets can not be made publicly
available due to institutional privacy policy. Please contact Penn
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Medicine Biobank (https://pmbb.med.upenn.edu/pmbb/) for requests
for access to data. eMERGE network phase III data is available on
dbGAP (Accession: phs001584.v2.p2).

Code availability
The code necessary to reproduce all the analyses in this work is
available at https://doi.org/10.5281/zenodo.8071382115 and the GitHub
repository https://github.com/greenelab/phenoplier. For the CRISPR
screening, we used FlowJo v10.7 and FACSJazz Software v1.1. For data
analysis, we used Python 3.8 and R 3.6 with several computational
packages. The main Python packages used were: Jupyter Lab (2.2),
pandas (1.1), matplotlib (3.3), seaborn (0.11), numpy (1.19), scipy (1.5),
scikit-learn (0.23), and umap-learn (0.4). The main R packages were:
Bioconductor (3.10), clusterProfiler (3.14), clustree (0.4), and fgsea
(1.17). We also developed several scripts and notebooks which are
published under an open-source license. We documented all the steps
necessary to carry out all the analyses.We also provide a Docker image
to use the same runtime environment we used, and a demo to quickly
test the methods on real data.
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